| #ifndef _LINUX_MM_H | 
 | #define _LINUX_MM_H | 
 |  | 
 | #include <linux/errno.h> | 
 |  | 
 | #ifdef __KERNEL__ | 
 |  | 
 | #include <linux/mmdebug.h> | 
 | #include <linux/gfp.h> | 
 | #include <linux/bug.h> | 
 | #include <linux/list.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/atomic.h> | 
 | #include <linux/debug_locks.h> | 
 | #include <linux/mm_types.h> | 
 | #include <linux/range.h> | 
 | #include <linux/pfn.h> | 
 | #include <linux/bit_spinlock.h> | 
 | #include <linux/shrinker.h> | 
 |  | 
 | struct mempolicy; | 
 | struct anon_vma; | 
 | struct anon_vma_chain; | 
 | struct file_ra_state; | 
 | struct user_struct; | 
 | struct writeback_control; | 
 |  | 
 | #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */ | 
 | extern unsigned long max_mapnr; | 
 |  | 
 | static inline void set_max_mapnr(unsigned long limit) | 
 | { | 
 | 	max_mapnr = limit; | 
 | } | 
 | #else | 
 | static inline void set_max_mapnr(unsigned long limit) { } | 
 | #endif | 
 |  | 
 | extern unsigned long totalram_pages; | 
 | extern void * high_memory; | 
 | extern int page_cluster; | 
 |  | 
 | #ifdef CONFIG_SYSCTL | 
 | extern int sysctl_legacy_va_layout; | 
 | #else | 
 | #define sysctl_legacy_va_layout 0 | 
 | #endif | 
 |  | 
 | #include <asm/page.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/processor.h> | 
 |  | 
 | #ifndef __pa_symbol | 
 | #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0)) | 
 | #endif | 
 |  | 
 | extern unsigned long sysctl_user_reserve_kbytes; | 
 | extern unsigned long sysctl_admin_reserve_kbytes; | 
 |  | 
 | extern int sysctl_overcommit_memory; | 
 | extern int sysctl_overcommit_ratio; | 
 | extern unsigned long sysctl_overcommit_kbytes; | 
 |  | 
 | extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, | 
 | 				    size_t *, loff_t *); | 
 | extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, | 
 | 				    size_t *, loff_t *); | 
 |  | 
 | #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) | 
 |  | 
 | /* to align the pointer to the (next) page boundary */ | 
 | #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) | 
 |  | 
 | /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ | 
 | #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)addr, PAGE_SIZE) | 
 |  | 
 | /* | 
 |  * Linux kernel virtual memory manager primitives. | 
 |  * The idea being to have a "virtual" mm in the same way | 
 |  * we have a virtual fs - giving a cleaner interface to the | 
 |  * mm details, and allowing different kinds of memory mappings | 
 |  * (from shared memory to executable loading to arbitrary | 
 |  * mmap() functions). | 
 |  */ | 
 |  | 
 | extern struct kmem_cache *vm_area_cachep; | 
 |  | 
 | #ifndef CONFIG_MMU | 
 | extern struct rb_root nommu_region_tree; | 
 | extern struct rw_semaphore nommu_region_sem; | 
 |  | 
 | extern unsigned int kobjsize(const void *objp); | 
 | #endif | 
 |  | 
 | /* | 
 |  * vm_flags in vm_area_struct, see mm_types.h. | 
 |  */ | 
 | #define VM_NONE		0x00000000 | 
 |  | 
 | #define VM_READ		0x00000001	/* currently active flags */ | 
 | #define VM_WRITE	0x00000002 | 
 | #define VM_EXEC		0x00000004 | 
 | #define VM_SHARED	0x00000008 | 
 |  | 
 | /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ | 
 | #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */ | 
 | #define VM_MAYWRITE	0x00000020 | 
 | #define VM_MAYEXEC	0x00000040 | 
 | #define VM_MAYSHARE	0x00000080 | 
 |  | 
 | #define VM_GROWSDOWN	0x00000100	/* general info on the segment */ | 
 | #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */ | 
 | #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */ | 
 |  | 
 | #define VM_LOCKED	0x00002000 | 
 | #define VM_IO           0x00004000	/* Memory mapped I/O or similar */ | 
 |  | 
 | 					/* Used by sys_madvise() */ | 
 | #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */ | 
 | #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */ | 
 |  | 
 | #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */ | 
 | #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */ | 
 | #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */ | 
 | #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */ | 
 | #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */ | 
 | #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */ | 
 | #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */ | 
 | #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */ | 
 |  | 
 | #ifdef CONFIG_MEM_SOFT_DIRTY | 
 | # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */ | 
 | #else | 
 | # define VM_SOFTDIRTY	0 | 
 | #endif | 
 |  | 
 | #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */ | 
 | #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */ | 
 | #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */ | 
 | #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */ | 
 |  | 
 | #if defined(CONFIG_X86) | 
 | # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */ | 
 | #elif defined(CONFIG_PPC) | 
 | # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */ | 
 | #elif defined(CONFIG_PARISC) | 
 | # define VM_GROWSUP	VM_ARCH_1 | 
 | #elif defined(CONFIG_METAG) | 
 | # define VM_GROWSUP	VM_ARCH_1 | 
 | #elif defined(CONFIG_IA64) | 
 | # define VM_GROWSUP	VM_ARCH_1 | 
 | #elif !defined(CONFIG_MMU) | 
 | # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */ | 
 | #endif | 
 |  | 
 | #ifndef VM_GROWSUP | 
 | # define VM_GROWSUP	VM_NONE | 
 | #endif | 
 |  | 
 | /* Bits set in the VMA until the stack is in its final location */ | 
 | #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ) | 
 |  | 
 | #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */ | 
 | #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_STACK_GROWSUP | 
 | #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) | 
 | #else | 
 | #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) | 
 | #endif | 
 |  | 
 | /* | 
 |  * Special vmas that are non-mergable, non-mlock()able. | 
 |  * Note: mm/huge_memory.c VM_NO_THP depends on this definition. | 
 |  */ | 
 | #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) | 
 |  | 
 | /* | 
 |  * mapping from the currently active vm_flags protection bits (the | 
 |  * low four bits) to a page protection mask.. | 
 |  */ | 
 | extern pgprot_t protection_map[16]; | 
 |  | 
 | #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */ | 
 | #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */ | 
 | #define FAULT_FLAG_MKWRITE	0x04	/* Fault was mkwrite of existing pte */ | 
 | #define FAULT_FLAG_ALLOW_RETRY	0x08	/* Retry fault if blocking */ | 
 | #define FAULT_FLAG_RETRY_NOWAIT	0x10	/* Don't drop mmap_sem and wait when retrying */ | 
 | #define FAULT_FLAG_KILLABLE	0x20	/* The fault task is in SIGKILL killable region */ | 
 | #define FAULT_FLAG_TRIED	0x40	/* second try */ | 
 | #define FAULT_FLAG_USER		0x80	/* The fault originated in userspace */ | 
 |  | 
 | /* | 
 |  * vm_fault is filled by the the pagefault handler and passed to the vma's | 
 |  * ->fault function. The vma's ->fault is responsible for returning a bitmask | 
 |  * of VM_FAULT_xxx flags that give details about how the fault was handled. | 
 |  * | 
 |  * pgoff should be used in favour of virtual_address, if possible. If pgoff | 
 |  * is used, one may implement ->remap_pages to get nonlinear mapping support. | 
 |  */ | 
 | struct vm_fault { | 
 | 	unsigned int flags;		/* FAULT_FLAG_xxx flags */ | 
 | 	pgoff_t pgoff;			/* Logical page offset based on vma */ | 
 | 	void __user *virtual_address;	/* Faulting virtual address */ | 
 |  | 
 | 	struct page *page;		/* ->fault handlers should return a | 
 | 					 * page here, unless VM_FAULT_NOPAGE | 
 | 					 * is set (which is also implied by | 
 | 					 * VM_FAULT_ERROR). | 
 | 					 */ | 
 | }; | 
 |  | 
 | /* | 
 |  * These are the virtual MM functions - opening of an area, closing and | 
 |  * unmapping it (needed to keep files on disk up-to-date etc), pointer | 
 |  * to the functions called when a no-page or a wp-page exception occurs.  | 
 |  */ | 
 | struct vm_operations_struct { | 
 | 	void (*open)(struct vm_area_struct * area); | 
 | 	void (*close)(struct vm_area_struct * area); | 
 | 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); | 
 |  | 
 | 	/* notification that a previously read-only page is about to become | 
 | 	 * writable, if an error is returned it will cause a SIGBUS */ | 
 | 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); | 
 |  | 
 | 	/* called by access_process_vm when get_user_pages() fails, typically | 
 | 	 * for use by special VMAs that can switch between memory and hardware | 
 | 	 */ | 
 | 	int (*access)(struct vm_area_struct *vma, unsigned long addr, | 
 | 		      void *buf, int len, int write); | 
 | #ifdef CONFIG_NUMA | 
 | 	/* | 
 | 	 * set_policy() op must add a reference to any non-NULL @new mempolicy | 
 | 	 * to hold the policy upon return.  Caller should pass NULL @new to | 
 | 	 * remove a policy and fall back to surrounding context--i.e. do not | 
 | 	 * install a MPOL_DEFAULT policy, nor the task or system default | 
 | 	 * mempolicy. | 
 | 	 */ | 
 | 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); | 
 |  | 
 | 	/* | 
 | 	 * get_policy() op must add reference [mpol_get()] to any policy at | 
 | 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure | 
 | 	 * in mm/mempolicy.c will do this automatically. | 
 | 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not | 
 | 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. | 
 | 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op | 
 | 	 * must return NULL--i.e., do not "fallback" to task or system default | 
 | 	 * policy. | 
 | 	 */ | 
 | 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma, | 
 | 					unsigned long addr); | 
 | 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, | 
 | 		const nodemask_t *to, unsigned long flags); | 
 | #endif | 
 | 	/* called by sys_remap_file_pages() to populate non-linear mapping */ | 
 | 	int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, | 
 | 			   unsigned long size, pgoff_t pgoff); | 
 | }; | 
 |  | 
 | struct mmu_gather; | 
 | struct inode; | 
 |  | 
 | #define page_private(page)		((page)->private) | 
 | #define set_page_private(page, v)	((page)->private = (v)) | 
 |  | 
 | /* It's valid only if the page is free path or free_list */ | 
 | static inline void set_freepage_migratetype(struct page *page, int migratetype) | 
 | { | 
 | 	page->index = migratetype; | 
 | } | 
 |  | 
 | /* It's valid only if the page is free path or free_list */ | 
 | static inline int get_freepage_migratetype(struct page *page) | 
 | { | 
 | 	return page->index; | 
 | } | 
 |  | 
 | /* | 
 |  * FIXME: take this include out, include page-flags.h in | 
 |  * files which need it (119 of them) | 
 |  */ | 
 | #include <linux/page-flags.h> | 
 | #include <linux/huge_mm.h> | 
 |  | 
 | /* | 
 |  * Methods to modify the page usage count. | 
 |  * | 
 |  * What counts for a page usage: | 
 |  * - cache mapping   (page->mapping) | 
 |  * - private data    (page->private) | 
 |  * - page mapped in a task's page tables, each mapping | 
 |  *   is counted separately | 
 |  * | 
 |  * Also, many kernel routines increase the page count before a critical | 
 |  * routine so they can be sure the page doesn't go away from under them. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Drop a ref, return true if the refcount fell to zero (the page has no users) | 
 |  */ | 
 | static inline int put_page_testzero(struct page *page) | 
 | { | 
 | 	VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); | 
 | 	return atomic_dec_and_test(&page->_count); | 
 | } | 
 |  | 
 | /* | 
 |  * Try to grab a ref unless the page has a refcount of zero, return false if | 
 |  * that is the case. | 
 |  * This can be called when MMU is off so it must not access | 
 |  * any of the virtual mappings. | 
 |  */ | 
 | static inline int get_page_unless_zero(struct page *page) | 
 | { | 
 | 	return atomic_inc_not_zero(&page->_count); | 
 | } | 
 |  | 
 | /* | 
 |  * Try to drop a ref unless the page has a refcount of one, return false if | 
 |  * that is the case. | 
 |  * This is to make sure that the refcount won't become zero after this drop. | 
 |  * This can be called when MMU is off so it must not access | 
 |  * any of the virtual mappings. | 
 |  */ | 
 | static inline int put_page_unless_one(struct page *page) | 
 | { | 
 | 	return atomic_add_unless(&page->_count, -1, 1); | 
 | } | 
 |  | 
 | extern int page_is_ram(unsigned long pfn); | 
 |  | 
 | /* Support for virtually mapped pages */ | 
 | struct page *vmalloc_to_page(const void *addr); | 
 | unsigned long vmalloc_to_pfn(const void *addr); | 
 |  | 
 | /* | 
 |  * Determine if an address is within the vmalloc range | 
 |  * | 
 |  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there | 
 |  * is no special casing required. | 
 |  */ | 
 | static inline int is_vmalloc_addr(const void *x) | 
 | { | 
 | #ifdef CONFIG_MMU | 
 | 	unsigned long addr = (unsigned long)x; | 
 |  | 
 | 	return addr >= VMALLOC_START && addr < VMALLOC_END; | 
 | #else | 
 | 	return 0; | 
 | #endif | 
 | } | 
 | #ifdef CONFIG_MMU | 
 | extern int is_vmalloc_or_module_addr(const void *x); | 
 | #else | 
 | static inline int is_vmalloc_or_module_addr(const void *x) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif | 
 |  | 
 | static inline void compound_lock(struct page *page) | 
 | { | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 	VM_BUG_ON_PAGE(PageSlab(page), page); | 
 | 	bit_spin_lock(PG_compound_lock, &page->flags); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void compound_unlock(struct page *page) | 
 | { | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 	VM_BUG_ON_PAGE(PageSlab(page), page); | 
 | 	bit_spin_unlock(PG_compound_lock, &page->flags); | 
 | #endif | 
 | } | 
 |  | 
 | static inline unsigned long compound_lock_irqsave(struct page *page) | 
 | { | 
 | 	unsigned long uninitialized_var(flags); | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 	local_irq_save(flags); | 
 | 	compound_lock(page); | 
 | #endif | 
 | 	return flags; | 
 | } | 
 |  | 
 | static inline void compound_unlock_irqrestore(struct page *page, | 
 | 					      unsigned long flags) | 
 | { | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 	compound_unlock(page); | 
 | 	local_irq_restore(flags); | 
 | #endif | 
 | } | 
 |  | 
 | static inline struct page *compound_head(struct page *page) | 
 | { | 
 | 	if (unlikely(PageTail(page))) { | 
 | 		struct page *head = page->first_page; | 
 |  | 
 | 		/* | 
 | 		 * page->first_page may be a dangling pointer to an old | 
 | 		 * compound page, so recheck that it is still a tail | 
 | 		 * page before returning. | 
 | 		 */ | 
 | 		smp_rmb(); | 
 | 		if (likely(PageTail(page))) | 
 | 			return head; | 
 | 	} | 
 | 	return page; | 
 | } | 
 |  | 
 | /* | 
 |  * The atomic page->_mapcount, starts from -1: so that transitions | 
 |  * both from it and to it can be tracked, using atomic_inc_and_test | 
 |  * and atomic_add_negative(-1). | 
 |  */ | 
 | static inline void page_mapcount_reset(struct page *page) | 
 | { | 
 | 	atomic_set(&(page)->_mapcount, -1); | 
 | } | 
 |  | 
 | static inline int page_mapcount(struct page *page) | 
 | { | 
 | 	return atomic_read(&(page)->_mapcount) + 1; | 
 | } | 
 |  | 
 | static inline int page_count(struct page *page) | 
 | { | 
 | 	return atomic_read(&compound_head(page)->_count); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HUGETLB_PAGE | 
 | extern int PageHeadHuge(struct page *page_head); | 
 | #else /* CONFIG_HUGETLB_PAGE */ | 
 | static inline int PageHeadHuge(struct page *page_head) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_HUGETLB_PAGE */ | 
 |  | 
 | static inline bool __compound_tail_refcounted(struct page *page) | 
 | { | 
 | 	return !PageSlab(page) && !PageHeadHuge(page); | 
 | } | 
 |  | 
 | /* | 
 |  * This takes a head page as parameter and tells if the | 
 |  * tail page reference counting can be skipped. | 
 |  * | 
 |  * For this to be safe, PageSlab and PageHeadHuge must remain true on | 
 |  * any given page where they return true here, until all tail pins | 
 |  * have been released. | 
 |  */ | 
 | static inline bool compound_tail_refcounted(struct page *page) | 
 | { | 
 | 	VM_BUG_ON_PAGE(!PageHead(page), page); | 
 | 	return __compound_tail_refcounted(page); | 
 | } | 
 |  | 
 | static inline void get_huge_page_tail(struct page *page) | 
 | { | 
 | 	/* | 
 | 	 * __split_huge_page_refcount() cannot run from under us. | 
 | 	 */ | 
 | 	VM_BUG_ON_PAGE(!PageTail(page), page); | 
 | 	VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); | 
 | 	VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); | 
 | 	if (compound_tail_refcounted(page->first_page)) | 
 | 		atomic_inc(&page->_mapcount); | 
 | } | 
 |  | 
 | extern bool __get_page_tail(struct page *page); | 
 |  | 
 | static inline void get_page(struct page *page) | 
 | { | 
 | 	if (unlikely(PageTail(page))) | 
 | 		if (likely(__get_page_tail(page))) | 
 | 			return; | 
 | 	/* | 
 | 	 * Getting a normal page or the head of a compound page | 
 | 	 * requires to already have an elevated page->_count. | 
 | 	 */ | 
 | 	VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); | 
 | 	atomic_inc(&page->_count); | 
 | } | 
 |  | 
 | static inline struct page *virt_to_head_page(const void *x) | 
 | { | 
 | 	struct page *page = virt_to_page(x); | 
 | 	return compound_head(page); | 
 | } | 
 |  | 
 | /* | 
 |  * Setup the page count before being freed into the page allocator for | 
 |  * the first time (boot or memory hotplug) | 
 |  */ | 
 | static inline void init_page_count(struct page *page) | 
 | { | 
 | 	atomic_set(&page->_count, 1); | 
 | } | 
 |  | 
 | /* | 
 |  * PageBuddy() indicate that the page is free and in the buddy system | 
 |  * (see mm/page_alloc.c). | 
 |  * | 
 |  * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to | 
 |  * -2 so that an underflow of the page_mapcount() won't be mistaken | 
 |  * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very | 
 |  * efficiently by most CPU architectures. | 
 |  */ | 
 | #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) | 
 |  | 
 | static inline int PageBuddy(struct page *page) | 
 | { | 
 | 	return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; | 
 | } | 
 |  | 
 | static inline void __SetPageBuddy(struct page *page) | 
 | { | 
 | 	VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); | 
 | 	atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); | 
 | } | 
 |  | 
 | static inline void __ClearPageBuddy(struct page *page) | 
 | { | 
 | 	VM_BUG_ON_PAGE(!PageBuddy(page), page); | 
 | 	atomic_set(&page->_mapcount, -1); | 
 | } | 
 |  | 
 | void put_page(struct page *page); | 
 | void put_pages_list(struct list_head *pages); | 
 |  | 
 | void split_page(struct page *page, unsigned int order); | 
 | int split_free_page(struct page *page); | 
 |  | 
 | /* | 
 |  * Compound pages have a destructor function.  Provide a | 
 |  * prototype for that function and accessor functions. | 
 |  * These are _only_ valid on the head of a PG_compound page. | 
 |  */ | 
 | typedef void compound_page_dtor(struct page *); | 
 |  | 
 | static inline void set_compound_page_dtor(struct page *page, | 
 | 						compound_page_dtor *dtor) | 
 | { | 
 | 	page[1].lru.next = (void *)dtor; | 
 | } | 
 |  | 
 | static inline compound_page_dtor *get_compound_page_dtor(struct page *page) | 
 | { | 
 | 	return (compound_page_dtor *)page[1].lru.next; | 
 | } | 
 |  | 
 | static inline int compound_order(struct page *page) | 
 | { | 
 | 	if (!PageHead(page)) | 
 | 		return 0; | 
 | 	return (unsigned long)page[1].lru.prev; | 
 | } | 
 |  | 
 | static inline void set_compound_order(struct page *page, unsigned long order) | 
 | { | 
 | 	page[1].lru.prev = (void *)order; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | /* | 
 |  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when | 
 |  * servicing faults for write access.  In the normal case, do always want | 
 |  * pte_mkwrite.  But get_user_pages can cause write faults for mappings | 
 |  * that do not have writing enabled, when used by access_process_vm. | 
 |  */ | 
 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | 
 | { | 
 | 	if (likely(vma->vm_flags & VM_WRITE)) | 
 | 		pte = pte_mkwrite(pte); | 
 | 	return pte; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * Multiple processes may "see" the same page. E.g. for untouched | 
 |  * mappings of /dev/null, all processes see the same page full of | 
 |  * zeroes, and text pages of executables and shared libraries have | 
 |  * only one copy in memory, at most, normally. | 
 |  * | 
 |  * For the non-reserved pages, page_count(page) denotes a reference count. | 
 |  *   page_count() == 0 means the page is free. page->lru is then used for | 
 |  *   freelist management in the buddy allocator. | 
 |  *   page_count() > 0  means the page has been allocated. | 
 |  * | 
 |  * Pages are allocated by the slab allocator in order to provide memory | 
 |  * to kmalloc and kmem_cache_alloc. In this case, the management of the | 
 |  * page, and the fields in 'struct page' are the responsibility of mm/slab.c | 
 |  * unless a particular usage is carefully commented. (the responsibility of | 
 |  * freeing the kmalloc memory is the caller's, of course). | 
 |  * | 
 |  * A page may be used by anyone else who does a __get_free_page(). | 
 |  * In this case, page_count still tracks the references, and should only | 
 |  * be used through the normal accessor functions. The top bits of page->flags | 
 |  * and page->virtual store page management information, but all other fields | 
 |  * are unused and could be used privately, carefully. The management of this | 
 |  * page is the responsibility of the one who allocated it, and those who have | 
 |  * subsequently been given references to it. | 
 |  * | 
 |  * The other pages (we may call them "pagecache pages") are completely | 
 |  * managed by the Linux memory manager: I/O, buffers, swapping etc. | 
 |  * The following discussion applies only to them. | 
 |  * | 
 |  * A pagecache page contains an opaque `private' member, which belongs to the | 
 |  * page's address_space. Usually, this is the address of a circular list of | 
 |  * the page's disk buffers. PG_private must be set to tell the VM to call | 
 |  * into the filesystem to release these pages. | 
 |  * | 
 |  * A page may belong to an inode's memory mapping. In this case, page->mapping | 
 |  * is the pointer to the inode, and page->index is the file offset of the page, | 
 |  * in units of PAGE_CACHE_SIZE. | 
 |  * | 
 |  * If pagecache pages are not associated with an inode, they are said to be | 
 |  * anonymous pages. These may become associated with the swapcache, and in that | 
 |  * case PG_swapcache is set, and page->private is an offset into the swapcache. | 
 |  * | 
 |  * In either case (swapcache or inode backed), the pagecache itself holds one | 
 |  * reference to the page. Setting PG_private should also increment the | 
 |  * refcount. The each user mapping also has a reference to the page. | 
 |  * | 
 |  * The pagecache pages are stored in a per-mapping radix tree, which is | 
 |  * rooted at mapping->page_tree, and indexed by offset. | 
 |  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space | 
 |  * lists, we instead now tag pages as dirty/writeback in the radix tree. | 
 |  * | 
 |  * All pagecache pages may be subject to I/O: | 
 |  * - inode pages may need to be read from disk, | 
 |  * - inode pages which have been modified and are MAP_SHARED may need | 
 |  *   to be written back to the inode on disk, | 
 |  * - anonymous pages (including MAP_PRIVATE file mappings) which have been | 
 |  *   modified may need to be swapped out to swap space and (later) to be read | 
 |  *   back into memory. | 
 |  */ | 
 |  | 
 | /* | 
 |  * The zone field is never updated after free_area_init_core() | 
 |  * sets it, so none of the operations on it need to be atomic. | 
 |  */ | 
 |  | 
 | /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ | 
 | #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH) | 
 | #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH) | 
 | #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH) | 
 | #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH) | 
 |  | 
 | /* | 
 |  * Define the bit shifts to access each section.  For non-existent | 
 |  * sections we define the shift as 0; that plus a 0 mask ensures | 
 |  * the compiler will optimise away reference to them. | 
 |  */ | 
 | #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) | 
 | #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0)) | 
 | #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0)) | 
 | #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) | 
 |  | 
 | /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ | 
 | #ifdef NODE_NOT_IN_PAGE_FLAGS | 
 | #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT) | 
 | #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \ | 
 | 						SECTIONS_PGOFF : ZONES_PGOFF) | 
 | #else | 
 | #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT) | 
 | #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \ | 
 | 						NODES_PGOFF : ZONES_PGOFF) | 
 | #endif | 
 |  | 
 | #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0)) | 
 |  | 
 | #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS | 
 | #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS | 
 | #endif | 
 |  | 
 | #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1) | 
 | #define NODES_MASK		((1UL << NODES_WIDTH) - 1) | 
 | #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1) | 
 | #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_WIDTH) - 1) | 
 | #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1) | 
 |  | 
 | static inline enum zone_type page_zonenum(const struct page *page) | 
 | { | 
 | 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; | 
 | } | 
 |  | 
 | #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) | 
 | #define SECTION_IN_PAGE_FLAGS | 
 | #endif | 
 |  | 
 | /* | 
 |  * The identification function is mainly used by the buddy allocator for | 
 |  * determining if two pages could be buddies. We are not really identifying | 
 |  * the zone since we could be using the section number id if we do not have | 
 |  * node id available in page flags. | 
 |  * We only guarantee that it will return the same value for two combinable | 
 |  * pages in a zone. | 
 |  */ | 
 | static inline int page_zone_id(struct page *page) | 
 | { | 
 | 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; | 
 | } | 
 |  | 
 | static inline int zone_to_nid(struct zone *zone) | 
 | { | 
 | #ifdef CONFIG_NUMA | 
 | 	return zone->node; | 
 | #else | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | #ifdef NODE_NOT_IN_PAGE_FLAGS | 
 | extern int page_to_nid(const struct page *page); | 
 | #else | 
 | static inline int page_to_nid(const struct page *page) | 
 | { | 
 | 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK; | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | static inline int cpu_pid_to_cpupid(int cpu, int pid) | 
 | { | 
 | 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); | 
 | } | 
 |  | 
 | static inline int cpupid_to_pid(int cpupid) | 
 | { | 
 | 	return cpupid & LAST__PID_MASK; | 
 | } | 
 |  | 
 | static inline int cpupid_to_cpu(int cpupid) | 
 | { | 
 | 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; | 
 | } | 
 |  | 
 | static inline int cpupid_to_nid(int cpupid) | 
 | { | 
 | 	return cpu_to_node(cpupid_to_cpu(cpupid)); | 
 | } | 
 |  | 
 | static inline bool cpupid_pid_unset(int cpupid) | 
 | { | 
 | 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); | 
 | } | 
 |  | 
 | static inline bool cpupid_cpu_unset(int cpupid) | 
 | { | 
 | 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); | 
 | } | 
 |  | 
 | static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) | 
 | { | 
 | 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); | 
 | } | 
 |  | 
 | #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) | 
 | #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS | 
 | static inline int page_cpupid_xchg_last(struct page *page, int cpupid) | 
 | { | 
 | 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); | 
 | } | 
 |  | 
 | static inline int page_cpupid_last(struct page *page) | 
 | { | 
 | 	return page->_last_cpupid; | 
 | } | 
 | static inline void page_cpupid_reset_last(struct page *page) | 
 | { | 
 | 	page->_last_cpupid = -1 & LAST_CPUPID_MASK; | 
 | } | 
 | #else | 
 | static inline int page_cpupid_last(struct page *page) | 
 | { | 
 | 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; | 
 | } | 
 |  | 
 | extern int page_cpupid_xchg_last(struct page *page, int cpupid); | 
 |  | 
 | static inline void page_cpupid_reset_last(struct page *page) | 
 | { | 
 | 	int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; | 
 |  | 
 | 	page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); | 
 | 	page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; | 
 | } | 
 | #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ | 
 | #else /* !CONFIG_NUMA_BALANCING */ | 
 | static inline int page_cpupid_xchg_last(struct page *page, int cpupid) | 
 | { | 
 | 	return page_to_nid(page); /* XXX */ | 
 | } | 
 |  | 
 | static inline int page_cpupid_last(struct page *page) | 
 | { | 
 | 	return page_to_nid(page); /* XXX */ | 
 | } | 
 |  | 
 | static inline int cpupid_to_nid(int cpupid) | 
 | { | 
 | 	return -1; | 
 | } | 
 |  | 
 | static inline int cpupid_to_pid(int cpupid) | 
 | { | 
 | 	return -1; | 
 | } | 
 |  | 
 | static inline int cpupid_to_cpu(int cpupid) | 
 | { | 
 | 	return -1; | 
 | } | 
 |  | 
 | static inline int cpu_pid_to_cpupid(int nid, int pid) | 
 | { | 
 | 	return -1; | 
 | } | 
 |  | 
 | static inline bool cpupid_pid_unset(int cpupid) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline void page_cpupid_reset_last(struct page *page) | 
 | { | 
 | } | 
 |  | 
 | static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) | 
 | { | 
 | 	return false; | 
 | } | 
 | #endif /* CONFIG_NUMA_BALANCING */ | 
 |  | 
 | static inline struct zone *page_zone(const struct page *page) | 
 | { | 
 | 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; | 
 | } | 
 |  | 
 | #ifdef SECTION_IN_PAGE_FLAGS | 
 | static inline void set_page_section(struct page *page, unsigned long section) | 
 | { | 
 | 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); | 
 | 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; | 
 | } | 
 |  | 
 | static inline unsigned long page_to_section(const struct page *page) | 
 | { | 
 | 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; | 
 | } | 
 | #endif | 
 |  | 
 | static inline void set_page_zone(struct page *page, enum zone_type zone) | 
 | { | 
 | 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); | 
 | 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; | 
 | } | 
 |  | 
 | static inline void set_page_node(struct page *page, unsigned long node) | 
 | { | 
 | 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT); | 
 | 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; | 
 | } | 
 |  | 
 | static inline void set_page_links(struct page *page, enum zone_type zone, | 
 | 	unsigned long node, unsigned long pfn) | 
 | { | 
 | 	set_page_zone(page, zone); | 
 | 	set_page_node(page, node); | 
 | #ifdef SECTION_IN_PAGE_FLAGS | 
 | 	set_page_section(page, pfn_to_section_nr(pfn)); | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Some inline functions in vmstat.h depend on page_zone() | 
 |  */ | 
 | #include <linux/vmstat.h> | 
 |  | 
 | static __always_inline void *lowmem_page_address(const struct page *page) | 
 | { | 
 | 	return __va(PFN_PHYS(page_to_pfn(page))); | 
 | } | 
 |  | 
 | #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) | 
 | #define HASHED_PAGE_VIRTUAL | 
 | #endif | 
 |  | 
 | #if defined(WANT_PAGE_VIRTUAL) | 
 | static inline void *page_address(const struct page *page) | 
 | { | 
 | 	return page->virtual; | 
 | } | 
 | static inline void set_page_address(struct page *page, void *address) | 
 | { | 
 | 	page->virtual = address; | 
 | } | 
 | #define page_address_init()  do { } while(0) | 
 | #endif | 
 |  | 
 | #if defined(HASHED_PAGE_VIRTUAL) | 
 | void *page_address(const struct page *page); | 
 | void set_page_address(struct page *page, void *virtual); | 
 | void page_address_init(void); | 
 | #endif | 
 |  | 
 | #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) | 
 | #define page_address(page) lowmem_page_address(page) | 
 | #define set_page_address(page, address)  do { } while(0) | 
 | #define page_address_init()  do { } while(0) | 
 | #endif | 
 |  | 
 | /* | 
 |  * On an anonymous page mapped into a user virtual memory area, | 
 |  * page->mapping points to its anon_vma, not to a struct address_space; | 
 |  * with the PAGE_MAPPING_ANON bit set to distinguish it.  See rmap.h. | 
 |  * | 
 |  * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, | 
 |  * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; | 
 |  * and then page->mapping points, not to an anon_vma, but to a private | 
 |  * structure which KSM associates with that merged page.  See ksm.h. | 
 |  * | 
 |  * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. | 
 |  * | 
 |  * Please note that, confusingly, "page_mapping" refers to the inode | 
 |  * address_space which maps the page from disk; whereas "page_mapped" | 
 |  * refers to user virtual address space into which the page is mapped. | 
 |  */ | 
 | #define PAGE_MAPPING_ANON	1 | 
 | #define PAGE_MAPPING_KSM	2 | 
 | #define PAGE_MAPPING_FLAGS	(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) | 
 |  | 
 | extern struct address_space *page_mapping(struct page *page); | 
 |  | 
 | /* Neutral page->mapping pointer to address_space or anon_vma or other */ | 
 | static inline void *page_rmapping(struct page *page) | 
 | { | 
 | 	return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); | 
 | } | 
 |  | 
 | extern struct address_space *__page_file_mapping(struct page *); | 
 |  | 
 | static inline | 
 | struct address_space *page_file_mapping(struct page *page) | 
 | { | 
 | 	if (unlikely(PageSwapCache(page))) | 
 | 		return __page_file_mapping(page); | 
 |  | 
 | 	return page->mapping; | 
 | } | 
 |  | 
 | static inline int PageAnon(struct page *page) | 
 | { | 
 | 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the pagecache index of the passed page.  Regular pagecache pages | 
 |  * use ->index whereas swapcache pages use ->private | 
 |  */ | 
 | static inline pgoff_t page_index(struct page *page) | 
 | { | 
 | 	if (unlikely(PageSwapCache(page))) | 
 | 		return page_private(page); | 
 | 	return page->index; | 
 | } | 
 |  | 
 | extern pgoff_t __page_file_index(struct page *page); | 
 |  | 
 | /* | 
 |  * Return the file index of the page. Regular pagecache pages use ->index | 
 |  * whereas swapcache pages use swp_offset(->private) | 
 |  */ | 
 | static inline pgoff_t page_file_index(struct page *page) | 
 | { | 
 | 	if (unlikely(PageSwapCache(page))) | 
 | 		return __page_file_index(page); | 
 |  | 
 | 	return page->index; | 
 | } | 
 |  | 
 | /* | 
 |  * Return true if this page is mapped into pagetables. | 
 |  */ | 
 | static inline int page_mapped(struct page *page) | 
 | { | 
 | 	return atomic_read(&(page)->_mapcount) >= 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Different kinds of faults, as returned by handle_mm_fault(). | 
 |  * Used to decide whether a process gets delivered SIGBUS or | 
 |  * just gets major/minor fault counters bumped up. | 
 |  */ | 
 |  | 
 | #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */ | 
 |  | 
 | #define VM_FAULT_OOM	0x0001 | 
 | #define VM_FAULT_SIGBUS	0x0002 | 
 | #define VM_FAULT_MAJOR	0x0004 | 
 | #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */ | 
 | #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */ | 
 | #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */ | 
 |  | 
 | #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */ | 
 | #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */ | 
 | #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */ | 
 | #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */ | 
 |  | 
 | #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ | 
 |  | 
 | #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ | 
 | 			 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE) | 
 |  | 
 | /* Encode hstate index for a hwpoisoned large page */ | 
 | #define VM_FAULT_SET_HINDEX(x) ((x) << 12) | 
 | #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) | 
 |  | 
 | /* | 
 |  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. | 
 |  */ | 
 | extern void pagefault_out_of_memory(void); | 
 |  | 
 | #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK) | 
 |  | 
 | /* | 
 |  * Flags passed to show_mem() and show_free_areas() to suppress output in | 
 |  * various contexts. | 
 |  */ | 
 | #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */ | 
 |  | 
 | extern void show_free_areas(unsigned int flags); | 
 | extern bool skip_free_areas_node(unsigned int flags, int nid); | 
 |  | 
 | int shmem_zero_setup(struct vm_area_struct *); | 
 |  | 
 | extern int can_do_mlock(void); | 
 | extern int user_shm_lock(size_t, struct user_struct *); | 
 | extern void user_shm_unlock(size_t, struct user_struct *); | 
 |  | 
 | /* | 
 |  * Parameter block passed down to zap_pte_range in exceptional cases. | 
 |  */ | 
 | struct zap_details { | 
 | 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */ | 
 | 	struct address_space *check_mapping;	/* Check page->mapping if set */ | 
 | 	pgoff_t	first_index;			/* Lowest page->index to unmap */ | 
 | 	pgoff_t last_index;			/* Highest page->index to unmap */ | 
 | }; | 
 |  | 
 | struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, | 
 | 		pte_t pte); | 
 |  | 
 | int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, | 
 | 		unsigned long size); | 
 | void zap_page_range(struct vm_area_struct *vma, unsigned long address, | 
 | 		unsigned long size, struct zap_details *); | 
 | void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, | 
 | 		unsigned long start, unsigned long end); | 
 |  | 
 | /** | 
 |  * mm_walk - callbacks for walk_page_range | 
 |  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry | 
 |  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry | 
 |  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry | 
 |  *	       this handler is required to be able to handle | 
 |  *	       pmd_trans_huge() pmds.  They may simply choose to | 
 |  *	       split_huge_page() instead of handling it explicitly. | 
 |  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry | 
 |  * @pte_hole: if set, called for each hole at all levels | 
 |  * @hugetlb_entry: if set, called for each hugetlb entry | 
 |  *		   *Caution*: The caller must hold mmap_sem() if @hugetlb_entry | 
 |  * 			      is used. | 
 |  * | 
 |  * (see walk_page_range for more details) | 
 |  */ | 
 | struct mm_walk { | 
 | 	int (*pgd_entry)(pgd_t *pgd, unsigned long addr, | 
 | 			 unsigned long next, struct mm_walk *walk); | 
 | 	int (*pud_entry)(pud_t *pud, unsigned long addr, | 
 | 	                 unsigned long next, struct mm_walk *walk); | 
 | 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr, | 
 | 			 unsigned long next, struct mm_walk *walk); | 
 | 	int (*pte_entry)(pte_t *pte, unsigned long addr, | 
 | 			 unsigned long next, struct mm_walk *walk); | 
 | 	int (*pte_hole)(unsigned long addr, unsigned long next, | 
 | 			struct mm_walk *walk); | 
 | 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, | 
 | 			     unsigned long addr, unsigned long next, | 
 | 			     struct mm_walk *walk); | 
 | 	struct mm_struct *mm; | 
 | 	void *private; | 
 | }; | 
 |  | 
 | int walk_page_range(unsigned long addr, unsigned long end, | 
 | 		struct mm_walk *walk); | 
 | void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, | 
 | 		unsigned long end, unsigned long floor, unsigned long ceiling); | 
 | int copy_page_range(struct mm_struct *dst, struct mm_struct *src, | 
 | 			struct vm_area_struct *vma); | 
 | void unmap_mapping_range(struct address_space *mapping, | 
 | 		loff_t const holebegin, loff_t const holelen, int even_cows); | 
 | int follow_pfn(struct vm_area_struct *vma, unsigned long address, | 
 | 	unsigned long *pfn); | 
 | int follow_phys(struct vm_area_struct *vma, unsigned long address, | 
 | 		unsigned int flags, unsigned long *prot, resource_size_t *phys); | 
 | int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, | 
 | 			void *buf, int len, int write); | 
 |  | 
 | static inline void unmap_shared_mapping_range(struct address_space *mapping, | 
 | 		loff_t const holebegin, loff_t const holelen) | 
 | { | 
 | 	unmap_mapping_range(mapping, holebegin, holelen, 0); | 
 | } | 
 |  | 
 | extern void truncate_pagecache(struct inode *inode, loff_t new); | 
 | extern void truncate_setsize(struct inode *inode, loff_t newsize); | 
 | void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); | 
 | int truncate_inode_page(struct address_space *mapping, struct page *page); | 
 | int generic_error_remove_page(struct address_space *mapping, struct page *page); | 
 | int invalidate_inode_page(struct page *page); | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 			unsigned long address, unsigned int flags); | 
 | extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, | 
 | 			    unsigned long address, unsigned int fault_flags); | 
 | #else | 
 | static inline int handle_mm_fault(struct mm_struct *mm, | 
 | 			struct vm_area_struct *vma, unsigned long address, | 
 | 			unsigned int flags) | 
 | { | 
 | 	/* should never happen if there's no MMU */ | 
 | 	BUG(); | 
 | 	return VM_FAULT_SIGBUS; | 
 | } | 
 | static inline int fixup_user_fault(struct task_struct *tsk, | 
 | 		struct mm_struct *mm, unsigned long address, | 
 | 		unsigned int fault_flags) | 
 | { | 
 | 	/* should never happen if there's no MMU */ | 
 | 	BUG(); | 
 | 	return -EFAULT; | 
 | } | 
 | #endif | 
 |  | 
 | extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); | 
 | extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, | 
 | 		void *buf, int len, int write); | 
 |  | 
 | long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 
 | 		      unsigned long start, unsigned long nr_pages, | 
 | 		      unsigned int foll_flags, struct page **pages, | 
 | 		      struct vm_area_struct **vmas, int *nonblocking); | 
 | long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 
 | 		    unsigned long start, unsigned long nr_pages, | 
 | 		    int write, int force, struct page **pages, | 
 | 		    struct vm_area_struct **vmas); | 
 | int get_user_pages_fast(unsigned long start, int nr_pages, int write, | 
 | 			struct page **pages); | 
 | struct kvec; | 
 | int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, | 
 | 			struct page **pages); | 
 | int get_kernel_page(unsigned long start, int write, struct page **pages); | 
 | struct page *get_dump_page(unsigned long addr); | 
 |  | 
 | extern int try_to_release_page(struct page * page, gfp_t gfp_mask); | 
 | extern void do_invalidatepage(struct page *page, unsigned int offset, | 
 | 			      unsigned int length); | 
 |  | 
 | int __set_page_dirty_nobuffers(struct page *page); | 
 | int __set_page_dirty_no_writeback(struct page *page); | 
 | int redirty_page_for_writepage(struct writeback_control *wbc, | 
 | 				struct page *page); | 
 | void account_page_dirtied(struct page *page, struct address_space *mapping); | 
 | void account_page_writeback(struct page *page); | 
 | int set_page_dirty(struct page *page); | 
 | int set_page_dirty_lock(struct page *page); | 
 | int clear_page_dirty_for_io(struct page *page); | 
 |  | 
 | /* Is the vma a continuation of the stack vma above it? */ | 
 | static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); | 
 | } | 
 |  | 
 | static inline int stack_guard_page_start(struct vm_area_struct *vma, | 
 | 					     unsigned long addr) | 
 | { | 
 | 	return (vma->vm_flags & VM_GROWSDOWN) && | 
 | 		(vma->vm_start == addr) && | 
 | 		!vma_growsdown(vma->vm_prev, addr); | 
 | } | 
 |  | 
 | /* Is the vma a continuation of the stack vma below it? */ | 
 | static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) | 
 | { | 
 | 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); | 
 | } | 
 |  | 
 | static inline int stack_guard_page_end(struct vm_area_struct *vma, | 
 | 					   unsigned long addr) | 
 | { | 
 | 	return (vma->vm_flags & VM_GROWSUP) && | 
 | 		(vma->vm_end == addr) && | 
 | 		!vma_growsup(vma->vm_next, addr); | 
 | } | 
 |  | 
 | extern pid_t | 
 | vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); | 
 |  | 
 | extern unsigned long move_page_tables(struct vm_area_struct *vma, | 
 | 		unsigned long old_addr, struct vm_area_struct *new_vma, | 
 | 		unsigned long new_addr, unsigned long len, | 
 | 		bool need_rmap_locks); | 
 | extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, | 
 | 			      unsigned long end, pgprot_t newprot, | 
 | 			      int dirty_accountable, int prot_numa); | 
 | extern int mprotect_fixup(struct vm_area_struct *vma, | 
 | 			  struct vm_area_struct **pprev, unsigned long start, | 
 | 			  unsigned long end, unsigned long newflags); | 
 |  | 
 | /* | 
 |  * doesn't attempt to fault and will return short. | 
 |  */ | 
 | int __get_user_pages_fast(unsigned long start, int nr_pages, int write, | 
 | 			  struct page **pages); | 
 | /* | 
 |  * per-process(per-mm_struct) statistics. | 
 |  */ | 
 | static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) | 
 | { | 
 | 	long val = atomic_long_read(&mm->rss_stat.count[member]); | 
 |  | 
 | #ifdef SPLIT_RSS_COUNTING | 
 | 	/* | 
 | 	 * counter is updated in asynchronous manner and may go to minus. | 
 | 	 * But it's never be expected number for users. | 
 | 	 */ | 
 | 	if (val < 0) | 
 | 		val = 0; | 
 | #endif | 
 | 	return (unsigned long)val; | 
 | } | 
 |  | 
 | static inline void add_mm_counter(struct mm_struct *mm, int member, long value) | 
 | { | 
 | 	atomic_long_add(value, &mm->rss_stat.count[member]); | 
 | } | 
 |  | 
 | static inline void inc_mm_counter(struct mm_struct *mm, int member) | 
 | { | 
 | 	atomic_long_inc(&mm->rss_stat.count[member]); | 
 | } | 
 |  | 
 | static inline void dec_mm_counter(struct mm_struct *mm, int member) | 
 | { | 
 | 	atomic_long_dec(&mm->rss_stat.count[member]); | 
 | } | 
 |  | 
 | static inline unsigned long get_mm_rss(struct mm_struct *mm) | 
 | { | 
 | 	return get_mm_counter(mm, MM_FILEPAGES) + | 
 | 		get_mm_counter(mm, MM_ANONPAGES); | 
 | } | 
 |  | 
 | static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) | 
 | { | 
 | 	return max(mm->hiwater_rss, get_mm_rss(mm)); | 
 | } | 
 |  | 
 | static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) | 
 | { | 
 | 	return max(mm->hiwater_vm, mm->total_vm); | 
 | } | 
 |  | 
 | static inline void update_hiwater_rss(struct mm_struct *mm) | 
 | { | 
 | 	unsigned long _rss = get_mm_rss(mm); | 
 |  | 
 | 	if ((mm)->hiwater_rss < _rss) | 
 | 		(mm)->hiwater_rss = _rss; | 
 | } | 
 |  | 
 | static inline void update_hiwater_vm(struct mm_struct *mm) | 
 | { | 
 | 	if (mm->hiwater_vm < mm->total_vm) | 
 | 		mm->hiwater_vm = mm->total_vm; | 
 | } | 
 |  | 
 | static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, | 
 | 					 struct mm_struct *mm) | 
 | { | 
 | 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm); | 
 |  | 
 | 	if (*maxrss < hiwater_rss) | 
 | 		*maxrss = hiwater_rss; | 
 | } | 
 |  | 
 | #if defined(SPLIT_RSS_COUNTING) | 
 | void sync_mm_rss(struct mm_struct *mm); | 
 | #else | 
 | static inline void sync_mm_rss(struct mm_struct *mm) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | int vma_wants_writenotify(struct vm_area_struct *vma); | 
 |  | 
 | extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, | 
 | 			       spinlock_t **ptl); | 
 | static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, | 
 | 				    spinlock_t **ptl) | 
 | { | 
 | 	pte_t *ptep; | 
 | 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); | 
 | 	return ptep; | 
 | } | 
 |  | 
 | #ifdef __PAGETABLE_PUD_FOLDED | 
 | static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, | 
 | 						unsigned long address) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #else | 
 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); | 
 | #endif | 
 |  | 
 | #ifdef __PAGETABLE_PMD_FOLDED | 
 | static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, | 
 | 						unsigned long address) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #else | 
 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); | 
 | #endif | 
 |  | 
 | int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 		pmd_t *pmd, unsigned long address); | 
 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); | 
 |  | 
 | /* | 
 |  * The following ifdef needed to get the 4level-fixup.h header to work. | 
 |  * Remove it when 4level-fixup.h has been removed. | 
 |  */ | 
 | #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) | 
 | static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 
 | { | 
 | 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? | 
 | 		NULL: pud_offset(pgd, address); | 
 | } | 
 |  | 
 | static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 
 | { | 
 | 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? | 
 | 		NULL: pmd_offset(pud, address); | 
 | } | 
 | #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ | 
 |  | 
 | #if USE_SPLIT_PTE_PTLOCKS | 
 | #if ALLOC_SPLIT_PTLOCKS | 
 | void __init ptlock_cache_init(void); | 
 | extern bool ptlock_alloc(struct page *page); | 
 | extern void ptlock_free(struct page *page); | 
 |  | 
 | static inline spinlock_t *ptlock_ptr(struct page *page) | 
 | { | 
 | 	return page->ptl; | 
 | } | 
 | #else /* ALLOC_SPLIT_PTLOCKS */ | 
 | static inline void ptlock_cache_init(void) | 
 | { | 
 | } | 
 |  | 
 | static inline bool ptlock_alloc(struct page *page) | 
 | { | 
 | 	return true; | 
 | } | 
 |  | 
 | static inline void ptlock_free(struct page *page) | 
 | { | 
 | } | 
 |  | 
 | static inline spinlock_t *ptlock_ptr(struct page *page) | 
 | { | 
 | 	return &page->ptl; | 
 | } | 
 | #endif /* ALLOC_SPLIT_PTLOCKS */ | 
 |  | 
 | static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) | 
 | { | 
 | 	return ptlock_ptr(pmd_page(*pmd)); | 
 | } | 
 |  | 
 | static inline bool ptlock_init(struct page *page) | 
 | { | 
 | 	/* | 
 | 	 * prep_new_page() initialize page->private (and therefore page->ptl) | 
 | 	 * with 0. Make sure nobody took it in use in between. | 
 | 	 * | 
 | 	 * It can happen if arch try to use slab for page table allocation: | 
 | 	 * slab code uses page->slab_cache and page->first_page (for tail | 
 | 	 * pages), which share storage with page->ptl. | 
 | 	 */ | 
 | 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); | 
 | 	if (!ptlock_alloc(page)) | 
 | 		return false; | 
 | 	spin_lock_init(ptlock_ptr(page)); | 
 | 	return true; | 
 | } | 
 |  | 
 | /* Reset page->mapping so free_pages_check won't complain. */ | 
 | static inline void pte_lock_deinit(struct page *page) | 
 | { | 
 | 	page->mapping = NULL; | 
 | 	ptlock_free(page); | 
 | } | 
 |  | 
 | #else	/* !USE_SPLIT_PTE_PTLOCKS */ | 
 | /* | 
 |  * We use mm->page_table_lock to guard all pagetable pages of the mm. | 
 |  */ | 
 | static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) | 
 | { | 
 | 	return &mm->page_table_lock; | 
 | } | 
 | static inline void ptlock_cache_init(void) {} | 
 | static inline bool ptlock_init(struct page *page) { return true; } | 
 | static inline void pte_lock_deinit(struct page *page) {} | 
 | #endif /* USE_SPLIT_PTE_PTLOCKS */ | 
 |  | 
 | static inline void pgtable_init(void) | 
 | { | 
 | 	ptlock_cache_init(); | 
 | 	pgtable_cache_init(); | 
 | } | 
 |  | 
 | static inline bool pgtable_page_ctor(struct page *page) | 
 | { | 
 | 	inc_zone_page_state(page, NR_PAGETABLE); | 
 | 	return ptlock_init(page); | 
 | } | 
 |  | 
 | static inline void pgtable_page_dtor(struct page *page) | 
 | { | 
 | 	pte_lock_deinit(page); | 
 | 	dec_zone_page_state(page, NR_PAGETABLE); | 
 | } | 
 |  | 
 | #define pte_offset_map_lock(mm, pmd, address, ptlp)	\ | 
 | ({							\ | 
 | 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\ | 
 | 	pte_t *__pte = pte_offset_map(pmd, address);	\ | 
 | 	*(ptlp) = __ptl;				\ | 
 | 	spin_lock(__ptl);				\ | 
 | 	__pte;						\ | 
 | }) | 
 |  | 
 | #define pte_unmap_unlock(pte, ptl)	do {		\ | 
 | 	spin_unlock(ptl);				\ | 
 | 	pte_unmap(pte);					\ | 
 | } while (0) | 
 |  | 
 | #define pte_alloc_map(mm, vma, pmd, address)				\ | 
 | 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\ | 
 | 							pmd, address))?	\ | 
 | 	 NULL: pte_offset_map(pmd, address)) | 
 |  | 
 | #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\ | 
 | 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\ | 
 | 							pmd, address))?	\ | 
 | 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) | 
 |  | 
 | #define pte_alloc_kernel(pmd, address)			\ | 
 | 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ | 
 | 		NULL: pte_offset_kernel(pmd, address)) | 
 |  | 
 | #if USE_SPLIT_PMD_PTLOCKS | 
 |  | 
 | static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) | 
 | { | 
 | 	return ptlock_ptr(virt_to_page(pmd)); | 
 | } | 
 |  | 
 | static inline bool pgtable_pmd_page_ctor(struct page *page) | 
 | { | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 	page->pmd_huge_pte = NULL; | 
 | #endif | 
 | 	return ptlock_init(page); | 
 | } | 
 |  | 
 | static inline void pgtable_pmd_page_dtor(struct page *page) | 
 | { | 
 | #ifdef CONFIG_TRANSPARENT_HUGEPAGE | 
 | 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page); | 
 | #endif | 
 | 	ptlock_free(page); | 
 | } | 
 |  | 
 | #define pmd_huge_pte(mm, pmd) (virt_to_page(pmd)->pmd_huge_pte) | 
 |  | 
 | #else | 
 |  | 
 | static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) | 
 | { | 
 | 	return &mm->page_table_lock; | 
 | } | 
 |  | 
 | static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } | 
 | static inline void pgtable_pmd_page_dtor(struct page *page) {} | 
 |  | 
 | #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) | 
 |  | 
 | #endif | 
 |  | 
 | static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) | 
 | { | 
 | 	spinlock_t *ptl = pmd_lockptr(mm, pmd); | 
 | 	spin_lock(ptl); | 
 | 	return ptl; | 
 | } | 
 |  | 
 | extern void free_area_init(unsigned long * zones_size); | 
 | extern void free_area_init_node(int nid, unsigned long * zones_size, | 
 | 		unsigned long zone_start_pfn, unsigned long *zholes_size); | 
 | extern void free_initmem(void); | 
 |  | 
 | /* | 
 |  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) | 
 |  * into the buddy system. The freed pages will be poisoned with pattern | 
 |  * "poison" if it's within range [0, UCHAR_MAX]. | 
 |  * Return pages freed into the buddy system. | 
 |  */ | 
 | extern unsigned long free_reserved_area(void *start, void *end, | 
 | 					int poison, char *s); | 
 |  | 
 | #ifdef	CONFIG_HIGHMEM | 
 | /* | 
 |  * Free a highmem page into the buddy system, adjusting totalhigh_pages | 
 |  * and totalram_pages. | 
 |  */ | 
 | extern void free_highmem_page(struct page *page); | 
 | #endif | 
 |  | 
 | extern void adjust_managed_page_count(struct page *page, long count); | 
 | extern void mem_init_print_info(const char *str); | 
 |  | 
 | /* Free the reserved page into the buddy system, so it gets managed. */ | 
 | static inline void __free_reserved_page(struct page *page) | 
 | { | 
 | 	ClearPageReserved(page); | 
 | 	init_page_count(page); | 
 | 	__free_page(page); | 
 | } | 
 |  | 
 | static inline void free_reserved_page(struct page *page) | 
 | { | 
 | 	__free_reserved_page(page); | 
 | 	adjust_managed_page_count(page, 1); | 
 | } | 
 |  | 
 | static inline void mark_page_reserved(struct page *page) | 
 | { | 
 | 	SetPageReserved(page); | 
 | 	adjust_managed_page_count(page, -1); | 
 | } | 
 |  | 
 | /* | 
 |  * Default method to free all the __init memory into the buddy system. | 
 |  * The freed pages will be poisoned with pattern "poison" if it's within | 
 |  * range [0, UCHAR_MAX]. | 
 |  * Return pages freed into the buddy system. | 
 |  */ | 
 | static inline unsigned long free_initmem_default(int poison) | 
 | { | 
 | 	extern char __init_begin[], __init_end[]; | 
 |  | 
 | 	return free_reserved_area(&__init_begin, &__init_end, | 
 | 				  poison, "unused kernel"); | 
 | } | 
 |  | 
 | static inline unsigned long get_num_physpages(void) | 
 | { | 
 | 	int nid; | 
 | 	unsigned long phys_pages = 0; | 
 |  | 
 | 	for_each_online_node(nid) | 
 | 		phys_pages += node_present_pages(nid); | 
 |  | 
 | 	return phys_pages; | 
 | } | 
 |  | 
 | #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP | 
 | /* | 
 |  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its | 
 |  * zones, allocate the backing mem_map and account for memory holes in a more | 
 |  * architecture independent manner. This is a substitute for creating the | 
 |  * zone_sizes[] and zholes_size[] arrays and passing them to | 
 |  * free_area_init_node() | 
 |  * | 
 |  * An architecture is expected to register range of page frames backed by | 
 |  * physical memory with memblock_add[_node]() before calling | 
 |  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic | 
 |  * usage, an architecture is expected to do something like | 
 |  * | 
 |  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, | 
 |  * 							 max_highmem_pfn}; | 
 |  * for_each_valid_physical_page_range() | 
 |  * 	memblock_add_node(base, size, nid) | 
 |  * free_area_init_nodes(max_zone_pfns); | 
 |  * | 
 |  * free_bootmem_with_active_regions() calls free_bootmem_node() for each | 
 |  * registered physical page range.  Similarly | 
 |  * sparse_memory_present_with_active_regions() calls memory_present() for | 
 |  * each range when SPARSEMEM is enabled. | 
 |  * | 
 |  * See mm/page_alloc.c for more information on each function exposed by | 
 |  * CONFIG_HAVE_MEMBLOCK_NODE_MAP. | 
 |  */ | 
 | extern void free_area_init_nodes(unsigned long *max_zone_pfn); | 
 | unsigned long node_map_pfn_alignment(void); | 
 | unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, | 
 | 						unsigned long end_pfn); | 
 | extern unsigned long absent_pages_in_range(unsigned long start_pfn, | 
 | 						unsigned long end_pfn); | 
 | extern void get_pfn_range_for_nid(unsigned int nid, | 
 | 			unsigned long *start_pfn, unsigned long *end_pfn); | 
 | extern unsigned long find_min_pfn_with_active_regions(void); | 
 | extern void free_bootmem_with_active_regions(int nid, | 
 | 						unsigned long max_low_pfn); | 
 | extern void sparse_memory_present_with_active_regions(int nid); | 
 |  | 
 | #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ | 
 |  | 
 | #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ | 
 |     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) | 
 | static inline int __early_pfn_to_nid(unsigned long pfn) | 
 | { | 
 | 	return 0; | 
 | } | 
 | #else | 
 | /* please see mm/page_alloc.c */ | 
 | extern int __meminit early_pfn_to_nid(unsigned long pfn); | 
 | #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID | 
 | /* there is a per-arch backend function. */ | 
 | extern int __meminit __early_pfn_to_nid(unsigned long pfn); | 
 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | 
 | #endif | 
 |  | 
 | extern void set_dma_reserve(unsigned long new_dma_reserve); | 
 | extern void memmap_init_zone(unsigned long, int, unsigned long, | 
 | 				unsigned long, enum memmap_context); | 
 | extern void setup_per_zone_wmarks(void); | 
 | extern int __meminit init_per_zone_wmark_min(void); | 
 | extern void mem_init(void); | 
 | extern void __init mmap_init(void); | 
 | extern void show_mem(unsigned int flags); | 
 | extern void si_meminfo(struct sysinfo * val); | 
 | extern void si_meminfo_node(struct sysinfo *val, int nid); | 
 |  | 
 | extern __printf(3, 4) | 
 | void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); | 
 |  | 
 | extern void setup_per_cpu_pageset(void); | 
 |  | 
 | extern void zone_pcp_update(struct zone *zone); | 
 | extern void zone_pcp_reset(struct zone *zone); | 
 |  | 
 | /* page_alloc.c */ | 
 | extern int min_free_kbytes; | 
 |  | 
 | /* nommu.c */ | 
 | extern atomic_long_t mmap_pages_allocated; | 
 | extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); | 
 |  | 
 | /* interval_tree.c */ | 
 | void vma_interval_tree_insert(struct vm_area_struct *node, | 
 | 			      struct rb_root *root); | 
 | void vma_interval_tree_insert_after(struct vm_area_struct *node, | 
 | 				    struct vm_area_struct *prev, | 
 | 				    struct rb_root *root); | 
 | void vma_interval_tree_remove(struct vm_area_struct *node, | 
 | 			      struct rb_root *root); | 
 | struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, | 
 | 				unsigned long start, unsigned long last); | 
 | struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, | 
 | 				unsigned long start, unsigned long last); | 
 |  | 
 | #define vma_interval_tree_foreach(vma, root, start, last)		\ | 
 | 	for (vma = vma_interval_tree_iter_first(root, start, last);	\ | 
 | 	     vma; vma = vma_interval_tree_iter_next(vma, start, last)) | 
 |  | 
 | static inline void vma_nonlinear_insert(struct vm_area_struct *vma, | 
 | 					struct list_head *list) | 
 | { | 
 | 	list_add_tail(&vma->shared.nonlinear, list); | 
 | } | 
 |  | 
 | void anon_vma_interval_tree_insert(struct anon_vma_chain *node, | 
 | 				   struct rb_root *root); | 
 | void anon_vma_interval_tree_remove(struct anon_vma_chain *node, | 
 | 				   struct rb_root *root); | 
 | struct anon_vma_chain *anon_vma_interval_tree_iter_first( | 
 | 	struct rb_root *root, unsigned long start, unsigned long last); | 
 | struct anon_vma_chain *anon_vma_interval_tree_iter_next( | 
 | 	struct anon_vma_chain *node, unsigned long start, unsigned long last); | 
 | #ifdef CONFIG_DEBUG_VM_RB | 
 | void anon_vma_interval_tree_verify(struct anon_vma_chain *node); | 
 | #endif | 
 |  | 
 | #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \ | 
 | 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ | 
 | 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) | 
 |  | 
 | /* mmap.c */ | 
 | extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); | 
 | extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, | 
 | 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); | 
 | extern struct vm_area_struct *vma_merge(struct mm_struct *, | 
 | 	struct vm_area_struct *prev, unsigned long addr, unsigned long end, | 
 | 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, | 
 | 	struct mempolicy *); | 
 | extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); | 
 | extern int split_vma(struct mm_struct *, | 
 | 	struct vm_area_struct *, unsigned long addr, int new_below); | 
 | extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); | 
 | extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, | 
 | 	struct rb_node **, struct rb_node *); | 
 | extern void unlink_file_vma(struct vm_area_struct *); | 
 | extern struct vm_area_struct *copy_vma(struct vm_area_struct **, | 
 | 	unsigned long addr, unsigned long len, pgoff_t pgoff, | 
 | 	bool *need_rmap_locks); | 
 | extern void exit_mmap(struct mm_struct *); | 
 |  | 
 | extern int mm_take_all_locks(struct mm_struct *mm); | 
 | extern void mm_drop_all_locks(struct mm_struct *mm); | 
 |  | 
 | extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); | 
 | extern struct file *get_mm_exe_file(struct mm_struct *mm); | 
 |  | 
 | extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); | 
 | extern int install_special_mapping(struct mm_struct *mm, | 
 | 				   unsigned long addr, unsigned long len, | 
 | 				   unsigned long flags, struct page **pages); | 
 |  | 
 | extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); | 
 |  | 
 | extern unsigned long mmap_region(struct file *file, unsigned long addr, | 
 | 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); | 
 | extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, | 
 | 	unsigned long len, unsigned long prot, unsigned long flags, | 
 | 	unsigned long pgoff, unsigned long *populate); | 
 | extern int do_munmap(struct mm_struct *, unsigned long, size_t); | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | extern int __mm_populate(unsigned long addr, unsigned long len, | 
 | 			 int ignore_errors); | 
 | static inline void mm_populate(unsigned long addr, unsigned long len) | 
 | { | 
 | 	/* Ignore errors */ | 
 | 	(void) __mm_populate(addr, len, 1); | 
 | } | 
 | #else | 
 | static inline void mm_populate(unsigned long addr, unsigned long len) {} | 
 | #endif | 
 |  | 
 | /* These take the mm semaphore themselves */ | 
 | extern unsigned long vm_brk(unsigned long, unsigned long); | 
 | extern int vm_munmap(unsigned long, size_t); | 
 | extern unsigned long vm_mmap(struct file *, unsigned long, | 
 |         unsigned long, unsigned long, | 
 |         unsigned long, unsigned long); | 
 |  | 
 | struct vm_unmapped_area_info { | 
 | #define VM_UNMAPPED_AREA_TOPDOWN 1 | 
 | 	unsigned long flags; | 
 | 	unsigned long length; | 
 | 	unsigned long low_limit; | 
 | 	unsigned long high_limit; | 
 | 	unsigned long align_mask; | 
 | 	unsigned long align_offset; | 
 | }; | 
 |  | 
 | extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); | 
 | extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); | 
 |  | 
 | /* | 
 |  * Search for an unmapped address range. | 
 |  * | 
 |  * We are looking for a range that: | 
 |  * - does not intersect with any VMA; | 
 |  * - is contained within the [low_limit, high_limit) interval; | 
 |  * - is at least the desired size. | 
 |  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) | 
 |  */ | 
 | static inline unsigned long | 
 | vm_unmapped_area(struct vm_unmapped_area_info *info) | 
 | { | 
 | 	if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) | 
 | 		return unmapped_area(info); | 
 | 	else | 
 | 		return unmapped_area_topdown(info); | 
 | } | 
 |  | 
 | /* truncate.c */ | 
 | extern void truncate_inode_pages(struct address_space *, loff_t); | 
 | extern void truncate_inode_pages_range(struct address_space *, | 
 | 				       loff_t lstart, loff_t lend); | 
 |  | 
 | /* generic vm_area_ops exported for stackable file systems */ | 
 | extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); | 
 | extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); | 
 |  | 
 | /* mm/page-writeback.c */ | 
 | int write_one_page(struct page *page, int wait); | 
 | void task_dirty_inc(struct task_struct *tsk); | 
 |  | 
 | /* readahead.c */ | 
 | #define VM_MAX_READAHEAD	128	/* kbytes */ | 
 | #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */ | 
 |  | 
 | int force_page_cache_readahead(struct address_space *mapping, struct file *filp, | 
 | 			pgoff_t offset, unsigned long nr_to_read); | 
 |  | 
 | void page_cache_sync_readahead(struct address_space *mapping, | 
 | 			       struct file_ra_state *ra, | 
 | 			       struct file *filp, | 
 | 			       pgoff_t offset, | 
 | 			       unsigned long size); | 
 |  | 
 | void page_cache_async_readahead(struct address_space *mapping, | 
 | 				struct file_ra_state *ra, | 
 | 				struct file *filp, | 
 | 				struct page *pg, | 
 | 				pgoff_t offset, | 
 | 				unsigned long size); | 
 |  | 
 | unsigned long max_sane_readahead(unsigned long nr); | 
 | unsigned long ra_submit(struct file_ra_state *ra, | 
 | 			struct address_space *mapping, | 
 | 			struct file *filp); | 
 |  | 
 | /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ | 
 | extern int expand_stack(struct vm_area_struct *vma, unsigned long address); | 
 |  | 
 | /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ | 
 | extern int expand_downwards(struct vm_area_struct *vma, | 
 | 		unsigned long address); | 
 | #if VM_GROWSUP | 
 | extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); | 
 | #else | 
 |   #define expand_upwards(vma, address) do { } while (0) | 
 | #endif | 
 |  | 
 | /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */ | 
 | extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); | 
 | extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, | 
 | 					     struct vm_area_struct **pprev); | 
 |  | 
 | /* Look up the first VMA which intersects the interval start_addr..end_addr-1, | 
 |    NULL if none.  Assume start_addr < end_addr. */ | 
 | static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) | 
 | { | 
 | 	struct vm_area_struct * vma = find_vma(mm,start_addr); | 
 |  | 
 | 	if (vma && end_addr <= vma->vm_start) | 
 | 		vma = NULL; | 
 | 	return vma; | 
 | } | 
 |  | 
 | static inline unsigned long vma_pages(struct vm_area_struct *vma) | 
 | { | 
 | 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; | 
 | } | 
 |  | 
 | /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ | 
 | static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, | 
 | 				unsigned long vm_start, unsigned long vm_end) | 
 | { | 
 | 	struct vm_area_struct *vma = find_vma(mm, vm_start); | 
 |  | 
 | 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) | 
 | 		vma = NULL; | 
 |  | 
 | 	return vma; | 
 | } | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | pgprot_t vm_get_page_prot(unsigned long vm_flags); | 
 | #else | 
 | static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) | 
 | { | 
 | 	return __pgprot(0); | 
 | } | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA_BALANCING | 
 | unsigned long change_prot_numa(struct vm_area_struct *vma, | 
 | 			unsigned long start, unsigned long end); | 
 | #endif | 
 |  | 
 | struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); | 
 | int remap_pfn_range(struct vm_area_struct *, unsigned long addr, | 
 | 			unsigned long pfn, unsigned long size, pgprot_t); | 
 | int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); | 
 | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 
 | 			unsigned long pfn); | 
 | int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, | 
 | 			unsigned long pfn); | 
 | int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); | 
 |  | 
 |  | 
 | struct page *follow_page_mask(struct vm_area_struct *vma, | 
 | 			      unsigned long address, unsigned int foll_flags, | 
 | 			      unsigned int *page_mask); | 
 |  | 
 | static inline struct page *follow_page(struct vm_area_struct *vma, | 
 | 		unsigned long address, unsigned int foll_flags) | 
 | { | 
 | 	unsigned int unused_page_mask; | 
 | 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask); | 
 | } | 
 |  | 
 | #define FOLL_WRITE	0x01	/* check pte is writable */ | 
 | #define FOLL_TOUCH	0x02	/* mark page accessed */ | 
 | #define FOLL_GET	0x04	/* do get_page on page */ | 
 | #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */ | 
 | #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */ | 
 | #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO | 
 | 				 * and return without waiting upon it */ | 
 | #define FOLL_MLOCK	0x40	/* mark page as mlocked */ | 
 | #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */ | 
 | #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */ | 
 | #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */ | 
 | #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */ | 
 |  | 
 | typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, | 
 | 			void *data); | 
 | extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, | 
 | 			       unsigned long size, pte_fn_t fn, void *data); | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); | 
 | #else | 
 | static inline void vm_stat_account(struct mm_struct *mm, | 
 | 			unsigned long flags, struct file *file, long pages) | 
 | { | 
 | 	mm->total_vm += pages; | 
 | } | 
 | #endif /* CONFIG_PROC_FS */ | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | extern void kernel_map_pages(struct page *page, int numpages, int enable); | 
 | #ifdef CONFIG_HIBERNATION | 
 | extern bool kernel_page_present(struct page *page); | 
 | #endif /* CONFIG_HIBERNATION */ | 
 | #else | 
 | static inline void | 
 | kernel_map_pages(struct page *page, int numpages, int enable) {} | 
 | #ifdef CONFIG_HIBERNATION | 
 | static inline bool kernel_page_present(struct page *page) { return true; } | 
 | #endif /* CONFIG_HIBERNATION */ | 
 | #endif | 
 |  | 
 | extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); | 
 | #ifdef	__HAVE_ARCH_GATE_AREA | 
 | int in_gate_area_no_mm(unsigned long addr); | 
 | int in_gate_area(struct mm_struct *mm, unsigned long addr); | 
 | #else | 
 | int in_gate_area_no_mm(unsigned long addr); | 
 | #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) | 
 | #endif	/* __HAVE_ARCH_GATE_AREA */ | 
 |  | 
 | #ifdef CONFIG_SYSCTL | 
 | extern int sysctl_drop_caches; | 
 | int drop_caches_sysctl_handler(struct ctl_table *, int, | 
 | 					void __user *, size_t *, loff_t *); | 
 | #endif | 
 |  | 
 | unsigned long shrink_slab(struct shrink_control *shrink, | 
 | 			  unsigned long nr_pages_scanned, | 
 | 			  unsigned long lru_pages); | 
 |  | 
 | #ifndef CONFIG_MMU | 
 | #define randomize_va_space 0 | 
 | #else | 
 | extern int randomize_va_space; | 
 | #endif | 
 |  | 
 | const char * arch_vma_name(struct vm_area_struct *vma); | 
 | void print_vma_addr(char *prefix, unsigned long rip); | 
 |  | 
 | void sparse_mem_maps_populate_node(struct page **map_map, | 
 | 				   unsigned long pnum_begin, | 
 | 				   unsigned long pnum_end, | 
 | 				   unsigned long map_count, | 
 | 				   int nodeid); | 
 |  | 
 | struct page *sparse_mem_map_populate(unsigned long pnum, int nid); | 
 | pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); | 
 | pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); | 
 | pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); | 
 | pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); | 
 | void *vmemmap_alloc_block(unsigned long size, int node); | 
 | void *vmemmap_alloc_block_buf(unsigned long size, int node); | 
 | void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); | 
 | int vmemmap_populate_basepages(unsigned long start, unsigned long end, | 
 | 			       int node); | 
 | int vmemmap_populate(unsigned long start, unsigned long end, int node); | 
 | void vmemmap_populate_print_last(void); | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | void vmemmap_free(unsigned long start, unsigned long end); | 
 | #endif | 
 | void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, | 
 | 				  unsigned long size); | 
 |  | 
 | enum mf_flags { | 
 | 	MF_COUNT_INCREASED = 1 << 0, | 
 | 	MF_ACTION_REQUIRED = 1 << 1, | 
 | 	MF_MUST_KILL = 1 << 2, | 
 | 	MF_SOFT_OFFLINE = 1 << 3, | 
 | }; | 
 | extern int memory_failure(unsigned long pfn, int trapno, int flags); | 
 | extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); | 
 | extern int unpoison_memory(unsigned long pfn); | 
 | extern int sysctl_memory_failure_early_kill; | 
 | extern int sysctl_memory_failure_recovery; | 
 | extern void shake_page(struct page *p, int access); | 
 | extern atomic_long_t num_poisoned_pages; | 
 | extern int soft_offline_page(struct page *page, int flags); | 
 |  | 
 | #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) | 
 | extern void clear_huge_page(struct page *page, | 
 | 			    unsigned long addr, | 
 | 			    unsigned int pages_per_huge_page); | 
 | extern void copy_user_huge_page(struct page *dst, struct page *src, | 
 | 				unsigned long addr, struct vm_area_struct *vma, | 
 | 				unsigned int pages_per_huge_page); | 
 | #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ | 
 |  | 
 | #ifdef CONFIG_DEBUG_PAGEALLOC | 
 | extern unsigned int _debug_guardpage_minorder; | 
 |  | 
 | static inline unsigned int debug_guardpage_minorder(void) | 
 | { | 
 | 	return _debug_guardpage_minorder; | 
 | } | 
 |  | 
 | static inline bool page_is_guard(struct page *page) | 
 | { | 
 | 	return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); | 
 | } | 
 | #else | 
 | static inline unsigned int debug_guardpage_minorder(void) { return 0; } | 
 | static inline bool page_is_guard(struct page *page) { return false; } | 
 | #endif /* CONFIG_DEBUG_PAGEALLOC */ | 
 |  | 
 | #if MAX_NUMNODES > 1 | 
 | void __init setup_nr_node_ids(void); | 
 | #else | 
 | static inline void setup_nr_node_ids(void) {} | 
 | #endif | 
 |  | 
 | #endif /* __KERNEL__ */ | 
 | #endif /* _LINUX_MM_H */ |