blob: 2890a495a23ec2509a461bae86161b89455c21bd [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 2009-2012 Realtek Corporation.*/
#include "../wifi.h"
#include "../pci.h"
#include "../usb.h"
#include "../ps.h"
#include "../cam.h"
#include "../stats.h"
#include "reg.h"
#include "def.h"
#include "phy.h"
#include "rf.h"
#include "dm.h"
#include "mac.h"
#include "trx.h"
#include "../rtl8192c/fw_common.h"
#include <linux/module.h>
/* macro to shorten lines */
#define LINK_Q ui_link_quality
#define RX_EVM rx_evm_percentage
#define RX_SIGQ rx_mimo_sig_qual
void rtl92c_read_chip_version(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
enum version_8192c chip_version = VERSION_UNKNOWN;
const char *versionid;
u32 value32;
value32 = rtl_read_dword(rtlpriv, REG_SYS_CFG);
if (value32 & TRP_VAUX_EN) {
chip_version = (value32 & TYPE_ID) ? VERSION_TEST_CHIP_92C :
VERSION_TEST_CHIP_88C;
} else {
/* Normal mass production chip. */
chip_version = NORMAL_CHIP;
chip_version |= ((value32 & TYPE_ID) ? CHIP_92C : 0);
chip_version |= ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : 0);
if (IS_VENDOR_UMC(chip_version))
chip_version |= ((value32 & CHIP_VER_RTL_MASK) ?
CHIP_VENDOR_UMC_B_CUT : 0);
if (IS_92C_SERIAL(chip_version)) {
value32 = rtl_read_dword(rtlpriv, REG_HPON_FSM);
chip_version |= ((CHIP_BONDING_IDENTIFIER(value32) ==
CHIP_BONDING_92C_1T2R) ? CHIP_92C_1T2R : 0);
}
}
rtlhal->version = (enum version_8192c)chip_version;
pr_info("Chip version 0x%x\n", chip_version);
switch (rtlhal->version) {
case VERSION_NORMAL_TSMC_CHIP_92C_1T2R:
versionid = "NORMAL_B_CHIP_92C";
break;
case VERSION_NORMAL_TSMC_CHIP_92C:
versionid = "NORMAL_TSMC_CHIP_92C";
break;
case VERSION_NORMAL_TSMC_CHIP_88C:
versionid = "NORMAL_TSMC_CHIP_88C";
break;
case VERSION_NORMAL_UMC_CHIP_92C_1T2R_A_CUT:
versionid = "NORMAL_UMC_CHIP_i92C_1T2R_A_CUT";
break;
case VERSION_NORMAL_UMC_CHIP_92C_A_CUT:
versionid = "NORMAL_UMC_CHIP_92C_A_CUT";
break;
case VERSION_NORMAL_UMC_CHIP_88C_A_CUT:
versionid = "NORMAL_UMC_CHIP_88C_A_CUT";
break;
case VERSION_NORMAL_UMC_CHIP_92C_1T2R_B_CUT:
versionid = "NORMAL_UMC_CHIP_92C_1T2R_B_CUT";
break;
case VERSION_NORMAL_UMC_CHIP_92C_B_CUT:
versionid = "NORMAL_UMC_CHIP_92C_B_CUT";
break;
case VERSION_NORMAL_UMC_CHIP_88C_B_CUT:
versionid = "NORMAL_UMC_CHIP_88C_B_CUT";
break;
case VERSION_TEST_CHIP_92C:
versionid = "TEST_CHIP_92C";
break;
case VERSION_TEST_CHIP_88C:
versionid = "TEST_CHIP_88C";
break;
default:
versionid = "UNKNOWN";
break;
}
rtl_dbg(rtlpriv, COMP_INIT, DBG_TRACE,
"Chip Version ID: %s\n", versionid);
if (IS_92C_SERIAL(rtlhal->version))
rtlphy->rf_type =
(IS_92C_1T2R(rtlhal->version)) ? RF_1T2R : RF_2T2R;
else
rtlphy->rf_type = RF_1T1R;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD,
"Chip RF Type: %s\n",
rtlphy->rf_type == RF_2T2R ? "RF_2T2R" : "RF_1T1R");
if (get_rf_type(rtlphy) == RF_1T1R)
rtlpriv->dm.rfpath_rxenable[0] = true;
else
rtlpriv->dm.rfpath_rxenable[0] =
rtlpriv->dm.rfpath_rxenable[1] = true;
rtl_dbg(rtlpriv, COMP_INIT, DBG_LOUD, "VersionID = 0x%4x\n",
rtlhal->version);
}
/**
* writeLLT - LLT table write access
* @io: io callback
* @address: LLT logical address.
* @data: LLT data content
*
* Realtek hardware access function.
*
*/
bool rtl92c_llt_write(struct ieee80211_hw *hw, u32 address, u32 data)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
bool status = true;
long count = 0;
u32 value = _LLT_INIT_ADDR(address) |
_LLT_INIT_DATA(data) | _LLT_OP(_LLT_WRITE_ACCESS);
rtl_write_dword(rtlpriv, REG_LLT_INIT, value);
do {
value = rtl_read_dword(rtlpriv, REG_LLT_INIT);
if (_LLT_NO_ACTIVE == _LLT_OP_VALUE(value))
break;
if (count > POLLING_LLT_THRESHOLD) {
pr_err("Failed to polling write LLT done at address %d! _LLT_OP_VALUE(%x)\n",
address, _LLT_OP_VALUE(value));
status = false;
break;
}
} while (++count);
return status;
}
/**
* rtl92c_init_LLT_table - Init LLT table
* @io: io callback
* @boundary:
*
* Realtek hardware access function.
*
*/
bool rtl92c_init_llt_table(struct ieee80211_hw *hw, u32 boundary)
{
bool rst = true;
u32 i;
for (i = 0; i < (boundary - 1); i++) {
rst = rtl92c_llt_write(hw, i , i + 1);
if (!rst) {
pr_err("===> %s #1 fail\n", __func__);
return rst;
}
}
/* end of list */
rst = rtl92c_llt_write(hw, (boundary - 1), 0xFF);
if (!rst) {
pr_err("===> %s #2 fail\n", __func__);
return rst;
}
/* Make the other pages as ring buffer
* This ring buffer is used as beacon buffer if we config this MAC
* as two MAC transfer.
* Otherwise used as local loopback buffer.
*/
for (i = boundary; i < LLT_LAST_ENTRY_OF_TX_PKT_BUFFER; i++) {
rst = rtl92c_llt_write(hw, i, (i + 1));
if (!rst) {
pr_err("===> %s #3 fail\n", __func__);
return rst;
}
}
/* Let last entry point to the start entry of ring buffer */
rst = rtl92c_llt_write(hw, LLT_LAST_ENTRY_OF_TX_PKT_BUFFER, boundary);
if (!rst) {
pr_err("===> %s #4 fail\n", __func__);
return rst;
}
return rst;
}
void rtl92c_set_key(struct ieee80211_hw *hw, u32 key_index,
u8 *p_macaddr, bool is_group, u8 enc_algo,
bool is_wepkey, bool clear_all)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
u8 *macaddr = p_macaddr;
u32 entry_id = 0;
bool is_pairwise = false;
static u8 cam_const_addr[4][6] = {
{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
};
static u8 cam_const_broad[] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};
if (clear_all) {
u8 idx = 0;
u8 cam_offset = 0;
u8 clear_number = 5;
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
for (idx = 0; idx < clear_number; idx++) {
rtl_cam_mark_invalid(hw, cam_offset + idx);
rtl_cam_empty_entry(hw, cam_offset + idx);
if (idx < 5) {
memset(rtlpriv->sec.key_buf[idx], 0,
MAX_KEY_LEN);
rtlpriv->sec.key_len[idx] = 0;
}
}
} else {
switch (enc_algo) {
case WEP40_ENCRYPTION:
enc_algo = CAM_WEP40;
break;
case WEP104_ENCRYPTION:
enc_algo = CAM_WEP104;
break;
case TKIP_ENCRYPTION:
enc_algo = CAM_TKIP;
break;
case AESCCMP_ENCRYPTION:
enc_algo = CAM_AES;
break;
default:
pr_err("illegal switch case\n");
enc_algo = CAM_TKIP;
break;
}
if (is_wepkey || rtlpriv->sec.use_defaultkey) {
macaddr = cam_const_addr[key_index];
entry_id = key_index;
} else {
if (is_group) {
macaddr = cam_const_broad;
entry_id = key_index;
} else {
if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_MESH_POINT) {
entry_id = rtl_cam_get_free_entry(hw,
p_macaddr);
if (entry_id >= TOTAL_CAM_ENTRY) {
pr_err("Can not find free hw security cam entry\n");
return;
}
} else {
entry_id = CAM_PAIRWISE_KEY_POSITION;
}
key_index = PAIRWISE_KEYIDX;
is_pairwise = true;
}
}
if (rtlpriv->sec.key_len[key_index] == 0) {
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"delete one entry\n");
if (mac->opmode == NL80211_IFTYPE_AP ||
mac->opmode == NL80211_IFTYPE_MESH_POINT)
rtl_cam_del_entry(hw, p_macaddr);
rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
} else {
rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
"The insert KEY length is %d\n",
rtlpriv->sec.key_len[PAIRWISE_KEYIDX]);
rtl_dbg(rtlpriv, COMP_SEC, DBG_LOUD,
"The insert KEY is %x %x\n",
rtlpriv->sec.key_buf[0][0],
rtlpriv->sec.key_buf[0][1]);
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"add one entry\n");
if (is_pairwise) {
RT_PRINT_DATA(rtlpriv, COMP_SEC, DBG_LOUD,
"Pairwise Key content",
rtlpriv->sec.pairwise_key,
rtlpriv->sec.
key_len[PAIRWISE_KEYIDX]);
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"set Pairwise key\n");
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.
key_buf[key_index]);
} else {
rtl_dbg(rtlpriv, COMP_SEC, DBG_DMESG,
"set group key\n");
if (mac->opmode == NL80211_IFTYPE_ADHOC) {
rtl_cam_add_one_entry(hw,
rtlefuse->dev_addr,
PAIRWISE_KEYIDX,
CAM_PAIRWISE_KEY_POSITION,
enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf
[entry_id]);
}
rtl_cam_add_one_entry(hw, macaddr, key_index,
entry_id, enc_algo,
CAM_CONFIG_NO_USEDK,
rtlpriv->sec.key_buf[entry_id]);
}
}
}
}
u32 rtl92c_get_txdma_status(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
return rtl_read_dword(rtlpriv, REG_TXDMA_STATUS);
}
void rtl92c_enable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
if (IS_HARDWARE_TYPE_8192CE(rtlpriv)) {
rtl_write_dword(rtlpriv, REG_HIMR, rtlpci->irq_mask[0] &
0xFFFFFFFF);
rtl_write_dword(rtlpriv, REG_HIMRE, rtlpci->irq_mask[1] &
0xFFFFFFFF);
} else {
rtl_write_dword(rtlpriv, REG_HIMR, rtlusb->irq_mask[0] &
0xFFFFFFFF);
rtl_write_dword(rtlpriv, REG_HIMRE, rtlusb->irq_mask[1] &
0xFFFFFFFF);
}
}
void rtl92c_init_interrupt(struct ieee80211_hw *hw)
{
rtl92c_enable_interrupt(hw);
}
void rtl92c_disable_interrupt(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_dword(rtlpriv, REG_HIMR, IMR8190_DISABLED);
rtl_write_dword(rtlpriv, REG_HIMRE, IMR8190_DISABLED);
}
void rtl92c_set_qos(struct ieee80211_hw *hw, int aci)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl92c_dm_init_edca_turbo(hw);
rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_AC_PARAM, (u8 *)&aci);
}
void rtl92c_init_driver_info_size(struct ieee80211_hw *hw, u8 size)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_byte(rtlpriv, REG_RX_DRVINFO_SZ, size);
}
int rtl92c_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
{
u8 value;
struct rtl_priv *rtlpriv = rtl_priv(hw);
switch (type) {
case NL80211_IFTYPE_UNSPECIFIED:
value = NT_NO_LINK;
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"Set Network type to NO LINK!\n");
break;
case NL80211_IFTYPE_ADHOC:
value = NT_LINK_AD_HOC;
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"Set Network type to Ad Hoc!\n");
break;
case NL80211_IFTYPE_STATION:
value = NT_LINK_AP;
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"Set Network type to STA!\n");
break;
case NL80211_IFTYPE_AP:
value = NT_AS_AP;
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"Set Network type to AP!\n");
break;
default:
rtl_dbg(rtlpriv, COMP_INIT, DBG_DMESG,
"Network type %d not supported!\n", type);
return -EOPNOTSUPP;
}
rtl_write_byte(rtlpriv, MSR, value);
return 0;
}
void rtl92c_init_network_type(struct ieee80211_hw *hw)
{
rtl92c_set_network_type(hw, NL80211_IFTYPE_UNSPECIFIED);
}
void rtl92c_init_adaptive_ctrl(struct ieee80211_hw *hw)
{
u16 value16;
u32 value32;
struct rtl_priv *rtlpriv = rtl_priv(hw);
/* Response Rate Set */
value32 = rtl_read_dword(rtlpriv, REG_RRSR);
value32 &= ~RATE_BITMAP_ALL;
value32 |= RATE_RRSR_CCK_ONLY_1M;
rtl_write_dword(rtlpriv, REG_RRSR, value32);
/* SIFS (used in NAV) */
value16 = _SPEC_SIFS_CCK(0x10) | _SPEC_SIFS_OFDM(0x10);
rtl_write_word(rtlpriv, REG_SPEC_SIFS, value16);
/* Retry Limit */
value16 = _LRL(0x30) | _SRL(0x30);
rtl_write_dword(rtlpriv, REG_RL, value16);
}
void rtl92c_init_rate_fallback(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
/* Set Data Auto Rate Fallback Retry Count register. */
rtl_write_dword(rtlpriv, REG_DARFRC, 0x00000000);
rtl_write_dword(rtlpriv, REG_DARFRC+4, 0x10080404);
rtl_write_dword(rtlpriv, REG_RARFRC, 0x04030201);
rtl_write_dword(rtlpriv, REG_RARFRC+4, 0x08070605);
}
static void rtl92c_set_cck_sifs(struct ieee80211_hw *hw, u8 trx_sifs,
u8 ctx_sifs)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_byte(rtlpriv, REG_SIFS_CCK, trx_sifs);
rtl_write_byte(rtlpriv, (REG_SIFS_CCK + 1), ctx_sifs);
}
static void rtl92c_set_ofdm_sifs(struct ieee80211_hw *hw, u8 trx_sifs,
u8 ctx_sifs)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_byte(rtlpriv, REG_SIFS_OFDM, trx_sifs);
rtl_write_byte(rtlpriv, (REG_SIFS_OFDM + 1), ctx_sifs);
}
void rtl92c_init_edca_param(struct ieee80211_hw *hw,
u16 queue, u16 txop, u8 cw_min, u8 cw_max, u8 aifs)
{
/* sequence: VO, VI, BE, BK ==> the same as 92C hardware design.
* referenc : enum nl80211_txq_q or ieee80211_set_wmm_default function.
*/
u32 value;
struct rtl_priv *rtlpriv = rtl_priv(hw);
value = (u32)aifs;
value |= ((u32)cw_min & 0xF) << 8;
value |= ((u32)cw_max & 0xF) << 12;
value |= (u32)txop << 16;
/* 92C hardware register sequence is the same as queue number. */
rtl_write_dword(rtlpriv, (REG_EDCA_VO_PARAM + (queue * 4)), value);
}
void rtl92c_init_edca(struct ieee80211_hw *hw)
{
u16 value16;
struct rtl_priv *rtlpriv = rtl_priv(hw);
/* disable EDCCA count down, to reduce collison and retry */
value16 = rtl_read_word(rtlpriv, REG_RD_CTRL);
value16 |= DIS_EDCA_CNT_DWN;
rtl_write_word(rtlpriv, REG_RD_CTRL, value16);
/* Update SIFS timing. ??????????
* pHalData->SifsTime = 0x0e0e0a0a; */
rtl92c_set_cck_sifs(hw, 0xa, 0xa);
rtl92c_set_ofdm_sifs(hw, 0xe, 0xe);
/* Set CCK/OFDM SIFS to be 10us. */
rtl_write_word(rtlpriv, REG_SIFS_CCK, 0x0a0a);
rtl_write_word(rtlpriv, REG_SIFS_OFDM, 0x1010);
rtl_write_word(rtlpriv, REG_PROT_MODE_CTRL, 0x0204);
rtl_write_dword(rtlpriv, REG_BAR_MODE_CTRL, 0x014004);
/* TXOP */
rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM, 0x005EA42B);
rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM, 0x0000A44F);
rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM, 0x005EA324);
rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM, 0x002FA226);
/* PIFS */
rtl_write_byte(rtlpriv, REG_PIFS, 0x1C);
/* AGGR BREAK TIME Register */
rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
rtl_write_word(rtlpriv, REG_NAV_PROT_LEN, 0x0040);
rtl_write_byte(rtlpriv, REG_BCNDMATIM, 0x02);
rtl_write_byte(rtlpriv, REG_ATIMWND, 0x02);
}
void rtl92c_init_ampdu_aggregation(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_dword(rtlpriv, REG_AGGLEN_LMT, 0x99997631);
rtl_write_byte(rtlpriv, REG_AGGR_BREAK_TIME, 0x16);
/* init AMPDU aggregation number, tuning for Tx's TP, */
rtl_write_word(rtlpriv, 0x4CA, 0x0708);
}
void rtl92c_init_beacon_max_error(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xFF);
}
void rtl92c_init_rdg_setting(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_byte(rtlpriv, REG_RD_CTRL, 0xFF);
rtl_write_word(rtlpriv, REG_RD_NAV_NXT, 0x200);
rtl_write_byte(rtlpriv, REG_RD_RESP_PKT_TH, 0x05);
}
void rtl92c_init_retry_function(struct ieee80211_hw *hw)
{
u8 value8;
struct rtl_priv *rtlpriv = rtl_priv(hw);
value8 = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL);
value8 |= EN_AMPDU_RTY_NEW;
rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL, value8);
/* Set ACK timeout */
rtl_write_byte(rtlpriv, REG_ACKTO, 0x40);
}
void rtl92c_disable_fast_edca(struct ieee80211_hw *hw)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
rtl_write_word(rtlpriv, REG_FAST_EDCA_CTRL, 0);
}
void rtl92c_set_min_space(struct ieee80211_hw *hw, bool is2T)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
u8 value = is2T ? MAX_MSS_DENSITY_2T : MAX_MSS_DENSITY_1T;
rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE, value);
}
/*==============================================================*/
static void _rtl92c_query_rxphystatus(struct ieee80211_hw *hw,
struct rtl_stats *pstats,
struct rx_desc_92c *p_desc,
struct rx_fwinfo_92c *p_drvinfo,
bool packet_match_bssid,
bool packet_toself,
bool packet_beacon)
{
struct rtl_priv *rtlpriv = rtl_priv(hw);
struct rtl_phy *rtlphy = &(rtlpriv->phy);
struct phy_sts_cck_8192s_t *cck_buf;
s8 rx_pwr_all = 0, rx_pwr[4];
u8 rf_rx_num = 0, evm, pwdb_all;
u8 i, max_spatial_stream;
u32 rssi, total_rssi = 0;
bool in_powersavemode = false;
bool is_cck_rate;
__le32 *pdesc = (__le32 *)p_desc;
is_cck_rate = RX_HAL_IS_CCK_RATE(p_desc->rxmcs);
pstats->packet_matchbssid = packet_match_bssid;
pstats->packet_toself = packet_toself;
pstats->packet_beacon = packet_beacon;
pstats->is_cck = is_cck_rate;
pstats->RX_SIGQ[0] = -1;
pstats->RX_SIGQ[1] = -1;
if (is_cck_rate) {
u8 report, cck_highpwr;
cck_buf = (struct phy_sts_cck_8192s_t *)p_drvinfo;
if (!in_powersavemode)
cck_highpwr = rtlphy->cck_high_power;
else
cck_highpwr = false;
if (!cck_highpwr) {
u8 cck_agc_rpt = cck_buf->cck_agc_rpt;
report = cck_buf->cck_agc_rpt & 0xc0;
report = report >> 6;
switch (report) {
case 0x3:
rx_pwr_all = -46 - (cck_agc_rpt & 0x3e);
break;
case 0x2:
rx_pwr_all = -26 - (cck_agc_rpt & 0x3e);
break;
case 0x1:
rx_pwr_all = -12 - (cck_agc_rpt & 0x3e);
break;
case 0x0:
rx_pwr_all = 16 - (cck_agc_rpt & 0x3e);
break;
}
} else {
u8 cck_agc_rpt = cck_buf->cck_agc_rpt;
report = p_drvinfo->cfosho[0] & 0x60;
report = report >> 5;
switch (report) {
case 0x3:
rx_pwr_all = -46 - ((cck_agc_rpt & 0x1f) << 1);
break;
case 0x2:
rx_pwr_all = -26 - ((cck_agc_rpt & 0x1f) << 1);
break;
case 0x1:
rx_pwr_all = -12 - ((cck_agc_rpt & 0x1f) << 1);
break;
case 0x0:
rx_pwr_all = 16 - ((cck_agc_rpt & 0x1f) << 1);
break;
}
}
pwdb_all = rtl_query_rxpwrpercentage(rx_pwr_all);
pstats->rx_pwdb_all = pwdb_all;
pstats->recvsignalpower = rx_pwr_all;
if (packet_match_bssid) {
u8 sq;
if (pstats->rx_pwdb_all > 40)
sq = 100;
else {
sq = cck_buf->sq_rpt;
if (sq > 64)
sq = 0;
else if (sq < 20)
sq = 100;
else
sq = ((64 - sq) * 100) / 44;
}
pstats->signalquality = sq;
pstats->RX_SIGQ[0] = sq;
pstats->RX_SIGQ[1] = -1;
}
} else {
rtlpriv->dm.rfpath_rxenable[0] =
rtlpriv->dm.rfpath_rxenable[1] = true;
for (i = RF90_PATH_A; i < RF90_PATH_MAX; i++) {
if (rtlpriv->dm.rfpath_rxenable[i])
rf_rx_num++;
rx_pwr[i] =
((p_drvinfo->gain_trsw[i] & 0x3f) * 2) - 110;
rssi = rtl_query_rxpwrpercentage(rx_pwr[i]);
total_rssi += rssi;
rtlpriv->stats.rx_snr_db[i] =
(long)(p_drvinfo->rxsnr[i] / 2);
if (packet_match_bssid)
pstats->rx_mimo_signalstrength[i] = (u8) rssi;
}
rx_pwr_all = ((p_drvinfo->pwdb_all >> 1) & 0x7f) - 110;
pwdb_all = rtl_query_rxpwrpercentage(rx_pwr_all);
pstats->rx_pwdb_all = pwdb_all;
pstats->rxpower = rx_pwr_all;
pstats->recvsignalpower = rx_pwr_all;
if (get_rx_desc_rx_mcs(pdesc) &&
get_rx_desc_rx_mcs(pdesc) >= DESC_RATEMCS8 &&
get_rx_desc_rx_mcs(pdesc) <= DESC_RATEMCS15)
max_spatial_stream = 2;
else
max_spatial_stream = 1;
for (i = 0; i < max_spatial_stream; i++) {
evm = rtl_evm_db_to_percentage(p_drvinfo->rxevm[i]);
if (packet_match_bssid) {
if (i == 0)
pstats->signalquality =
(u8) (evm & 0xff);
pstats->RX_SIGQ[i] =
(u8) (evm & 0xff);
}
}
}
if (is_cck_rate)
pstats->signalstrength =
(u8)(rtl_signal_scale_mapping(hw, pwdb_all));
else if (rf_rx_num != 0)
pstats->signalstrength =
(u8)(rtl_signal_scale_mapping(hw, total_rssi /= rf_rx_num));
}
void rtl92c_translate_rx_signal_stuff(struct ieee80211_hw *hw,
struct sk_buff *skb,
struct rtl_stats *pstats,
struct rx_desc_92c *pdesc,
struct rx_fwinfo_92c *p_drvinfo)
{
struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
struct ieee80211_hdr *hdr;
u8 *tmp_buf;
u8 *praddr;
__le16 fc;
u16 type, cpu_fc;
bool packet_matchbssid, packet_toself, packet_beacon = false;
tmp_buf = skb->data + pstats->rx_drvinfo_size + pstats->rx_bufshift;
hdr = (struct ieee80211_hdr *)tmp_buf;
fc = hdr->frame_control;
cpu_fc = le16_to_cpu(fc);
type = WLAN_FC_GET_TYPE(fc);
praddr = hdr->addr1;
packet_matchbssid =
((IEEE80211_FTYPE_CTL != type) &&
ether_addr_equal(mac->bssid,
(cpu_fc & IEEE80211_FCTL_TODS) ? hdr->addr1 :
(cpu_fc & IEEE80211_FCTL_FROMDS) ? hdr->addr2 :
hdr->addr3) &&
(!pstats->hwerror) && (!pstats->crc) && (!pstats->icv));
packet_toself = packet_matchbssid &&
ether_addr_equal(praddr, rtlefuse->dev_addr);
if (ieee80211_is_beacon(fc))
packet_beacon = true;
_rtl92c_query_rxphystatus(hw, pstats, pdesc, p_drvinfo,
packet_matchbssid, packet_toself,
packet_beacon);
rtl_process_phyinfo(hw, tmp_buf, pstats);
}