blob: 81ce37ec407dd18b04abab3ff0a40c8deca9cd65 [file] [log] [blame]
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* tools/testing/selftests/kvm/include/x86_64/processor.h
*
* Copyright (C) 2018, Google LLC.
*/
#ifndef SELFTEST_KVM_PROCESSOR_H
#define SELFTEST_KVM_PROCESSOR_H
#include <assert.h>
#include <stdint.h>
#include <syscall.h>
#include <asm/msr-index.h>
#include <asm/prctl.h>
#include <linux/kvm_para.h>
#include <linux/stringify.h>
#include "../kvm_util.h"
extern bool host_cpu_is_intel;
extern bool host_cpu_is_amd;
enum vm_guest_x86_subtype {
VM_SUBTYPE_NONE = 0,
VM_SUBTYPE_SEV,
VM_SUBTYPE_SEV_ES,
};
/* Forced emulation prefix, used to invoke the emulator unconditionally. */
#define KVM_FEP "ud2; .byte 'k', 'v', 'm';"
#define NMI_VECTOR 0x02
#define X86_EFLAGS_FIXED (1u << 1)
#define X86_CR4_VME (1ul << 0)
#define X86_CR4_PVI (1ul << 1)
#define X86_CR4_TSD (1ul << 2)
#define X86_CR4_DE (1ul << 3)
#define X86_CR4_PSE (1ul << 4)
#define X86_CR4_PAE (1ul << 5)
#define X86_CR4_MCE (1ul << 6)
#define X86_CR4_PGE (1ul << 7)
#define X86_CR4_PCE (1ul << 8)
#define X86_CR4_OSFXSR (1ul << 9)
#define X86_CR4_OSXMMEXCPT (1ul << 10)
#define X86_CR4_UMIP (1ul << 11)
#define X86_CR4_LA57 (1ul << 12)
#define X86_CR4_VMXE (1ul << 13)
#define X86_CR4_SMXE (1ul << 14)
#define X86_CR4_FSGSBASE (1ul << 16)
#define X86_CR4_PCIDE (1ul << 17)
#define X86_CR4_OSXSAVE (1ul << 18)
#define X86_CR4_SMEP (1ul << 20)
#define X86_CR4_SMAP (1ul << 21)
#define X86_CR4_PKE (1ul << 22)
struct xstate_header {
u64 xstate_bv;
u64 xcomp_bv;
u64 reserved[6];
} __attribute__((packed));
struct xstate {
u8 i387[512];
struct xstate_header header;
u8 extended_state_area[0];
} __attribute__ ((packed, aligned (64)));
#define XFEATURE_MASK_FP BIT_ULL(0)
#define XFEATURE_MASK_SSE BIT_ULL(1)
#define XFEATURE_MASK_YMM BIT_ULL(2)
#define XFEATURE_MASK_BNDREGS BIT_ULL(3)
#define XFEATURE_MASK_BNDCSR BIT_ULL(4)
#define XFEATURE_MASK_OPMASK BIT_ULL(5)
#define XFEATURE_MASK_ZMM_Hi256 BIT_ULL(6)
#define XFEATURE_MASK_Hi16_ZMM BIT_ULL(7)
#define XFEATURE_MASK_PT BIT_ULL(8)
#define XFEATURE_MASK_PKRU BIT_ULL(9)
#define XFEATURE_MASK_PASID BIT_ULL(10)
#define XFEATURE_MASK_CET_USER BIT_ULL(11)
#define XFEATURE_MASK_CET_KERNEL BIT_ULL(12)
#define XFEATURE_MASK_LBR BIT_ULL(15)
#define XFEATURE_MASK_XTILE_CFG BIT_ULL(17)
#define XFEATURE_MASK_XTILE_DATA BIT_ULL(18)
#define XFEATURE_MASK_AVX512 (XFEATURE_MASK_OPMASK | \
XFEATURE_MASK_ZMM_Hi256 | \
XFEATURE_MASK_Hi16_ZMM)
#define XFEATURE_MASK_XTILE (XFEATURE_MASK_XTILE_DATA | \
XFEATURE_MASK_XTILE_CFG)
/* Note, these are ordered alphabetically to match kvm_cpuid_entry2. Eww. */
enum cpuid_output_regs {
KVM_CPUID_EAX,
KVM_CPUID_EBX,
KVM_CPUID_ECX,
KVM_CPUID_EDX
};
/*
* Pack the information into a 64-bit value so that each X86_FEATURE_XXX can be
* passed by value with no overhead.
*/
struct kvm_x86_cpu_feature {
u32 function;
u16 index;
u8 reg;
u8 bit;
};
#define KVM_X86_CPU_FEATURE(fn, idx, gpr, __bit) \
({ \
struct kvm_x86_cpu_feature feature = { \
.function = fn, \
.index = idx, \
.reg = KVM_CPUID_##gpr, \
.bit = __bit, \
}; \
\
kvm_static_assert((fn & 0xc0000000) == 0 || \
(fn & 0xc0000000) == 0x40000000 || \
(fn & 0xc0000000) == 0x80000000 || \
(fn & 0xc0000000) == 0xc0000000); \
kvm_static_assert(idx < BIT(sizeof(feature.index) * BITS_PER_BYTE)); \
feature; \
})
/*
* Basic Leafs, a.k.a. Intel defined
*/
#define X86_FEATURE_MWAIT KVM_X86_CPU_FEATURE(0x1, 0, ECX, 3)
#define X86_FEATURE_VMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 5)
#define X86_FEATURE_SMX KVM_X86_CPU_FEATURE(0x1, 0, ECX, 6)
#define X86_FEATURE_PDCM KVM_X86_CPU_FEATURE(0x1, 0, ECX, 15)
#define X86_FEATURE_PCID KVM_X86_CPU_FEATURE(0x1, 0, ECX, 17)
#define X86_FEATURE_X2APIC KVM_X86_CPU_FEATURE(0x1, 0, ECX, 21)
#define X86_FEATURE_MOVBE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 22)
#define X86_FEATURE_TSC_DEADLINE_TIMER KVM_X86_CPU_FEATURE(0x1, 0, ECX, 24)
#define X86_FEATURE_XSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 26)
#define X86_FEATURE_OSXSAVE KVM_X86_CPU_FEATURE(0x1, 0, ECX, 27)
#define X86_FEATURE_RDRAND KVM_X86_CPU_FEATURE(0x1, 0, ECX, 30)
#define X86_FEATURE_HYPERVISOR KVM_X86_CPU_FEATURE(0x1, 0, ECX, 31)
#define X86_FEATURE_PAE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 6)
#define X86_FEATURE_MCE KVM_X86_CPU_FEATURE(0x1, 0, EDX, 7)
#define X86_FEATURE_APIC KVM_X86_CPU_FEATURE(0x1, 0, EDX, 9)
#define X86_FEATURE_CLFLUSH KVM_X86_CPU_FEATURE(0x1, 0, EDX, 19)
#define X86_FEATURE_XMM KVM_X86_CPU_FEATURE(0x1, 0, EDX, 25)
#define X86_FEATURE_XMM2 KVM_X86_CPU_FEATURE(0x1, 0, EDX, 26)
#define X86_FEATURE_FSGSBASE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 0)
#define X86_FEATURE_TSC_ADJUST KVM_X86_CPU_FEATURE(0x7, 0, EBX, 1)
#define X86_FEATURE_SGX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 2)
#define X86_FEATURE_HLE KVM_X86_CPU_FEATURE(0x7, 0, EBX, 4)
#define X86_FEATURE_SMEP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 7)
#define X86_FEATURE_INVPCID KVM_X86_CPU_FEATURE(0x7, 0, EBX, 10)
#define X86_FEATURE_RTM KVM_X86_CPU_FEATURE(0x7, 0, EBX, 11)
#define X86_FEATURE_MPX KVM_X86_CPU_FEATURE(0x7, 0, EBX, 14)
#define X86_FEATURE_SMAP KVM_X86_CPU_FEATURE(0x7, 0, EBX, 20)
#define X86_FEATURE_PCOMMIT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 22)
#define X86_FEATURE_CLFLUSHOPT KVM_X86_CPU_FEATURE(0x7, 0, EBX, 23)
#define X86_FEATURE_CLWB KVM_X86_CPU_FEATURE(0x7, 0, EBX, 24)
#define X86_FEATURE_UMIP KVM_X86_CPU_FEATURE(0x7, 0, ECX, 2)
#define X86_FEATURE_PKU KVM_X86_CPU_FEATURE(0x7, 0, ECX, 3)
#define X86_FEATURE_OSPKE KVM_X86_CPU_FEATURE(0x7, 0, ECX, 4)
#define X86_FEATURE_LA57 KVM_X86_CPU_FEATURE(0x7, 0, ECX, 16)
#define X86_FEATURE_RDPID KVM_X86_CPU_FEATURE(0x7, 0, ECX, 22)
#define X86_FEATURE_SGX_LC KVM_X86_CPU_FEATURE(0x7, 0, ECX, 30)
#define X86_FEATURE_SHSTK KVM_X86_CPU_FEATURE(0x7, 0, ECX, 7)
#define X86_FEATURE_IBT KVM_X86_CPU_FEATURE(0x7, 0, EDX, 20)
#define X86_FEATURE_AMX_TILE KVM_X86_CPU_FEATURE(0x7, 0, EDX, 24)
#define X86_FEATURE_SPEC_CTRL KVM_X86_CPU_FEATURE(0x7, 0, EDX, 26)
#define X86_FEATURE_ARCH_CAPABILITIES KVM_X86_CPU_FEATURE(0x7, 0, EDX, 29)
#define X86_FEATURE_PKS KVM_X86_CPU_FEATURE(0x7, 0, ECX, 31)
#define X86_FEATURE_XTILECFG KVM_X86_CPU_FEATURE(0xD, 0, EAX, 17)
#define X86_FEATURE_XTILEDATA KVM_X86_CPU_FEATURE(0xD, 0, EAX, 18)
#define X86_FEATURE_XSAVES KVM_X86_CPU_FEATURE(0xD, 1, EAX, 3)
#define X86_FEATURE_XFD KVM_X86_CPU_FEATURE(0xD, 1, EAX, 4)
#define X86_FEATURE_XTILEDATA_XFD KVM_X86_CPU_FEATURE(0xD, 18, ECX, 2)
/*
* Extended Leafs, a.k.a. AMD defined
*/
#define X86_FEATURE_SVM KVM_X86_CPU_FEATURE(0x80000001, 0, ECX, 2)
#define X86_FEATURE_NX KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 20)
#define X86_FEATURE_GBPAGES KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 26)
#define X86_FEATURE_RDTSCP KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 27)
#define X86_FEATURE_LM KVM_X86_CPU_FEATURE(0x80000001, 0, EDX, 29)
#define X86_FEATURE_INVTSC KVM_X86_CPU_FEATURE(0x80000007, 0, EDX, 8)
#define X86_FEATURE_RDPRU KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 4)
#define X86_FEATURE_AMD_IBPB KVM_X86_CPU_FEATURE(0x80000008, 0, EBX, 12)
#define X86_FEATURE_NPT KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 0)
#define X86_FEATURE_LBRV KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 1)
#define X86_FEATURE_NRIPS KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 3)
#define X86_FEATURE_TSCRATEMSR KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 4)
#define X86_FEATURE_PAUSEFILTER KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 10)
#define X86_FEATURE_PFTHRESHOLD KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 12)
#define X86_FEATURE_VGIF KVM_X86_CPU_FEATURE(0x8000000A, 0, EDX, 16)
#define X86_FEATURE_SEV KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 1)
#define X86_FEATURE_SEV_ES KVM_X86_CPU_FEATURE(0x8000001F, 0, EAX, 3)
/*
* KVM defined paravirt features.
*/
#define X86_FEATURE_KVM_CLOCKSOURCE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 0)
#define X86_FEATURE_KVM_NOP_IO_DELAY KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 1)
#define X86_FEATURE_KVM_MMU_OP KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 2)
#define X86_FEATURE_KVM_CLOCKSOURCE2 KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 3)
#define X86_FEATURE_KVM_ASYNC_PF KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 4)
#define X86_FEATURE_KVM_STEAL_TIME KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 5)
#define X86_FEATURE_KVM_PV_EOI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 6)
#define X86_FEATURE_KVM_PV_UNHALT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 7)
/* Bit 8 apparently isn't used?!?! */
#define X86_FEATURE_KVM_PV_TLB_FLUSH KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 9)
#define X86_FEATURE_KVM_ASYNC_PF_VMEXIT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 10)
#define X86_FEATURE_KVM_PV_SEND_IPI KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 11)
#define X86_FEATURE_KVM_POLL_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 12)
#define X86_FEATURE_KVM_PV_SCHED_YIELD KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 13)
#define X86_FEATURE_KVM_ASYNC_PF_INT KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 14)
#define X86_FEATURE_KVM_MSI_EXT_DEST_ID KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 15)
#define X86_FEATURE_KVM_HC_MAP_GPA_RANGE KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 16)
#define X86_FEATURE_KVM_MIGRATION_CONTROL KVM_X86_CPU_FEATURE(0x40000001, 0, EAX, 17)
/*
* Same idea as X86_FEATURE_XXX, but X86_PROPERTY_XXX retrieves a multi-bit
* value/property as opposed to a single-bit feature. Again, pack the info
* into a 64-bit value to pass by value with no overhead.
*/
struct kvm_x86_cpu_property {
u32 function;
u8 index;
u8 reg;
u8 lo_bit;
u8 hi_bit;
};
#define KVM_X86_CPU_PROPERTY(fn, idx, gpr, low_bit, high_bit) \
({ \
struct kvm_x86_cpu_property property = { \
.function = fn, \
.index = idx, \
.reg = KVM_CPUID_##gpr, \
.lo_bit = low_bit, \
.hi_bit = high_bit, \
}; \
\
kvm_static_assert(low_bit < high_bit); \
kvm_static_assert((fn & 0xc0000000) == 0 || \
(fn & 0xc0000000) == 0x40000000 || \
(fn & 0xc0000000) == 0x80000000 || \
(fn & 0xc0000000) == 0xc0000000); \
kvm_static_assert(idx < BIT(sizeof(property.index) * BITS_PER_BYTE)); \
property; \
})
#define X86_PROPERTY_MAX_BASIC_LEAF KVM_X86_CPU_PROPERTY(0, 0, EAX, 0, 31)
#define X86_PROPERTY_PMU_VERSION KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 0, 7)
#define X86_PROPERTY_PMU_NR_GP_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 8, 15)
#define X86_PROPERTY_PMU_GP_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 16, 23)
#define X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH KVM_X86_CPU_PROPERTY(0xa, 0, EAX, 24, 31)
#define X86_PROPERTY_PMU_EVENTS_MASK KVM_X86_CPU_PROPERTY(0xa, 0, EBX, 0, 7)
#define X86_PROPERTY_PMU_FIXED_COUNTERS_BITMASK KVM_X86_CPU_PROPERTY(0xa, 0, ECX, 0, 31)
#define X86_PROPERTY_PMU_NR_FIXED_COUNTERS KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 0, 4)
#define X86_PROPERTY_PMU_FIXED_COUNTERS_BIT_WIDTH KVM_X86_CPU_PROPERTY(0xa, 0, EDX, 5, 12)
#define X86_PROPERTY_SUPPORTED_XCR0_LO KVM_X86_CPU_PROPERTY(0xd, 0, EAX, 0, 31)
#define X86_PROPERTY_XSTATE_MAX_SIZE_XCR0 KVM_X86_CPU_PROPERTY(0xd, 0, EBX, 0, 31)
#define X86_PROPERTY_XSTATE_MAX_SIZE KVM_X86_CPU_PROPERTY(0xd, 0, ECX, 0, 31)
#define X86_PROPERTY_SUPPORTED_XCR0_HI KVM_X86_CPU_PROPERTY(0xd, 0, EDX, 0, 31)
#define X86_PROPERTY_XSTATE_TILE_SIZE KVM_X86_CPU_PROPERTY(0xd, 18, EAX, 0, 31)
#define X86_PROPERTY_XSTATE_TILE_OFFSET KVM_X86_CPU_PROPERTY(0xd, 18, EBX, 0, 31)
#define X86_PROPERTY_AMX_MAX_PALETTE_TABLES KVM_X86_CPU_PROPERTY(0x1d, 0, EAX, 0, 31)
#define X86_PROPERTY_AMX_TOTAL_TILE_BYTES KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 0, 15)
#define X86_PROPERTY_AMX_BYTES_PER_TILE KVM_X86_CPU_PROPERTY(0x1d, 1, EAX, 16, 31)
#define X86_PROPERTY_AMX_BYTES_PER_ROW KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 0, 15)
#define X86_PROPERTY_AMX_NR_TILE_REGS KVM_X86_CPU_PROPERTY(0x1d, 1, EBX, 16, 31)
#define X86_PROPERTY_AMX_MAX_ROWS KVM_X86_CPU_PROPERTY(0x1d, 1, ECX, 0, 15)
#define X86_PROPERTY_MAX_KVM_LEAF KVM_X86_CPU_PROPERTY(0x40000000, 0, EAX, 0, 31)
#define X86_PROPERTY_MAX_EXT_LEAF KVM_X86_CPU_PROPERTY(0x80000000, 0, EAX, 0, 31)
#define X86_PROPERTY_MAX_PHY_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 0, 7)
#define X86_PROPERTY_MAX_VIRT_ADDR KVM_X86_CPU_PROPERTY(0x80000008, 0, EAX, 8, 15)
#define X86_PROPERTY_SEV_C_BIT KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 0, 5)
#define X86_PROPERTY_PHYS_ADDR_REDUCTION KVM_X86_CPU_PROPERTY(0x8000001F, 0, EBX, 6, 11)
#define X86_PROPERTY_MAX_CENTAUR_LEAF KVM_X86_CPU_PROPERTY(0xC0000000, 0, EAX, 0, 31)
/*
* Intel's architectural PMU events are bizarre. They have a "feature" bit
* that indicates the feature is _not_ supported, and a property that states
* the length of the bit mask of unsupported features. A feature is supported
* if the size of the bit mask is larger than the "unavailable" bit, and said
* bit is not set. Fixed counters also bizarre enumeration, but inverted from
* arch events for general purpose counters. Fixed counters are supported if a
* feature flag is set **OR** the total number of fixed counters is greater
* than index of the counter.
*
* Wrap the events for general purpose and fixed counters to simplify checking
* whether or not a given architectural event is supported.
*/
struct kvm_x86_pmu_feature {
struct kvm_x86_cpu_feature f;
};
#define KVM_X86_PMU_FEATURE(__reg, __bit) \
({ \
struct kvm_x86_pmu_feature feature = { \
.f = KVM_X86_CPU_FEATURE(0xa, 0, __reg, __bit), \
}; \
\
kvm_static_assert(KVM_CPUID_##__reg == KVM_CPUID_EBX || \
KVM_CPUID_##__reg == KVM_CPUID_ECX); \
feature; \
})
#define X86_PMU_FEATURE_CPU_CYCLES KVM_X86_PMU_FEATURE(EBX, 0)
#define X86_PMU_FEATURE_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 1)
#define X86_PMU_FEATURE_REFERENCE_CYCLES KVM_X86_PMU_FEATURE(EBX, 2)
#define X86_PMU_FEATURE_LLC_REFERENCES KVM_X86_PMU_FEATURE(EBX, 3)
#define X86_PMU_FEATURE_LLC_MISSES KVM_X86_PMU_FEATURE(EBX, 4)
#define X86_PMU_FEATURE_BRANCH_INSNS_RETIRED KVM_X86_PMU_FEATURE(EBX, 5)
#define X86_PMU_FEATURE_BRANCHES_MISPREDICTED KVM_X86_PMU_FEATURE(EBX, 6)
#define X86_PMU_FEATURE_TOPDOWN_SLOTS KVM_X86_PMU_FEATURE(EBX, 7)
#define X86_PMU_FEATURE_INSNS_RETIRED_FIXED KVM_X86_PMU_FEATURE(ECX, 0)
#define X86_PMU_FEATURE_CPU_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 1)
#define X86_PMU_FEATURE_REFERENCE_TSC_CYCLES_FIXED KVM_X86_PMU_FEATURE(ECX, 2)
#define X86_PMU_FEATURE_TOPDOWN_SLOTS_FIXED KVM_X86_PMU_FEATURE(ECX, 3)
static inline unsigned int x86_family(unsigned int eax)
{
unsigned int x86;
x86 = (eax >> 8) & 0xf;
if (x86 == 0xf)
x86 += (eax >> 20) & 0xff;
return x86;
}
static inline unsigned int x86_model(unsigned int eax)
{
return ((eax >> 12) & 0xf0) | ((eax >> 4) & 0x0f);
}
/* Page table bitfield declarations */
#define PTE_PRESENT_MASK BIT_ULL(0)
#define PTE_WRITABLE_MASK BIT_ULL(1)
#define PTE_USER_MASK BIT_ULL(2)
#define PTE_ACCESSED_MASK BIT_ULL(5)
#define PTE_DIRTY_MASK BIT_ULL(6)
#define PTE_LARGE_MASK BIT_ULL(7)
#define PTE_GLOBAL_MASK BIT_ULL(8)
#define PTE_NX_MASK BIT_ULL(63)
#define PHYSICAL_PAGE_MASK GENMASK_ULL(51, 12)
#define PAGE_SHIFT 12
#define PAGE_SIZE (1ULL << PAGE_SHIFT)
#define PAGE_MASK (~(PAGE_SIZE-1) & PHYSICAL_PAGE_MASK)
#define HUGEPAGE_SHIFT(x) (PAGE_SHIFT + (((x) - 1) * 9))
#define HUGEPAGE_SIZE(x) (1UL << HUGEPAGE_SHIFT(x))
#define HUGEPAGE_MASK(x) (~(HUGEPAGE_SIZE(x) - 1) & PHYSICAL_PAGE_MASK)
#define PTE_GET_PA(pte) ((pte) & PHYSICAL_PAGE_MASK)
#define PTE_GET_PFN(pte) (PTE_GET_PA(pte) >> PAGE_SHIFT)
/* General Registers in 64-Bit Mode */
struct gpr64_regs {
u64 rax;
u64 rcx;
u64 rdx;
u64 rbx;
u64 rsp;
u64 rbp;
u64 rsi;
u64 rdi;
u64 r8;
u64 r9;
u64 r10;
u64 r11;
u64 r12;
u64 r13;
u64 r14;
u64 r15;
};
struct desc64 {
uint16_t limit0;
uint16_t base0;
unsigned base1:8, type:4, s:1, dpl:2, p:1;
unsigned limit1:4, avl:1, l:1, db:1, g:1, base2:8;
uint32_t base3;
uint32_t zero1;
} __attribute__((packed));
struct desc_ptr {
uint16_t size;
uint64_t address;
} __attribute__((packed));
struct kvm_x86_state {
struct kvm_xsave *xsave;
struct kvm_vcpu_events events;
struct kvm_mp_state mp_state;
struct kvm_regs regs;
struct kvm_xcrs xcrs;
struct kvm_sregs sregs;
struct kvm_debugregs debugregs;
union {
struct kvm_nested_state nested;
char nested_[16384];
};
struct kvm_msrs msrs;
};
static inline uint64_t get_desc64_base(const struct desc64 *desc)
{
return ((uint64_t)desc->base3 << 32) |
(desc->base0 | ((desc->base1) << 16) | ((desc->base2) << 24));
}
static inline uint64_t rdtsc(void)
{
uint32_t eax, edx;
uint64_t tsc_val;
/*
* The lfence is to wait (on Intel CPUs) until all previous
* instructions have been executed. If software requires RDTSC to be
* executed prior to execution of any subsequent instruction, it can
* execute LFENCE immediately after RDTSC
*/
__asm__ __volatile__("lfence; rdtsc; lfence" : "=a"(eax), "=d"(edx));
tsc_val = ((uint64_t)edx) << 32 | eax;
return tsc_val;
}
static inline uint64_t rdtscp(uint32_t *aux)
{
uint32_t eax, edx;
__asm__ __volatile__("rdtscp" : "=a"(eax), "=d"(edx), "=c"(*aux));
return ((uint64_t)edx) << 32 | eax;
}
static inline uint64_t rdmsr(uint32_t msr)
{
uint32_t a, d;
__asm__ __volatile__("rdmsr" : "=a"(a), "=d"(d) : "c"(msr) : "memory");
return a | ((uint64_t) d << 32);
}
static inline void wrmsr(uint32_t msr, uint64_t value)
{
uint32_t a = value;
uint32_t d = value >> 32;
__asm__ __volatile__("wrmsr" :: "a"(a), "d"(d), "c"(msr) : "memory");
}
static inline uint16_t inw(uint16_t port)
{
uint16_t tmp;
__asm__ __volatile__("in %%dx, %%ax"
: /* output */ "=a" (tmp)
: /* input */ "d" (port));
return tmp;
}
static inline uint16_t get_es(void)
{
uint16_t es;
__asm__ __volatile__("mov %%es, %[es]"
: /* output */ [es]"=rm"(es));
return es;
}
static inline uint16_t get_cs(void)
{
uint16_t cs;
__asm__ __volatile__("mov %%cs, %[cs]"
: /* output */ [cs]"=rm"(cs));
return cs;
}
static inline uint16_t get_ss(void)
{
uint16_t ss;
__asm__ __volatile__("mov %%ss, %[ss]"
: /* output */ [ss]"=rm"(ss));
return ss;
}
static inline uint16_t get_ds(void)
{
uint16_t ds;
__asm__ __volatile__("mov %%ds, %[ds]"
: /* output */ [ds]"=rm"(ds));
return ds;
}
static inline uint16_t get_fs(void)
{
uint16_t fs;
__asm__ __volatile__("mov %%fs, %[fs]"
: /* output */ [fs]"=rm"(fs));
return fs;
}
static inline uint16_t get_gs(void)
{
uint16_t gs;
__asm__ __volatile__("mov %%gs, %[gs]"
: /* output */ [gs]"=rm"(gs));
return gs;
}
static inline uint16_t get_tr(void)
{
uint16_t tr;
__asm__ __volatile__("str %[tr]"
: /* output */ [tr]"=rm"(tr));
return tr;
}
static inline uint64_t get_cr0(void)
{
uint64_t cr0;
__asm__ __volatile__("mov %%cr0, %[cr0]"
: /* output */ [cr0]"=r"(cr0));
return cr0;
}
static inline uint64_t get_cr3(void)
{
uint64_t cr3;
__asm__ __volatile__("mov %%cr3, %[cr3]"
: /* output */ [cr3]"=r"(cr3));
return cr3;
}
static inline uint64_t get_cr4(void)
{
uint64_t cr4;
__asm__ __volatile__("mov %%cr4, %[cr4]"
: /* output */ [cr4]"=r"(cr4));
return cr4;
}
static inline void set_cr4(uint64_t val)
{
__asm__ __volatile__("mov %0, %%cr4" : : "r" (val) : "memory");
}
static inline u64 xgetbv(u32 index)
{
u32 eax, edx;
__asm__ __volatile__("xgetbv;"
: "=a" (eax), "=d" (edx)
: "c" (index));
return eax | ((u64)edx << 32);
}
static inline void xsetbv(u32 index, u64 value)
{
u32 eax = value;
u32 edx = value >> 32;
__asm__ __volatile__("xsetbv" :: "a" (eax), "d" (edx), "c" (index));
}
static inline void wrpkru(u32 pkru)
{
/* Note, ECX and EDX are architecturally required to be '0'. */
asm volatile(".byte 0x0f,0x01,0xef\n\t"
: : "a" (pkru), "c"(0), "d"(0));
}
static inline struct desc_ptr get_gdt(void)
{
struct desc_ptr gdt;
__asm__ __volatile__("sgdt %[gdt]"
: /* output */ [gdt]"=m"(gdt));
return gdt;
}
static inline struct desc_ptr get_idt(void)
{
struct desc_ptr idt;
__asm__ __volatile__("sidt %[idt]"
: /* output */ [idt]"=m"(idt));
return idt;
}
static inline void outl(uint16_t port, uint32_t value)
{
__asm__ __volatile__("outl %%eax, %%dx" : : "d"(port), "a"(value));
}
static inline void __cpuid(uint32_t function, uint32_t index,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
*eax = function;
*ecx = index;
asm volatile("cpuid"
: "=a" (*eax),
"=b" (*ebx),
"=c" (*ecx),
"=d" (*edx)
: "0" (*eax), "2" (*ecx)
: "memory");
}
static inline void cpuid(uint32_t function,
uint32_t *eax, uint32_t *ebx,
uint32_t *ecx, uint32_t *edx)
{
return __cpuid(function, 0, eax, ebx, ecx, edx);
}
static inline uint32_t this_cpu_fms(void)
{
uint32_t eax, ebx, ecx, edx;
cpuid(1, &eax, &ebx, &ecx, &edx);
return eax;
}
static inline uint32_t this_cpu_family(void)
{
return x86_family(this_cpu_fms());
}
static inline uint32_t this_cpu_model(void)
{
return x86_model(this_cpu_fms());
}
static inline bool this_cpu_vendor_string_is(const char *vendor)
{
const uint32_t *chunk = (const uint32_t *)vendor;
uint32_t eax, ebx, ecx, edx;
cpuid(0, &eax, &ebx, &ecx, &edx);
return (ebx == chunk[0] && edx == chunk[1] && ecx == chunk[2]);
}
static inline bool this_cpu_is_intel(void)
{
return this_cpu_vendor_string_is("GenuineIntel");
}
/*
* Exclude early K5 samples with a vendor string of "AMDisbetter!"
*/
static inline bool this_cpu_is_amd(void)
{
return this_cpu_vendor_string_is("AuthenticAMD");
}
static inline uint32_t __this_cpu_has(uint32_t function, uint32_t index,
uint8_t reg, uint8_t lo, uint8_t hi)
{
uint32_t gprs[4];
__cpuid(function, index,
&gprs[KVM_CPUID_EAX], &gprs[KVM_CPUID_EBX],
&gprs[KVM_CPUID_ECX], &gprs[KVM_CPUID_EDX]);
return (gprs[reg] & GENMASK(hi, lo)) >> lo;
}
static inline bool this_cpu_has(struct kvm_x86_cpu_feature feature)
{
return __this_cpu_has(feature.function, feature.index,
feature.reg, feature.bit, feature.bit);
}
static inline uint32_t this_cpu_property(struct kvm_x86_cpu_property property)
{
return __this_cpu_has(property.function, property.index,
property.reg, property.lo_bit, property.hi_bit);
}
static __always_inline bool this_cpu_has_p(struct kvm_x86_cpu_property property)
{
uint32_t max_leaf;
switch (property.function & 0xc0000000) {
case 0:
max_leaf = this_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
break;
case 0x40000000:
max_leaf = this_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
break;
case 0x80000000:
max_leaf = this_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
break;
case 0xc0000000:
max_leaf = this_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
}
return max_leaf >= property.function;
}
static inline bool this_pmu_has(struct kvm_x86_pmu_feature feature)
{
uint32_t nr_bits;
if (feature.f.reg == KVM_CPUID_EBX) {
nr_bits = this_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
return nr_bits > feature.f.bit && !this_cpu_has(feature.f);
}
GUEST_ASSERT(feature.f.reg == KVM_CPUID_ECX);
nr_bits = this_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
return nr_bits > feature.f.bit || this_cpu_has(feature.f);
}
static __always_inline uint64_t this_cpu_supported_xcr0(void)
{
if (!this_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
return 0;
return this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
((uint64_t)this_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
}
typedef u32 __attribute__((vector_size(16))) sse128_t;
#define __sse128_u union { sse128_t vec; u64 as_u64[2]; u32 as_u32[4]; }
#define sse128_lo(x) ({ __sse128_u t; t.vec = x; t.as_u64[0]; })
#define sse128_hi(x) ({ __sse128_u t; t.vec = x; t.as_u64[1]; })
static inline void read_sse_reg(int reg, sse128_t *data)
{
switch (reg) {
case 0:
asm("movdqa %%xmm0, %0" : "=m"(*data));
break;
case 1:
asm("movdqa %%xmm1, %0" : "=m"(*data));
break;
case 2:
asm("movdqa %%xmm2, %0" : "=m"(*data));
break;
case 3:
asm("movdqa %%xmm3, %0" : "=m"(*data));
break;
case 4:
asm("movdqa %%xmm4, %0" : "=m"(*data));
break;
case 5:
asm("movdqa %%xmm5, %0" : "=m"(*data));
break;
case 6:
asm("movdqa %%xmm6, %0" : "=m"(*data));
break;
case 7:
asm("movdqa %%xmm7, %0" : "=m"(*data));
break;
default:
BUG();
}
}
static inline void write_sse_reg(int reg, const sse128_t *data)
{
switch (reg) {
case 0:
asm("movdqa %0, %%xmm0" : : "m"(*data));
break;
case 1:
asm("movdqa %0, %%xmm1" : : "m"(*data));
break;
case 2:
asm("movdqa %0, %%xmm2" : : "m"(*data));
break;
case 3:
asm("movdqa %0, %%xmm3" : : "m"(*data));
break;
case 4:
asm("movdqa %0, %%xmm4" : : "m"(*data));
break;
case 5:
asm("movdqa %0, %%xmm5" : : "m"(*data));
break;
case 6:
asm("movdqa %0, %%xmm6" : : "m"(*data));
break;
case 7:
asm("movdqa %0, %%xmm7" : : "m"(*data));
break;
default:
BUG();
}
}
static inline void cpu_relax(void)
{
asm volatile("rep; nop" ::: "memory");
}
#define ud2() \
__asm__ __volatile__( \
"ud2\n" \
)
#define hlt() \
__asm__ __volatile__( \
"hlt\n" \
)
struct kvm_x86_state *vcpu_save_state(struct kvm_vcpu *vcpu);
void vcpu_load_state(struct kvm_vcpu *vcpu, struct kvm_x86_state *state);
void kvm_x86_state_cleanup(struct kvm_x86_state *state);
const struct kvm_msr_list *kvm_get_msr_index_list(void);
const struct kvm_msr_list *kvm_get_feature_msr_index_list(void);
bool kvm_msr_is_in_save_restore_list(uint32_t msr_index);
uint64_t kvm_get_feature_msr(uint64_t msr_index);
static inline void vcpu_msrs_get(struct kvm_vcpu *vcpu,
struct kvm_msrs *msrs)
{
int r = __vcpu_ioctl(vcpu, KVM_GET_MSRS, msrs);
TEST_ASSERT(r == msrs->nmsrs,
"KVM_GET_MSRS failed, r: %i (failed on MSR %x)",
r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
}
static inline void vcpu_msrs_set(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs)
{
int r = __vcpu_ioctl(vcpu, KVM_SET_MSRS, msrs);
TEST_ASSERT(r == msrs->nmsrs,
"KVM_SET_MSRS failed, r: %i (failed on MSR %x)",
r, r < 0 || r >= msrs->nmsrs ? -1 : msrs->entries[r].index);
}
static inline void vcpu_debugregs_get(struct kvm_vcpu *vcpu,
struct kvm_debugregs *debugregs)
{
vcpu_ioctl(vcpu, KVM_GET_DEBUGREGS, debugregs);
}
static inline void vcpu_debugregs_set(struct kvm_vcpu *vcpu,
struct kvm_debugregs *debugregs)
{
vcpu_ioctl(vcpu, KVM_SET_DEBUGREGS, debugregs);
}
static inline void vcpu_xsave_get(struct kvm_vcpu *vcpu,
struct kvm_xsave *xsave)
{
vcpu_ioctl(vcpu, KVM_GET_XSAVE, xsave);
}
static inline void vcpu_xsave2_get(struct kvm_vcpu *vcpu,
struct kvm_xsave *xsave)
{
vcpu_ioctl(vcpu, KVM_GET_XSAVE2, xsave);
}
static inline void vcpu_xsave_set(struct kvm_vcpu *vcpu,
struct kvm_xsave *xsave)
{
vcpu_ioctl(vcpu, KVM_SET_XSAVE, xsave);
}
static inline void vcpu_xcrs_get(struct kvm_vcpu *vcpu,
struct kvm_xcrs *xcrs)
{
vcpu_ioctl(vcpu, KVM_GET_XCRS, xcrs);
}
static inline void vcpu_xcrs_set(struct kvm_vcpu *vcpu, struct kvm_xcrs *xcrs)
{
vcpu_ioctl(vcpu, KVM_SET_XCRS, xcrs);
}
const struct kvm_cpuid_entry2 *get_cpuid_entry(const struct kvm_cpuid2 *cpuid,
uint32_t function, uint32_t index);
const struct kvm_cpuid2 *kvm_get_supported_cpuid(void);
const struct kvm_cpuid2 *kvm_get_supported_hv_cpuid(void);
const struct kvm_cpuid2 *vcpu_get_supported_hv_cpuid(struct kvm_vcpu *vcpu);
static inline uint32_t kvm_cpu_fms(void)
{
return get_cpuid_entry(kvm_get_supported_cpuid(), 0x1, 0)->eax;
}
static inline uint32_t kvm_cpu_family(void)
{
return x86_family(kvm_cpu_fms());
}
static inline uint32_t kvm_cpu_model(void)
{
return x86_model(kvm_cpu_fms());
}
bool kvm_cpuid_has(const struct kvm_cpuid2 *cpuid,
struct kvm_x86_cpu_feature feature);
static inline bool kvm_cpu_has(struct kvm_x86_cpu_feature feature)
{
return kvm_cpuid_has(kvm_get_supported_cpuid(), feature);
}
uint32_t kvm_cpuid_property(const struct kvm_cpuid2 *cpuid,
struct kvm_x86_cpu_property property);
static inline uint32_t kvm_cpu_property(struct kvm_x86_cpu_property property)
{
return kvm_cpuid_property(kvm_get_supported_cpuid(), property);
}
static __always_inline bool kvm_cpu_has_p(struct kvm_x86_cpu_property property)
{
uint32_t max_leaf;
switch (property.function & 0xc0000000) {
case 0:
max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_BASIC_LEAF);
break;
case 0x40000000:
max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_KVM_LEAF);
break;
case 0x80000000:
max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_EXT_LEAF);
break;
case 0xc0000000:
max_leaf = kvm_cpu_property(X86_PROPERTY_MAX_CENTAUR_LEAF);
}
return max_leaf >= property.function;
}
static inline bool kvm_pmu_has(struct kvm_x86_pmu_feature feature)
{
uint32_t nr_bits;
if (feature.f.reg == KVM_CPUID_EBX) {
nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_EBX_BIT_VECTOR_LENGTH);
return nr_bits > feature.f.bit && !kvm_cpu_has(feature.f);
}
TEST_ASSERT_EQ(feature.f.reg, KVM_CPUID_ECX);
nr_bits = kvm_cpu_property(X86_PROPERTY_PMU_NR_FIXED_COUNTERS);
return nr_bits > feature.f.bit || kvm_cpu_has(feature.f);
}
static __always_inline uint64_t kvm_cpu_supported_xcr0(void)
{
if (!kvm_cpu_has_p(X86_PROPERTY_SUPPORTED_XCR0_LO))
return 0;
return kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_LO) |
((uint64_t)kvm_cpu_property(X86_PROPERTY_SUPPORTED_XCR0_HI) << 32);
}
static inline size_t kvm_cpuid2_size(int nr_entries)
{
return sizeof(struct kvm_cpuid2) +
sizeof(struct kvm_cpuid_entry2) * nr_entries;
}
/*
* Allocate a "struct kvm_cpuid2* instance, with the 0-length arrary of
* entries sized to hold @nr_entries. The caller is responsible for freeing
* the struct.
*/
static inline struct kvm_cpuid2 *allocate_kvm_cpuid2(int nr_entries)
{
struct kvm_cpuid2 *cpuid;
cpuid = malloc(kvm_cpuid2_size(nr_entries));
TEST_ASSERT(cpuid, "-ENOMEM when allocating kvm_cpuid2");
cpuid->nent = nr_entries;
return cpuid;
}
void vcpu_init_cpuid(struct kvm_vcpu *vcpu, const struct kvm_cpuid2 *cpuid);
void vcpu_set_hv_cpuid(struct kvm_vcpu *vcpu);
static inline struct kvm_cpuid_entry2 *__vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
uint32_t function,
uint32_t index)
{
return (struct kvm_cpuid_entry2 *)get_cpuid_entry(vcpu->cpuid,
function, index);
}
static inline struct kvm_cpuid_entry2 *vcpu_get_cpuid_entry(struct kvm_vcpu *vcpu,
uint32_t function)
{
return __vcpu_get_cpuid_entry(vcpu, function, 0);
}
static inline int __vcpu_set_cpuid(struct kvm_vcpu *vcpu)
{
int r;
TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
r = __vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
if (r)
return r;
/* On success, refresh the cache to pick up adjustments made by KVM. */
vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
return 0;
}
static inline void vcpu_set_cpuid(struct kvm_vcpu *vcpu)
{
TEST_ASSERT(vcpu->cpuid, "Must do vcpu_init_cpuid() first");
vcpu_ioctl(vcpu, KVM_SET_CPUID2, vcpu->cpuid);
/* Refresh the cache to pick up adjustments made by KVM. */
vcpu_ioctl(vcpu, KVM_GET_CPUID2, vcpu->cpuid);
}
void vcpu_set_cpuid_property(struct kvm_vcpu *vcpu,
struct kvm_x86_cpu_property property,
uint32_t value);
void vcpu_set_cpuid_maxphyaddr(struct kvm_vcpu *vcpu, uint8_t maxphyaddr);
void vcpu_clear_cpuid_entry(struct kvm_vcpu *vcpu, uint32_t function);
static inline bool vcpu_cpuid_has(struct kvm_vcpu *vcpu,
struct kvm_x86_cpu_feature feature)
{
struct kvm_cpuid_entry2 *entry;
entry = __vcpu_get_cpuid_entry(vcpu, feature.function, feature.index);
return *((&entry->eax) + feature.reg) & BIT(feature.bit);
}
void vcpu_set_or_clear_cpuid_feature(struct kvm_vcpu *vcpu,
struct kvm_x86_cpu_feature feature,
bool set);
static inline void vcpu_set_cpuid_feature(struct kvm_vcpu *vcpu,
struct kvm_x86_cpu_feature feature)
{
vcpu_set_or_clear_cpuid_feature(vcpu, feature, true);
}
static inline void vcpu_clear_cpuid_feature(struct kvm_vcpu *vcpu,
struct kvm_x86_cpu_feature feature)
{
vcpu_set_or_clear_cpuid_feature(vcpu, feature, false);
}
uint64_t vcpu_get_msr(struct kvm_vcpu *vcpu, uint64_t msr_index);
int _vcpu_set_msr(struct kvm_vcpu *vcpu, uint64_t msr_index, uint64_t msr_value);
/*
* Assert on an MSR access(es) and pretty print the MSR name when possible.
* Note, the caller provides the stringified name so that the name of macro is
* printed, not the value the macro resolves to (due to macro expansion).
*/
#define TEST_ASSERT_MSR(cond, fmt, msr, str, args...) \
do { \
if (__builtin_constant_p(msr)) { \
TEST_ASSERT(cond, fmt, str, args); \
} else if (!(cond)) { \
char buf[16]; \
\
snprintf(buf, sizeof(buf), "MSR 0x%x", msr); \
TEST_ASSERT(cond, fmt, buf, args); \
} \
} while (0)
/*
* Returns true if KVM should return the last written value when reading an MSR
* from userspace, e.g. the MSR isn't a command MSR, doesn't emulate state that
* is changing, etc. This is NOT an exhaustive list! The intent is to filter
* out MSRs that are not durable _and_ that a selftest wants to write.
*/
static inline bool is_durable_msr(uint32_t msr)
{
return msr != MSR_IA32_TSC;
}
#define vcpu_set_msr(vcpu, msr, val) \
do { \
uint64_t r, v = val; \
\
TEST_ASSERT_MSR(_vcpu_set_msr(vcpu, msr, v) == 1, \
"KVM_SET_MSRS failed on %s, value = 0x%lx", msr, #msr, v); \
if (!is_durable_msr(msr)) \
break; \
r = vcpu_get_msr(vcpu, msr); \
TEST_ASSERT_MSR(r == v, "Set %s to '0x%lx', got back '0x%lx'", msr, #msr, v, r);\
} while (0)
void kvm_get_cpu_address_width(unsigned int *pa_bits, unsigned int *va_bits);
void kvm_init_vm_address_properties(struct kvm_vm *vm);
bool vm_is_unrestricted_guest(struct kvm_vm *vm);
struct ex_regs {
uint64_t rax, rcx, rdx, rbx;
uint64_t rbp, rsi, rdi;
uint64_t r8, r9, r10, r11;
uint64_t r12, r13, r14, r15;
uint64_t vector;
uint64_t error_code;
uint64_t rip;
uint64_t cs;
uint64_t rflags;
};
struct idt_entry {
uint16_t offset0;
uint16_t selector;
uint16_t ist : 3;
uint16_t : 5;
uint16_t type : 4;
uint16_t : 1;
uint16_t dpl : 2;
uint16_t p : 1;
uint16_t offset1;
uint32_t offset2; uint32_t reserved;
};
void vm_init_descriptor_tables(struct kvm_vm *vm);
void vcpu_init_descriptor_tables(struct kvm_vcpu *vcpu);
void vm_install_exception_handler(struct kvm_vm *vm, int vector,
void (*handler)(struct ex_regs *));
/* If a toddler were to say "abracadabra". */
#define KVM_EXCEPTION_MAGIC 0xabacadabaULL
/*
* KVM selftest exception fixup uses registers to coordinate with the exception
* handler, versus the kernel's in-memory tables and KVM-Unit-Tests's in-memory
* per-CPU data. Using only registers avoids having to map memory into the
* guest, doesn't require a valid, stable GS.base, and reduces the risk of
* for recursive faults when accessing memory in the handler. The downside to
* using registers is that it restricts what registers can be used by the actual
* instruction. But, selftests are 64-bit only, making register* pressure a
* minor concern. Use r9-r11 as they are volatile, i.e. don't need to be saved
* by the callee, and except for r11 are not implicit parameters to any
* instructions. Ideally, fixup would use r8-r10 and thus avoid implicit
* parameters entirely, but Hyper-V's hypercall ABI uses r8 and testing Hyper-V
* is higher priority than testing non-faulting SYSCALL/SYSRET.
*
* Note, the fixup handler deliberately does not handle #DE, i.e. the vector
* is guaranteed to be non-zero on fault.
*
* REGISTER INPUTS:
* r9 = MAGIC
* r10 = RIP
* r11 = new RIP on fault
*
* REGISTER OUTPUTS:
* r9 = exception vector (non-zero)
* r10 = error code
*/
#define __KVM_ASM_SAFE(insn, fep) \
"mov $" __stringify(KVM_EXCEPTION_MAGIC) ", %%r9\n\t" \
"lea 1f(%%rip), %%r10\n\t" \
"lea 2f(%%rip), %%r11\n\t" \
fep "1: " insn "\n\t" \
"xor %%r9, %%r9\n\t" \
"2:\n\t" \
"mov %%r9b, %[vector]\n\t" \
"mov %%r10, %[error_code]\n\t"
#define KVM_ASM_SAFE(insn) __KVM_ASM_SAFE(insn, "")
#define KVM_ASM_SAFE_FEP(insn) __KVM_ASM_SAFE(insn, KVM_FEP)
#define KVM_ASM_SAFE_OUTPUTS(v, ec) [vector] "=qm"(v), [error_code] "=rm"(ec)
#define KVM_ASM_SAFE_CLOBBERS "r9", "r10", "r11"
#define kvm_asm_safe(insn, inputs...) \
({ \
uint64_t ign_error_code; \
uint8_t vector; \
\
asm volatile(KVM_ASM_SAFE(insn) \
: KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \
: inputs \
: KVM_ASM_SAFE_CLOBBERS); \
vector; \
})
#define kvm_asm_safe_ec(insn, error_code, inputs...) \
({ \
uint8_t vector; \
\
asm volatile(KVM_ASM_SAFE(insn) \
: KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
: inputs \
: KVM_ASM_SAFE_CLOBBERS); \
vector; \
})
#define kvm_asm_safe_fep(insn, inputs...) \
({ \
uint64_t ign_error_code; \
uint8_t vector; \
\
asm volatile(KVM_ASM_SAFE(insn) \
: KVM_ASM_SAFE_OUTPUTS(vector, ign_error_code) \
: inputs \
: KVM_ASM_SAFE_CLOBBERS); \
vector; \
})
#define kvm_asm_safe_ec_fep(insn, error_code, inputs...) \
({ \
uint8_t vector; \
\
asm volatile(KVM_ASM_SAFE_FEP(insn) \
: KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
: inputs \
: KVM_ASM_SAFE_CLOBBERS); \
vector; \
})
#define BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \
static inline uint8_t insn##_safe ##_fep(uint32_t idx, uint64_t *val) \
{ \
uint64_t error_code; \
uint8_t vector; \
uint32_t a, d; \
\
asm volatile(KVM_ASM_SAFE##_FEP(#insn) \
: "=a"(a), "=d"(d), \
KVM_ASM_SAFE_OUTPUTS(vector, error_code) \
: "c"(idx) \
: KVM_ASM_SAFE_CLOBBERS); \
\
*val = (uint64_t)a | ((uint64_t)d << 32); \
return vector; \
}
/*
* Generate {insn}_safe() and {insn}_safe_fep() helpers for instructions that
* use ECX as in input index, and EDX:EAX as a 64-bit output.
*/
#define BUILD_READ_U64_SAFE_HELPERS(insn) \
BUILD_READ_U64_SAFE_HELPER(insn, , ) \
BUILD_READ_U64_SAFE_HELPER(insn, _fep, _FEP) \
BUILD_READ_U64_SAFE_HELPERS(rdmsr)
BUILD_READ_U64_SAFE_HELPERS(rdpmc)
BUILD_READ_U64_SAFE_HELPERS(xgetbv)
static inline uint8_t wrmsr_safe(uint32_t msr, uint64_t val)
{
return kvm_asm_safe("wrmsr", "a"(val & -1u), "d"(val >> 32), "c"(msr));
}
static inline uint8_t xsetbv_safe(uint32_t index, uint64_t value)
{
u32 eax = value;
u32 edx = value >> 32;
return kvm_asm_safe("xsetbv", "a" (eax), "d" (edx), "c" (index));
}
bool kvm_is_tdp_enabled(void);
static inline bool kvm_is_pmu_enabled(void)
{
return get_kvm_param_bool("enable_pmu");
}
static inline bool kvm_is_forced_emulation_enabled(void)
{
return !!get_kvm_param_integer("force_emulation_prefix");
}
uint64_t *__vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr,
int *level);
uint64_t *vm_get_page_table_entry(struct kvm_vm *vm, uint64_t vaddr);
uint64_t kvm_hypercall(uint64_t nr, uint64_t a0, uint64_t a1, uint64_t a2,
uint64_t a3);
uint64_t __xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
void xen_hypercall(uint64_t nr, uint64_t a0, void *a1);
static inline uint64_t __kvm_hypercall_map_gpa_range(uint64_t gpa,
uint64_t size, uint64_t flags)
{
return kvm_hypercall(KVM_HC_MAP_GPA_RANGE, gpa, size >> PAGE_SHIFT, flags, 0);
}
static inline void kvm_hypercall_map_gpa_range(uint64_t gpa, uint64_t size,
uint64_t flags)
{
uint64_t ret = __kvm_hypercall_map_gpa_range(gpa, size, flags);
GUEST_ASSERT(!ret);
}
void __vm_xsave_require_permission(uint64_t xfeature, const char *name);
#define vm_xsave_require_permission(xfeature) \
__vm_xsave_require_permission(xfeature, #xfeature)
enum pg_level {
PG_LEVEL_NONE,
PG_LEVEL_4K,
PG_LEVEL_2M,
PG_LEVEL_1G,
PG_LEVEL_512G,
PG_LEVEL_NUM
};
#define PG_LEVEL_SHIFT(_level) ((_level - 1) * 9 + 12)
#define PG_LEVEL_SIZE(_level) (1ull << PG_LEVEL_SHIFT(_level))
#define PG_SIZE_4K PG_LEVEL_SIZE(PG_LEVEL_4K)
#define PG_SIZE_2M PG_LEVEL_SIZE(PG_LEVEL_2M)
#define PG_SIZE_1G PG_LEVEL_SIZE(PG_LEVEL_1G)
void __virt_pg_map(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr, int level);
void virt_map_level(struct kvm_vm *vm, uint64_t vaddr, uint64_t paddr,
uint64_t nr_bytes, int level);
/*
* Basic CPU control in CR0
*/
#define X86_CR0_PE (1UL<<0) /* Protection Enable */
#define X86_CR0_MP (1UL<<1) /* Monitor Coprocessor */
#define X86_CR0_EM (1UL<<2) /* Emulation */
#define X86_CR0_TS (1UL<<3) /* Task Switched */
#define X86_CR0_ET (1UL<<4) /* Extension Type */
#define X86_CR0_NE (1UL<<5) /* Numeric Error */
#define X86_CR0_WP (1UL<<16) /* Write Protect */
#define X86_CR0_AM (1UL<<18) /* Alignment Mask */
#define X86_CR0_NW (1UL<<29) /* Not Write-through */
#define X86_CR0_CD (1UL<<30) /* Cache Disable */
#define X86_CR0_PG (1UL<<31) /* Paging */
#define PFERR_PRESENT_BIT 0
#define PFERR_WRITE_BIT 1
#define PFERR_USER_BIT 2
#define PFERR_RSVD_BIT 3
#define PFERR_FETCH_BIT 4
#define PFERR_PK_BIT 5
#define PFERR_SGX_BIT 15
#define PFERR_GUEST_FINAL_BIT 32
#define PFERR_GUEST_PAGE_BIT 33
#define PFERR_IMPLICIT_ACCESS_BIT 48
#define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT)
#define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT)
#define PFERR_USER_MASK BIT(PFERR_USER_BIT)
#define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT)
#define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT)
#define PFERR_PK_MASK BIT(PFERR_PK_BIT)
#define PFERR_SGX_MASK BIT(PFERR_SGX_BIT)
#define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT)
#define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT)
#define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
bool sys_clocksource_is_based_on_tsc(void);
#endif /* SELFTEST_KVM_PROCESSOR_H */