| // SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) |
| /* QLogic qed NIC Driver |
| * Copyright (c) 2015-2017 QLogic Corporation |
| * Copyright (c) 2019-2020 Marvell International Ltd. |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/crc8.h> |
| #include <linux/delay.h> |
| #include <linux/kernel.h> |
| #include <linux/slab.h> |
| #include <linux/string.h> |
| #include "qed_hsi.h" |
| #include "qed_hw.h" |
| #include "qed_init_ops.h" |
| #include "qed_reg_addr.h" |
| |
| #define CDU_VALIDATION_DEFAULT_CFG 61 |
| |
| static u16 con_region_offsets[3][NUM_OF_CONNECTION_TYPES_E4] = { |
| {400, 336, 352, 368, 304, 384, 416, 352}, /* region 3 offsets */ |
| {528, 496, 416, 512, 448, 512, 544, 480}, /* region 4 offsets */ |
| {608, 544, 496, 576, 576, 592, 624, 560} /* region 5 offsets */ |
| }; |
| |
| static u16 task_region_offsets[1][NUM_OF_CONNECTION_TYPES_E4] = { |
| {240, 240, 112, 0, 0, 0, 0, 96} /* region 1 offsets */ |
| }; |
| |
| /* General constants */ |
| #define QM_PQ_MEM_4KB(pq_size) (pq_size ? DIV_ROUND_UP((pq_size + 1) * \ |
| QM_PQ_ELEMENT_SIZE, \ |
| 0x1000) : 0) |
| #define QM_PQ_SIZE_256B(pq_size) (pq_size ? DIV_ROUND_UP(pq_size, \ |
| 0x100) - 1 : 0) |
| #define QM_INVALID_PQ_ID 0xffff |
| |
| /* Max link speed (in Mbps) */ |
| #define QM_MAX_LINK_SPEED 100000 |
| |
| /* Feature enable */ |
| #define QM_BYPASS_EN 1 |
| #define QM_BYTE_CRD_EN 1 |
| |
| /* Other PQ constants */ |
| #define QM_OTHER_PQS_PER_PF 4 |
| |
| /* WFQ constants */ |
| |
| /* Upper bound in MB, 10 * burst size of 1ms in 50Gbps */ |
| #define QM_WFQ_UPPER_BOUND 62500000 |
| |
| /* Bit of VOQ in WFQ VP PQ map */ |
| #define QM_WFQ_VP_PQ_VOQ_SHIFT 0 |
| |
| /* Bit of PF in WFQ VP PQ map */ |
| #define QM_WFQ_VP_PQ_PF_E4_SHIFT 5 |
| |
| /* 0x9000 = 4*9*1024 */ |
| #define QM_WFQ_INC_VAL(weight) ((weight) * 0x9000) |
| |
| /* Max WFQ increment value is 0.7 * upper bound */ |
| #define QM_WFQ_MAX_INC_VAL ((QM_WFQ_UPPER_BOUND * 7) / 10) |
| |
| /* RL constants */ |
| |
| /* Period in us */ |
| #define QM_RL_PERIOD 5 |
| |
| /* Period in 25MHz cycles */ |
| #define QM_RL_PERIOD_CLK_25M (25 * QM_RL_PERIOD) |
| |
| /* RL increment value - rate is specified in mbps */ |
| #define QM_RL_INC_VAL(rate) ({ \ |
| typeof(rate) __rate = (rate); \ |
| max_t(u32, \ |
| (u32)(((__rate ? __rate : 1000000) * QM_RL_PERIOD * 101) / \ |
| (8 * 100)), \ |
| 1); }) |
| |
| /* PF RL Upper bound is set to 10 * burst size of 1ms in 50Gbps */ |
| #define QM_PF_RL_UPPER_BOUND 62500000 |
| |
| /* Max PF RL increment value is 0.7 * upper bound */ |
| #define QM_PF_RL_MAX_INC_VAL ((QM_PF_RL_UPPER_BOUND * 7) / 10) |
| |
| /* Vport RL Upper bound, link speed is in Mpbs */ |
| #define QM_VP_RL_UPPER_BOUND(speed) ((u32)max_t(u32, \ |
| QM_RL_INC_VAL(speed), \ |
| 9700 + 1000)) |
| |
| /* Max Vport RL increment value is the Vport RL upper bound */ |
| #define QM_VP_RL_MAX_INC_VAL(speed) QM_VP_RL_UPPER_BOUND(speed) |
| |
| /* Vport RL credit threshold in case of QM bypass */ |
| #define QM_VP_RL_BYPASS_THRESH_SPEED (QM_VP_RL_UPPER_BOUND(10000) - 1) |
| |
| /* AFullOprtnstcCrdMask constants */ |
| #define QM_OPPOR_LINE_VOQ_DEF 1 |
| #define QM_OPPOR_FW_STOP_DEF 0 |
| #define QM_OPPOR_PQ_EMPTY_DEF 1 |
| |
| /* Command Queue constants */ |
| |
| /* Pure LB CmdQ lines (+spare) */ |
| #define PBF_CMDQ_PURE_LB_LINES 150 |
| |
| #define PBF_CMDQ_LINES_RT_OFFSET(ext_voq) \ |
| (PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET + \ |
| (ext_voq) * (PBF_REG_YCMD_QS_NUM_LINES_VOQ1_RT_OFFSET - \ |
| PBF_REG_YCMD_QS_NUM_LINES_VOQ0_RT_OFFSET)) |
| |
| #define PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq) \ |
| (PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET + \ |
| (ext_voq) * (PBF_REG_BTB_GUARANTEED_VOQ1_RT_OFFSET - \ |
| PBF_REG_BTB_GUARANTEED_VOQ0_RT_OFFSET)) |
| |
| /* Returns the VOQ line credit for the specified number of PBF command lines. |
| * PBF lines are specified in 256b units. |
| */ |
| #define QM_VOQ_LINE_CRD(pbf_cmd_lines) \ |
| ((((pbf_cmd_lines) - 4) * 2) | QM_LINE_CRD_REG_SIGN_BIT) |
| |
| /* BTB: blocks constants (block size = 256B) */ |
| |
| /* 256B blocks in 9700B packet */ |
| #define BTB_JUMBO_PKT_BLOCKS 38 |
| |
| /* Headroom per-port */ |
| #define BTB_HEADROOM_BLOCKS BTB_JUMBO_PKT_BLOCKS |
| #define BTB_PURE_LB_FACTOR 10 |
| |
| /* Factored (hence really 0.7) */ |
| #define BTB_PURE_LB_RATIO 7 |
| |
| /* QM stop command constants */ |
| #define QM_STOP_PQ_MASK_WIDTH 32 |
| #define QM_STOP_CMD_ADDR 2 |
| #define QM_STOP_CMD_STRUCT_SIZE 2 |
| #define QM_STOP_CMD_PAUSE_MASK_OFFSET 0 |
| #define QM_STOP_CMD_PAUSE_MASK_SHIFT 0 |
| #define QM_STOP_CMD_PAUSE_MASK_MASK -1 |
| #define QM_STOP_CMD_GROUP_ID_OFFSET 1 |
| #define QM_STOP_CMD_GROUP_ID_SHIFT 16 |
| #define QM_STOP_CMD_GROUP_ID_MASK 15 |
| #define QM_STOP_CMD_PQ_TYPE_OFFSET 1 |
| #define QM_STOP_CMD_PQ_TYPE_SHIFT 24 |
| #define QM_STOP_CMD_PQ_TYPE_MASK 1 |
| #define QM_STOP_CMD_MAX_POLL_COUNT 100 |
| #define QM_STOP_CMD_POLL_PERIOD_US 500 |
| |
| /* QM command macros */ |
| #define QM_CMD_STRUCT_SIZE(cmd) cmd ## _STRUCT_SIZE |
| #define QM_CMD_SET_FIELD(var, cmd, field, value) \ |
| SET_FIELD(var[cmd ## _ ## field ## _OFFSET], \ |
| cmd ## _ ## field, \ |
| value) |
| |
| #define QM_INIT_TX_PQ_MAP(p_hwfn, map, chip, pq_id, vp_pq_id, rl_valid, \ |
| rl_id, ext_voq, wrr) \ |
| do { \ |
| u32 __reg = 0; \ |
| \ |
| BUILD_BUG_ON(sizeof((map).reg) != sizeof(__reg)); \ |
| \ |
| SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_PQ_VALID, 1); \ |
| SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_RL_VALID, \ |
| !!(rl_valid)); \ |
| SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_VP_PQ_ID, (vp_pq_id)); \ |
| SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_RL_ID, (rl_id)); \ |
| SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_VOQ, (ext_voq)); \ |
| SET_FIELD(__reg, QM_RF_PQ_MAP_##chip##_WRR_WEIGHT_GROUP, \ |
| (wrr)); \ |
| \ |
| STORE_RT_REG((p_hwfn), QM_REG_TXPQMAP_RT_OFFSET + (pq_id), \ |
| __reg); \ |
| (map).reg = cpu_to_le32(__reg); \ |
| } while (0) |
| |
| #define WRITE_PQ_INFO_TO_RAM 1 |
| #define PQ_INFO_ELEMENT(vp, pf, tc, port, rl_valid, rl) \ |
| (((vp) << 0) | ((pf) << 12) | ((tc) << 16) | ((port) << 20) | \ |
| ((rl_valid ? 1 : 0) << 22) | (((rl) & 255) << 24) | \ |
| (((rl) >> 8) << 9)) |
| |
| #define PQ_INFO_RAM_GRC_ADDRESS(pq_id) \ |
| XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + \ |
| XSTORM_PQ_INFO_OFFSET(pq_id) |
| |
| /******************** INTERNAL IMPLEMENTATION *********************/ |
| |
| /* Returns the external VOQ number */ |
| static u8 qed_get_ext_voq(struct qed_hwfn *p_hwfn, |
| u8 port_id, u8 tc, u8 max_phys_tcs_per_port) |
| { |
| if (tc == PURE_LB_TC) |
| return NUM_OF_PHYS_TCS * MAX_NUM_PORTS_BB + port_id; |
| else |
| return port_id * max_phys_tcs_per_port + tc; |
| } |
| |
| /* Prepare PF RL enable/disable runtime init values */ |
| static void qed_enable_pf_rl(struct qed_hwfn *p_hwfn, bool pf_rl_en) |
| { |
| STORE_RT_REG(p_hwfn, QM_REG_RLPFENABLE_RT_OFFSET, pf_rl_en ? 1 : 0); |
| if (pf_rl_en) { |
| u8 num_ext_voqs = MAX_NUM_VOQS_E4; |
| u64 voq_bit_mask = ((u64)1 << num_ext_voqs) - 1; |
| |
| /* Enable RLs for all VOQs */ |
| STORE_RT_REG(p_hwfn, |
| QM_REG_RLPFVOQENABLE_RT_OFFSET, |
| (u32)voq_bit_mask); |
| |
| /* Write RL period */ |
| STORE_RT_REG(p_hwfn, |
| QM_REG_RLPFPERIOD_RT_OFFSET, QM_RL_PERIOD_CLK_25M); |
| STORE_RT_REG(p_hwfn, |
| QM_REG_RLPFPERIODTIMER_RT_OFFSET, |
| QM_RL_PERIOD_CLK_25M); |
| |
| /* Set credit threshold for QM bypass flow */ |
| if (QM_BYPASS_EN) |
| STORE_RT_REG(p_hwfn, |
| QM_REG_AFULLQMBYPTHRPFRL_RT_OFFSET, |
| QM_PF_RL_UPPER_BOUND); |
| } |
| } |
| |
| /* Prepare PF WFQ enable/disable runtime init values */ |
| static void qed_enable_pf_wfq(struct qed_hwfn *p_hwfn, bool pf_wfq_en) |
| { |
| STORE_RT_REG(p_hwfn, QM_REG_WFQPFENABLE_RT_OFFSET, pf_wfq_en ? 1 : 0); |
| |
| /* Set credit threshold for QM bypass flow */ |
| if (pf_wfq_en && QM_BYPASS_EN) |
| STORE_RT_REG(p_hwfn, |
| QM_REG_AFULLQMBYPTHRPFWFQ_RT_OFFSET, |
| QM_WFQ_UPPER_BOUND); |
| } |
| |
| /* Prepare global RL enable/disable runtime init values */ |
| static void qed_enable_global_rl(struct qed_hwfn *p_hwfn, bool global_rl_en) |
| { |
| STORE_RT_REG(p_hwfn, QM_REG_RLGLBLENABLE_RT_OFFSET, |
| global_rl_en ? 1 : 0); |
| if (global_rl_en) { |
| /* Write RL period (use timer 0 only) */ |
| STORE_RT_REG(p_hwfn, |
| QM_REG_RLGLBLPERIOD_0_RT_OFFSET, |
| QM_RL_PERIOD_CLK_25M); |
| STORE_RT_REG(p_hwfn, |
| QM_REG_RLGLBLPERIODTIMER_0_RT_OFFSET, |
| QM_RL_PERIOD_CLK_25M); |
| |
| /* Set credit threshold for QM bypass flow */ |
| if (QM_BYPASS_EN) |
| STORE_RT_REG(p_hwfn, |
| QM_REG_AFULLQMBYPTHRGLBLRL_RT_OFFSET, |
| QM_VP_RL_BYPASS_THRESH_SPEED); |
| } |
| } |
| |
| /* Prepare VPORT WFQ enable/disable runtime init values */ |
| static void qed_enable_vport_wfq(struct qed_hwfn *p_hwfn, bool vport_wfq_en) |
| { |
| STORE_RT_REG(p_hwfn, QM_REG_WFQVPENABLE_RT_OFFSET, |
| vport_wfq_en ? 1 : 0); |
| |
| /* Set credit threshold for QM bypass flow */ |
| if (vport_wfq_en && QM_BYPASS_EN) |
| STORE_RT_REG(p_hwfn, |
| QM_REG_AFULLQMBYPTHRVPWFQ_RT_OFFSET, |
| QM_WFQ_UPPER_BOUND); |
| } |
| |
| /* Prepare runtime init values to allocate PBF command queue lines for |
| * the specified VOQ. |
| */ |
| static void qed_cmdq_lines_voq_rt_init(struct qed_hwfn *p_hwfn, |
| u8 ext_voq, u16 cmdq_lines) |
| { |
| u32 qm_line_crd = QM_VOQ_LINE_CRD(cmdq_lines); |
| |
| OVERWRITE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), |
| (u32)cmdq_lines); |
| STORE_RT_REG(p_hwfn, QM_REG_VOQCRDLINE_RT_OFFSET + ext_voq, |
| qm_line_crd); |
| STORE_RT_REG(p_hwfn, QM_REG_VOQINITCRDLINE_RT_OFFSET + ext_voq, |
| qm_line_crd); |
| } |
| |
| /* Prepare runtime init values to allocate PBF command queue lines. */ |
| static void qed_cmdq_lines_rt_init( |
| struct qed_hwfn *p_hwfn, |
| u8 max_ports_per_engine, |
| u8 max_phys_tcs_per_port, |
| struct init_qm_port_params port_params[MAX_NUM_PORTS]) |
| { |
| u8 tc, ext_voq, port_id, num_tcs_in_port; |
| u8 num_ext_voqs = MAX_NUM_VOQS_E4; |
| |
| /* Clear PBF lines of all VOQs */ |
| for (ext_voq = 0; ext_voq < num_ext_voqs; ext_voq++) |
| STORE_RT_REG(p_hwfn, PBF_CMDQ_LINES_RT_OFFSET(ext_voq), 0); |
| |
| for (port_id = 0; port_id < max_ports_per_engine; port_id++) { |
| u16 phys_lines, phys_lines_per_tc; |
| |
| if (!port_params[port_id].active) |
| continue; |
| |
| /* Find number of command queue lines to divide between the |
| * active physical TCs. |
| */ |
| phys_lines = port_params[port_id].num_pbf_cmd_lines; |
| phys_lines -= PBF_CMDQ_PURE_LB_LINES; |
| |
| /* Find #lines per active physical TC */ |
| num_tcs_in_port = 0; |
| for (tc = 0; tc < max_phys_tcs_per_port; tc++) |
| if (((port_params[port_id].active_phys_tcs >> |
| tc) & 0x1) == 1) |
| num_tcs_in_port++; |
| phys_lines_per_tc = phys_lines / num_tcs_in_port; |
| |
| /* Init registers per active TC */ |
| for (tc = 0; tc < max_phys_tcs_per_port; tc++) { |
| ext_voq = qed_get_ext_voq(p_hwfn, |
| port_id, |
| tc, max_phys_tcs_per_port); |
| if (((port_params[port_id].active_phys_tcs >> |
| tc) & 0x1) == 1) |
| qed_cmdq_lines_voq_rt_init(p_hwfn, |
| ext_voq, |
| phys_lines_per_tc); |
| } |
| |
| /* Init registers for pure LB TC */ |
| ext_voq = qed_get_ext_voq(p_hwfn, |
| port_id, |
| PURE_LB_TC, max_phys_tcs_per_port); |
| qed_cmdq_lines_voq_rt_init(p_hwfn, ext_voq, |
| PBF_CMDQ_PURE_LB_LINES); |
| } |
| } |
| |
| /* Prepare runtime init values to allocate guaranteed BTB blocks for the |
| * specified port. The guaranteed BTB space is divided between the TCs as |
| * follows (shared space Is currently not used): |
| * 1. Parameters: |
| * B - BTB blocks for this port |
| * C - Number of physical TCs for this port |
| * 2. Calculation: |
| * a. 38 blocks (9700B jumbo frame) are allocated for global per port |
| * headroom. |
| * b. B = B - 38 (remainder after global headroom allocation). |
| * c. MAX(38,B/(C+0.7)) blocks are allocated for the pure LB VOQ. |
| * d. B = B - MAX(38, B/(C+0.7)) (remainder after pure LB allocation). |
| * e. B/C blocks are allocated for each physical TC. |
| * Assumptions: |
| * - MTU is up to 9700 bytes (38 blocks) |
| * - All TCs are considered symmetrical (same rate and packet size) |
| * - No optimization for lossy TC (all are considered lossless). Shared space |
| * is not enabled and allocated for each TC. |
| */ |
| static void qed_btb_blocks_rt_init( |
| struct qed_hwfn *p_hwfn, |
| u8 max_ports_per_engine, |
| u8 max_phys_tcs_per_port, |
| struct init_qm_port_params port_params[MAX_NUM_PORTS]) |
| { |
| u32 usable_blocks, pure_lb_blocks, phys_blocks; |
| u8 tc, ext_voq, port_id, num_tcs_in_port; |
| |
| for (port_id = 0; port_id < max_ports_per_engine; port_id++) { |
| if (!port_params[port_id].active) |
| continue; |
| |
| /* Subtract headroom blocks */ |
| usable_blocks = port_params[port_id].num_btb_blocks - |
| BTB_HEADROOM_BLOCKS; |
| |
| /* Find blocks per physical TC. Use factor to avoid floating |
| * arithmethic. |
| */ |
| num_tcs_in_port = 0; |
| for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) |
| if (((port_params[port_id].active_phys_tcs >> |
| tc) & 0x1) == 1) |
| num_tcs_in_port++; |
| |
| pure_lb_blocks = (usable_blocks * BTB_PURE_LB_FACTOR) / |
| (num_tcs_in_port * BTB_PURE_LB_FACTOR + |
| BTB_PURE_LB_RATIO); |
| pure_lb_blocks = max_t(u32, BTB_JUMBO_PKT_BLOCKS, |
| pure_lb_blocks / BTB_PURE_LB_FACTOR); |
| phys_blocks = (usable_blocks - pure_lb_blocks) / |
| num_tcs_in_port; |
| |
| /* Init physical TCs */ |
| for (tc = 0; tc < NUM_OF_PHYS_TCS; tc++) { |
| if (((port_params[port_id].active_phys_tcs >> |
| tc) & 0x1) == 1) { |
| ext_voq = |
| qed_get_ext_voq(p_hwfn, |
| port_id, |
| tc, |
| max_phys_tcs_per_port); |
| STORE_RT_REG(p_hwfn, |
| PBF_BTB_GUARANTEED_RT_OFFSET |
| (ext_voq), phys_blocks); |
| } |
| } |
| |
| /* Init pure LB TC */ |
| ext_voq = qed_get_ext_voq(p_hwfn, |
| port_id, |
| PURE_LB_TC, max_phys_tcs_per_port); |
| STORE_RT_REG(p_hwfn, PBF_BTB_GUARANTEED_RT_OFFSET(ext_voq), |
| pure_lb_blocks); |
| } |
| } |
| |
| /* Prepare runtime init values for the specified RL. |
| * Set max link speed (100Gbps) per rate limiter. |
| * Return -1 on error. |
| */ |
| static int qed_global_rl_rt_init(struct qed_hwfn *p_hwfn) |
| { |
| u32 upper_bound = QM_VP_RL_UPPER_BOUND(QM_MAX_LINK_SPEED) | |
| (u32)QM_RL_CRD_REG_SIGN_BIT; |
| u32 inc_val; |
| u16 rl_id; |
| |
| /* Go over all global RLs */ |
| for (rl_id = 0; rl_id < MAX_QM_GLOBAL_RLS; rl_id++) { |
| inc_val = QM_RL_INC_VAL(QM_MAX_LINK_SPEED); |
| |
| STORE_RT_REG(p_hwfn, |
| QM_REG_RLGLBLCRD_RT_OFFSET + rl_id, |
| (u32)QM_RL_CRD_REG_SIGN_BIT); |
| STORE_RT_REG(p_hwfn, |
| QM_REG_RLGLBLUPPERBOUND_RT_OFFSET + rl_id, |
| upper_bound); |
| STORE_RT_REG(p_hwfn, |
| QM_REG_RLGLBLINCVAL_RT_OFFSET + rl_id, inc_val); |
| } |
| |
| return 0; |
| } |
| |
| /* Prepare Tx PQ mapping runtime init values for the specified PF */ |
| static void qed_tx_pq_map_rt_init(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| struct qed_qm_pf_rt_init_params *p_params, |
| u32 base_mem_addr_4kb) |
| { |
| u32 tx_pq_vf_mask[MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE] = { 0 }; |
| struct init_qm_vport_params *vport_params = p_params->vport_params; |
| u32 num_tx_pq_vf_masks = MAX_QM_TX_QUEUES / QM_PF_QUEUE_GROUP_SIZE; |
| u16 num_pqs, first_pq_group, last_pq_group, i, j, pq_id, pq_group; |
| struct init_qm_pq_params *pq_params = p_params->pq_params; |
| u32 pq_mem_4kb, vport_pq_mem_4kb, mem_addr_4kb; |
| |
| num_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs; |
| |
| first_pq_group = p_params->start_pq / QM_PF_QUEUE_GROUP_SIZE; |
| last_pq_group = (p_params->start_pq + num_pqs - 1) / |
| QM_PF_QUEUE_GROUP_SIZE; |
| |
| pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids); |
| vport_pq_mem_4kb = QM_PQ_MEM_4KB(p_params->num_vf_cids); |
| mem_addr_4kb = base_mem_addr_4kb; |
| |
| /* Set mapping from PQ group to PF */ |
| for (pq_group = first_pq_group; pq_group <= last_pq_group; pq_group++) |
| STORE_RT_REG(p_hwfn, QM_REG_PQTX2PF_0_RT_OFFSET + pq_group, |
| (u32)(p_params->pf_id)); |
| |
| /* Set PQ sizes */ |
| STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_0_RT_OFFSET, |
| QM_PQ_SIZE_256B(p_params->num_pf_cids)); |
| STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_1_RT_OFFSET, |
| QM_PQ_SIZE_256B(p_params->num_vf_cids)); |
| |
| /* Go over all Tx PQs */ |
| for (i = 0, pq_id = p_params->start_pq; i < num_pqs; i++, pq_id++) { |
| u16 *p_first_tx_pq_id, vport_id_in_pf; |
| struct qm_rf_pq_map_e4 tx_pq_map; |
| u8 tc_id = pq_params[i].tc_id; |
| bool is_vf_pq; |
| u8 ext_voq; |
| |
| ext_voq = qed_get_ext_voq(p_hwfn, |
| pq_params[i].port_id, |
| tc_id, |
| p_params->max_phys_tcs_per_port); |
| is_vf_pq = (i >= p_params->num_pf_pqs); |
| |
| /* Update first Tx PQ of VPORT/TC */ |
| vport_id_in_pf = pq_params[i].vport_id - p_params->start_vport; |
| p_first_tx_pq_id = |
| &vport_params[vport_id_in_pf].first_tx_pq_id[tc_id]; |
| if (*p_first_tx_pq_id == QM_INVALID_PQ_ID) { |
| u32 map_val = |
| (ext_voq << QM_WFQ_VP_PQ_VOQ_SHIFT) | |
| (p_params->pf_id << QM_WFQ_VP_PQ_PF_E4_SHIFT); |
| |
| /* Create new VP PQ */ |
| *p_first_tx_pq_id = pq_id; |
| |
| /* Map VP PQ to VOQ and PF */ |
| STORE_RT_REG(p_hwfn, |
| QM_REG_WFQVPMAP_RT_OFFSET + |
| *p_first_tx_pq_id, |
| map_val); |
| } |
| |
| /* Prepare PQ map entry */ |
| QM_INIT_TX_PQ_MAP(p_hwfn, |
| tx_pq_map, |
| E4, |
| pq_id, |
| *p_first_tx_pq_id, |
| pq_params[i].rl_valid, |
| pq_params[i].rl_id, |
| ext_voq, pq_params[i].wrr_group); |
| |
| /* Set PQ base address */ |
| STORE_RT_REG(p_hwfn, |
| QM_REG_BASEADDRTXPQ_RT_OFFSET + pq_id, |
| mem_addr_4kb); |
| |
| /* Clear PQ pointer table entry (64 bit) */ |
| if (p_params->is_pf_loading) |
| for (j = 0; j < 2; j++) |
| STORE_RT_REG(p_hwfn, |
| QM_REG_PTRTBLTX_RT_OFFSET + |
| (pq_id * 2) + j, 0); |
| |
| /* Write PQ info to RAM */ |
| if (WRITE_PQ_INFO_TO_RAM != 0) { |
| u32 pq_info = 0; |
| |
| pq_info = PQ_INFO_ELEMENT(*p_first_tx_pq_id, |
| p_params->pf_id, |
| tc_id, |
| pq_params[i].port_id, |
| pq_params[i].rl_valid, |
| pq_params[i].rl_id); |
| qed_wr(p_hwfn, p_ptt, PQ_INFO_RAM_GRC_ADDRESS(pq_id), |
| pq_info); |
| } |
| |
| /* If VF PQ, add indication to PQ VF mask */ |
| if (is_vf_pq) { |
| tx_pq_vf_mask[pq_id / |
| QM_PF_QUEUE_GROUP_SIZE] |= |
| BIT((pq_id % QM_PF_QUEUE_GROUP_SIZE)); |
| mem_addr_4kb += vport_pq_mem_4kb; |
| } else { |
| mem_addr_4kb += pq_mem_4kb; |
| } |
| } |
| |
| /* Store Tx PQ VF mask to size select register */ |
| for (i = 0; i < num_tx_pq_vf_masks; i++) |
| if (tx_pq_vf_mask[i]) |
| STORE_RT_REG(p_hwfn, |
| QM_REG_MAXPQSIZETXSEL_0_RT_OFFSET + i, |
| tx_pq_vf_mask[i]); |
| } |
| |
| /* Prepare Other PQ mapping runtime init values for the specified PF */ |
| static void qed_other_pq_map_rt_init(struct qed_hwfn *p_hwfn, |
| u8 pf_id, |
| bool is_pf_loading, |
| u32 num_pf_cids, |
| u32 num_tids, u32 base_mem_addr_4kb) |
| { |
| u32 pq_size, pq_mem_4kb, mem_addr_4kb; |
| u16 i, j, pq_id, pq_group; |
| |
| /* A single other PQ group is used in each PF, where PQ group i is used |
| * in PF i. |
| */ |
| pq_group = pf_id; |
| pq_size = num_pf_cids + num_tids; |
| pq_mem_4kb = QM_PQ_MEM_4KB(pq_size); |
| mem_addr_4kb = base_mem_addr_4kb; |
| |
| /* Map PQ group to PF */ |
| STORE_RT_REG(p_hwfn, QM_REG_PQOTHER2PF_0_RT_OFFSET + pq_group, |
| (u32)(pf_id)); |
| |
| /* Set PQ sizes */ |
| STORE_RT_REG(p_hwfn, QM_REG_MAXPQSIZE_2_RT_OFFSET, |
| QM_PQ_SIZE_256B(pq_size)); |
| |
| for (i = 0, pq_id = pf_id * QM_PF_QUEUE_GROUP_SIZE; |
| i < QM_OTHER_PQS_PER_PF; i++, pq_id++) { |
| /* Set PQ base address */ |
| STORE_RT_REG(p_hwfn, |
| QM_REG_BASEADDROTHERPQ_RT_OFFSET + pq_id, |
| mem_addr_4kb); |
| |
| /* Clear PQ pointer table entry */ |
| if (is_pf_loading) |
| for (j = 0; j < 2; j++) |
| STORE_RT_REG(p_hwfn, |
| QM_REG_PTRTBLOTHER_RT_OFFSET + |
| (pq_id * 2) + j, 0); |
| |
| mem_addr_4kb += pq_mem_4kb; |
| } |
| } |
| |
| /* Prepare PF WFQ runtime init values for the specified PF. |
| * Return -1 on error. |
| */ |
| static int qed_pf_wfq_rt_init(struct qed_hwfn *p_hwfn, |
| |
| struct qed_qm_pf_rt_init_params *p_params) |
| { |
| u16 num_tx_pqs = p_params->num_pf_pqs + p_params->num_vf_pqs; |
| struct init_qm_pq_params *pq_params = p_params->pq_params; |
| u32 inc_val, crd_reg_offset; |
| u8 ext_voq; |
| u16 i; |
| |
| inc_val = QM_WFQ_INC_VAL(p_params->pf_wfq); |
| if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) { |
| DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n"); |
| return -1; |
| } |
| |
| for (i = 0; i < num_tx_pqs; i++) { |
| ext_voq = qed_get_ext_voq(p_hwfn, |
| pq_params[i].port_id, |
| pq_params[i].tc_id, |
| p_params->max_phys_tcs_per_port); |
| crd_reg_offset = |
| (p_params->pf_id < MAX_NUM_PFS_BB ? |
| QM_REG_WFQPFCRD_RT_OFFSET : |
| QM_REG_WFQPFCRD_MSB_RT_OFFSET) + |
| ext_voq * MAX_NUM_PFS_BB + |
| (p_params->pf_id % MAX_NUM_PFS_BB); |
| OVERWRITE_RT_REG(p_hwfn, |
| crd_reg_offset, (u32)QM_WFQ_CRD_REG_SIGN_BIT); |
| } |
| |
| STORE_RT_REG(p_hwfn, |
| QM_REG_WFQPFUPPERBOUND_RT_OFFSET + p_params->pf_id, |
| QM_WFQ_UPPER_BOUND | (u32)QM_WFQ_CRD_REG_SIGN_BIT); |
| STORE_RT_REG(p_hwfn, QM_REG_WFQPFWEIGHT_RT_OFFSET + p_params->pf_id, |
| inc_val); |
| |
| return 0; |
| } |
| |
| /* Prepare PF RL runtime init values for the specified PF. |
| * Return -1 on error. |
| */ |
| static int qed_pf_rl_rt_init(struct qed_hwfn *p_hwfn, u8 pf_id, u32 pf_rl) |
| { |
| u32 inc_val = QM_RL_INC_VAL(pf_rl); |
| |
| if (inc_val > QM_PF_RL_MAX_INC_VAL) { |
| DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n"); |
| return -1; |
| } |
| |
| STORE_RT_REG(p_hwfn, |
| QM_REG_RLPFCRD_RT_OFFSET + pf_id, |
| (u32)QM_RL_CRD_REG_SIGN_BIT); |
| STORE_RT_REG(p_hwfn, |
| QM_REG_RLPFUPPERBOUND_RT_OFFSET + pf_id, |
| QM_PF_RL_UPPER_BOUND | (u32)QM_RL_CRD_REG_SIGN_BIT); |
| STORE_RT_REG(p_hwfn, QM_REG_RLPFINCVAL_RT_OFFSET + pf_id, inc_val); |
| |
| return 0; |
| } |
| |
| /* Prepare VPORT WFQ runtime init values for the specified VPORTs. |
| * Return -1 on error. |
| */ |
| static int qed_vp_wfq_rt_init(struct qed_hwfn *p_hwfn, |
| u16 num_vports, |
| struct init_qm_vport_params *vport_params) |
| { |
| u16 vport_pq_id, i; |
| u32 inc_val; |
| u8 tc; |
| |
| /* Go over all PF VPORTs */ |
| for (i = 0; i < num_vports; i++) { |
| if (!vport_params[i].wfq) |
| continue; |
| |
| inc_val = QM_WFQ_INC_VAL(vport_params[i].wfq); |
| if (inc_val > QM_WFQ_MAX_INC_VAL) { |
| DP_NOTICE(p_hwfn, |
| "Invalid VPORT WFQ weight configuration\n"); |
| return -1; |
| } |
| |
| /* Each VPORT can have several VPORT PQ IDs for various TCs */ |
| for (tc = 0; tc < NUM_OF_TCS; tc++) { |
| vport_pq_id = vport_params[i].first_tx_pq_id[tc]; |
| if (vport_pq_id != QM_INVALID_PQ_ID) { |
| STORE_RT_REG(p_hwfn, |
| QM_REG_WFQVPCRD_RT_OFFSET + |
| vport_pq_id, |
| (u32)QM_WFQ_CRD_REG_SIGN_BIT); |
| STORE_RT_REG(p_hwfn, |
| QM_REG_WFQVPWEIGHT_RT_OFFSET + |
| vport_pq_id, inc_val); |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| static bool qed_poll_on_qm_cmd_ready(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt) |
| { |
| u32 reg_val, i; |
| |
| for (i = 0, reg_val = 0; i < QM_STOP_CMD_MAX_POLL_COUNT && !reg_val; |
| i++) { |
| udelay(QM_STOP_CMD_POLL_PERIOD_US); |
| reg_val = qed_rd(p_hwfn, p_ptt, QM_REG_SDMCMDREADY); |
| } |
| |
| /* Check if timeout while waiting for SDM command ready */ |
| if (i == QM_STOP_CMD_MAX_POLL_COUNT) { |
| DP_VERBOSE(p_hwfn, NETIF_MSG_HW, |
| "Timeout when waiting for QM SDM command ready signal\n"); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| static bool qed_send_qm_cmd(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u32 cmd_addr, u32 cmd_data_lsb, u32 cmd_data_msb) |
| { |
| if (!qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt)) |
| return false; |
| |
| qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDADDR, cmd_addr); |
| qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATALSB, cmd_data_lsb); |
| qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDDATAMSB, cmd_data_msb); |
| qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 1); |
| qed_wr(p_hwfn, p_ptt, QM_REG_SDMCMDGO, 0); |
| |
| return qed_poll_on_qm_cmd_ready(p_hwfn, p_ptt); |
| } |
| |
| /******************** INTERFACE IMPLEMENTATION *********************/ |
| |
| u32 qed_qm_pf_mem_size(u32 num_pf_cids, |
| u32 num_vf_cids, |
| u32 num_tids, u16 num_pf_pqs, u16 num_vf_pqs) |
| { |
| return QM_PQ_MEM_4KB(num_pf_cids) * num_pf_pqs + |
| QM_PQ_MEM_4KB(num_vf_cids) * num_vf_pqs + |
| QM_PQ_MEM_4KB(num_pf_cids + num_tids) * QM_OTHER_PQS_PER_PF; |
| } |
| |
| int qed_qm_common_rt_init(struct qed_hwfn *p_hwfn, |
| struct qed_qm_common_rt_init_params *p_params) |
| { |
| u32 mask = 0; |
| |
| /* Init AFullOprtnstcCrdMask */ |
| SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_LINEVOQ, |
| QM_OPPOR_LINE_VOQ_DEF); |
| SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_BYTEVOQ, QM_BYTE_CRD_EN); |
| SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFWFQ, p_params->pf_wfq_en); |
| SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPWFQ, p_params->vport_wfq_en); |
| SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_PFRL, p_params->pf_rl_en); |
| SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_VPQCNRL, |
| p_params->global_rl_en); |
| SET_FIELD(mask, QM_RF_OPPORTUNISTIC_MASK_FWPAUSE, QM_OPPOR_FW_STOP_DEF); |
| SET_FIELD(mask, |
| QM_RF_OPPORTUNISTIC_MASK_QUEUEEMPTY, QM_OPPOR_PQ_EMPTY_DEF); |
| STORE_RT_REG(p_hwfn, QM_REG_AFULLOPRTNSTCCRDMASK_RT_OFFSET, mask); |
| |
| /* Enable/disable PF RL */ |
| qed_enable_pf_rl(p_hwfn, p_params->pf_rl_en); |
| |
| /* Enable/disable PF WFQ */ |
| qed_enable_pf_wfq(p_hwfn, p_params->pf_wfq_en); |
| |
| /* Enable/disable global RL */ |
| qed_enable_global_rl(p_hwfn, p_params->global_rl_en); |
| |
| /* Enable/disable VPORT WFQ */ |
| qed_enable_vport_wfq(p_hwfn, p_params->vport_wfq_en); |
| |
| /* Init PBF CMDQ line credit */ |
| qed_cmdq_lines_rt_init(p_hwfn, |
| p_params->max_ports_per_engine, |
| p_params->max_phys_tcs_per_port, |
| p_params->port_params); |
| |
| /* Init BTB blocks in PBF */ |
| qed_btb_blocks_rt_init(p_hwfn, |
| p_params->max_ports_per_engine, |
| p_params->max_phys_tcs_per_port, |
| p_params->port_params); |
| |
| qed_global_rl_rt_init(p_hwfn); |
| |
| return 0; |
| } |
| |
| int qed_qm_pf_rt_init(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| struct qed_qm_pf_rt_init_params *p_params) |
| { |
| struct init_qm_vport_params *vport_params = p_params->vport_params; |
| u32 other_mem_size_4kb = QM_PQ_MEM_4KB(p_params->num_pf_cids + |
| p_params->num_tids) * |
| QM_OTHER_PQS_PER_PF; |
| u16 i; |
| u8 tc; |
| |
| |
| /* Clear first Tx PQ ID array for each VPORT */ |
| for (i = 0; i < p_params->num_vports; i++) |
| for (tc = 0; tc < NUM_OF_TCS; tc++) |
| vport_params[i].first_tx_pq_id[tc] = QM_INVALID_PQ_ID; |
| |
| /* Map Other PQs (if any) */ |
| qed_other_pq_map_rt_init(p_hwfn, |
| p_params->pf_id, |
| p_params->is_pf_loading, p_params->num_pf_cids, |
| p_params->num_tids, 0); |
| |
| /* Map Tx PQs */ |
| qed_tx_pq_map_rt_init(p_hwfn, p_ptt, p_params, other_mem_size_4kb); |
| |
| /* Init PF WFQ */ |
| if (p_params->pf_wfq) |
| if (qed_pf_wfq_rt_init(p_hwfn, p_params)) |
| return -1; |
| |
| /* Init PF RL */ |
| if (qed_pf_rl_rt_init(p_hwfn, p_params->pf_id, p_params->pf_rl)) |
| return -1; |
| |
| /* Init VPORT WFQ */ |
| if (qed_vp_wfq_rt_init(p_hwfn, p_params->num_vports, vport_params)) |
| return -1; |
| |
| return 0; |
| } |
| |
| int qed_init_pf_wfq(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u8 pf_id, u16 pf_wfq) |
| { |
| u32 inc_val = QM_WFQ_INC_VAL(pf_wfq); |
| |
| if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) { |
| DP_NOTICE(p_hwfn, "Invalid PF WFQ weight configuration\n"); |
| return -1; |
| } |
| |
| qed_wr(p_hwfn, p_ptt, QM_REG_WFQPFWEIGHT + pf_id * 4, inc_val); |
| |
| return 0; |
| } |
| |
| int qed_init_pf_rl(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u8 pf_id, u32 pf_rl) |
| { |
| u32 inc_val = QM_RL_INC_VAL(pf_rl); |
| |
| if (inc_val > QM_PF_RL_MAX_INC_VAL) { |
| DP_NOTICE(p_hwfn, "Invalid PF rate limit configuration\n"); |
| return -1; |
| } |
| |
| qed_wr(p_hwfn, |
| p_ptt, QM_REG_RLPFCRD + pf_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT); |
| qed_wr(p_hwfn, p_ptt, QM_REG_RLPFINCVAL + pf_id * 4, inc_val); |
| |
| return 0; |
| } |
| |
| int qed_init_vport_wfq(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u16 first_tx_pq_id[NUM_OF_TCS], u16 wfq) |
| { |
| u16 vport_pq_id; |
| u32 inc_val; |
| u8 tc; |
| |
| inc_val = QM_WFQ_INC_VAL(wfq); |
| if (!inc_val || inc_val > QM_WFQ_MAX_INC_VAL) { |
| DP_NOTICE(p_hwfn, "Invalid VPORT WFQ configuration.\n"); |
| return -1; |
| } |
| |
| /* A VPORT can have several VPORT PQ IDs for various TCs */ |
| for (tc = 0; tc < NUM_OF_TCS; tc++) { |
| vport_pq_id = first_tx_pq_id[tc]; |
| if (vport_pq_id != QM_INVALID_PQ_ID) |
| qed_wr(p_hwfn, |
| p_ptt, |
| QM_REG_WFQVPWEIGHT + vport_pq_id * 4, inc_val); |
| } |
| |
| return 0; |
| } |
| |
| int qed_init_global_rl(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u16 rl_id, u32 rate_limit) |
| { |
| u32 inc_val; |
| |
| inc_val = QM_RL_INC_VAL(rate_limit); |
| if (inc_val > QM_VP_RL_MAX_INC_VAL(rate_limit)) { |
| DP_NOTICE(p_hwfn, "Invalid rate limit configuration.\n"); |
| return -1; |
| } |
| |
| qed_wr(p_hwfn, p_ptt, |
| QM_REG_RLGLBLCRD + rl_id * 4, (u32)QM_RL_CRD_REG_SIGN_BIT); |
| qed_wr(p_hwfn, p_ptt, QM_REG_RLGLBLINCVAL + rl_id * 4, inc_val); |
| |
| return 0; |
| } |
| |
| bool qed_send_qm_stop_cmd(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| bool is_release_cmd, |
| bool is_tx_pq, u16 start_pq, u16 num_pqs) |
| { |
| u32 cmd_arr[QM_CMD_STRUCT_SIZE(QM_STOP_CMD)] = { 0 }; |
| u32 pq_mask = 0, last_pq, pq_id; |
| |
| last_pq = start_pq + num_pqs - 1; |
| |
| /* Set command's PQ type */ |
| QM_CMD_SET_FIELD(cmd_arr, QM_STOP_CMD, PQ_TYPE, is_tx_pq ? 0 : 1); |
| |
| /* Go over requested PQs */ |
| for (pq_id = start_pq; pq_id <= last_pq; pq_id++) { |
| /* Set PQ bit in mask (stop command only) */ |
| if (!is_release_cmd) |
| pq_mask |= BIT((pq_id % QM_STOP_PQ_MASK_WIDTH)); |
| |
| /* If last PQ or end of PQ mask, write command */ |
| if ((pq_id == last_pq) || |
| (pq_id % QM_STOP_PQ_MASK_WIDTH == |
| (QM_STOP_PQ_MASK_WIDTH - 1))) { |
| QM_CMD_SET_FIELD(cmd_arr, |
| QM_STOP_CMD, PAUSE_MASK, pq_mask); |
| QM_CMD_SET_FIELD(cmd_arr, |
| QM_STOP_CMD, |
| GROUP_ID, |
| pq_id / QM_STOP_PQ_MASK_WIDTH); |
| if (!qed_send_qm_cmd(p_hwfn, p_ptt, QM_STOP_CMD_ADDR, |
| cmd_arr[0], cmd_arr[1])) |
| return false; |
| pq_mask = 0; |
| } |
| } |
| |
| return true; |
| } |
| |
| #define SET_TUNNEL_TYPE_ENABLE_BIT(var, offset, enable) \ |
| do { \ |
| typeof(var) *__p_var = &(var); \ |
| typeof(offset) __offset = offset; \ |
| *__p_var = (*__p_var & ~BIT(__offset)) | \ |
| ((enable) ? BIT(__offset) : 0); \ |
| } while (0) |
| |
| #define PRS_ETH_TUNN_OUTPUT_FORMAT 0xF4DAB910 |
| #define PRS_ETH_OUTPUT_FORMAT 0xFFFF4910 |
| |
| #define ARR_REG_WR(dev, ptt, addr, arr, arr_size) \ |
| do { \ |
| u32 i; \ |
| \ |
| for (i = 0; i < (arr_size); i++) \ |
| qed_wr(dev, ptt, \ |
| ((addr) + (4 * i)), \ |
| ((u32 *)&(arr))[i]); \ |
| } while (0) |
| |
| /** |
| * qed_dmae_to_grc() - Internal function for writing from host to |
| * wide-bus registers (split registers are not supported yet). |
| * |
| * @p_hwfn: HW device data. |
| * @p_ptt: PTT window used for writing the registers. |
| * @p_data: Pointer to source data. |
| * @addr: Destination register address. |
| * @len_in_dwords: Data length in dwords (u32). |
| * |
| * Return: Length of the written data in dwords (u32) or -1 on invalid |
| * input. |
| */ |
| static int qed_dmae_to_grc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, |
| __le32 *p_data, u32 addr, u32 len_in_dwords) |
| { |
| struct qed_dmae_params params = {}; |
| u32 *data_cpu; |
| int rc; |
| |
| if (!p_data) |
| return -1; |
| |
| /* Set DMAE params */ |
| SET_FIELD(params.flags, QED_DMAE_PARAMS_COMPLETION_DST, 1); |
| |
| /* Execute DMAE command */ |
| rc = qed_dmae_host2grc(p_hwfn, p_ptt, |
| (u64)(uintptr_t)(p_data), |
| addr, len_in_dwords, ¶ms); |
| |
| /* If not read using DMAE, read using GRC */ |
| if (rc) { |
| DP_VERBOSE(p_hwfn, |
| QED_MSG_DEBUG, |
| "Failed writing to chip using DMAE, using GRC instead\n"); |
| |
| /* Swap to CPU byteorder and write to registers using GRC */ |
| data_cpu = (__force u32 *)p_data; |
| le32_to_cpu_array(data_cpu, len_in_dwords); |
| |
| ARR_REG_WR(p_hwfn, p_ptt, addr, data_cpu, len_in_dwords); |
| cpu_to_le32_array(data_cpu, len_in_dwords); |
| } |
| |
| return len_in_dwords; |
| } |
| |
| void qed_set_vxlan_dest_port(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u16 dest_port) |
| { |
| /* Update PRS register */ |
| qed_wr(p_hwfn, p_ptt, PRS_REG_VXLAN_PORT, dest_port); |
| |
| /* Update NIG register */ |
| qed_wr(p_hwfn, p_ptt, NIG_REG_VXLAN_CTRL, dest_port); |
| |
| /* Update PBF register */ |
| qed_wr(p_hwfn, p_ptt, PBF_REG_VXLAN_PORT, dest_port); |
| } |
| |
| void qed_set_vxlan_enable(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, bool vxlan_enable) |
| { |
| u32 reg_val; |
| u8 shift; |
| |
| /* Update PRS register */ |
| reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN); |
| shift = PRS_REG_ENCAPSULATION_TYPE_EN_VXLAN_ENABLE_SHIFT; |
| SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val); |
| if (reg_val) { |
| reg_val = |
| qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2); |
| |
| /* Update output only if tunnel blocks not included. */ |
| if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT) |
| qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, |
| (u32)PRS_ETH_TUNN_OUTPUT_FORMAT); |
| } |
| |
| /* Update NIG register */ |
| reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE); |
| shift = NIG_REG_ENC_TYPE_ENABLE_VXLAN_ENABLE_SHIFT; |
| SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, vxlan_enable); |
| qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val); |
| |
| /* Update DORQ register */ |
| qed_wr(p_hwfn, |
| p_ptt, DORQ_REG_L2_EDPM_TUNNEL_VXLAN_EN, vxlan_enable ? 1 : 0); |
| } |
| |
| void qed_set_gre_enable(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| bool eth_gre_enable, bool ip_gre_enable) |
| { |
| u32 reg_val; |
| u8 shift; |
| |
| /* Update PRS register */ |
| reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN); |
| shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GRE_ENABLE_SHIFT; |
| SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable); |
| shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GRE_ENABLE_SHIFT; |
| SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val); |
| if (reg_val) { |
| reg_val = |
| qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2); |
| |
| /* Update output only if tunnel blocks not included. */ |
| if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT) |
| qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, |
| (u32)PRS_ETH_TUNN_OUTPUT_FORMAT); |
| } |
| |
| /* Update NIG register */ |
| reg_val = qed_rd(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE); |
| shift = NIG_REG_ENC_TYPE_ENABLE_ETH_OVER_GRE_ENABLE_SHIFT; |
| SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_gre_enable); |
| shift = NIG_REG_ENC_TYPE_ENABLE_IP_OVER_GRE_ENABLE_SHIFT; |
| SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_gre_enable); |
| qed_wr(p_hwfn, p_ptt, NIG_REG_ENC_TYPE_ENABLE, reg_val); |
| |
| /* Update DORQ registers */ |
| qed_wr(p_hwfn, |
| p_ptt, |
| DORQ_REG_L2_EDPM_TUNNEL_GRE_ETH_EN, eth_gre_enable ? 1 : 0); |
| qed_wr(p_hwfn, |
| p_ptt, DORQ_REG_L2_EDPM_TUNNEL_GRE_IP_EN, ip_gre_enable ? 1 : 0); |
| } |
| |
| void qed_set_geneve_dest_port(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, u16 dest_port) |
| { |
| /* Update PRS register */ |
| qed_wr(p_hwfn, p_ptt, PRS_REG_NGE_PORT, dest_port); |
| |
| /* Update NIG register */ |
| qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_PORT, dest_port); |
| |
| /* Update PBF register */ |
| qed_wr(p_hwfn, p_ptt, PBF_REG_NGE_PORT, dest_port); |
| } |
| |
| void qed_set_geneve_enable(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| bool eth_geneve_enable, bool ip_geneve_enable) |
| { |
| u32 reg_val; |
| u8 shift; |
| |
| /* Update PRS register */ |
| reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN); |
| shift = PRS_REG_ENCAPSULATION_TYPE_EN_ETH_OVER_GENEVE_ENABLE_SHIFT; |
| SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, eth_geneve_enable); |
| shift = PRS_REG_ENCAPSULATION_TYPE_EN_IP_OVER_GENEVE_ENABLE_SHIFT; |
| SET_TUNNEL_TYPE_ENABLE_BIT(reg_val, shift, ip_geneve_enable); |
| qed_wr(p_hwfn, p_ptt, PRS_REG_ENCAPSULATION_TYPE_EN, reg_val); |
| if (reg_val) { |
| reg_val = |
| qed_rd(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2); |
| |
| /* Update output only if tunnel blocks not included. */ |
| if (reg_val == (u32)PRS_ETH_OUTPUT_FORMAT) |
| qed_wr(p_hwfn, p_ptt, PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, |
| (u32)PRS_ETH_TUNN_OUTPUT_FORMAT); |
| } |
| |
| /* Update NIG register */ |
| qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_ETH_ENABLE, |
| eth_geneve_enable ? 1 : 0); |
| qed_wr(p_hwfn, p_ptt, NIG_REG_NGE_IP_ENABLE, ip_geneve_enable ? 1 : 0); |
| |
| /* EDPM with geneve tunnel not supported in BB */ |
| if (QED_IS_BB_B0(p_hwfn->cdev)) |
| return; |
| |
| /* Update DORQ registers */ |
| qed_wr(p_hwfn, |
| p_ptt, |
| DORQ_REG_L2_EDPM_TUNNEL_NGE_ETH_EN_K2_E5, |
| eth_geneve_enable ? 1 : 0); |
| qed_wr(p_hwfn, |
| p_ptt, |
| DORQ_REG_L2_EDPM_TUNNEL_NGE_IP_EN_K2_E5, |
| ip_geneve_enable ? 1 : 0); |
| } |
| |
| #define PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET 3 |
| #define PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT -925189872 |
| |
| void qed_set_vxlan_no_l2_enable(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, bool enable) |
| { |
| u32 reg_val, cfg_mask; |
| |
| /* read PRS config register */ |
| reg_val = qed_rd(p_hwfn, p_ptt, PRS_REG_MSG_INFO); |
| |
| /* set VXLAN_NO_L2_ENABLE mask */ |
| cfg_mask = BIT(PRS_ETH_VXLAN_NO_L2_ENABLE_OFFSET); |
| |
| if (enable) { |
| /* set VXLAN_NO_L2_ENABLE flag */ |
| reg_val |= cfg_mask; |
| |
| /* update PRS FIC register */ |
| qed_wr(p_hwfn, |
| p_ptt, |
| PRS_REG_OUTPUT_FORMAT_4_0_BB_K2, |
| (u32)PRS_ETH_VXLAN_NO_L2_OUTPUT_FORMAT); |
| } else { |
| /* clear VXLAN_NO_L2_ENABLE flag */ |
| reg_val &= ~cfg_mask; |
| } |
| |
| /* write PRS config register */ |
| qed_wr(p_hwfn, p_ptt, PRS_REG_MSG_INFO, reg_val); |
| } |
| |
| #define T_ETH_PACKET_ACTION_GFT_EVENTID 23 |
| #define PARSER_ETH_CONN_GFT_ACTION_CM_HDR 272 |
| #define T_ETH_PACKET_MATCH_RFS_EVENTID 25 |
| #define PARSER_ETH_CONN_CM_HDR 0 |
| #define CAM_LINE_SIZE sizeof(u32) |
| #define RAM_LINE_SIZE sizeof(u64) |
| #define REG_SIZE sizeof(u32) |
| |
| void qed_gft_disable(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt, u16 pf_id) |
| { |
| struct regpair ram_line = { }; |
| |
| /* Disable gft search for PF */ |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 0); |
| |
| /* Clean ram & cam for next gft session */ |
| |
| /* Zero camline */ |
| qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, 0); |
| |
| /* Zero ramline */ |
| qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo, |
| PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id, |
| sizeof(ram_line) / REG_SIZE); |
| } |
| |
| void qed_gft_config(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u16 pf_id, |
| bool tcp, |
| bool udp, |
| bool ipv4, bool ipv6, enum gft_profile_type profile_type) |
| { |
| struct regpair ram_line; |
| u32 search_non_ip_as_gft; |
| u32 reg_val, cam_line; |
| u32 lo = 0, hi = 0; |
| |
| if (!ipv6 && !ipv4) |
| DP_NOTICE(p_hwfn, |
| "gft_config: must accept at least on of - ipv4 or ipv6'\n"); |
| if (!tcp && !udp) |
| DP_NOTICE(p_hwfn, |
| "gft_config: must accept at least on of - udp or tcp\n"); |
| if (profile_type >= MAX_GFT_PROFILE_TYPE) |
| DP_NOTICE(p_hwfn, "gft_config: unsupported gft_profile_type\n"); |
| |
| /* Set RFS event ID to be awakened i Tstorm By Prs */ |
| reg_val = T_ETH_PACKET_MATCH_RFS_EVENTID << |
| PRS_REG_CM_HDR_GFT_EVENT_ID_SHIFT; |
| reg_val |= PARSER_ETH_CONN_CM_HDR << PRS_REG_CM_HDR_GFT_CM_HDR_SHIFT; |
| qed_wr(p_hwfn, p_ptt, PRS_REG_CM_HDR_GFT, reg_val); |
| |
| /* Do not load context only cid in PRS on match. */ |
| qed_wr(p_hwfn, p_ptt, PRS_REG_LOAD_L2_FILTER, 0); |
| |
| /* Do not use tenant ID exist bit for gft search */ |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TENANT_ID, 0); |
| |
| /* Set Cam */ |
| cam_line = 0; |
| SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_VALID, 1); |
| |
| /* Filters are per PF!! */ |
| SET_FIELD(cam_line, |
| GFT_CAM_LINE_MAPPED_PF_ID_MASK, |
| GFT_CAM_LINE_MAPPED_PF_ID_MASK_MASK); |
| SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_PF_ID, pf_id); |
| |
| if (!(tcp && udp)) { |
| SET_FIELD(cam_line, |
| GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK, |
| GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE_MASK_MASK); |
| if (tcp) |
| SET_FIELD(cam_line, |
| GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, |
| GFT_PROFILE_TCP_PROTOCOL); |
| else |
| SET_FIELD(cam_line, |
| GFT_CAM_LINE_MAPPED_UPPER_PROTOCOL_TYPE, |
| GFT_PROFILE_UDP_PROTOCOL); |
| } |
| |
| if (!(ipv4 && ipv6)) { |
| SET_FIELD(cam_line, GFT_CAM_LINE_MAPPED_IP_VERSION_MASK, 1); |
| if (ipv4) |
| SET_FIELD(cam_line, |
| GFT_CAM_LINE_MAPPED_IP_VERSION, |
| GFT_PROFILE_IPV4); |
| else |
| SET_FIELD(cam_line, |
| GFT_CAM_LINE_MAPPED_IP_VERSION, |
| GFT_PROFILE_IPV6); |
| } |
| |
| /* Write characteristics to cam */ |
| qed_wr(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id, |
| cam_line); |
| cam_line = |
| qed_rd(p_hwfn, p_ptt, PRS_REG_GFT_CAM + CAM_LINE_SIZE * pf_id); |
| |
| /* Write line to RAM - compare to filter 4 tuple */ |
| |
| /* Search no IP as GFT */ |
| search_non_ip_as_gft = 0; |
| |
| /* Tunnel type */ |
| SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_DST_PORT, 1); |
| SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_OVER_IP_PROTOCOL, 1); |
| |
| if (profile_type == GFT_PROFILE_TYPE_4_TUPLE) { |
| SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1); |
| SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1); |
| SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1); |
| SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1); |
| SET_FIELD(lo, GFT_RAM_LINE_SRC_PORT, 1); |
| SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1); |
| } else if (profile_type == GFT_PROFILE_TYPE_L4_DST_PORT) { |
| SET_FIELD(hi, GFT_RAM_LINE_OVER_IP_PROTOCOL, 1); |
| SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1); |
| SET_FIELD(lo, GFT_RAM_LINE_DST_PORT, 1); |
| } else if (profile_type == GFT_PROFILE_TYPE_IP_DST_ADDR) { |
| SET_FIELD(hi, GFT_RAM_LINE_DST_IP, 1); |
| SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1); |
| } else if (profile_type == GFT_PROFILE_TYPE_IP_SRC_ADDR) { |
| SET_FIELD(hi, GFT_RAM_LINE_SRC_IP, 1); |
| SET_FIELD(lo, GFT_RAM_LINE_ETHERTYPE, 1); |
| } else if (profile_type == GFT_PROFILE_TYPE_TUNNEL_TYPE) { |
| SET_FIELD(lo, GFT_RAM_LINE_TUNNEL_ETHERTYPE, 1); |
| |
| /* Allow tunneled traffic without inner IP */ |
| search_non_ip_as_gft = 1; |
| } |
| |
| ram_line.lo = cpu_to_le32(lo); |
| ram_line.hi = cpu_to_le32(hi); |
| |
| qed_wr(p_hwfn, |
| p_ptt, PRS_REG_SEARCH_NON_IP_AS_GFT, search_non_ip_as_gft); |
| qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo, |
| PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * pf_id, |
| sizeof(ram_line) / REG_SIZE); |
| |
| /* Set default profile so that no filter match will happen */ |
| ram_line.lo = cpu_to_le32(0xffffffff); |
| ram_line.hi = cpu_to_le32(0x3ff); |
| qed_dmae_to_grc(p_hwfn, p_ptt, &ram_line.lo, |
| PRS_REG_GFT_PROFILE_MASK_RAM + RAM_LINE_SIZE * |
| PRS_GFT_CAM_LINES_NO_MATCH, |
| sizeof(ram_line) / REG_SIZE); |
| |
| /* Enable gft search */ |
| qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_GFT, 1); |
| } |
| |
| DECLARE_CRC8_TABLE(cdu_crc8_table); |
| |
| /* Calculate and return CDU validation byte per connection type/region/cid */ |
| static u8 qed_calc_cdu_validation_byte(u8 conn_type, u8 region, u32 cid) |
| { |
| const u8 validation_cfg = CDU_VALIDATION_DEFAULT_CFG; |
| u8 crc, validation_byte = 0; |
| static u8 crc8_table_valid; /* automatically initialized to 0 */ |
| u32 validation_string = 0; |
| __be32 data_to_crc; |
| |
| if (!crc8_table_valid) { |
| crc8_populate_msb(cdu_crc8_table, 0x07); |
| crc8_table_valid = 1; |
| } |
| |
| /* The CRC is calculated on the String-to-compress: |
| * [31:8] = {CID[31:20],CID[11:0]} |
| * [7:4] = Region |
| * [3:0] = Type |
| */ |
| if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_CID) & 1) |
| validation_string |= (cid & 0xFFF00000) | ((cid & 0xFFF) << 8); |
| |
| if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_REGION) & 1) |
| validation_string |= ((region & 0xF) << 4); |
| |
| if ((validation_cfg >> CDU_CONTEXT_VALIDATION_CFG_USE_TYPE) & 1) |
| validation_string |= (conn_type & 0xF); |
| |
| /* Convert to big-endian and calculate CRC8 */ |
| data_to_crc = cpu_to_be32(validation_string); |
| crc = crc8(cdu_crc8_table, (u8 *)&data_to_crc, sizeof(data_to_crc), |
| CRC8_INIT_VALUE); |
| |
| /* The validation byte [7:0] is composed: |
| * for type A validation |
| * [7] = active configuration bit |
| * [6:0] = crc[6:0] |
| * |
| * for type B validation |
| * [7] = active configuration bit |
| * [6:3] = connection_type[3:0] |
| * [2:0] = crc[2:0] |
| */ |
| validation_byte |= |
| ((validation_cfg >> |
| CDU_CONTEXT_VALIDATION_CFG_USE_ACTIVE) & 1) << 7; |
| |
| if ((validation_cfg >> |
| CDU_CONTEXT_VALIDATION_CFG_VALIDATION_TYPE_SHIFT) & 1) |
| validation_byte |= ((conn_type & 0xF) << 3) | (crc & 0x7); |
| else |
| validation_byte |= crc & 0x7F; |
| |
| return validation_byte; |
| } |
| |
| /* Calcualte and set validation bytes for session context */ |
| void qed_calc_session_ctx_validation(void *p_ctx_mem, |
| u16 ctx_size, u8 ctx_type, u32 cid) |
| { |
| u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx; |
| |
| p_ctx = (u8 * const)p_ctx_mem; |
| x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]]; |
| t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]]; |
| u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]]; |
| |
| memset(p_ctx, 0, ctx_size); |
| |
| *x_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 3, cid); |
| *t_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 4, cid); |
| *u_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 5, cid); |
| } |
| |
| /* Calcualte and set validation bytes for task context */ |
| void qed_calc_task_ctx_validation(void *p_ctx_mem, |
| u16 ctx_size, u8 ctx_type, u32 tid) |
| { |
| u8 *p_ctx, *region1_val_ptr; |
| |
| p_ctx = (u8 * const)p_ctx_mem; |
| region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]]; |
| |
| memset(p_ctx, 0, ctx_size); |
| |
| *region1_val_ptr = qed_calc_cdu_validation_byte(ctx_type, 1, tid); |
| } |
| |
| /* Memset session context to 0 while preserving validation bytes */ |
| void qed_memset_session_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type) |
| { |
| u8 *x_val_ptr, *t_val_ptr, *u_val_ptr, *p_ctx; |
| u8 x_val, t_val, u_val; |
| |
| p_ctx = (u8 * const)p_ctx_mem; |
| x_val_ptr = &p_ctx[con_region_offsets[0][ctx_type]]; |
| t_val_ptr = &p_ctx[con_region_offsets[1][ctx_type]]; |
| u_val_ptr = &p_ctx[con_region_offsets[2][ctx_type]]; |
| |
| x_val = *x_val_ptr; |
| t_val = *t_val_ptr; |
| u_val = *u_val_ptr; |
| |
| memset(p_ctx, 0, ctx_size); |
| |
| *x_val_ptr = x_val; |
| *t_val_ptr = t_val; |
| *u_val_ptr = u_val; |
| } |
| |
| /* Memset task context to 0 while preserving validation bytes */ |
| void qed_memset_task_ctx(void *p_ctx_mem, u32 ctx_size, u8 ctx_type) |
| { |
| u8 *p_ctx, *region1_val_ptr; |
| u8 region1_val; |
| |
| p_ctx = (u8 * const)p_ctx_mem; |
| region1_val_ptr = &p_ctx[task_region_offsets[0][ctx_type]]; |
| |
| region1_val = *region1_val_ptr; |
| |
| memset(p_ctx, 0, ctx_size); |
| |
| *region1_val_ptr = region1_val; |
| } |
| |
| /* Enable and configure context validation */ |
| void qed_enable_context_validation(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt) |
| { |
| u32 ctx_validation; |
| |
| /* Enable validation for connection region 3: CCFC_CTX_VALID0[31:24] */ |
| ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 24; |
| qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID0, ctx_validation); |
| |
| /* Enable validation for connection region 5: CCFC_CTX_VALID1[15:8] */ |
| ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8; |
| qed_wr(p_hwfn, p_ptt, CDU_REG_CCFC_CTX_VALID1, ctx_validation); |
| |
| /* Enable validation for connection region 1: TCFC_CTX_VALID0[15:8] */ |
| ctx_validation = CDU_VALIDATION_DEFAULT_CFG << 8; |
| qed_wr(p_hwfn, p_ptt, CDU_REG_TCFC_CTX_VALID0, ctx_validation); |
| } |
| |
| static u32 qed_get_rdma_assert_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id) |
| { |
| switch (storm_id) { |
| case 0: |
| return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + |
| TSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); |
| case 1: |
| return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + |
| MSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); |
| case 2: |
| return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + |
| USTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); |
| case 3: |
| return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + |
| XSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); |
| case 4: |
| return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + |
| YSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); |
| case 5: |
| return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + |
| PSTORM_RDMA_ASSERT_LEVEL_OFFSET(p_hwfn->rel_pf_id); |
| |
| default: |
| return 0; |
| } |
| } |
| |
| void qed_set_rdma_error_level(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| u8 assert_level[NUM_STORMS]) |
| { |
| u8 storm_id; |
| |
| for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) { |
| u32 ram_addr = qed_get_rdma_assert_ram_addr(p_hwfn, storm_id); |
| |
| qed_wr(p_hwfn, p_ptt, ram_addr, assert_level[storm_id]); |
| } |
| } |
| |
| #define PHYS_ADDR_DWORDS DIV_ROUND_UP(sizeof(dma_addr_t), 4) |
| #define OVERLAY_HDR_SIZE_DWORDS (sizeof(struct fw_overlay_buf_hdr) / 4) |
| |
| static u32 qed_get_overlay_addr_ram_addr(struct qed_hwfn *p_hwfn, u8 storm_id) |
| { |
| switch (storm_id) { |
| case 0: |
| return TSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + |
| TSTORM_OVERLAY_BUF_ADDR_OFFSET; |
| case 1: |
| return MSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + |
| MSTORM_OVERLAY_BUF_ADDR_OFFSET; |
| case 2: |
| return USEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + |
| USTORM_OVERLAY_BUF_ADDR_OFFSET; |
| case 3: |
| return XSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + |
| XSTORM_OVERLAY_BUF_ADDR_OFFSET; |
| case 4: |
| return YSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + |
| YSTORM_OVERLAY_BUF_ADDR_OFFSET; |
| case 5: |
| return PSEM_REG_FAST_MEMORY + SEM_FAST_REG_INT_RAM + |
| PSTORM_OVERLAY_BUF_ADDR_OFFSET; |
| |
| default: |
| return 0; |
| } |
| } |
| |
| struct phys_mem_desc *qed_fw_overlay_mem_alloc(struct qed_hwfn *p_hwfn, |
| const u32 * const |
| fw_overlay_in_buf, |
| u32 buf_size_in_bytes) |
| { |
| u32 buf_size = buf_size_in_bytes / sizeof(u32), buf_offset = 0; |
| struct phys_mem_desc *allocated_mem; |
| |
| if (!buf_size) |
| return NULL; |
| |
| allocated_mem = kcalloc(NUM_STORMS, sizeof(struct phys_mem_desc), |
| GFP_KERNEL); |
| if (!allocated_mem) |
| return NULL; |
| |
| memset(allocated_mem, 0, NUM_STORMS * sizeof(struct phys_mem_desc)); |
| |
| /* For each Storm, set physical address in RAM */ |
| while (buf_offset < buf_size) { |
| struct phys_mem_desc *storm_mem_desc; |
| struct fw_overlay_buf_hdr *hdr; |
| u32 storm_buf_size; |
| u8 storm_id; |
| |
| hdr = |
| (struct fw_overlay_buf_hdr *)&fw_overlay_in_buf[buf_offset]; |
| storm_buf_size = GET_FIELD(hdr->data, |
| FW_OVERLAY_BUF_HDR_BUF_SIZE); |
| storm_id = GET_FIELD(hdr->data, FW_OVERLAY_BUF_HDR_STORM_ID); |
| storm_mem_desc = allocated_mem + storm_id; |
| storm_mem_desc->size = storm_buf_size * sizeof(u32); |
| |
| /* Allocate physical memory for Storm's overlays buffer */ |
| storm_mem_desc->virt_addr = |
| dma_alloc_coherent(&p_hwfn->cdev->pdev->dev, |
| storm_mem_desc->size, |
| &storm_mem_desc->phys_addr, GFP_KERNEL); |
| if (!storm_mem_desc->virt_addr) |
| break; |
| |
| /* Skip overlays buffer header */ |
| buf_offset += OVERLAY_HDR_SIZE_DWORDS; |
| |
| /* Copy Storm's overlays buffer to allocated memory */ |
| memcpy(storm_mem_desc->virt_addr, |
| &fw_overlay_in_buf[buf_offset], storm_mem_desc->size); |
| |
| /* Advance to next Storm */ |
| buf_offset += storm_buf_size; |
| } |
| |
| /* If memory allocation has failed, free all allocated memory */ |
| if (buf_offset < buf_size) { |
| qed_fw_overlay_mem_free(p_hwfn, allocated_mem); |
| return NULL; |
| } |
| |
| return allocated_mem; |
| } |
| |
| void qed_fw_overlay_init_ram(struct qed_hwfn *p_hwfn, |
| struct qed_ptt *p_ptt, |
| struct phys_mem_desc *fw_overlay_mem) |
| { |
| u8 storm_id; |
| |
| for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) { |
| struct phys_mem_desc *storm_mem_desc = |
| (struct phys_mem_desc *)fw_overlay_mem + storm_id; |
| u32 ram_addr, i; |
| |
| /* Skip Storms with no FW overlays */ |
| if (!storm_mem_desc->virt_addr) |
| continue; |
| |
| /* Calculate overlay RAM GRC address of current PF */ |
| ram_addr = qed_get_overlay_addr_ram_addr(p_hwfn, storm_id) + |
| sizeof(dma_addr_t) * p_hwfn->rel_pf_id; |
| |
| /* Write Storm's overlay physical address to RAM */ |
| for (i = 0; i < PHYS_ADDR_DWORDS; i++, ram_addr += sizeof(u32)) |
| qed_wr(p_hwfn, p_ptt, ram_addr, |
| ((u32 *)&storm_mem_desc->phys_addr)[i]); |
| } |
| } |
| |
| void qed_fw_overlay_mem_free(struct qed_hwfn *p_hwfn, |
| struct phys_mem_desc *fw_overlay_mem) |
| { |
| u8 storm_id; |
| |
| if (!fw_overlay_mem) |
| return; |
| |
| for (storm_id = 0; storm_id < NUM_STORMS; storm_id++) { |
| struct phys_mem_desc *storm_mem_desc = |
| (struct phys_mem_desc *)fw_overlay_mem + storm_id; |
| |
| /* Free Storm's physical memory */ |
| if (storm_mem_desc->virt_addr) |
| dma_free_coherent(&p_hwfn->cdev->pdev->dev, |
| storm_mem_desc->size, |
| storm_mem_desc->virt_addr, |
| storm_mem_desc->phys_addr); |
| } |
| |
| /* Free allocated virtual memory */ |
| kfree(fw_overlay_mem); |
| } |