| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright 2011 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com> |
| */ |
| |
| #include <linux/cpu.h> |
| #include <linux/kvm_host.h> |
| #include <linux/preempt.h> |
| #include <linux/export.h> |
| #include <linux/sched.h> |
| #include <linux/spinlock.h> |
| #include <linux/init.h> |
| #include <linux/memblock.h> |
| #include <linux/sizes.h> |
| #include <linux/cma.h> |
| #include <linux/bitops.h> |
| |
| #include <asm/asm-prototypes.h> |
| #include <asm/cputable.h> |
| #include <asm/kvm_ppc.h> |
| #include <asm/kvm_book3s.h> |
| #include <asm/archrandom.h> |
| #include <asm/xics.h> |
| #include <asm/xive.h> |
| #include <asm/dbell.h> |
| #include <asm/cputhreads.h> |
| #include <asm/io.h> |
| #include <asm/opal.h> |
| #include <asm/smp.h> |
| |
| #define KVM_CMA_CHUNK_ORDER 18 |
| |
| #include "book3s_xics.h" |
| #include "book3s_xive.h" |
| |
| /* |
| * The XIVE module will populate these when it loads |
| */ |
| unsigned long (*__xive_vm_h_xirr)(struct kvm_vcpu *vcpu); |
| unsigned long (*__xive_vm_h_ipoll)(struct kvm_vcpu *vcpu, unsigned long server); |
| int (*__xive_vm_h_ipi)(struct kvm_vcpu *vcpu, unsigned long server, |
| unsigned long mfrr); |
| int (*__xive_vm_h_cppr)(struct kvm_vcpu *vcpu, unsigned long cppr); |
| int (*__xive_vm_h_eoi)(struct kvm_vcpu *vcpu, unsigned long xirr); |
| EXPORT_SYMBOL_GPL(__xive_vm_h_xirr); |
| EXPORT_SYMBOL_GPL(__xive_vm_h_ipoll); |
| EXPORT_SYMBOL_GPL(__xive_vm_h_ipi); |
| EXPORT_SYMBOL_GPL(__xive_vm_h_cppr); |
| EXPORT_SYMBOL_GPL(__xive_vm_h_eoi); |
| |
| /* |
| * Hash page table alignment on newer cpus(CPU_FTR_ARCH_206) |
| * should be power of 2. |
| */ |
| #define HPT_ALIGN_PAGES ((1 << 18) >> PAGE_SHIFT) /* 256k */ |
| /* |
| * By default we reserve 5% of memory for hash pagetable allocation. |
| */ |
| static unsigned long kvm_cma_resv_ratio = 5; |
| |
| static struct cma *kvm_cma; |
| |
| static int __init early_parse_kvm_cma_resv(char *p) |
| { |
| pr_debug("%s(%s)\n", __func__, p); |
| if (!p) |
| return -EINVAL; |
| return kstrtoul(p, 0, &kvm_cma_resv_ratio); |
| } |
| early_param("kvm_cma_resv_ratio", early_parse_kvm_cma_resv); |
| |
| struct page *kvm_alloc_hpt_cma(unsigned long nr_pages) |
| { |
| VM_BUG_ON(order_base_2(nr_pages) < KVM_CMA_CHUNK_ORDER - PAGE_SHIFT); |
| |
| return cma_alloc(kvm_cma, nr_pages, order_base_2(HPT_ALIGN_PAGES), |
| false); |
| } |
| EXPORT_SYMBOL_GPL(kvm_alloc_hpt_cma); |
| |
| void kvm_free_hpt_cma(struct page *page, unsigned long nr_pages) |
| { |
| cma_release(kvm_cma, page, nr_pages); |
| } |
| EXPORT_SYMBOL_GPL(kvm_free_hpt_cma); |
| |
| /** |
| * kvm_cma_reserve() - reserve area for kvm hash pagetable |
| * |
| * This function reserves memory from early allocator. It should be |
| * called by arch specific code once the memblock allocator |
| * has been activated and all other subsystems have already allocated/reserved |
| * memory. |
| */ |
| void __init kvm_cma_reserve(void) |
| { |
| unsigned long align_size; |
| phys_addr_t selected_size; |
| |
| /* |
| * We need CMA reservation only when we are in HV mode |
| */ |
| if (!cpu_has_feature(CPU_FTR_HVMODE)) |
| return; |
| |
| selected_size = PAGE_ALIGN(memblock_phys_mem_size() * kvm_cma_resv_ratio / 100); |
| if (selected_size) { |
| pr_info("%s: reserving %ld MiB for global area\n", __func__, |
| (unsigned long)selected_size / SZ_1M); |
| align_size = HPT_ALIGN_PAGES << PAGE_SHIFT; |
| cma_declare_contiguous(0, selected_size, 0, align_size, |
| KVM_CMA_CHUNK_ORDER - PAGE_SHIFT, false, "kvm_cma", |
| &kvm_cma); |
| } |
| } |
| |
| /* |
| * Real-mode H_CONFER implementation. |
| * We check if we are the only vcpu out of this virtual core |
| * still running in the guest and not ceded. If so, we pop up |
| * to the virtual-mode implementation; if not, just return to |
| * the guest. |
| */ |
| long int kvmppc_rm_h_confer(struct kvm_vcpu *vcpu, int target, |
| unsigned int yield_count) |
| { |
| struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore; |
| int ptid = local_paca->kvm_hstate.ptid; |
| int threads_running; |
| int threads_ceded; |
| int threads_conferring; |
| u64 stop = get_tb() + 10 * tb_ticks_per_usec; |
| int rv = H_SUCCESS; /* => don't yield */ |
| |
| set_bit(ptid, &vc->conferring_threads); |
| while ((get_tb() < stop) && !VCORE_IS_EXITING(vc)) { |
| threads_running = VCORE_ENTRY_MAP(vc); |
| threads_ceded = vc->napping_threads; |
| threads_conferring = vc->conferring_threads; |
| if ((threads_ceded | threads_conferring) == threads_running) { |
| rv = H_TOO_HARD; /* => do yield */ |
| break; |
| } |
| } |
| clear_bit(ptid, &vc->conferring_threads); |
| return rv; |
| } |
| |
| /* |
| * When running HV mode KVM we need to block certain operations while KVM VMs |
| * exist in the system. We use a counter of VMs to track this. |
| * |
| * One of the operations we need to block is onlining of secondaries, so we |
| * protect hv_vm_count with get/put_online_cpus(). |
| */ |
| static atomic_t hv_vm_count; |
| |
| void kvm_hv_vm_activated(void) |
| { |
| get_online_cpus(); |
| atomic_inc(&hv_vm_count); |
| put_online_cpus(); |
| } |
| EXPORT_SYMBOL_GPL(kvm_hv_vm_activated); |
| |
| void kvm_hv_vm_deactivated(void) |
| { |
| get_online_cpus(); |
| atomic_dec(&hv_vm_count); |
| put_online_cpus(); |
| } |
| EXPORT_SYMBOL_GPL(kvm_hv_vm_deactivated); |
| |
| bool kvm_hv_mode_active(void) |
| { |
| return atomic_read(&hv_vm_count) != 0; |
| } |
| |
| extern int hcall_real_table[], hcall_real_table_end[]; |
| |
| int kvmppc_hcall_impl_hv_realmode(unsigned long cmd) |
| { |
| cmd /= 4; |
| if (cmd < hcall_real_table_end - hcall_real_table && |
| hcall_real_table[cmd]) |
| return 1; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_hcall_impl_hv_realmode); |
| |
| int kvmppc_hwrng_present(void) |
| { |
| return powernv_hwrng_present(); |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_hwrng_present); |
| |
| long kvmppc_h_random(struct kvm_vcpu *vcpu) |
| { |
| int r; |
| |
| /* Only need to do the expensive mfmsr() on radix */ |
| if (kvm_is_radix(vcpu->kvm) && (mfmsr() & MSR_IR)) |
| r = powernv_get_random_long(&vcpu->arch.regs.gpr[4]); |
| else |
| r = powernv_get_random_real_mode(&vcpu->arch.regs.gpr[4]); |
| if (r) |
| return H_SUCCESS; |
| |
| return H_HARDWARE; |
| } |
| |
| /* |
| * Send an interrupt or message to another CPU. |
| * The caller needs to include any barrier needed to order writes |
| * to memory vs. the IPI/message. |
| */ |
| void kvmhv_rm_send_ipi(int cpu) |
| { |
| void __iomem *xics_phys; |
| unsigned long msg = PPC_DBELL_TYPE(PPC_DBELL_SERVER); |
| |
| /* For a nested hypervisor, use the XICS via hcall */ |
| if (kvmhv_on_pseries()) { |
| unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; |
| |
| plpar_hcall_raw(H_IPI, retbuf, get_hard_smp_processor_id(cpu), |
| IPI_PRIORITY); |
| return; |
| } |
| |
| /* On POWER9 we can use msgsnd for any destination cpu. */ |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) { |
| msg |= get_hard_smp_processor_id(cpu); |
| __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); |
| return; |
| } |
| |
| /* On POWER8 for IPIs to threads in the same core, use msgsnd. */ |
| if (cpu_has_feature(CPU_FTR_ARCH_207S) && |
| cpu_first_thread_sibling(cpu) == |
| cpu_first_thread_sibling(raw_smp_processor_id())) { |
| msg |= cpu_thread_in_core(cpu); |
| __asm__ __volatile__ (PPC_MSGSND(%0) : : "r" (msg)); |
| return; |
| } |
| |
| /* We should never reach this */ |
| if (WARN_ON_ONCE(xics_on_xive())) |
| return; |
| |
| /* Else poke the target with an IPI */ |
| xics_phys = paca_ptrs[cpu]->kvm_hstate.xics_phys; |
| if (xics_phys) |
| __raw_rm_writeb(IPI_PRIORITY, xics_phys + XICS_MFRR); |
| else |
| opal_int_set_mfrr(get_hard_smp_processor_id(cpu), IPI_PRIORITY); |
| } |
| |
| /* |
| * The following functions are called from the assembly code |
| * in book3s_hv_rmhandlers.S. |
| */ |
| static void kvmhv_interrupt_vcore(struct kvmppc_vcore *vc, int active) |
| { |
| int cpu = vc->pcpu; |
| |
| /* Order setting of exit map vs. msgsnd/IPI */ |
| smp_mb(); |
| for (; active; active >>= 1, ++cpu) |
| if (active & 1) |
| kvmhv_rm_send_ipi(cpu); |
| } |
| |
| void kvmhv_commence_exit(int trap) |
| { |
| struct kvmppc_vcore *vc = local_paca->kvm_hstate.kvm_vcore; |
| int ptid = local_paca->kvm_hstate.ptid; |
| struct kvm_split_mode *sip = local_paca->kvm_hstate.kvm_split_mode; |
| int me, ee, i, t; |
| int cpu0; |
| |
| /* Set our bit in the threads-exiting-guest map in the 0xff00 |
| bits of vcore->entry_exit_map */ |
| me = 0x100 << ptid; |
| do { |
| ee = vc->entry_exit_map; |
| } while (cmpxchg(&vc->entry_exit_map, ee, ee | me) != ee); |
| |
| /* Are we the first here? */ |
| if ((ee >> 8) != 0) |
| return; |
| |
| /* |
| * Trigger the other threads in this vcore to exit the guest. |
| * If this is a hypervisor decrementer interrupt then they |
| * will be already on their way out of the guest. |
| */ |
| if (trap != BOOK3S_INTERRUPT_HV_DECREMENTER) |
| kvmhv_interrupt_vcore(vc, ee & ~(1 << ptid)); |
| |
| /* |
| * If we are doing dynamic micro-threading, interrupt the other |
| * subcores to pull them out of their guests too. |
| */ |
| if (!sip) |
| return; |
| |
| for (i = 0; i < MAX_SUBCORES; ++i) { |
| vc = sip->vc[i]; |
| if (!vc) |
| break; |
| do { |
| ee = vc->entry_exit_map; |
| /* Already asked to exit? */ |
| if ((ee >> 8) != 0) |
| break; |
| } while (cmpxchg(&vc->entry_exit_map, ee, |
| ee | VCORE_EXIT_REQ) != ee); |
| if ((ee >> 8) == 0) |
| kvmhv_interrupt_vcore(vc, ee); |
| } |
| |
| /* |
| * On POWER9 when running a HPT guest on a radix host (sip != NULL), |
| * we have to interrupt inactive CPU threads to get them to |
| * restore the host LPCR value. |
| */ |
| if (sip->lpcr_req) { |
| if (cmpxchg(&sip->do_restore, 0, 1) == 0) { |
| vc = local_paca->kvm_hstate.kvm_vcore; |
| cpu0 = vc->pcpu + ptid - local_paca->kvm_hstate.tid; |
| for (t = 1; t < threads_per_core; ++t) { |
| if (sip->napped[t]) |
| kvmhv_rm_send_ipi(cpu0 + t); |
| } |
| } |
| } |
| } |
| |
| struct kvmppc_host_rm_ops *kvmppc_host_rm_ops_hv; |
| EXPORT_SYMBOL_GPL(kvmppc_host_rm_ops_hv); |
| |
| #ifdef CONFIG_KVM_XICS |
| static struct kvmppc_irq_map *get_irqmap(struct kvmppc_passthru_irqmap *pimap, |
| u32 xisr) |
| { |
| int i; |
| |
| /* |
| * We access the mapped array here without a lock. That |
| * is safe because we never reduce the number of entries |
| * in the array and we never change the v_hwirq field of |
| * an entry once it is set. |
| * |
| * We have also carefully ordered the stores in the writer |
| * and the loads here in the reader, so that if we find a matching |
| * hwirq here, the associated GSI and irq_desc fields are valid. |
| */ |
| for (i = 0; i < pimap->n_mapped; i++) { |
| if (xisr == pimap->mapped[i].r_hwirq) { |
| /* |
| * Order subsequent reads in the caller to serialize |
| * with the writer. |
| */ |
| smp_rmb(); |
| return &pimap->mapped[i]; |
| } |
| } |
| return NULL; |
| } |
| |
| /* |
| * If we have an interrupt that's not an IPI, check if we have a |
| * passthrough adapter and if so, check if this external interrupt |
| * is for the adapter. |
| * We will attempt to deliver the IRQ directly to the target VCPU's |
| * ICP, the virtual ICP (based on affinity - the xive value in ICS). |
| * |
| * If the delivery fails or if this is not for a passthrough adapter, |
| * return to the host to handle this interrupt. We earlier |
| * saved a copy of the XIRR in the PACA, it will be picked up by |
| * the host ICP driver. |
| */ |
| static int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again) |
| { |
| struct kvmppc_passthru_irqmap *pimap; |
| struct kvmppc_irq_map *irq_map; |
| struct kvm_vcpu *vcpu; |
| |
| vcpu = local_paca->kvm_hstate.kvm_vcpu; |
| if (!vcpu) |
| return 1; |
| pimap = kvmppc_get_passthru_irqmap(vcpu->kvm); |
| if (!pimap) |
| return 1; |
| irq_map = get_irqmap(pimap, xisr); |
| if (!irq_map) |
| return 1; |
| |
| /* We're handling this interrupt, generic code doesn't need to */ |
| local_paca->kvm_hstate.saved_xirr = 0; |
| |
| return kvmppc_deliver_irq_passthru(vcpu, xirr, irq_map, pimap, again); |
| } |
| |
| #else |
| static inline int kvmppc_check_passthru(u32 xisr, __be32 xirr, bool *again) |
| { |
| return 1; |
| } |
| #endif |
| |
| /* |
| * Determine what sort of external interrupt is pending (if any). |
| * Returns: |
| * 0 if no interrupt is pending |
| * 1 if an interrupt is pending that needs to be handled by the host |
| * 2 Passthrough that needs completion in the host |
| * -1 if there was a guest wakeup IPI (which has now been cleared) |
| * -2 if there is PCI passthrough external interrupt that was handled |
| */ |
| static long kvmppc_read_one_intr(bool *again); |
| |
| long kvmppc_read_intr(void) |
| { |
| long ret = 0; |
| long rc; |
| bool again; |
| |
| if (xive_enabled()) |
| return 1; |
| |
| do { |
| again = false; |
| rc = kvmppc_read_one_intr(&again); |
| if (rc && (ret == 0 || rc > ret)) |
| ret = rc; |
| } while (again); |
| return ret; |
| } |
| |
| static long kvmppc_read_one_intr(bool *again) |
| { |
| void __iomem *xics_phys; |
| u32 h_xirr; |
| __be32 xirr; |
| u32 xisr; |
| u8 host_ipi; |
| int64_t rc; |
| |
| if (xive_enabled()) |
| return 1; |
| |
| /* see if a host IPI is pending */ |
| host_ipi = local_paca->kvm_hstate.host_ipi; |
| if (host_ipi) |
| return 1; |
| |
| /* Now read the interrupt from the ICP */ |
| if (kvmhv_on_pseries()) { |
| unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; |
| |
| rc = plpar_hcall_raw(H_XIRR, retbuf, 0xFF); |
| xirr = cpu_to_be32(retbuf[0]); |
| } else { |
| xics_phys = local_paca->kvm_hstate.xics_phys; |
| rc = 0; |
| if (!xics_phys) |
| rc = opal_int_get_xirr(&xirr, false); |
| else |
| xirr = __raw_rm_readl(xics_phys + XICS_XIRR); |
| } |
| if (rc < 0) |
| return 1; |
| |
| /* |
| * Save XIRR for later. Since we get control in reverse endian |
| * on LE systems, save it byte reversed and fetch it back in |
| * host endian. Note that xirr is the value read from the |
| * XIRR register, while h_xirr is the host endian version. |
| */ |
| h_xirr = be32_to_cpu(xirr); |
| local_paca->kvm_hstate.saved_xirr = h_xirr; |
| xisr = h_xirr & 0xffffff; |
| /* |
| * Ensure that the store/load complete to guarantee all side |
| * effects of loading from XIRR has completed |
| */ |
| smp_mb(); |
| |
| /* if nothing pending in the ICP */ |
| if (!xisr) |
| return 0; |
| |
| /* We found something in the ICP... |
| * |
| * If it is an IPI, clear the MFRR and EOI it. |
| */ |
| if (xisr == XICS_IPI) { |
| rc = 0; |
| if (kvmhv_on_pseries()) { |
| unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; |
| |
| plpar_hcall_raw(H_IPI, retbuf, |
| hard_smp_processor_id(), 0xff); |
| plpar_hcall_raw(H_EOI, retbuf, h_xirr); |
| } else if (xics_phys) { |
| __raw_rm_writeb(0xff, xics_phys + XICS_MFRR); |
| __raw_rm_writel(xirr, xics_phys + XICS_XIRR); |
| } else { |
| opal_int_set_mfrr(hard_smp_processor_id(), 0xff); |
| rc = opal_int_eoi(h_xirr); |
| } |
| /* If rc > 0, there is another interrupt pending */ |
| *again = rc > 0; |
| |
| /* |
| * Need to ensure side effects of above stores |
| * complete before proceeding. |
| */ |
| smp_mb(); |
| |
| /* |
| * We need to re-check host IPI now in case it got set in the |
| * meantime. If it's clear, we bounce the interrupt to the |
| * guest |
| */ |
| host_ipi = local_paca->kvm_hstate.host_ipi; |
| if (unlikely(host_ipi != 0)) { |
| /* We raced with the host, |
| * we need to resend that IPI, bummer |
| */ |
| if (kvmhv_on_pseries()) { |
| unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; |
| |
| plpar_hcall_raw(H_IPI, retbuf, |
| hard_smp_processor_id(), |
| IPI_PRIORITY); |
| } else if (xics_phys) |
| __raw_rm_writeb(IPI_PRIORITY, |
| xics_phys + XICS_MFRR); |
| else |
| opal_int_set_mfrr(hard_smp_processor_id(), |
| IPI_PRIORITY); |
| /* Let side effects complete */ |
| smp_mb(); |
| return 1; |
| } |
| |
| /* OK, it's an IPI for us */ |
| local_paca->kvm_hstate.saved_xirr = 0; |
| return -1; |
| } |
| |
| return kvmppc_check_passthru(xisr, xirr, again); |
| } |
| |
| #ifdef CONFIG_KVM_XICS |
| static inline bool is_rm(void) |
| { |
| return !(mfmsr() & MSR_DR); |
| } |
| |
| unsigned long kvmppc_rm_h_xirr(struct kvm_vcpu *vcpu) |
| { |
| if (!kvmppc_xics_enabled(vcpu)) |
| return H_TOO_HARD; |
| if (xics_on_xive()) { |
| if (is_rm()) |
| return xive_rm_h_xirr(vcpu); |
| if (unlikely(!__xive_vm_h_xirr)) |
| return H_NOT_AVAILABLE; |
| return __xive_vm_h_xirr(vcpu); |
| } else |
| return xics_rm_h_xirr(vcpu); |
| } |
| |
| unsigned long kvmppc_rm_h_xirr_x(struct kvm_vcpu *vcpu) |
| { |
| if (!kvmppc_xics_enabled(vcpu)) |
| return H_TOO_HARD; |
| vcpu->arch.regs.gpr[5] = get_tb(); |
| if (xics_on_xive()) { |
| if (is_rm()) |
| return xive_rm_h_xirr(vcpu); |
| if (unlikely(!__xive_vm_h_xirr)) |
| return H_NOT_AVAILABLE; |
| return __xive_vm_h_xirr(vcpu); |
| } else |
| return xics_rm_h_xirr(vcpu); |
| } |
| |
| unsigned long kvmppc_rm_h_ipoll(struct kvm_vcpu *vcpu, unsigned long server) |
| { |
| if (!kvmppc_xics_enabled(vcpu)) |
| return H_TOO_HARD; |
| if (xics_on_xive()) { |
| if (is_rm()) |
| return xive_rm_h_ipoll(vcpu, server); |
| if (unlikely(!__xive_vm_h_ipoll)) |
| return H_NOT_AVAILABLE; |
| return __xive_vm_h_ipoll(vcpu, server); |
| } else |
| return H_TOO_HARD; |
| } |
| |
| int kvmppc_rm_h_ipi(struct kvm_vcpu *vcpu, unsigned long server, |
| unsigned long mfrr) |
| { |
| if (!kvmppc_xics_enabled(vcpu)) |
| return H_TOO_HARD; |
| if (xics_on_xive()) { |
| if (is_rm()) |
| return xive_rm_h_ipi(vcpu, server, mfrr); |
| if (unlikely(!__xive_vm_h_ipi)) |
| return H_NOT_AVAILABLE; |
| return __xive_vm_h_ipi(vcpu, server, mfrr); |
| } else |
| return xics_rm_h_ipi(vcpu, server, mfrr); |
| } |
| |
| int kvmppc_rm_h_cppr(struct kvm_vcpu *vcpu, unsigned long cppr) |
| { |
| if (!kvmppc_xics_enabled(vcpu)) |
| return H_TOO_HARD; |
| if (xics_on_xive()) { |
| if (is_rm()) |
| return xive_rm_h_cppr(vcpu, cppr); |
| if (unlikely(!__xive_vm_h_cppr)) |
| return H_NOT_AVAILABLE; |
| return __xive_vm_h_cppr(vcpu, cppr); |
| } else |
| return xics_rm_h_cppr(vcpu, cppr); |
| } |
| |
| int kvmppc_rm_h_eoi(struct kvm_vcpu *vcpu, unsigned long xirr) |
| { |
| if (!kvmppc_xics_enabled(vcpu)) |
| return H_TOO_HARD; |
| if (xics_on_xive()) { |
| if (is_rm()) |
| return xive_rm_h_eoi(vcpu, xirr); |
| if (unlikely(!__xive_vm_h_eoi)) |
| return H_NOT_AVAILABLE; |
| return __xive_vm_h_eoi(vcpu, xirr); |
| } else |
| return xics_rm_h_eoi(vcpu, xirr); |
| } |
| #endif /* CONFIG_KVM_XICS */ |
| |
| void kvmppc_bad_interrupt(struct pt_regs *regs) |
| { |
| /* |
| * 100 could happen at any time, 200 can happen due to invalid real |
| * address access for example (or any time due to a hardware problem). |
| */ |
| if (TRAP(regs) == 0x100) { |
| get_paca()->in_nmi++; |
| system_reset_exception(regs); |
| get_paca()->in_nmi--; |
| } else if (TRAP(regs) == 0x200) { |
| machine_check_exception(regs); |
| } else { |
| die("Bad interrupt in KVM entry/exit code", regs, SIGABRT); |
| } |
| panic("Bad KVM trap"); |
| } |
| |
| /* |
| * Functions used to switch LPCR HR and UPRT bits on all threads |
| * when entering and exiting HPT guests on a radix host. |
| */ |
| |
| #define PHASE_REALMODE 1 /* in real mode */ |
| #define PHASE_SET_LPCR 2 /* have set LPCR */ |
| #define PHASE_OUT_OF_GUEST 4 /* have finished executing in guest */ |
| #define PHASE_RESET_LPCR 8 /* have reset LPCR to host value */ |
| |
| #define ALL(p) (((p) << 24) | ((p) << 16) | ((p) << 8) | (p)) |
| |
| static void wait_for_sync(struct kvm_split_mode *sip, int phase) |
| { |
| int thr = local_paca->kvm_hstate.tid; |
| |
| sip->lpcr_sync.phase[thr] |= phase; |
| phase = ALL(phase); |
| while ((sip->lpcr_sync.allphases & phase) != phase) { |
| HMT_low(); |
| barrier(); |
| } |
| HMT_medium(); |
| } |
| |
| void kvmhv_p9_set_lpcr(struct kvm_split_mode *sip) |
| { |
| unsigned long rb, set; |
| |
| /* wait for every other thread to get to real mode */ |
| wait_for_sync(sip, PHASE_REALMODE); |
| |
| /* Set LPCR and LPIDR */ |
| mtspr(SPRN_LPCR, sip->lpcr_req); |
| mtspr(SPRN_LPID, sip->lpidr_req); |
| isync(); |
| |
| /* Invalidate the TLB on thread 0 */ |
| if (local_paca->kvm_hstate.tid == 0) { |
| sip->do_set = 0; |
| asm volatile("ptesync" : : : "memory"); |
| for (set = 0; set < POWER9_TLB_SETS_RADIX; ++set) { |
| rb = TLBIEL_INVAL_SET_LPID + |
| (set << TLBIEL_INVAL_SET_SHIFT); |
| asm volatile(PPC_TLBIEL(%0, %1, 0, 0, 0) : : |
| "r" (rb), "r" (0)); |
| } |
| asm volatile("ptesync" : : : "memory"); |
| } |
| |
| /* indicate that we have done so and wait for others */ |
| wait_for_sync(sip, PHASE_SET_LPCR); |
| /* order read of sip->lpcr_sync.allphases vs. sip->do_set */ |
| smp_rmb(); |
| } |
| |
| /* |
| * Called when a thread that has been in the guest needs |
| * to reload the host LPCR value - but only on POWER9 when |
| * running a HPT guest on a radix host. |
| */ |
| void kvmhv_p9_restore_lpcr(struct kvm_split_mode *sip) |
| { |
| /* we're out of the guest... */ |
| wait_for_sync(sip, PHASE_OUT_OF_GUEST); |
| |
| mtspr(SPRN_LPID, 0); |
| mtspr(SPRN_LPCR, sip->host_lpcr); |
| isync(); |
| |
| if (local_paca->kvm_hstate.tid == 0) { |
| sip->do_restore = 0; |
| smp_wmb(); /* order store of do_restore vs. phase */ |
| } |
| |
| wait_for_sync(sip, PHASE_RESET_LPCR); |
| smp_mb(); |
| local_paca->kvm_hstate.kvm_split_mode = NULL; |
| } |
| |
| static void kvmppc_end_cede(struct kvm_vcpu *vcpu) |
| { |
| vcpu->arch.ceded = 0; |
| if (vcpu->arch.timer_running) { |
| hrtimer_try_to_cancel(&vcpu->arch.dec_timer); |
| vcpu->arch.timer_running = 0; |
| } |
| } |
| |
| void kvmppc_set_msr_hv(struct kvm_vcpu *vcpu, u64 msr) |
| { |
| /* |
| * Check for illegal transactional state bit combination |
| * and if we find it, force the TS field to a safe state. |
| */ |
| if ((msr & MSR_TS_MASK) == MSR_TS_MASK) |
| msr &= ~MSR_TS_MASK; |
| vcpu->arch.shregs.msr = msr; |
| kvmppc_end_cede(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_set_msr_hv); |
| |
| static void inject_interrupt(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) |
| { |
| unsigned long msr, pc, new_msr, new_pc; |
| |
| msr = kvmppc_get_msr(vcpu); |
| pc = kvmppc_get_pc(vcpu); |
| new_msr = vcpu->arch.intr_msr; |
| new_pc = vec; |
| |
| /* If transactional, change to suspend mode on IRQ delivery */ |
| if (MSR_TM_TRANSACTIONAL(msr)) |
| new_msr |= MSR_TS_S; |
| else |
| new_msr |= msr & MSR_TS_MASK; |
| |
| /* |
| * Perform MSR and PC adjustment for LPCR[AIL]=3 if it is set and |
| * applicable. AIL=2 is not supported. |
| * |
| * AIL does not apply to SRESET, MCE, or HMI (which is never |
| * delivered to the guest), and does not apply if IR=0 or DR=0. |
| */ |
| if (vec != BOOK3S_INTERRUPT_SYSTEM_RESET && |
| vec != BOOK3S_INTERRUPT_MACHINE_CHECK && |
| (vcpu->arch.vcore->lpcr & LPCR_AIL) == LPCR_AIL_3 && |
| (msr & (MSR_IR|MSR_DR)) == (MSR_IR|MSR_DR) ) { |
| new_msr |= MSR_IR | MSR_DR; |
| new_pc += 0xC000000000004000ULL; |
| } |
| |
| kvmppc_set_srr0(vcpu, pc); |
| kvmppc_set_srr1(vcpu, (msr & SRR1_MSR_BITS) | srr1_flags); |
| kvmppc_set_pc(vcpu, new_pc); |
| vcpu->arch.shregs.msr = new_msr; |
| } |
| |
| void kvmppc_inject_interrupt_hv(struct kvm_vcpu *vcpu, int vec, u64 srr1_flags) |
| { |
| inject_interrupt(vcpu, vec, srr1_flags); |
| kvmppc_end_cede(vcpu); |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_inject_interrupt_hv); |
| |
| /* |
| * Is there a PRIV_DOORBELL pending for the guest (on POWER9)? |
| * Can we inject a Decrementer or a External interrupt? |
| */ |
| void kvmppc_guest_entry_inject_int(struct kvm_vcpu *vcpu) |
| { |
| int ext; |
| unsigned long lpcr; |
| |
| /* Insert EXTERNAL bit into LPCR at the MER bit position */ |
| ext = (vcpu->arch.pending_exceptions >> BOOK3S_IRQPRIO_EXTERNAL) & 1; |
| lpcr = mfspr(SPRN_LPCR); |
| lpcr |= ext << LPCR_MER_SH; |
| mtspr(SPRN_LPCR, lpcr); |
| isync(); |
| |
| if (vcpu->arch.shregs.msr & MSR_EE) { |
| if (ext) { |
| inject_interrupt(vcpu, BOOK3S_INTERRUPT_EXTERNAL, 0); |
| } else { |
| long int dec = mfspr(SPRN_DEC); |
| if (!(lpcr & LPCR_LD)) |
| dec = (int) dec; |
| if (dec < 0) |
| inject_interrupt(vcpu, |
| BOOK3S_INTERRUPT_DECREMENTER, 0); |
| } |
| } |
| |
| if (vcpu->arch.doorbell_request) { |
| mtspr(SPRN_DPDES, 1); |
| vcpu->arch.vcore->dpdes = 1; |
| smp_wmb(); |
| vcpu->arch.doorbell_request = 0; |
| } |
| } |
| |
| static void flush_guest_tlb(struct kvm *kvm) |
| { |
| unsigned long rb, set; |
| |
| rb = PPC_BIT(52); /* IS = 2 */ |
| if (kvm_is_radix(kvm)) { |
| /* R=1 PRS=1 RIC=2 */ |
| asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) |
| : : "r" (rb), "i" (1), "i" (1), "i" (2), |
| "r" (0) : "memory"); |
| for (set = 1; set < kvm->arch.tlb_sets; ++set) { |
| rb += PPC_BIT(51); /* increment set number */ |
| /* R=1 PRS=1 RIC=0 */ |
| asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) |
| : : "r" (rb), "i" (1), "i" (1), "i" (0), |
| "r" (0) : "memory"); |
| } |
| asm volatile("ptesync": : :"memory"); |
| // POWER9 congruence-class TLBIEL leaves ERAT. Flush it now. |
| asm volatile(PPC_RADIX_INVALIDATE_ERAT_GUEST : : :"memory"); |
| } else { |
| for (set = 0; set < kvm->arch.tlb_sets; ++set) { |
| /* R=0 PRS=0 RIC=0 */ |
| asm volatile(PPC_TLBIEL(%0, %4, %3, %2, %1) |
| : : "r" (rb), "i" (0), "i" (0), "i" (0), |
| "r" (0) : "memory"); |
| rb += PPC_BIT(51); /* increment set number */ |
| } |
| asm volatile("ptesync": : :"memory"); |
| // POWER9 congruence-class TLBIEL leaves ERAT. Flush it now. |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| asm volatile(PPC_ISA_3_0_INVALIDATE_ERAT : : :"memory"); |
| } |
| } |
| |
| void kvmppc_check_need_tlb_flush(struct kvm *kvm, int pcpu, |
| struct kvm_nested_guest *nested) |
| { |
| cpumask_t *need_tlb_flush; |
| |
| /* |
| * On POWER9, individual threads can come in here, but the |
| * TLB is shared between the 4 threads in a core, hence |
| * invalidating on one thread invalidates for all. |
| * Thus we make all 4 threads use the same bit. |
| */ |
| if (cpu_has_feature(CPU_FTR_ARCH_300)) |
| pcpu = cpu_first_tlb_thread_sibling(pcpu); |
| |
| if (nested) |
| need_tlb_flush = &nested->need_tlb_flush; |
| else |
| need_tlb_flush = &kvm->arch.need_tlb_flush; |
| |
| if (cpumask_test_cpu(pcpu, need_tlb_flush)) { |
| flush_guest_tlb(kvm); |
| |
| /* Clear the bit after the TLB flush */ |
| cpumask_clear_cpu(pcpu, need_tlb_flush); |
| } |
| } |
| EXPORT_SYMBOL_GPL(kvmppc_check_need_tlb_flush); |