| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * INET An implementation of the TCP/IP protocol suite for the LINUX |
| * operating system. INET is implemented using the BSD Socket |
| * interface as the means of communication with the user level. |
| * |
| * Implementation of the Transmission Control Protocol(TCP). |
| * |
| * IPv4 specific functions |
| * |
| * code split from: |
| * linux/ipv4/tcp.c |
| * linux/ipv4/tcp_input.c |
| * linux/ipv4/tcp_output.c |
| * |
| * See tcp.c for author information |
| */ |
| |
| /* |
| * Changes: |
| * David S. Miller : New socket lookup architecture. |
| * This code is dedicated to John Dyson. |
| * David S. Miller : Change semantics of established hash, |
| * half is devoted to TIME_WAIT sockets |
| * and the rest go in the other half. |
| * Andi Kleen : Add support for syncookies and fixed |
| * some bugs: ip options weren't passed to |
| * the TCP layer, missed a check for an |
| * ACK bit. |
| * Andi Kleen : Implemented fast path mtu discovery. |
| * Fixed many serious bugs in the |
| * request_sock handling and moved |
| * most of it into the af independent code. |
| * Added tail drop and some other bugfixes. |
| * Added new listen semantics. |
| * Mike McLagan : Routing by source |
| * Juan Jose Ciarlante: ip_dynaddr bits |
| * Andi Kleen: various fixes. |
| * Vitaly E. Lavrov : Transparent proxy revived after year |
| * coma. |
| * Andi Kleen : Fix new listen. |
| * Andi Kleen : Fix accept error reporting. |
| * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which |
| * Alexey Kuznetsov allow both IPv4 and IPv6 sockets to bind |
| * a single port at the same time. |
| */ |
| |
| #define pr_fmt(fmt) "TCP: " fmt |
| |
| #include <linux/bottom_half.h> |
| #include <linux/types.h> |
| #include <linux/fcntl.h> |
| #include <linux/module.h> |
| #include <linux/random.h> |
| #include <linux/cache.h> |
| #include <linux/jhash.h> |
| #include <linux/init.h> |
| #include <linux/times.h> |
| #include <linux/slab.h> |
| |
| #include <net/net_namespace.h> |
| #include <net/icmp.h> |
| #include <net/inet_hashtables.h> |
| #include <net/tcp.h> |
| #include <net/transp_v6.h> |
| #include <net/ipv6.h> |
| #include <net/inet_common.h> |
| #include <net/timewait_sock.h> |
| #include <net/xfrm.h> |
| #include <net/secure_seq.h> |
| #include <net/busy_poll.h> |
| |
| #include <linux/inet.h> |
| #include <linux/ipv6.h> |
| #include <linux/stddef.h> |
| #include <linux/proc_fs.h> |
| #include <linux/seq_file.h> |
| #include <linux/inetdevice.h> |
| #include <linux/btf_ids.h> |
| |
| #include <crypto/hash.h> |
| #include <linux/scatterlist.h> |
| |
| #include <trace/events/tcp.h> |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, |
| __be32 daddr, __be32 saddr, const struct tcphdr *th); |
| #endif |
| |
| struct inet_hashinfo tcp_hashinfo; |
| EXPORT_SYMBOL(tcp_hashinfo); |
| |
| static u32 tcp_v4_init_seq(const struct sk_buff *skb) |
| { |
| return secure_tcp_seq(ip_hdr(skb)->daddr, |
| ip_hdr(skb)->saddr, |
| tcp_hdr(skb)->dest, |
| tcp_hdr(skb)->source); |
| } |
| |
| static u32 tcp_v4_init_ts_off(const struct net *net, const struct sk_buff *skb) |
| { |
| return secure_tcp_ts_off(net, ip_hdr(skb)->daddr, ip_hdr(skb)->saddr); |
| } |
| |
| int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp) |
| { |
| const struct inet_timewait_sock *tw = inet_twsk(sktw); |
| const struct tcp_timewait_sock *tcptw = tcp_twsk(sktw); |
| struct tcp_sock *tp = tcp_sk(sk); |
| int reuse = sock_net(sk)->ipv4.sysctl_tcp_tw_reuse; |
| |
| if (reuse == 2) { |
| /* Still does not detect *everything* that goes through |
| * lo, since we require a loopback src or dst address |
| * or direct binding to 'lo' interface. |
| */ |
| bool loopback = false; |
| if (tw->tw_bound_dev_if == LOOPBACK_IFINDEX) |
| loopback = true; |
| #if IS_ENABLED(CONFIG_IPV6) |
| if (tw->tw_family == AF_INET6) { |
| if (ipv6_addr_loopback(&tw->tw_v6_daddr) || |
| ipv6_addr_v4mapped_loopback(&tw->tw_v6_daddr) || |
| ipv6_addr_loopback(&tw->tw_v6_rcv_saddr) || |
| ipv6_addr_v4mapped_loopback(&tw->tw_v6_rcv_saddr)) |
| loopback = true; |
| } else |
| #endif |
| { |
| if (ipv4_is_loopback(tw->tw_daddr) || |
| ipv4_is_loopback(tw->tw_rcv_saddr)) |
| loopback = true; |
| } |
| if (!loopback) |
| reuse = 0; |
| } |
| |
| /* With PAWS, it is safe from the viewpoint |
| of data integrity. Even without PAWS it is safe provided sequence |
| spaces do not overlap i.e. at data rates <= 80Mbit/sec. |
| |
| Actually, the idea is close to VJ's one, only timestamp cache is |
| held not per host, but per port pair and TW bucket is used as state |
| holder. |
| |
| If TW bucket has been already destroyed we fall back to VJ's scheme |
| and use initial timestamp retrieved from peer table. |
| */ |
| if (tcptw->tw_ts_recent_stamp && |
| (!twp || (reuse && time_after32(ktime_get_seconds(), |
| tcptw->tw_ts_recent_stamp)))) { |
| /* In case of repair and re-using TIME-WAIT sockets we still |
| * want to be sure that it is safe as above but honor the |
| * sequence numbers and time stamps set as part of the repair |
| * process. |
| * |
| * Without this check re-using a TIME-WAIT socket with TCP |
| * repair would accumulate a -1 on the repair assigned |
| * sequence number. The first time it is reused the sequence |
| * is -1, the second time -2, etc. This fixes that issue |
| * without appearing to create any others. |
| */ |
| if (likely(!tp->repair)) { |
| u32 seq = tcptw->tw_snd_nxt + 65535 + 2; |
| |
| if (!seq) |
| seq = 1; |
| WRITE_ONCE(tp->write_seq, seq); |
| tp->rx_opt.ts_recent = tcptw->tw_ts_recent; |
| tp->rx_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp; |
| } |
| sock_hold(sktw); |
| return 1; |
| } |
| |
| return 0; |
| } |
| EXPORT_SYMBOL_GPL(tcp_twsk_unique); |
| |
| static int tcp_v4_pre_connect(struct sock *sk, struct sockaddr *uaddr, |
| int addr_len) |
| { |
| /* This check is replicated from tcp_v4_connect() and intended to |
| * prevent BPF program called below from accessing bytes that are out |
| * of the bound specified by user in addr_len. |
| */ |
| if (addr_len < sizeof(struct sockaddr_in)) |
| return -EINVAL; |
| |
| sock_owned_by_me(sk); |
| |
| return BPF_CGROUP_RUN_PROG_INET4_CONNECT(sk, uaddr); |
| } |
| |
| /* This will initiate an outgoing connection. */ |
| int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len) |
| { |
| struct sockaddr_in *usin = (struct sockaddr_in *)uaddr; |
| struct inet_sock *inet = inet_sk(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| __be16 orig_sport, orig_dport; |
| __be32 daddr, nexthop; |
| struct flowi4 *fl4; |
| struct rtable *rt; |
| int err; |
| struct ip_options_rcu *inet_opt; |
| struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row; |
| |
| if (addr_len < sizeof(struct sockaddr_in)) |
| return -EINVAL; |
| |
| if (usin->sin_family != AF_INET) |
| return -EAFNOSUPPORT; |
| |
| nexthop = daddr = usin->sin_addr.s_addr; |
| inet_opt = rcu_dereference_protected(inet->inet_opt, |
| lockdep_sock_is_held(sk)); |
| if (inet_opt && inet_opt->opt.srr) { |
| if (!daddr) |
| return -EINVAL; |
| nexthop = inet_opt->opt.faddr; |
| } |
| |
| orig_sport = inet->inet_sport; |
| orig_dport = usin->sin_port; |
| fl4 = &inet->cork.fl.u.ip4; |
| rt = ip_route_connect(fl4, nexthop, inet->inet_saddr, |
| RT_CONN_FLAGS(sk), sk->sk_bound_dev_if, |
| IPPROTO_TCP, |
| orig_sport, orig_dport, sk); |
| if (IS_ERR(rt)) { |
| err = PTR_ERR(rt); |
| if (err == -ENETUNREACH) |
| IP_INC_STATS(sock_net(sk), IPSTATS_MIB_OUTNOROUTES); |
| return err; |
| } |
| |
| if (rt->rt_flags & (RTCF_MULTICAST | RTCF_BROADCAST)) { |
| ip_rt_put(rt); |
| return -ENETUNREACH; |
| } |
| |
| if (!inet_opt || !inet_opt->opt.srr) |
| daddr = fl4->daddr; |
| |
| if (!inet->inet_saddr) |
| inet->inet_saddr = fl4->saddr; |
| sk_rcv_saddr_set(sk, inet->inet_saddr); |
| |
| if (tp->rx_opt.ts_recent_stamp && inet->inet_daddr != daddr) { |
| /* Reset inherited state */ |
| tp->rx_opt.ts_recent = 0; |
| tp->rx_opt.ts_recent_stamp = 0; |
| if (likely(!tp->repair)) |
| WRITE_ONCE(tp->write_seq, 0); |
| } |
| |
| inet->inet_dport = usin->sin_port; |
| sk_daddr_set(sk, daddr); |
| |
| inet_csk(sk)->icsk_ext_hdr_len = 0; |
| if (inet_opt) |
| inet_csk(sk)->icsk_ext_hdr_len = inet_opt->opt.optlen; |
| |
| tp->rx_opt.mss_clamp = TCP_MSS_DEFAULT; |
| |
| /* Socket identity is still unknown (sport may be zero). |
| * However we set state to SYN-SENT and not releasing socket |
| * lock select source port, enter ourselves into the hash tables and |
| * complete initialization after this. |
| */ |
| tcp_set_state(sk, TCP_SYN_SENT); |
| err = inet_hash_connect(tcp_death_row, sk); |
| if (err) |
| goto failure; |
| |
| sk_set_txhash(sk); |
| |
| rt = ip_route_newports(fl4, rt, orig_sport, orig_dport, |
| inet->inet_sport, inet->inet_dport, sk); |
| if (IS_ERR(rt)) { |
| err = PTR_ERR(rt); |
| rt = NULL; |
| goto failure; |
| } |
| /* OK, now commit destination to socket. */ |
| sk->sk_gso_type = SKB_GSO_TCPV4; |
| sk_setup_caps(sk, &rt->dst); |
| rt = NULL; |
| |
| if (likely(!tp->repair)) { |
| if (!tp->write_seq) |
| WRITE_ONCE(tp->write_seq, |
| secure_tcp_seq(inet->inet_saddr, |
| inet->inet_daddr, |
| inet->inet_sport, |
| usin->sin_port)); |
| tp->tsoffset = secure_tcp_ts_off(sock_net(sk), |
| inet->inet_saddr, |
| inet->inet_daddr); |
| } |
| |
| inet->inet_id = prandom_u32(); |
| |
| if (tcp_fastopen_defer_connect(sk, &err)) |
| return err; |
| if (err) |
| goto failure; |
| |
| err = tcp_connect(sk); |
| |
| if (err) |
| goto failure; |
| |
| return 0; |
| |
| failure: |
| /* |
| * This unhashes the socket and releases the local port, |
| * if necessary. |
| */ |
| tcp_set_state(sk, TCP_CLOSE); |
| ip_rt_put(rt); |
| sk->sk_route_caps = 0; |
| inet->inet_dport = 0; |
| return err; |
| } |
| EXPORT_SYMBOL(tcp_v4_connect); |
| |
| /* |
| * This routine reacts to ICMP_FRAG_NEEDED mtu indications as defined in RFC1191. |
| * It can be called through tcp_release_cb() if socket was owned by user |
| * at the time tcp_v4_err() was called to handle ICMP message. |
| */ |
| void tcp_v4_mtu_reduced(struct sock *sk) |
| { |
| struct inet_sock *inet = inet_sk(sk); |
| struct dst_entry *dst; |
| u32 mtu; |
| |
| if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE)) |
| return; |
| mtu = READ_ONCE(tcp_sk(sk)->mtu_info); |
| dst = inet_csk_update_pmtu(sk, mtu); |
| if (!dst) |
| return; |
| |
| /* Something is about to be wrong... Remember soft error |
| * for the case, if this connection will not able to recover. |
| */ |
| if (mtu < dst_mtu(dst) && ip_dont_fragment(sk, dst)) |
| sk->sk_err_soft = EMSGSIZE; |
| |
| mtu = dst_mtu(dst); |
| |
| if (inet->pmtudisc != IP_PMTUDISC_DONT && |
| ip_sk_accept_pmtu(sk) && |
| inet_csk(sk)->icsk_pmtu_cookie > mtu) { |
| tcp_sync_mss(sk, mtu); |
| |
| /* Resend the TCP packet because it's |
| * clear that the old packet has been |
| * dropped. This is the new "fast" path mtu |
| * discovery. |
| */ |
| tcp_simple_retransmit(sk); |
| } /* else let the usual retransmit timer handle it */ |
| } |
| EXPORT_SYMBOL(tcp_v4_mtu_reduced); |
| |
| static void do_redirect(struct sk_buff *skb, struct sock *sk) |
| { |
| struct dst_entry *dst = __sk_dst_check(sk, 0); |
| |
| if (dst) |
| dst->ops->redirect(dst, sk, skb); |
| } |
| |
| |
| /* handle ICMP messages on TCP_NEW_SYN_RECV request sockets */ |
| void tcp_req_err(struct sock *sk, u32 seq, bool abort) |
| { |
| struct request_sock *req = inet_reqsk(sk); |
| struct net *net = sock_net(sk); |
| |
| /* ICMPs are not backlogged, hence we cannot get |
| * an established socket here. |
| */ |
| if (seq != tcp_rsk(req)->snt_isn) { |
| __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); |
| } else if (abort) { |
| /* |
| * Still in SYN_RECV, just remove it silently. |
| * There is no good way to pass the error to the newly |
| * created socket, and POSIX does not want network |
| * errors returned from accept(). |
| */ |
| inet_csk_reqsk_queue_drop(req->rsk_listener, req); |
| tcp_listendrop(req->rsk_listener); |
| } |
| reqsk_put(req); |
| } |
| EXPORT_SYMBOL(tcp_req_err); |
| |
| /* TCP-LD (RFC 6069) logic */ |
| void tcp_ld_RTO_revert(struct sock *sk, u32 seq) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct sk_buff *skb; |
| s32 remaining; |
| u32 delta_us; |
| |
| if (sock_owned_by_user(sk)) |
| return; |
| |
| if (seq != tp->snd_una || !icsk->icsk_retransmits || |
| !icsk->icsk_backoff) |
| return; |
| |
| skb = tcp_rtx_queue_head(sk); |
| if (WARN_ON_ONCE(!skb)) |
| return; |
| |
| icsk->icsk_backoff--; |
| icsk->icsk_rto = tp->srtt_us ? __tcp_set_rto(tp) : TCP_TIMEOUT_INIT; |
| icsk->icsk_rto = inet_csk_rto_backoff(icsk, TCP_RTO_MAX); |
| |
| tcp_mstamp_refresh(tp); |
| delta_us = (u32)(tp->tcp_mstamp - tcp_skb_timestamp_us(skb)); |
| remaining = icsk->icsk_rto - usecs_to_jiffies(delta_us); |
| |
| if (remaining > 0) { |
| inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, |
| remaining, TCP_RTO_MAX); |
| } else { |
| /* RTO revert clocked out retransmission. |
| * Will retransmit now. |
| */ |
| tcp_retransmit_timer(sk); |
| } |
| } |
| EXPORT_SYMBOL(tcp_ld_RTO_revert); |
| |
| /* |
| * This routine is called by the ICMP module when it gets some |
| * sort of error condition. If err < 0 then the socket should |
| * be closed and the error returned to the user. If err > 0 |
| * it's just the icmp type << 8 | icmp code. After adjustment |
| * header points to the first 8 bytes of the tcp header. We need |
| * to find the appropriate port. |
| * |
| * The locking strategy used here is very "optimistic". When |
| * someone else accesses the socket the ICMP is just dropped |
| * and for some paths there is no check at all. |
| * A more general error queue to queue errors for later handling |
| * is probably better. |
| * |
| */ |
| |
| int tcp_v4_err(struct sk_buff *skb, u32 info) |
| { |
| const struct iphdr *iph = (const struct iphdr *)skb->data; |
| struct tcphdr *th = (struct tcphdr *)(skb->data + (iph->ihl << 2)); |
| struct tcp_sock *tp; |
| struct inet_sock *inet; |
| const int type = icmp_hdr(skb)->type; |
| const int code = icmp_hdr(skb)->code; |
| struct sock *sk; |
| struct request_sock *fastopen; |
| u32 seq, snd_una; |
| int err; |
| struct net *net = dev_net(skb->dev); |
| |
| sk = __inet_lookup_established(net, &tcp_hashinfo, iph->daddr, |
| th->dest, iph->saddr, ntohs(th->source), |
| inet_iif(skb), 0); |
| if (!sk) { |
| __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); |
| return -ENOENT; |
| } |
| if (sk->sk_state == TCP_TIME_WAIT) { |
| inet_twsk_put(inet_twsk(sk)); |
| return 0; |
| } |
| seq = ntohl(th->seq); |
| if (sk->sk_state == TCP_NEW_SYN_RECV) { |
| tcp_req_err(sk, seq, type == ICMP_PARAMETERPROB || |
| type == ICMP_TIME_EXCEEDED || |
| (type == ICMP_DEST_UNREACH && |
| (code == ICMP_NET_UNREACH || |
| code == ICMP_HOST_UNREACH))); |
| return 0; |
| } |
| |
| bh_lock_sock(sk); |
| /* If too many ICMPs get dropped on busy |
| * servers this needs to be solved differently. |
| * We do take care of PMTU discovery (RFC1191) special case : |
| * we can receive locally generated ICMP messages while socket is held. |
| */ |
| if (sock_owned_by_user(sk)) { |
| if (!(type == ICMP_DEST_UNREACH && code == ICMP_FRAG_NEEDED)) |
| __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); |
| } |
| if (sk->sk_state == TCP_CLOSE) |
| goto out; |
| |
| if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { |
| __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); |
| goto out; |
| } |
| |
| tp = tcp_sk(sk); |
| /* XXX (TFO) - tp->snd_una should be ISN (tcp_create_openreq_child() */ |
| fastopen = rcu_dereference(tp->fastopen_rsk); |
| snd_una = fastopen ? tcp_rsk(fastopen)->snt_isn : tp->snd_una; |
| if (sk->sk_state != TCP_LISTEN && |
| !between(seq, snd_una, tp->snd_nxt)) { |
| __NET_INC_STATS(net, LINUX_MIB_OUTOFWINDOWICMPS); |
| goto out; |
| } |
| |
| switch (type) { |
| case ICMP_REDIRECT: |
| if (!sock_owned_by_user(sk)) |
| do_redirect(skb, sk); |
| goto out; |
| case ICMP_SOURCE_QUENCH: |
| /* Just silently ignore these. */ |
| goto out; |
| case ICMP_PARAMETERPROB: |
| err = EPROTO; |
| break; |
| case ICMP_DEST_UNREACH: |
| if (code > NR_ICMP_UNREACH) |
| goto out; |
| |
| if (code == ICMP_FRAG_NEEDED) { /* PMTU discovery (RFC1191) */ |
| /* We are not interested in TCP_LISTEN and open_requests |
| * (SYN-ACKs send out by Linux are always <576bytes so |
| * they should go through unfragmented). |
| */ |
| if (sk->sk_state == TCP_LISTEN) |
| goto out; |
| |
| WRITE_ONCE(tp->mtu_info, info); |
| if (!sock_owned_by_user(sk)) { |
| tcp_v4_mtu_reduced(sk); |
| } else { |
| if (!test_and_set_bit(TCP_MTU_REDUCED_DEFERRED, &sk->sk_tsq_flags)) |
| sock_hold(sk); |
| } |
| goto out; |
| } |
| |
| err = icmp_err_convert[code].errno; |
| /* check if this ICMP message allows revert of backoff. |
| * (see RFC 6069) |
| */ |
| if (!fastopen && |
| (code == ICMP_NET_UNREACH || code == ICMP_HOST_UNREACH)) |
| tcp_ld_RTO_revert(sk, seq); |
| break; |
| case ICMP_TIME_EXCEEDED: |
| err = EHOSTUNREACH; |
| break; |
| default: |
| goto out; |
| } |
| |
| switch (sk->sk_state) { |
| case TCP_SYN_SENT: |
| case TCP_SYN_RECV: |
| /* Only in fast or simultaneous open. If a fast open socket is |
| * already accepted it is treated as a connected one below. |
| */ |
| if (fastopen && !fastopen->sk) |
| break; |
| |
| ip_icmp_error(sk, skb, err, th->dest, info, (u8 *)th); |
| |
| if (!sock_owned_by_user(sk)) { |
| sk->sk_err = err; |
| |
| sk->sk_error_report(sk); |
| |
| tcp_done(sk); |
| } else { |
| sk->sk_err_soft = err; |
| } |
| goto out; |
| } |
| |
| /* If we've already connected we will keep trying |
| * until we time out, or the user gives up. |
| * |
| * rfc1122 4.2.3.9 allows to consider as hard errors |
| * only PROTO_UNREACH and PORT_UNREACH (well, FRAG_FAILED too, |
| * but it is obsoleted by pmtu discovery). |
| * |
| * Note, that in modern internet, where routing is unreliable |
| * and in each dark corner broken firewalls sit, sending random |
| * errors ordered by their masters even this two messages finally lose |
| * their original sense (even Linux sends invalid PORT_UNREACHs) |
| * |
| * Now we are in compliance with RFCs. |
| * --ANK (980905) |
| */ |
| |
| inet = inet_sk(sk); |
| if (!sock_owned_by_user(sk) && inet->recverr) { |
| sk->sk_err = err; |
| sk->sk_error_report(sk); |
| } else { /* Only an error on timeout */ |
| sk->sk_err_soft = err; |
| } |
| |
| out: |
| bh_unlock_sock(sk); |
| sock_put(sk); |
| return 0; |
| } |
| |
| void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr) |
| { |
| struct tcphdr *th = tcp_hdr(skb); |
| |
| th->check = ~tcp_v4_check(skb->len, saddr, daddr, 0); |
| skb->csum_start = skb_transport_header(skb) - skb->head; |
| skb->csum_offset = offsetof(struct tcphdr, check); |
| } |
| |
| /* This routine computes an IPv4 TCP checksum. */ |
| void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb) |
| { |
| const struct inet_sock *inet = inet_sk(sk); |
| |
| __tcp_v4_send_check(skb, inet->inet_saddr, inet->inet_daddr); |
| } |
| EXPORT_SYMBOL(tcp_v4_send_check); |
| |
| /* |
| * This routine will send an RST to the other tcp. |
| * |
| * Someone asks: why I NEVER use socket parameters (TOS, TTL etc.) |
| * for reset. |
| * Answer: if a packet caused RST, it is not for a socket |
| * existing in our system, if it is matched to a socket, |
| * it is just duplicate segment or bug in other side's TCP. |
| * So that we build reply only basing on parameters |
| * arrived with segment. |
| * Exception: precedence violation. We do not implement it in any case. |
| */ |
| |
| static void tcp_v4_send_reset(const struct sock *sk, struct sk_buff *skb) |
| { |
| const struct tcphdr *th = tcp_hdr(skb); |
| struct { |
| struct tcphdr th; |
| #ifdef CONFIG_TCP_MD5SIG |
| __be32 opt[(TCPOLEN_MD5SIG_ALIGNED >> 2)]; |
| #endif |
| } rep; |
| struct ip_reply_arg arg; |
| #ifdef CONFIG_TCP_MD5SIG |
| struct tcp_md5sig_key *key = NULL; |
| const __u8 *hash_location = NULL; |
| unsigned char newhash[16]; |
| int genhash; |
| struct sock *sk1 = NULL; |
| #endif |
| u64 transmit_time = 0; |
| struct sock *ctl_sk; |
| struct net *net; |
| |
| /* Never send a reset in response to a reset. */ |
| if (th->rst) |
| return; |
| |
| /* If sk not NULL, it means we did a successful lookup and incoming |
| * route had to be correct. prequeue might have dropped our dst. |
| */ |
| if (!sk && skb_rtable(skb)->rt_type != RTN_LOCAL) |
| return; |
| |
| /* Swap the send and the receive. */ |
| memset(&rep, 0, sizeof(rep)); |
| rep.th.dest = th->source; |
| rep.th.source = th->dest; |
| rep.th.doff = sizeof(struct tcphdr) / 4; |
| rep.th.rst = 1; |
| |
| if (th->ack) { |
| rep.th.seq = th->ack_seq; |
| } else { |
| rep.th.ack = 1; |
| rep.th.ack_seq = htonl(ntohl(th->seq) + th->syn + th->fin + |
| skb->len - (th->doff << 2)); |
| } |
| |
| memset(&arg, 0, sizeof(arg)); |
| arg.iov[0].iov_base = (unsigned char *)&rep; |
| arg.iov[0].iov_len = sizeof(rep.th); |
| |
| net = sk ? sock_net(sk) : dev_net(skb_dst(skb)->dev); |
| #ifdef CONFIG_TCP_MD5SIG |
| rcu_read_lock(); |
| hash_location = tcp_parse_md5sig_option(th); |
| if (sk && sk_fullsock(sk)) { |
| const union tcp_md5_addr *addr; |
| int l3index; |
| |
| /* sdif set, means packet ingressed via a device |
| * in an L3 domain and inet_iif is set to it. |
| */ |
| l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; |
| addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; |
| key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); |
| } else if (hash_location) { |
| const union tcp_md5_addr *addr; |
| int sdif = tcp_v4_sdif(skb); |
| int dif = inet_iif(skb); |
| int l3index; |
| |
| /* |
| * active side is lost. Try to find listening socket through |
| * source port, and then find md5 key through listening socket. |
| * we are not loose security here: |
| * Incoming packet is checked with md5 hash with finding key, |
| * no RST generated if md5 hash doesn't match. |
| */ |
| sk1 = __inet_lookup_listener(net, &tcp_hashinfo, NULL, 0, |
| ip_hdr(skb)->saddr, |
| th->source, ip_hdr(skb)->daddr, |
| ntohs(th->source), dif, sdif); |
| /* don't send rst if it can't find key */ |
| if (!sk1) |
| goto out; |
| |
| /* sdif set, means packet ingressed via a device |
| * in an L3 domain and dif is set to it. |
| */ |
| l3index = sdif ? dif : 0; |
| addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; |
| key = tcp_md5_do_lookup(sk1, l3index, addr, AF_INET); |
| if (!key) |
| goto out; |
| |
| |
| genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb); |
| if (genhash || memcmp(hash_location, newhash, 16) != 0) |
| goto out; |
| |
| } |
| |
| if (key) { |
| rep.opt[0] = htonl((TCPOPT_NOP << 24) | |
| (TCPOPT_NOP << 16) | |
| (TCPOPT_MD5SIG << 8) | |
| TCPOLEN_MD5SIG); |
| /* Update length and the length the header thinks exists */ |
| arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; |
| rep.th.doff = arg.iov[0].iov_len / 4; |
| |
| tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[1], |
| key, ip_hdr(skb)->saddr, |
| ip_hdr(skb)->daddr, &rep.th); |
| } |
| #endif |
| arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, |
| ip_hdr(skb)->saddr, /* XXX */ |
| arg.iov[0].iov_len, IPPROTO_TCP, 0); |
| arg.csumoffset = offsetof(struct tcphdr, check) / 2; |
| arg.flags = (sk && inet_sk_transparent(sk)) ? IP_REPLY_ARG_NOSRCCHECK : 0; |
| |
| /* When socket is gone, all binding information is lost. |
| * routing might fail in this case. No choice here, if we choose to force |
| * input interface, we will misroute in case of asymmetric route. |
| */ |
| if (sk) { |
| arg.bound_dev_if = sk->sk_bound_dev_if; |
| if (sk_fullsock(sk)) |
| trace_tcp_send_reset(sk, skb); |
| } |
| |
| BUILD_BUG_ON(offsetof(struct sock, sk_bound_dev_if) != |
| offsetof(struct inet_timewait_sock, tw_bound_dev_if)); |
| |
| arg.tos = ip_hdr(skb)->tos; |
| arg.uid = sock_net_uid(net, sk && sk_fullsock(sk) ? sk : NULL); |
| local_bh_disable(); |
| ctl_sk = this_cpu_read(*net->ipv4.tcp_sk); |
| if (sk) { |
| ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? |
| inet_twsk(sk)->tw_mark : sk->sk_mark; |
| ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? |
| inet_twsk(sk)->tw_priority : sk->sk_priority; |
| transmit_time = tcp_transmit_time(sk); |
| } |
| ip_send_unicast_reply(ctl_sk, |
| skb, &TCP_SKB_CB(skb)->header.h4.opt, |
| ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, |
| &arg, arg.iov[0].iov_len, |
| transmit_time); |
| |
| ctl_sk->sk_mark = 0; |
| __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); |
| __TCP_INC_STATS(net, TCP_MIB_OUTRSTS); |
| local_bh_enable(); |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| out: |
| rcu_read_unlock(); |
| #endif |
| } |
| |
| /* The code following below sending ACKs in SYN-RECV and TIME-WAIT states |
| outside socket context is ugly, certainly. What can I do? |
| */ |
| |
| static void tcp_v4_send_ack(const struct sock *sk, |
| struct sk_buff *skb, u32 seq, u32 ack, |
| u32 win, u32 tsval, u32 tsecr, int oif, |
| struct tcp_md5sig_key *key, |
| int reply_flags, u8 tos) |
| { |
| const struct tcphdr *th = tcp_hdr(skb); |
| struct { |
| struct tcphdr th; |
| __be32 opt[(TCPOLEN_TSTAMP_ALIGNED >> 2) |
| #ifdef CONFIG_TCP_MD5SIG |
| + (TCPOLEN_MD5SIG_ALIGNED >> 2) |
| #endif |
| ]; |
| } rep; |
| struct net *net = sock_net(sk); |
| struct ip_reply_arg arg; |
| struct sock *ctl_sk; |
| u64 transmit_time; |
| |
| memset(&rep.th, 0, sizeof(struct tcphdr)); |
| memset(&arg, 0, sizeof(arg)); |
| |
| arg.iov[0].iov_base = (unsigned char *)&rep; |
| arg.iov[0].iov_len = sizeof(rep.th); |
| if (tsecr) { |
| rep.opt[0] = htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | |
| (TCPOPT_TIMESTAMP << 8) | |
| TCPOLEN_TIMESTAMP); |
| rep.opt[1] = htonl(tsval); |
| rep.opt[2] = htonl(tsecr); |
| arg.iov[0].iov_len += TCPOLEN_TSTAMP_ALIGNED; |
| } |
| |
| /* Swap the send and the receive. */ |
| rep.th.dest = th->source; |
| rep.th.source = th->dest; |
| rep.th.doff = arg.iov[0].iov_len / 4; |
| rep.th.seq = htonl(seq); |
| rep.th.ack_seq = htonl(ack); |
| rep.th.ack = 1; |
| rep.th.window = htons(win); |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| if (key) { |
| int offset = (tsecr) ? 3 : 0; |
| |
| rep.opt[offset++] = htonl((TCPOPT_NOP << 24) | |
| (TCPOPT_NOP << 16) | |
| (TCPOPT_MD5SIG << 8) | |
| TCPOLEN_MD5SIG); |
| arg.iov[0].iov_len += TCPOLEN_MD5SIG_ALIGNED; |
| rep.th.doff = arg.iov[0].iov_len/4; |
| |
| tcp_v4_md5_hash_hdr((__u8 *) &rep.opt[offset], |
| key, ip_hdr(skb)->saddr, |
| ip_hdr(skb)->daddr, &rep.th); |
| } |
| #endif |
| arg.flags = reply_flags; |
| arg.csum = csum_tcpudp_nofold(ip_hdr(skb)->daddr, |
| ip_hdr(skb)->saddr, /* XXX */ |
| arg.iov[0].iov_len, IPPROTO_TCP, 0); |
| arg.csumoffset = offsetof(struct tcphdr, check) / 2; |
| if (oif) |
| arg.bound_dev_if = oif; |
| arg.tos = tos; |
| arg.uid = sock_net_uid(net, sk_fullsock(sk) ? sk : NULL); |
| local_bh_disable(); |
| ctl_sk = this_cpu_read(*net->ipv4.tcp_sk); |
| ctl_sk->sk_mark = (sk->sk_state == TCP_TIME_WAIT) ? |
| inet_twsk(sk)->tw_mark : sk->sk_mark; |
| ctl_sk->sk_priority = (sk->sk_state == TCP_TIME_WAIT) ? |
| inet_twsk(sk)->tw_priority : sk->sk_priority; |
| transmit_time = tcp_transmit_time(sk); |
| ip_send_unicast_reply(ctl_sk, |
| skb, &TCP_SKB_CB(skb)->header.h4.opt, |
| ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, |
| &arg, arg.iov[0].iov_len, |
| transmit_time); |
| |
| ctl_sk->sk_mark = 0; |
| __TCP_INC_STATS(net, TCP_MIB_OUTSEGS); |
| local_bh_enable(); |
| } |
| |
| static void tcp_v4_timewait_ack(struct sock *sk, struct sk_buff *skb) |
| { |
| struct inet_timewait_sock *tw = inet_twsk(sk); |
| struct tcp_timewait_sock *tcptw = tcp_twsk(sk); |
| |
| tcp_v4_send_ack(sk, skb, |
| tcptw->tw_snd_nxt, tcptw->tw_rcv_nxt, |
| tcptw->tw_rcv_wnd >> tw->tw_rcv_wscale, |
| tcp_time_stamp_raw() + tcptw->tw_ts_offset, |
| tcptw->tw_ts_recent, |
| tw->tw_bound_dev_if, |
| tcp_twsk_md5_key(tcptw), |
| tw->tw_transparent ? IP_REPLY_ARG_NOSRCCHECK : 0, |
| tw->tw_tos |
| ); |
| |
| inet_twsk_put(tw); |
| } |
| |
| static void tcp_v4_reqsk_send_ack(const struct sock *sk, struct sk_buff *skb, |
| struct request_sock *req) |
| { |
| const union tcp_md5_addr *addr; |
| int l3index; |
| |
| /* sk->sk_state == TCP_LISTEN -> for regular TCP_SYN_RECV |
| * sk->sk_state == TCP_SYN_RECV -> for Fast Open. |
| */ |
| u32 seq = (sk->sk_state == TCP_LISTEN) ? tcp_rsk(req)->snt_isn + 1 : |
| tcp_sk(sk)->snd_nxt; |
| |
| /* RFC 7323 2.3 |
| * The window field (SEG.WND) of every outgoing segment, with the |
| * exception of <SYN> segments, MUST be right-shifted by |
| * Rcv.Wind.Shift bits: |
| */ |
| addr = (union tcp_md5_addr *)&ip_hdr(skb)->saddr; |
| l3index = tcp_v4_sdif(skb) ? inet_iif(skb) : 0; |
| tcp_v4_send_ack(sk, skb, seq, |
| tcp_rsk(req)->rcv_nxt, |
| req->rsk_rcv_wnd >> inet_rsk(req)->rcv_wscale, |
| tcp_time_stamp_raw() + tcp_rsk(req)->ts_off, |
| req->ts_recent, |
| 0, |
| tcp_md5_do_lookup(sk, l3index, addr, AF_INET), |
| inet_rsk(req)->no_srccheck ? IP_REPLY_ARG_NOSRCCHECK : 0, |
| ip_hdr(skb)->tos); |
| } |
| |
| /* |
| * Send a SYN-ACK after having received a SYN. |
| * This still operates on a request_sock only, not on a big |
| * socket. |
| */ |
| static int tcp_v4_send_synack(const struct sock *sk, struct dst_entry *dst, |
| struct flowi *fl, |
| struct request_sock *req, |
| struct tcp_fastopen_cookie *foc, |
| enum tcp_synack_type synack_type, |
| struct sk_buff *syn_skb) |
| { |
| const struct inet_request_sock *ireq = inet_rsk(req); |
| struct flowi4 fl4; |
| int err = -1; |
| struct sk_buff *skb; |
| u8 tos; |
| |
| /* First, grab a route. */ |
| if (!dst && (dst = inet_csk_route_req(sk, &fl4, req)) == NULL) |
| return -1; |
| |
| skb = tcp_make_synack(sk, dst, req, foc, synack_type, syn_skb); |
| |
| if (skb) { |
| __tcp_v4_send_check(skb, ireq->ir_loc_addr, ireq->ir_rmt_addr); |
| |
| tos = sock_net(sk)->ipv4.sysctl_tcp_reflect_tos ? |
| (tcp_rsk(req)->syn_tos & ~INET_ECN_MASK) | |
| (inet_sk(sk)->tos & INET_ECN_MASK) : |
| inet_sk(sk)->tos; |
| |
| if (!INET_ECN_is_capable(tos) && |
| tcp_bpf_ca_needs_ecn((struct sock *)req)) |
| tos |= INET_ECN_ECT_0; |
| |
| rcu_read_lock(); |
| err = ip_build_and_send_pkt(skb, sk, ireq->ir_loc_addr, |
| ireq->ir_rmt_addr, |
| rcu_dereference(ireq->ireq_opt), |
| tos); |
| rcu_read_unlock(); |
| err = net_xmit_eval(err); |
| } |
| |
| return err; |
| } |
| |
| /* |
| * IPv4 request_sock destructor. |
| */ |
| static void tcp_v4_reqsk_destructor(struct request_sock *req) |
| { |
| kfree(rcu_dereference_protected(inet_rsk(req)->ireq_opt, 1)); |
| } |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| /* |
| * RFC2385 MD5 checksumming requires a mapping of |
| * IP address->MD5 Key. |
| * We need to maintain these in the sk structure. |
| */ |
| |
| DEFINE_STATIC_KEY_FALSE(tcp_md5_needed); |
| EXPORT_SYMBOL(tcp_md5_needed); |
| |
| static bool better_md5_match(struct tcp_md5sig_key *old, struct tcp_md5sig_key *new) |
| { |
| if (!old) |
| return true; |
| |
| /* l3index always overrides non-l3index */ |
| if (old->l3index && new->l3index == 0) |
| return false; |
| if (old->l3index == 0 && new->l3index) |
| return true; |
| |
| return old->prefixlen < new->prefixlen; |
| } |
| |
| /* Find the Key structure for an address. */ |
| struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index, |
| const union tcp_md5_addr *addr, |
| int family) |
| { |
| const struct tcp_sock *tp = tcp_sk(sk); |
| struct tcp_md5sig_key *key; |
| const struct tcp_md5sig_info *md5sig; |
| __be32 mask; |
| struct tcp_md5sig_key *best_match = NULL; |
| bool match; |
| |
| /* caller either holds rcu_read_lock() or socket lock */ |
| md5sig = rcu_dereference_check(tp->md5sig_info, |
| lockdep_sock_is_held(sk)); |
| if (!md5sig) |
| return NULL; |
| |
| hlist_for_each_entry_rcu(key, &md5sig->head, node, |
| lockdep_sock_is_held(sk)) { |
| if (key->family != family) |
| continue; |
| if (key->l3index && key->l3index != l3index) |
| continue; |
| if (family == AF_INET) { |
| mask = inet_make_mask(key->prefixlen); |
| match = (key->addr.a4.s_addr & mask) == |
| (addr->a4.s_addr & mask); |
| #if IS_ENABLED(CONFIG_IPV6) |
| } else if (family == AF_INET6) { |
| match = ipv6_prefix_equal(&key->addr.a6, &addr->a6, |
| key->prefixlen); |
| #endif |
| } else { |
| match = false; |
| } |
| |
| if (match && better_md5_match(best_match, key)) |
| best_match = key; |
| } |
| return best_match; |
| } |
| EXPORT_SYMBOL(__tcp_md5_do_lookup); |
| |
| static struct tcp_md5sig_key *tcp_md5_do_lookup_exact(const struct sock *sk, |
| const union tcp_md5_addr *addr, |
| int family, u8 prefixlen, |
| int l3index) |
| { |
| const struct tcp_sock *tp = tcp_sk(sk); |
| struct tcp_md5sig_key *key; |
| unsigned int size = sizeof(struct in_addr); |
| const struct tcp_md5sig_info *md5sig; |
| |
| /* caller either holds rcu_read_lock() or socket lock */ |
| md5sig = rcu_dereference_check(tp->md5sig_info, |
| lockdep_sock_is_held(sk)); |
| if (!md5sig) |
| return NULL; |
| #if IS_ENABLED(CONFIG_IPV6) |
| if (family == AF_INET6) |
| size = sizeof(struct in6_addr); |
| #endif |
| hlist_for_each_entry_rcu(key, &md5sig->head, node, |
| lockdep_sock_is_held(sk)) { |
| if (key->family != family) |
| continue; |
| if (key->l3index != l3index) |
| continue; |
| if (!memcmp(&key->addr, addr, size) && |
| key->prefixlen == prefixlen) |
| return key; |
| } |
| return NULL; |
| } |
| |
| struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk, |
| const struct sock *addr_sk) |
| { |
| const union tcp_md5_addr *addr; |
| int l3index; |
| |
| l3index = l3mdev_master_ifindex_by_index(sock_net(sk), |
| addr_sk->sk_bound_dev_if); |
| addr = (const union tcp_md5_addr *)&addr_sk->sk_daddr; |
| return tcp_md5_do_lookup(sk, l3index, addr, AF_INET); |
| } |
| EXPORT_SYMBOL(tcp_v4_md5_lookup); |
| |
| /* This can be called on a newly created socket, from other files */ |
| int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr, |
| int family, u8 prefixlen, int l3index, |
| const u8 *newkey, u8 newkeylen, gfp_t gfp) |
| { |
| /* Add Key to the list */ |
| struct tcp_md5sig_key *key; |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct tcp_md5sig_info *md5sig; |
| |
| key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index); |
| if (key) { |
| /* Pre-existing entry - just update that one. |
| * Note that the key might be used concurrently. |
| * data_race() is telling kcsan that we do not care of |
| * key mismatches, since changing MD5 key on live flows |
| * can lead to packet drops. |
| */ |
| data_race(memcpy(key->key, newkey, newkeylen)); |
| |
| /* Pairs with READ_ONCE() in tcp_md5_hash_key(). |
| * Also note that a reader could catch new key->keylen value |
| * but old key->key[], this is the reason we use __GFP_ZERO |
| * at sock_kmalloc() time below these lines. |
| */ |
| WRITE_ONCE(key->keylen, newkeylen); |
| |
| return 0; |
| } |
| |
| md5sig = rcu_dereference_protected(tp->md5sig_info, |
| lockdep_sock_is_held(sk)); |
| if (!md5sig) { |
| md5sig = kmalloc(sizeof(*md5sig), gfp); |
| if (!md5sig) |
| return -ENOMEM; |
| |
| sk_nocaps_add(sk, NETIF_F_GSO_MASK); |
| INIT_HLIST_HEAD(&md5sig->head); |
| rcu_assign_pointer(tp->md5sig_info, md5sig); |
| } |
| |
| key = sock_kmalloc(sk, sizeof(*key), gfp | __GFP_ZERO); |
| if (!key) |
| return -ENOMEM; |
| if (!tcp_alloc_md5sig_pool()) { |
| sock_kfree_s(sk, key, sizeof(*key)); |
| return -ENOMEM; |
| } |
| |
| memcpy(key->key, newkey, newkeylen); |
| key->keylen = newkeylen; |
| key->family = family; |
| key->prefixlen = prefixlen; |
| key->l3index = l3index; |
| memcpy(&key->addr, addr, |
| (family == AF_INET6) ? sizeof(struct in6_addr) : |
| sizeof(struct in_addr)); |
| hlist_add_head_rcu(&key->node, &md5sig->head); |
| return 0; |
| } |
| EXPORT_SYMBOL(tcp_md5_do_add); |
| |
| int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr, int family, |
| u8 prefixlen, int l3index) |
| { |
| struct tcp_md5sig_key *key; |
| |
| key = tcp_md5_do_lookup_exact(sk, addr, family, prefixlen, l3index); |
| if (!key) |
| return -ENOENT; |
| hlist_del_rcu(&key->node); |
| atomic_sub(sizeof(*key), &sk->sk_omem_alloc); |
| kfree_rcu(key, rcu); |
| return 0; |
| } |
| EXPORT_SYMBOL(tcp_md5_do_del); |
| |
| static void tcp_clear_md5_list(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| struct tcp_md5sig_key *key; |
| struct hlist_node *n; |
| struct tcp_md5sig_info *md5sig; |
| |
| md5sig = rcu_dereference_protected(tp->md5sig_info, 1); |
| |
| hlist_for_each_entry_safe(key, n, &md5sig->head, node) { |
| hlist_del_rcu(&key->node); |
| atomic_sub(sizeof(*key), &sk->sk_omem_alloc); |
| kfree_rcu(key, rcu); |
| } |
| } |
| |
| static int tcp_v4_parse_md5_keys(struct sock *sk, int optname, |
| sockptr_t optval, int optlen) |
| { |
| struct tcp_md5sig cmd; |
| struct sockaddr_in *sin = (struct sockaddr_in *)&cmd.tcpm_addr; |
| const union tcp_md5_addr *addr; |
| u8 prefixlen = 32; |
| int l3index = 0; |
| |
| if (optlen < sizeof(cmd)) |
| return -EINVAL; |
| |
| if (copy_from_sockptr(&cmd, optval, sizeof(cmd))) |
| return -EFAULT; |
| |
| if (sin->sin_family != AF_INET) |
| return -EINVAL; |
| |
| if (optname == TCP_MD5SIG_EXT && |
| cmd.tcpm_flags & TCP_MD5SIG_FLAG_PREFIX) { |
| prefixlen = cmd.tcpm_prefixlen; |
| if (prefixlen > 32) |
| return -EINVAL; |
| } |
| |
| if (optname == TCP_MD5SIG_EXT && |
| cmd.tcpm_flags & TCP_MD5SIG_FLAG_IFINDEX) { |
| struct net_device *dev; |
| |
| rcu_read_lock(); |
| dev = dev_get_by_index_rcu(sock_net(sk), cmd.tcpm_ifindex); |
| if (dev && netif_is_l3_master(dev)) |
| l3index = dev->ifindex; |
| |
| rcu_read_unlock(); |
| |
| /* ok to reference set/not set outside of rcu; |
| * right now device MUST be an L3 master |
| */ |
| if (!dev || !l3index) |
| return -EINVAL; |
| } |
| |
| addr = (union tcp_md5_addr *)&sin->sin_addr.s_addr; |
| |
| if (!cmd.tcpm_keylen) |
| return tcp_md5_do_del(sk, addr, AF_INET, prefixlen, l3index); |
| |
| if (cmd.tcpm_keylen > TCP_MD5SIG_MAXKEYLEN) |
| return -EINVAL; |
| |
| return tcp_md5_do_add(sk, addr, AF_INET, prefixlen, l3index, |
| cmd.tcpm_key, cmd.tcpm_keylen, GFP_KERNEL); |
| } |
| |
| static int tcp_v4_md5_hash_headers(struct tcp_md5sig_pool *hp, |
| __be32 daddr, __be32 saddr, |
| const struct tcphdr *th, int nbytes) |
| { |
| struct tcp4_pseudohdr *bp; |
| struct scatterlist sg; |
| struct tcphdr *_th; |
| |
| bp = hp->scratch; |
| bp->saddr = saddr; |
| bp->daddr = daddr; |
| bp->pad = 0; |
| bp->protocol = IPPROTO_TCP; |
| bp->len = cpu_to_be16(nbytes); |
| |
| _th = (struct tcphdr *)(bp + 1); |
| memcpy(_th, th, sizeof(*th)); |
| _th->check = 0; |
| |
| sg_init_one(&sg, bp, sizeof(*bp) + sizeof(*th)); |
| ahash_request_set_crypt(hp->md5_req, &sg, NULL, |
| sizeof(*bp) + sizeof(*th)); |
| return crypto_ahash_update(hp->md5_req); |
| } |
| |
| static int tcp_v4_md5_hash_hdr(char *md5_hash, const struct tcp_md5sig_key *key, |
| __be32 daddr, __be32 saddr, const struct tcphdr *th) |
| { |
| struct tcp_md5sig_pool *hp; |
| struct ahash_request *req; |
| |
| hp = tcp_get_md5sig_pool(); |
| if (!hp) |
| goto clear_hash_noput; |
| req = hp->md5_req; |
| |
| if (crypto_ahash_init(req)) |
| goto clear_hash; |
| if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, th->doff << 2)) |
| goto clear_hash; |
| if (tcp_md5_hash_key(hp, key)) |
| goto clear_hash; |
| ahash_request_set_crypt(req, NULL, md5_hash, 0); |
| if (crypto_ahash_final(req)) |
| goto clear_hash; |
| |
| tcp_put_md5sig_pool(); |
| return 0; |
| |
| clear_hash: |
| tcp_put_md5sig_pool(); |
| clear_hash_noput: |
| memset(md5_hash, 0, 16); |
| return 1; |
| } |
| |
| int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key, |
| const struct sock *sk, |
| const struct sk_buff *skb) |
| { |
| struct tcp_md5sig_pool *hp; |
| struct ahash_request *req; |
| const struct tcphdr *th = tcp_hdr(skb); |
| __be32 saddr, daddr; |
| |
| if (sk) { /* valid for establish/request sockets */ |
| saddr = sk->sk_rcv_saddr; |
| daddr = sk->sk_daddr; |
| } else { |
| const struct iphdr *iph = ip_hdr(skb); |
| saddr = iph->saddr; |
| daddr = iph->daddr; |
| } |
| |
| hp = tcp_get_md5sig_pool(); |
| if (!hp) |
| goto clear_hash_noput; |
| req = hp->md5_req; |
| |
| if (crypto_ahash_init(req)) |
| goto clear_hash; |
| |
| if (tcp_v4_md5_hash_headers(hp, daddr, saddr, th, skb->len)) |
| goto clear_hash; |
| if (tcp_md5_hash_skb_data(hp, skb, th->doff << 2)) |
| goto clear_hash; |
| if (tcp_md5_hash_key(hp, key)) |
| goto clear_hash; |
| ahash_request_set_crypt(req, NULL, md5_hash, 0); |
| if (crypto_ahash_final(req)) |
| goto clear_hash; |
| |
| tcp_put_md5sig_pool(); |
| return 0; |
| |
| clear_hash: |
| tcp_put_md5sig_pool(); |
| clear_hash_noput: |
| memset(md5_hash, 0, 16); |
| return 1; |
| } |
| EXPORT_SYMBOL(tcp_v4_md5_hash_skb); |
| |
| #endif |
| |
| /* Called with rcu_read_lock() */ |
| static bool tcp_v4_inbound_md5_hash(const struct sock *sk, |
| const struct sk_buff *skb, |
| int dif, int sdif) |
| { |
| #ifdef CONFIG_TCP_MD5SIG |
| /* |
| * This gets called for each TCP segment that arrives |
| * so we want to be efficient. |
| * We have 3 drop cases: |
| * o No MD5 hash and one expected. |
| * o MD5 hash and we're not expecting one. |
| * o MD5 hash and its wrong. |
| */ |
| const __u8 *hash_location = NULL; |
| struct tcp_md5sig_key *hash_expected; |
| const struct iphdr *iph = ip_hdr(skb); |
| const struct tcphdr *th = tcp_hdr(skb); |
| const union tcp_md5_addr *addr; |
| unsigned char newhash[16]; |
| int genhash, l3index; |
| |
| /* sdif set, means packet ingressed via a device |
| * in an L3 domain and dif is set to the l3mdev |
| */ |
| l3index = sdif ? dif : 0; |
| |
| addr = (union tcp_md5_addr *)&iph->saddr; |
| hash_expected = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); |
| hash_location = tcp_parse_md5sig_option(th); |
| |
| /* We've parsed the options - do we have a hash? */ |
| if (!hash_expected && !hash_location) |
| return false; |
| |
| if (hash_expected && !hash_location) { |
| NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5NOTFOUND); |
| return true; |
| } |
| |
| if (!hash_expected && hash_location) { |
| NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED); |
| return true; |
| } |
| |
| /* Okay, so this is hash_expected and hash_location - |
| * so we need to calculate the checksum. |
| */ |
| genhash = tcp_v4_md5_hash_skb(newhash, |
| hash_expected, |
| NULL, skb); |
| |
| if (genhash || memcmp(hash_location, newhash, 16) != 0) { |
| NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE); |
| net_info_ratelimited("MD5 Hash failed for (%pI4, %d)->(%pI4, %d)%s L3 index %d\n", |
| &iph->saddr, ntohs(th->source), |
| &iph->daddr, ntohs(th->dest), |
| genhash ? " tcp_v4_calc_md5_hash failed" |
| : "", l3index); |
| return true; |
| } |
| return false; |
| #endif |
| return false; |
| } |
| |
| static void tcp_v4_init_req(struct request_sock *req, |
| const struct sock *sk_listener, |
| struct sk_buff *skb) |
| { |
| struct inet_request_sock *ireq = inet_rsk(req); |
| struct net *net = sock_net(sk_listener); |
| |
| sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr); |
| sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr); |
| RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(net, skb)); |
| } |
| |
| static struct dst_entry *tcp_v4_route_req(const struct sock *sk, |
| struct flowi *fl, |
| const struct request_sock *req) |
| { |
| return inet_csk_route_req(sk, &fl->u.ip4, req); |
| } |
| |
| struct request_sock_ops tcp_request_sock_ops __read_mostly = { |
| .family = PF_INET, |
| .obj_size = sizeof(struct tcp_request_sock), |
| .rtx_syn_ack = tcp_rtx_synack, |
| .send_ack = tcp_v4_reqsk_send_ack, |
| .destructor = tcp_v4_reqsk_destructor, |
| .send_reset = tcp_v4_send_reset, |
| .syn_ack_timeout = tcp_syn_ack_timeout, |
| }; |
| |
| const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops = { |
| .mss_clamp = TCP_MSS_DEFAULT, |
| #ifdef CONFIG_TCP_MD5SIG |
| .req_md5_lookup = tcp_v4_md5_lookup, |
| .calc_md5_hash = tcp_v4_md5_hash_skb, |
| #endif |
| .init_req = tcp_v4_init_req, |
| #ifdef CONFIG_SYN_COOKIES |
| .cookie_init_seq = cookie_v4_init_sequence, |
| #endif |
| .route_req = tcp_v4_route_req, |
| .init_seq = tcp_v4_init_seq, |
| .init_ts_off = tcp_v4_init_ts_off, |
| .send_synack = tcp_v4_send_synack, |
| }; |
| |
| int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb) |
| { |
| /* Never answer to SYNs send to broadcast or multicast */ |
| if (skb_rtable(skb)->rt_flags & (RTCF_BROADCAST | RTCF_MULTICAST)) |
| goto drop; |
| |
| return tcp_conn_request(&tcp_request_sock_ops, |
| &tcp_request_sock_ipv4_ops, sk, skb); |
| |
| drop: |
| tcp_listendrop(sk); |
| return 0; |
| } |
| EXPORT_SYMBOL(tcp_v4_conn_request); |
| |
| |
| /* |
| * The three way handshake has completed - we got a valid synack - |
| * now create the new socket. |
| */ |
| struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb, |
| struct request_sock *req, |
| struct dst_entry *dst, |
| struct request_sock *req_unhash, |
| bool *own_req) |
| { |
| struct inet_request_sock *ireq; |
| bool found_dup_sk = false; |
| struct inet_sock *newinet; |
| struct tcp_sock *newtp; |
| struct sock *newsk; |
| #ifdef CONFIG_TCP_MD5SIG |
| const union tcp_md5_addr *addr; |
| struct tcp_md5sig_key *key; |
| int l3index; |
| #endif |
| struct ip_options_rcu *inet_opt; |
| |
| if (sk_acceptq_is_full(sk)) |
| goto exit_overflow; |
| |
| newsk = tcp_create_openreq_child(sk, req, skb); |
| if (!newsk) |
| goto exit_nonewsk; |
| |
| newsk->sk_gso_type = SKB_GSO_TCPV4; |
| inet_sk_rx_dst_set(newsk, skb); |
| |
| newtp = tcp_sk(newsk); |
| newinet = inet_sk(newsk); |
| ireq = inet_rsk(req); |
| sk_daddr_set(newsk, ireq->ir_rmt_addr); |
| sk_rcv_saddr_set(newsk, ireq->ir_loc_addr); |
| newsk->sk_bound_dev_if = ireq->ir_iif; |
| newinet->inet_saddr = ireq->ir_loc_addr; |
| inet_opt = rcu_dereference(ireq->ireq_opt); |
| RCU_INIT_POINTER(newinet->inet_opt, inet_opt); |
| newinet->mc_index = inet_iif(skb); |
| newinet->mc_ttl = ip_hdr(skb)->ttl; |
| newinet->rcv_tos = ip_hdr(skb)->tos; |
| inet_csk(newsk)->icsk_ext_hdr_len = 0; |
| if (inet_opt) |
| inet_csk(newsk)->icsk_ext_hdr_len = inet_opt->opt.optlen; |
| newinet->inet_id = prandom_u32(); |
| |
| /* Set ToS of the new socket based upon the value of incoming SYN. |
| * ECT bits are set later in tcp_init_transfer(). |
| */ |
| if (sock_net(sk)->ipv4.sysctl_tcp_reflect_tos) |
| newinet->tos = tcp_rsk(req)->syn_tos & ~INET_ECN_MASK; |
| |
| if (!dst) { |
| dst = inet_csk_route_child_sock(sk, newsk, req); |
| if (!dst) |
| goto put_and_exit; |
| } else { |
| /* syncookie case : see end of cookie_v4_check() */ |
| } |
| sk_setup_caps(newsk, dst); |
| |
| tcp_ca_openreq_child(newsk, dst); |
| |
| tcp_sync_mss(newsk, dst_mtu(dst)); |
| newtp->advmss = tcp_mss_clamp(tcp_sk(sk), dst_metric_advmss(dst)); |
| |
| tcp_initialize_rcv_mss(newsk); |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| l3index = l3mdev_master_ifindex_by_index(sock_net(sk), ireq->ir_iif); |
| /* Copy over the MD5 key from the original socket */ |
| addr = (union tcp_md5_addr *)&newinet->inet_daddr; |
| key = tcp_md5_do_lookup(sk, l3index, addr, AF_INET); |
| if (key) { |
| /* |
| * We're using one, so create a matching key |
| * on the newsk structure. If we fail to get |
| * memory, then we end up not copying the key |
| * across. Shucks. |
| */ |
| tcp_md5_do_add(newsk, addr, AF_INET, 32, l3index, |
| key->key, key->keylen, GFP_ATOMIC); |
| sk_nocaps_add(newsk, NETIF_F_GSO_MASK); |
| } |
| #endif |
| |
| if (__inet_inherit_port(sk, newsk) < 0) |
| goto put_and_exit; |
| *own_req = inet_ehash_nolisten(newsk, req_to_sk(req_unhash), |
| &found_dup_sk); |
| if (likely(*own_req)) { |
| tcp_move_syn(newtp, req); |
| ireq->ireq_opt = NULL; |
| } else { |
| newinet->inet_opt = NULL; |
| |
| if (!req_unhash && found_dup_sk) { |
| /* This code path should only be executed in the |
| * syncookie case only |
| */ |
| bh_unlock_sock(newsk); |
| sock_put(newsk); |
| newsk = NULL; |
| } |
| } |
| return newsk; |
| |
| exit_overflow: |
| NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS); |
| exit_nonewsk: |
| dst_release(dst); |
| exit: |
| tcp_listendrop(sk); |
| return NULL; |
| put_and_exit: |
| newinet->inet_opt = NULL; |
| inet_csk_prepare_forced_close(newsk); |
| tcp_done(newsk); |
| goto exit; |
| } |
| EXPORT_SYMBOL(tcp_v4_syn_recv_sock); |
| |
| static struct sock *tcp_v4_cookie_check(struct sock *sk, struct sk_buff *skb) |
| { |
| #ifdef CONFIG_SYN_COOKIES |
| const struct tcphdr *th = tcp_hdr(skb); |
| |
| if (!th->syn) |
| sk = cookie_v4_check(sk, skb); |
| #endif |
| return sk; |
| } |
| |
| u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph, |
| struct tcphdr *th, u32 *cookie) |
| { |
| u16 mss = 0; |
| #ifdef CONFIG_SYN_COOKIES |
| mss = tcp_get_syncookie_mss(&tcp_request_sock_ops, |
| &tcp_request_sock_ipv4_ops, sk, th); |
| if (mss) { |
| *cookie = __cookie_v4_init_sequence(iph, th, &mss); |
| tcp_synq_overflow(sk); |
| } |
| #endif |
| return mss; |
| } |
| |
| /* The socket must have it's spinlock held when we get |
| * here, unless it is a TCP_LISTEN socket. |
| * |
| * We have a potential double-lock case here, so even when |
| * doing backlog processing we use the BH locking scheme. |
| * This is because we cannot sleep with the original spinlock |
| * held. |
| */ |
| int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb) |
| { |
| struct sock *rsk; |
| |
| if (sk->sk_state == TCP_ESTABLISHED) { /* Fast path */ |
| struct dst_entry *dst = sk->sk_rx_dst; |
| |
| sock_rps_save_rxhash(sk, skb); |
| sk_mark_napi_id(sk, skb); |
| if (dst) { |
| if (inet_sk(sk)->rx_dst_ifindex != skb->skb_iif || |
| !dst->ops->check(dst, 0)) { |
| dst_release(dst); |
| sk->sk_rx_dst = NULL; |
| } |
| } |
| tcp_rcv_established(sk, skb); |
| return 0; |
| } |
| |
| if (tcp_checksum_complete(skb)) |
| goto csum_err; |
| |
| if (sk->sk_state == TCP_LISTEN) { |
| struct sock *nsk = tcp_v4_cookie_check(sk, skb); |
| |
| if (!nsk) |
| goto discard; |
| if (nsk != sk) { |
| if (tcp_child_process(sk, nsk, skb)) { |
| rsk = nsk; |
| goto reset; |
| } |
| return 0; |
| } |
| } else |
| sock_rps_save_rxhash(sk, skb); |
| |
| if (tcp_rcv_state_process(sk, skb)) { |
| rsk = sk; |
| goto reset; |
| } |
| return 0; |
| |
| reset: |
| tcp_v4_send_reset(rsk, skb); |
| discard: |
| kfree_skb(skb); |
| /* Be careful here. If this function gets more complicated and |
| * gcc suffers from register pressure on the x86, sk (in %ebx) |
| * might be destroyed here. This current version compiles correctly, |
| * but you have been warned. |
| */ |
| return 0; |
| |
| csum_err: |
| TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); |
| TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); |
| goto discard; |
| } |
| EXPORT_SYMBOL(tcp_v4_do_rcv); |
| |
| int tcp_v4_early_demux(struct sk_buff *skb) |
| { |
| const struct iphdr *iph; |
| const struct tcphdr *th; |
| struct sock *sk; |
| |
| if (skb->pkt_type != PACKET_HOST) |
| return 0; |
| |
| if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct tcphdr))) |
| return 0; |
| |
| iph = ip_hdr(skb); |
| th = tcp_hdr(skb); |
| |
| if (th->doff < sizeof(struct tcphdr) / 4) |
| return 0; |
| |
| sk = __inet_lookup_established(dev_net(skb->dev), &tcp_hashinfo, |
| iph->saddr, th->source, |
| iph->daddr, ntohs(th->dest), |
| skb->skb_iif, inet_sdif(skb)); |
| if (sk) { |
| skb->sk = sk; |
| skb->destructor = sock_edemux; |
| if (sk_fullsock(sk)) { |
| struct dst_entry *dst = READ_ONCE(sk->sk_rx_dst); |
| |
| if (dst) |
| dst = dst_check(dst, 0); |
| if (dst && |
| inet_sk(sk)->rx_dst_ifindex == skb->skb_iif) |
| skb_dst_set_noref(skb, dst); |
| } |
| } |
| return 0; |
| } |
| |
| bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb) |
| { |
| u32 limit = READ_ONCE(sk->sk_rcvbuf) + READ_ONCE(sk->sk_sndbuf); |
| u32 tail_gso_size, tail_gso_segs; |
| struct skb_shared_info *shinfo; |
| const struct tcphdr *th; |
| struct tcphdr *thtail; |
| struct sk_buff *tail; |
| unsigned int hdrlen; |
| bool fragstolen; |
| u32 gso_segs; |
| u32 gso_size; |
| int delta; |
| |
| /* In case all data was pulled from skb frags (in __pskb_pull_tail()), |
| * we can fix skb->truesize to its real value to avoid future drops. |
| * This is valid because skb is not yet charged to the socket. |
| * It has been noticed pure SACK packets were sometimes dropped |
| * (if cooked by drivers without copybreak feature). |
| */ |
| skb_condense(skb); |
| |
| skb_dst_drop(skb); |
| |
| if (unlikely(tcp_checksum_complete(skb))) { |
| bh_unlock_sock(sk); |
| __TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS); |
| __TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS); |
| return true; |
| } |
| |
| /* Attempt coalescing to last skb in backlog, even if we are |
| * above the limits. |
| * This is okay because skb capacity is limited to MAX_SKB_FRAGS. |
| */ |
| th = (const struct tcphdr *)skb->data; |
| hdrlen = th->doff * 4; |
| |
| tail = sk->sk_backlog.tail; |
| if (!tail) |
| goto no_coalesce; |
| thtail = (struct tcphdr *)tail->data; |
| |
| if (TCP_SKB_CB(tail)->end_seq != TCP_SKB_CB(skb)->seq || |
| TCP_SKB_CB(tail)->ip_dsfield != TCP_SKB_CB(skb)->ip_dsfield || |
| ((TCP_SKB_CB(tail)->tcp_flags | |
| TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_SYN | TCPHDR_RST | TCPHDR_URG)) || |
| !((TCP_SKB_CB(tail)->tcp_flags & |
| TCP_SKB_CB(skb)->tcp_flags) & TCPHDR_ACK) || |
| ((TCP_SKB_CB(tail)->tcp_flags ^ |
| TCP_SKB_CB(skb)->tcp_flags) & (TCPHDR_ECE | TCPHDR_CWR)) || |
| #ifdef CONFIG_TLS_DEVICE |
| tail->decrypted != skb->decrypted || |
| #endif |
| thtail->doff != th->doff || |
| memcmp(thtail + 1, th + 1, hdrlen - sizeof(*th))) |
| goto no_coalesce; |
| |
| __skb_pull(skb, hdrlen); |
| |
| shinfo = skb_shinfo(skb); |
| gso_size = shinfo->gso_size ?: skb->len; |
| gso_segs = shinfo->gso_segs ?: 1; |
| |
| shinfo = skb_shinfo(tail); |
| tail_gso_size = shinfo->gso_size ?: (tail->len - hdrlen); |
| tail_gso_segs = shinfo->gso_segs ?: 1; |
| |
| if (skb_try_coalesce(tail, skb, &fragstolen, &delta)) { |
| TCP_SKB_CB(tail)->end_seq = TCP_SKB_CB(skb)->end_seq; |
| |
| if (likely(!before(TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(tail)->ack_seq))) { |
| TCP_SKB_CB(tail)->ack_seq = TCP_SKB_CB(skb)->ack_seq; |
| thtail->window = th->window; |
| } |
| |
| /* We have to update both TCP_SKB_CB(tail)->tcp_flags and |
| * thtail->fin, so that the fast path in tcp_rcv_established() |
| * is not entered if we append a packet with a FIN. |
| * SYN, RST, URG are not present. |
| * ACK is set on both packets. |
| * PSH : we do not really care in TCP stack, |
| * at least for 'GRO' packets. |
| */ |
| thtail->fin |= th->fin; |
| TCP_SKB_CB(tail)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags; |
| |
| if (TCP_SKB_CB(skb)->has_rxtstamp) { |
| TCP_SKB_CB(tail)->has_rxtstamp = true; |
| tail->tstamp = skb->tstamp; |
| skb_hwtstamps(tail)->hwtstamp = skb_hwtstamps(skb)->hwtstamp; |
| } |
| |
| /* Not as strict as GRO. We only need to carry mss max value */ |
| shinfo->gso_size = max(gso_size, tail_gso_size); |
| shinfo->gso_segs = min_t(u32, gso_segs + tail_gso_segs, 0xFFFF); |
| |
| sk->sk_backlog.len += delta; |
| __NET_INC_STATS(sock_net(sk), |
| LINUX_MIB_TCPBACKLOGCOALESCE); |
| kfree_skb_partial(skb, fragstolen); |
| return false; |
| } |
| __skb_push(skb, hdrlen); |
| |
| no_coalesce: |
| /* Only socket owner can try to collapse/prune rx queues |
| * to reduce memory overhead, so add a little headroom here. |
| * Few sockets backlog are possibly concurrently non empty. |
| */ |
| limit += 64*1024; |
| |
| if (unlikely(sk_add_backlog(sk, skb, limit))) { |
| bh_unlock_sock(sk); |
| __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPBACKLOGDROP); |
| return true; |
| } |
| return false; |
| } |
| EXPORT_SYMBOL(tcp_add_backlog); |
| |
| int tcp_filter(struct sock *sk, struct sk_buff *skb) |
| { |
| struct tcphdr *th = (struct tcphdr *)skb->data; |
| |
| return sk_filter_trim_cap(sk, skb, th->doff * 4); |
| } |
| EXPORT_SYMBOL(tcp_filter); |
| |
| static void tcp_v4_restore_cb(struct sk_buff *skb) |
| { |
| memmove(IPCB(skb), &TCP_SKB_CB(skb)->header.h4, |
| sizeof(struct inet_skb_parm)); |
| } |
| |
| static void tcp_v4_fill_cb(struct sk_buff *skb, const struct iphdr *iph, |
| const struct tcphdr *th) |
| { |
| /* This is tricky : We move IPCB at its correct location into TCP_SKB_CB() |
| * barrier() makes sure compiler wont play fool^Waliasing games. |
| */ |
| memmove(&TCP_SKB_CB(skb)->header.h4, IPCB(skb), |
| sizeof(struct inet_skb_parm)); |
| barrier(); |
| |
| TCP_SKB_CB(skb)->seq = ntohl(th->seq); |
| TCP_SKB_CB(skb)->end_seq = (TCP_SKB_CB(skb)->seq + th->syn + th->fin + |
| skb->len - th->doff * 4); |
| TCP_SKB_CB(skb)->ack_seq = ntohl(th->ack_seq); |
| TCP_SKB_CB(skb)->tcp_flags = tcp_flag_byte(th); |
| TCP_SKB_CB(skb)->tcp_tw_isn = 0; |
| TCP_SKB_CB(skb)->ip_dsfield = ipv4_get_dsfield(iph); |
| TCP_SKB_CB(skb)->sacked = 0; |
| TCP_SKB_CB(skb)->has_rxtstamp = |
| skb->tstamp || skb_hwtstamps(skb)->hwtstamp; |
| } |
| |
| /* |
| * From tcp_input.c |
| */ |
| |
| int tcp_v4_rcv(struct sk_buff *skb) |
| { |
| struct net *net = dev_net(skb->dev); |
| struct sk_buff *skb_to_free; |
| int sdif = inet_sdif(skb); |
| int dif = inet_iif(skb); |
| const struct iphdr *iph; |
| const struct tcphdr *th; |
| bool refcounted; |
| struct sock *sk; |
| int ret; |
| |
| if (skb->pkt_type != PACKET_HOST) |
| goto discard_it; |
| |
| /* Count it even if it's bad */ |
| __TCP_INC_STATS(net, TCP_MIB_INSEGS); |
| |
| if (!pskb_may_pull(skb, sizeof(struct tcphdr))) |
| goto discard_it; |
| |
| th = (const struct tcphdr *)skb->data; |
| |
| if (unlikely(th->doff < sizeof(struct tcphdr) / 4)) |
| goto bad_packet; |
| if (!pskb_may_pull(skb, th->doff * 4)) |
| goto discard_it; |
| |
| /* An explanation is required here, I think. |
| * Packet length and doff are validated by header prediction, |
| * provided case of th->doff==0 is eliminated. |
| * So, we defer the checks. */ |
| |
| if (skb_checksum_init(skb, IPPROTO_TCP, inet_compute_pseudo)) |
| goto csum_error; |
| |
| th = (const struct tcphdr *)skb->data; |
| iph = ip_hdr(skb); |
| lookup: |
| sk = __inet_lookup_skb(&tcp_hashinfo, skb, __tcp_hdrlen(th), th->source, |
| th->dest, sdif, &refcounted); |
| if (!sk) |
| goto no_tcp_socket; |
| |
| process: |
| if (sk->sk_state == TCP_TIME_WAIT) |
| goto do_time_wait; |
| |
| if (sk->sk_state == TCP_NEW_SYN_RECV) { |
| struct request_sock *req = inet_reqsk(sk); |
| bool req_stolen = false; |
| struct sock *nsk; |
| |
| sk = req->rsk_listener; |
| if (unlikely(tcp_v4_inbound_md5_hash(sk, skb, dif, sdif))) { |
| sk_drops_add(sk, skb); |
| reqsk_put(req); |
| goto discard_it; |
| } |
| if (tcp_checksum_complete(skb)) { |
| reqsk_put(req); |
| goto csum_error; |
| } |
| if (unlikely(sk->sk_state != TCP_LISTEN)) { |
| inet_csk_reqsk_queue_drop_and_put(sk, req); |
| goto lookup; |
| } |
| /* We own a reference on the listener, increase it again |
| * as we might lose it too soon. |
| */ |
| sock_hold(sk); |
| refcounted = true; |
| nsk = NULL; |
| if (!tcp_filter(sk, skb)) { |
| th = (const struct tcphdr *)skb->data; |
| iph = ip_hdr(skb); |
| tcp_v4_fill_cb(skb, iph, th); |
| nsk = tcp_check_req(sk, skb, req, false, &req_stolen); |
| } |
| if (!nsk) { |
| reqsk_put(req); |
| if (req_stolen) { |
| /* Another cpu got exclusive access to req |
| * and created a full blown socket. |
| * Try to feed this packet to this socket |
| * instead of discarding it. |
| */ |
| tcp_v4_restore_cb(skb); |
| sock_put(sk); |
| goto lookup; |
| } |
| goto discard_and_relse; |
| } |
| if (nsk == sk) { |
| reqsk_put(req); |
| tcp_v4_restore_cb(skb); |
| } else if (tcp_child_process(sk, nsk, skb)) { |
| tcp_v4_send_reset(nsk, skb); |
| goto discard_and_relse; |
| } else { |
| sock_put(sk); |
| return 0; |
| } |
| } |
| if (unlikely(iph->ttl < inet_sk(sk)->min_ttl)) { |
| __NET_INC_STATS(net, LINUX_MIB_TCPMINTTLDROP); |
| goto discard_and_relse; |
| } |
| |
| if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb)) |
| goto discard_and_relse; |
| |
| if (tcp_v4_inbound_md5_hash(sk, skb, dif, sdif)) |
| goto discard_and_relse; |
| |
| nf_reset_ct(skb); |
| |
| if (tcp_filter(sk, skb)) |
| goto discard_and_relse; |
| th = (const struct tcphdr *)skb->data; |
| iph = ip_hdr(skb); |
| tcp_v4_fill_cb(skb, iph, th); |
| |
| skb->dev = NULL; |
| |
| if (sk->sk_state == TCP_LISTEN) { |
| ret = tcp_v4_do_rcv(sk, skb); |
| goto put_and_return; |
| } |
| |
| sk_incoming_cpu_update(sk); |
| |
| bh_lock_sock_nested(sk); |
| tcp_segs_in(tcp_sk(sk), skb); |
| ret = 0; |
| if (!sock_owned_by_user(sk)) { |
| skb_to_free = sk->sk_rx_skb_cache; |
| sk->sk_rx_skb_cache = NULL; |
| ret = tcp_v4_do_rcv(sk, skb); |
| } else { |
| if (tcp_add_backlog(sk, skb)) |
| goto discard_and_relse; |
| skb_to_free = NULL; |
| } |
| bh_unlock_sock(sk); |
| if (skb_to_free) |
| __kfree_skb(skb_to_free); |
| |
| put_and_return: |
| if (refcounted) |
| sock_put(sk); |
| |
| return ret; |
| |
| no_tcp_socket: |
| if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) |
| goto discard_it; |
| |
| tcp_v4_fill_cb(skb, iph, th); |
| |
| if (tcp_checksum_complete(skb)) { |
| csum_error: |
| __TCP_INC_STATS(net, TCP_MIB_CSUMERRORS); |
| bad_packet: |
| __TCP_INC_STATS(net, TCP_MIB_INERRS); |
| } else { |
| tcp_v4_send_reset(NULL, skb); |
| } |
| |
| discard_it: |
| /* Discard frame. */ |
| kfree_skb(skb); |
| return 0; |
| |
| discard_and_relse: |
| sk_drops_add(sk, skb); |
| if (refcounted) |
| sock_put(sk); |
| goto discard_it; |
| |
| do_time_wait: |
| if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb)) { |
| inet_twsk_put(inet_twsk(sk)); |
| goto discard_it; |
| } |
| |
| tcp_v4_fill_cb(skb, iph, th); |
| |
| if (tcp_checksum_complete(skb)) { |
| inet_twsk_put(inet_twsk(sk)); |
| goto csum_error; |
| } |
| switch (tcp_timewait_state_process(inet_twsk(sk), skb, th)) { |
| case TCP_TW_SYN: { |
| struct sock *sk2 = inet_lookup_listener(dev_net(skb->dev), |
| &tcp_hashinfo, skb, |
| __tcp_hdrlen(th), |
| iph->saddr, th->source, |
| iph->daddr, th->dest, |
| inet_iif(skb), |
| sdif); |
| if (sk2) { |
| inet_twsk_deschedule_put(inet_twsk(sk)); |
| sk = sk2; |
| tcp_v4_restore_cb(skb); |
| refcounted = false; |
| goto process; |
| } |
| } |
| /* to ACK */ |
| fallthrough; |
| case TCP_TW_ACK: |
| tcp_v4_timewait_ack(sk, skb); |
| break; |
| case TCP_TW_RST: |
| tcp_v4_send_reset(sk, skb); |
| inet_twsk_deschedule_put(inet_twsk(sk)); |
| goto discard_it; |
| case TCP_TW_SUCCESS:; |
| } |
| goto discard_it; |
| } |
| |
| static struct timewait_sock_ops tcp_timewait_sock_ops = { |
| .twsk_obj_size = sizeof(struct tcp_timewait_sock), |
| .twsk_unique = tcp_twsk_unique, |
| .twsk_destructor= tcp_twsk_destructor, |
| }; |
| |
| void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb) |
| { |
| struct dst_entry *dst = skb_dst(skb); |
| |
| if (dst && dst_hold_safe(dst)) { |
| sk->sk_rx_dst = dst; |
| inet_sk(sk)->rx_dst_ifindex = skb->skb_iif; |
| } |
| } |
| EXPORT_SYMBOL(inet_sk_rx_dst_set); |
| |
| const struct inet_connection_sock_af_ops ipv4_specific = { |
| .queue_xmit = ip_queue_xmit, |
| .send_check = tcp_v4_send_check, |
| .rebuild_header = inet_sk_rebuild_header, |
| .sk_rx_dst_set = inet_sk_rx_dst_set, |
| .conn_request = tcp_v4_conn_request, |
| .syn_recv_sock = tcp_v4_syn_recv_sock, |
| .net_header_len = sizeof(struct iphdr), |
| .setsockopt = ip_setsockopt, |
| .getsockopt = ip_getsockopt, |
| .addr2sockaddr = inet_csk_addr2sockaddr, |
| .sockaddr_len = sizeof(struct sockaddr_in), |
| .mtu_reduced = tcp_v4_mtu_reduced, |
| }; |
| EXPORT_SYMBOL(ipv4_specific); |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| static const struct tcp_sock_af_ops tcp_sock_ipv4_specific = { |
| .md5_lookup = tcp_v4_md5_lookup, |
| .calc_md5_hash = tcp_v4_md5_hash_skb, |
| .md5_parse = tcp_v4_parse_md5_keys, |
| }; |
| #endif |
| |
| /* NOTE: A lot of things set to zero explicitly by call to |
| * sk_alloc() so need not be done here. |
| */ |
| static int tcp_v4_init_sock(struct sock *sk) |
| { |
| struct inet_connection_sock *icsk = inet_csk(sk); |
| |
| tcp_init_sock(sk); |
| |
| icsk->icsk_af_ops = &ipv4_specific; |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| tcp_sk(sk)->af_specific = &tcp_sock_ipv4_specific; |
| #endif |
| |
| return 0; |
| } |
| |
| void tcp_v4_destroy_sock(struct sock *sk) |
| { |
| struct tcp_sock *tp = tcp_sk(sk); |
| |
| trace_tcp_destroy_sock(sk); |
| |
| tcp_clear_xmit_timers(sk); |
| |
| tcp_cleanup_congestion_control(sk); |
| |
| tcp_cleanup_ulp(sk); |
| |
| /* Cleanup up the write buffer. */ |
| tcp_write_queue_purge(sk); |
| |
| /* Check if we want to disable active TFO */ |
| tcp_fastopen_active_disable_ofo_check(sk); |
| |
| /* Cleans up our, hopefully empty, out_of_order_queue. */ |
| skb_rbtree_purge(&tp->out_of_order_queue); |
| |
| #ifdef CONFIG_TCP_MD5SIG |
| /* Clean up the MD5 key list, if any */ |
| if (tp->md5sig_info) { |
| tcp_clear_md5_list(sk); |
| kfree_rcu(rcu_dereference_protected(tp->md5sig_info, 1), rcu); |
| tp->md5sig_info = NULL; |
| } |
| #endif |
| |
| /* Clean up a referenced TCP bind bucket. */ |
| if (inet_csk(sk)->icsk_bind_hash) |
| inet_put_port(sk); |
| |
| BUG_ON(rcu_access_pointer(tp->fastopen_rsk)); |
| |
| /* If socket is aborted during connect operation */ |
| tcp_free_fastopen_req(tp); |
| tcp_fastopen_destroy_cipher(sk); |
| tcp_saved_syn_free(tp); |
| |
| sk_sockets_allocated_dec(sk); |
| } |
| EXPORT_SYMBOL(tcp_v4_destroy_sock); |
| |
| #ifdef CONFIG_PROC_FS |
| /* Proc filesystem TCP sock list dumping. */ |
| |
| /* |
| * Get next listener socket follow cur. If cur is NULL, get first socket |
| * starting from bucket given in st->bucket; when st->bucket is zero the |
| * very first socket in the hash table is returned. |
| */ |
| static void *listening_get_next(struct seq_file *seq, void *cur) |
| { |
| struct tcp_seq_afinfo *afinfo; |
| struct tcp_iter_state *st = seq->private; |
| struct net *net = seq_file_net(seq); |
| struct inet_listen_hashbucket *ilb; |
| struct hlist_nulls_node *node; |
| struct sock *sk = cur; |
| |
| if (st->bpf_seq_afinfo) |
| afinfo = st->bpf_seq_afinfo; |
| else |
| afinfo = PDE_DATA(file_inode(seq->file)); |
| |
| if (!sk) { |
| get_head: |
| ilb = &tcp_hashinfo.listening_hash[st->bucket]; |
| spin_lock(&ilb->lock); |
| sk = sk_nulls_head(&ilb->nulls_head); |
| st->offset = 0; |
| goto get_sk; |
| } |
| ilb = &tcp_hashinfo.listening_hash[st->bucket]; |
| ++st->num; |
| ++st->offset; |
| |
| sk = sk_nulls_next(sk); |
| get_sk: |
| sk_nulls_for_each_from(sk, node) { |
| if (!net_eq(sock_net(sk), net)) |
| continue; |
| if (afinfo->family == AF_UNSPEC || |
| sk->sk_family == afinfo->family) |
| return sk; |
| } |
| spin_unlock(&ilb->lock); |
| st->offset = 0; |
| if (++st->bucket < INET_LHTABLE_SIZE) |
| goto get_head; |
| return NULL; |
| } |
| |
| static void *listening_get_idx(struct seq_file *seq, loff_t *pos) |
| { |
| struct tcp_iter_state *st = seq->private; |
| void *rc; |
| |
| st->bucket = 0; |
| st->offset = 0; |
| rc = listening_get_next(seq, NULL); |
| |
| while (rc && *pos) { |
| rc = listening_get_next(seq, rc); |
| --*pos; |
| } |
| return rc; |
| } |
| |
| static inline bool empty_bucket(const struct tcp_iter_state *st) |
| { |
| return hlist_nulls_empty(&tcp_hashinfo.ehash[st->bucket].chain); |
| } |
| |
| /* |
| * Get first established socket starting from bucket given in st->bucket. |
| * If st->bucket is zero, the very first socket in the hash is returned. |
| */ |
| static void *established_get_first(struct seq_file *seq) |
| { |
| struct tcp_seq_afinfo *afinfo; |
| struct tcp_iter_state *st = seq->private; |
| struct net *net = seq_file_net(seq); |
| void *rc = NULL; |
| |
| if (st->bpf_seq_afinfo) |
| afinfo = st->bpf_seq_afinfo; |
| else |
| afinfo = PDE_DATA(file_inode(seq->file)); |
| |
| st->offset = 0; |
| for (; st->bucket <= tcp_hashinfo.ehash_mask; ++st->bucket) { |
| struct sock *sk; |
| struct hlist_nulls_node *node; |
| spinlock_t *lock = inet_ehash_lockp(&tcp_hashinfo, st->bucket); |
| |
| /* Lockless fast path for the common case of empty buckets */ |
| if (empty_bucket(st)) |
| continue; |
| |
| spin_lock_bh(lock); |
| sk_nulls_for_each(sk, node, &tcp_hashinfo.ehash[st->bucket].chain) { |
| if ((afinfo->family != AF_UNSPEC && |
| sk->sk_family != afinfo->family) || |
| !net_eq(sock_net(sk), net)) { |
| continue; |
| } |
| rc = sk; |
| goto out; |
| } |
| spin_unlock_bh(lock); |
| } |
| out: |
| return rc; |
| } |
| |
| static void *established_get_next(struct seq_file *seq, void *cur) |
| { |
| struct tcp_seq_afinfo *afinfo; |
| struct sock *sk = cur; |
| struct hlist_nulls_node *node; |
| struct tcp_iter_state *st = seq->private; |
| struct net *net = seq_file_net(seq); |
| |
| if (st->bpf_seq_afinfo) |
| afinfo = st->bpf_seq_afinfo; |
| else |
| afinfo = PDE_DATA(file_inode(seq->file)); |
| |
| ++st->num; |
| ++st->offset; |
| |
| sk = sk_nulls_next(sk); |
| |
| sk_nulls_for_each_from(sk, node) { |
| if ((afinfo->family == AF_UNSPEC || |
| sk->sk_family == afinfo->family) && |
| net_eq(sock_net(sk), net)) |
| return sk; |
| } |
| |
| spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); |
| ++st->bucket; |
| return established_get_first(seq); |
| } |
| |
| static void *established_get_idx(struct seq_file *seq, loff_t pos) |
| { |
| struct tcp_iter_state *st = seq->private; |
| void *rc; |
| |
| st->bucket = 0; |
| rc = established_get_first(seq); |
| |
| while (rc && pos) { |
| rc = established_get_next(seq, rc); |
| --pos; |
| } |
| return rc; |
| } |
| |
| static void *tcp_get_idx(struct seq_file *seq, loff_t pos) |
| { |
| void *rc; |
| struct tcp_iter_state *st = seq->private; |
| |
| st->state = TCP_SEQ_STATE_LISTENING; |
| rc = listening_get_idx(seq, &pos); |
| |
| if (!rc) { |
| st->state = TCP_SEQ_STATE_ESTABLISHED; |
| rc = established_get_idx(seq, pos); |
| } |
| |
| return rc; |
| } |
| |
| static void *tcp_seek_last_pos(struct seq_file *seq) |
| { |
| struct tcp_iter_state *st = seq->private; |
| int bucket = st->bucket; |
| int offset = st->offset; |
| int orig_num = st->num; |
| void *rc = NULL; |
| |
| switch (st->state) { |
| case TCP_SEQ_STATE_LISTENING: |
| if (st->bucket >= INET_LHTABLE_SIZE) |
| break; |
| st->state = TCP_SEQ_STATE_LISTENING; |
| rc = listening_get_next(seq, NULL); |
| while (offset-- && rc && bucket == st->bucket) |
| rc = listening_get_next(seq, rc); |
| if (rc) |
| break; |
| st->bucket = 0; |
| st->state = TCP_SEQ_STATE_ESTABLISHED; |
| fallthrough; |
| case TCP_SEQ_STATE_ESTABLISHED: |
| if (st->bucket > tcp_hashinfo.ehash_mask) |
| break; |
| rc = established_get_first(seq); |
| while (offset-- && rc && bucket == st->bucket) |
| rc = established_get_next(seq, rc); |
| } |
| |
| st->num = orig_num; |
| |
| return rc; |
| } |
| |
| void *tcp_seq_start(struct seq_file *seq, loff_t *pos) |
| { |
| struct tcp_iter_state *st = seq->private; |
| void *rc; |
| |
| if (*pos && *pos == st->last_pos) { |
| rc = tcp_seek_last_pos(seq); |
| if (rc) |
| goto out; |
| } |
| |
| st->state = TCP_SEQ_STATE_LISTENING; |
| st->num = 0; |
| st->bucket = 0; |
| st->offset = 0; |
| rc = *pos ? tcp_get_idx(seq, *pos - 1) : SEQ_START_TOKEN; |
| |
| out: |
| st->last_pos = *pos; |
| return rc; |
| } |
| EXPORT_SYMBOL(tcp_seq_start); |
| |
| void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos) |
| { |
| struct tcp_iter_state *st = seq->private; |
| void *rc = NULL; |
| |
| if (v == SEQ_START_TOKEN) { |
| rc = tcp_get_idx(seq, 0); |
| goto out; |
| } |
| |
| switch (st->state) { |
| case TCP_SEQ_STATE_LISTENING: |
| rc = listening_get_next(seq, v); |
| if (!rc) { |
| st->state = TCP_SEQ_STATE_ESTABLISHED; |
| st->bucket = 0; |
| st->offset = 0; |
| rc = established_get_first(seq); |
| } |
| break; |
| case TCP_SEQ_STATE_ESTABLISHED: |
| rc = established_get_next(seq, v); |
| break; |
| } |
| out: |
| ++*pos; |
| st->last_pos = *pos; |
| return rc; |
| } |
| EXPORT_SYMBOL(tcp_seq_next); |
| |
| void tcp_seq_stop(struct seq_file *seq, void *v) |
| { |
| struct tcp_iter_state *st = seq->private; |
| |
| switch (st->state) { |
| case TCP_SEQ_STATE_LISTENING: |
| if (v != SEQ_START_TOKEN) |
| spin_unlock(&tcp_hashinfo.listening_hash[st->bucket].lock); |
| break; |
| case TCP_SEQ_STATE_ESTABLISHED: |
| if (v) |
| spin_unlock_bh(inet_ehash_lockp(&tcp_hashinfo, st->bucket)); |
| break; |
| } |
| } |
| EXPORT_SYMBOL(tcp_seq_stop); |
| |
| static void get_openreq4(const struct request_sock *req, |
| struct seq_file *f, int i) |
| { |
| const struct inet_request_sock *ireq = inet_rsk(req); |
| long delta = req->rsk_timer.expires - jiffies; |
| |
| seq_printf(f, "%4d: %08X:%04X %08X:%04X" |
| " %02X %08X:%08X %02X:%08lX %08X %5u %8d %u %d %pK", |
| i, |
| ireq->ir_loc_addr, |
| ireq->ir_num, |
| ireq->ir_rmt_addr, |
| ntohs(ireq->ir_rmt_port), |
| TCP_SYN_RECV, |
| 0, 0, /* could print option size, but that is af dependent. */ |
| 1, /* timers active (only the expire timer) */ |
| jiffies_delta_to_clock_t(delta), |
| req->num_timeout, |
| from_kuid_munged(seq_user_ns(f), |
| sock_i_uid(req->rsk_listener)), |
| 0, /* non standard timer */ |
| 0, /* open_requests have no inode */ |
| 0, |
| req); |
| } |
| |
| static void get_tcp4_sock(struct sock *sk, struct seq_file *f, int i) |
| { |
| int timer_active; |
| unsigned long timer_expires; |
| const struct tcp_sock *tp = tcp_sk(sk); |
| const struct inet_connection_sock *icsk = inet_csk(sk); |
| const struct inet_sock *inet = inet_sk(sk); |
| const struct fastopen_queue *fastopenq = &icsk->icsk_accept_queue.fastopenq; |
| __be32 dest = inet->inet_daddr; |
| __be32 src = inet->inet_rcv_saddr; |
| __u16 destp = ntohs(inet->inet_dport); |
| __u16 srcp = ntohs(inet->inet_sport); |
| int rx_queue; |
| int state; |
| |
| if (icsk->icsk_pending == ICSK_TIME_RETRANS || |
| icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT || |
| icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) { |
| timer_active = 1; |
| timer_expires = icsk->icsk_timeout; |
| } else if (icsk->icsk_pending == ICSK_TIME_PROBE0) { |
| timer_active = 4; |
| timer_expires = icsk->icsk_timeout; |
| } else if (timer_pending(&sk->sk_timer)) { |
| timer_active = 2; |
| timer_expires = sk->sk_timer.expires; |
| } else { |
| timer_active = 0; |
| timer_expires = jiffies; |
| } |
| |
| state = inet_sk_state_load(sk); |
| if (state == TCP_LISTEN) |
| rx_queue = READ_ONCE(sk->sk_ack_backlog); |
| else |
| /* Because we don't lock the socket, |
| * we might find a transient negative value. |
| */ |
| rx_queue = max_t(int, READ_ONCE(tp->rcv_nxt) - |
| READ_ONCE(tp->copied_seq), 0); |
| |
| seq_printf(f, "%4d: %08X:%04X %08X:%04X %02X %08X:%08X %02X:%08lX " |
| "%08X %5u %8d %lu %d %pK %lu %lu %u %u %d", |
| i, src, srcp, dest, destp, state, |
| READ_ONCE(tp->write_seq) - tp->snd_una, |
| rx_queue, |
| timer_active, |
| jiffies_delta_to_clock_t(timer_expires - jiffies), |
| icsk->icsk_retransmits, |
| from_kuid_munged(seq_user_ns(f), sock_i_uid(sk)), |
| icsk->icsk_probes_out, |
| sock_i_ino(sk), |
| refcount_read(&sk->sk_refcnt), sk, |
| jiffies_to_clock_t(icsk->icsk_rto), |
| jiffies_to_clock_t(icsk->icsk_ack.ato), |
| (icsk->icsk_ack.quick << 1) | inet_csk_in_pingpong_mode(sk), |
| tp->snd_cwnd, |
| state == TCP_LISTEN ? |
| fastopenq->max_qlen : |
| (tcp_in_initial_slowstart(tp) ? -1 : tp->snd_ssthresh)); |
| } |
| |
| static void get_timewait4_sock(const struct inet_timewait_sock *tw, |
| struct seq_file *f, int i) |
| { |
| long delta = tw->tw_timer.expires - jiffies; |
| __be32 dest, src; |
| __u16 destp, srcp; |
| |
| dest = tw->tw_daddr; |
| src = tw->tw_rcv_saddr; |
| destp = ntohs(tw->tw_dport); |
| srcp = ntohs(tw->tw_sport); |
| |
| seq_printf(f, "%4d: %08X:%04X %08X:%04X" |
| " %02X %08X:%08X %02X:%08lX %08X %5d %8d %d %d %pK", |
| i, src, srcp, dest, destp, tw->tw_substate, 0, 0, |
| 3, jiffies_delta_to_clock_t(delta), 0, 0, 0, 0, |
| refcount_read(&tw->tw_refcnt), tw); |
| } |
| |
| #define TMPSZ 150 |
| |
| static int tcp4_seq_show(struct seq_file *seq, void *v) |
| { |
| struct tcp_iter_state *st; |
| struct sock *sk = v; |
| |
| seq_setwidth(seq, TMPSZ - 1); |
| if (v == SEQ_START_TOKEN) { |
| seq_puts(seq, " sl local_address rem_address st tx_queue " |
| "rx_queue tr tm->when retrnsmt uid timeout " |
| "inode"); |
| goto out; |
| } |
| st = seq->private; |
| |
| if (sk->sk_state == TCP_TIME_WAIT) |
| get_timewait4_sock(v, seq, st->num); |
| else if (sk->sk_state == TCP_NEW_SYN_RECV) |
| get_openreq4(v, seq, st->num); |
| else |
| get_tcp4_sock(v, seq, st->num); |
| out: |
| seq_pad(seq, '\n'); |
| return 0; |
| } |
| |
| #ifdef CONFIG_BPF_SYSCALL |
| struct bpf_iter__tcp { |
| __bpf_md_ptr(struct bpf_iter_meta *, meta); |
| __bpf_md_ptr(struct sock_common *, sk_common); |
| uid_t uid __aligned(8); |
| }; |
| |
| static int tcp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta, |
| struct sock_common *sk_common, uid_t uid) |
| { |
| struct bpf_iter__tcp ctx; |
| |
| meta->seq_num--; /* skip SEQ_START_TOKEN */ |
| ctx.meta = meta; |
| ctx.sk_common = sk_common; |
| ctx.uid = uid; |
| return bpf_iter_run_prog(prog, &ctx); |
| } |
| |
| static int bpf_iter_tcp_seq_show(struct seq_file *seq, void *v) |
| { |
| struct bpf_iter_meta meta; |
| struct bpf_prog *prog; |
| struct sock *sk = v; |
| uid_t uid; |
| |
| if (v == SEQ_START_TOKEN) |
| return 0; |
| |
| if (sk->sk_state == TCP_TIME_WAIT) { |
| uid = 0; |
| } else if (sk->sk_state == TCP_NEW_SYN_RECV) { |
| const struct request_sock *req = v; |
| |
| uid = from_kuid_munged(seq_user_ns(seq), |
| sock_i_uid(req->rsk_listener)); |
| } else { |
| uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk)); |
| } |
| |
| meta.seq = seq; |
| prog = bpf_iter_get_info(&meta, false); |
| return tcp_prog_seq_show(prog, &meta, v, uid); |
| } |
| |
| static void bpf_iter_tcp_seq_stop(struct seq_file *seq, void *v) |
| { |
| struct bpf_iter_meta meta; |
| struct bpf_prog *prog; |
| |
| if (!v) { |
| meta.seq = seq; |
| prog = bpf_iter_get_info(&meta, true); |
| if (prog) |
| (void)tcp_prog_seq_show(prog, &meta, v, 0); |
| } |
| |
| tcp_seq_stop(seq, v); |
| } |
| |
| static const struct seq_operations bpf_iter_tcp_seq_ops = { |
| .show = bpf_iter_tcp_seq_show, |
| .start = tcp_seq_start, |
| .next = tcp_seq_next, |
| .stop = bpf_iter_tcp_seq_stop, |
| }; |
| #endif |
| |
| static const struct seq_operations tcp4_seq_ops = { |
| .show = tcp4_seq_show, |
| .start = tcp_seq_start, |
| .next = tcp_seq_next, |
| .stop = tcp_seq_stop, |
| }; |
| |
| static struct tcp_seq_afinfo tcp4_seq_afinfo = { |
| .family = AF_INET, |
| }; |
| |
| static int __net_init tcp4_proc_init_net(struct net *net) |
| { |
| if (!proc_create_net_data("tcp", 0444, net->proc_net, &tcp4_seq_ops, |
| sizeof(struct tcp_iter_state), &tcp4_seq_afinfo)) |
| return -ENOMEM; |
| return 0; |
| } |
| |
| static void __net_exit tcp4_proc_exit_net(struct net *net) |
| { |
| remove_proc_entry("tcp", net->proc_net); |
| } |
| |
| static struct pernet_operations tcp4_net_ops = { |
| .init = tcp4_proc_init_net, |
| .exit = tcp4_proc_exit_net, |
| }; |
| |
| int __init tcp4_proc_init(void) |
| { |
| return register_pernet_subsys(&tcp4_net_ops); |
| } |
| |
| void tcp4_proc_exit(void) |
| { |
| unregister_pernet_subsys(&tcp4_net_ops); |
| } |
| #endif /* CONFIG_PROC_FS */ |
| |
| struct proto tcp_prot = { |
| .name = "TCP", |
| .owner = THIS_MODULE, |
| .close = tcp_close, |
| .pre_connect = tcp_v4_pre_connect, |
| .connect = tcp_v4_connect, |
| .disconnect = tcp_disconnect, |
| .accept = inet_csk_accept, |
| .ioctl = tcp_ioctl, |
| .init = tcp_v4_init_sock, |
| .destroy = tcp_v4_destroy_sock, |
| .shutdown = tcp_shutdown, |
| .setsockopt = tcp_setsockopt, |
| .getsockopt = tcp_getsockopt, |
| .keepalive = tcp_set_keepalive, |
| .recvmsg = tcp_recvmsg, |
| .sendmsg = tcp_sendmsg, |
| .sendpage = tcp_sendpage, |
| .backlog_rcv = tcp_v4_do_rcv, |
| .release_cb = tcp_release_cb, |
| .hash = inet_hash, |
| .unhash = inet_unhash, |
| .get_port = inet_csk_get_port, |
| .enter_memory_pressure = tcp_enter_memory_pressure, |
| .leave_memory_pressure = tcp_leave_memory_pressure, |
| .stream_memory_free = tcp_stream_memory_free, |
| .sockets_allocated = &tcp_sockets_allocated, |
| .orphan_count = &tcp_orphan_count, |
| .memory_allocated = &tcp_memory_allocated, |
| .memory_pressure = &tcp_memory_pressure, |
| .sysctl_mem = sysctl_tcp_mem, |
| .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_tcp_wmem), |
| .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_tcp_rmem), |
| .max_header = MAX_TCP_HEADER, |
| .obj_size = sizeof(struct tcp_sock), |
| .slab_flags = SLAB_TYPESAFE_BY_RCU, |
| .twsk_prot = &tcp_timewait_sock_ops, |
| .rsk_prot = &tcp_request_sock_ops, |
| .h.hashinfo = &tcp_hashinfo, |
| .no_autobind = true, |
| .diag_destroy = tcp_abort, |
| }; |
| EXPORT_SYMBOL(tcp_prot); |
| |
| static void __net_exit tcp_sk_exit(struct net *net) |
| { |
| int cpu; |
| |
| if (net->ipv4.tcp_congestion_control) |
| bpf_module_put(net->ipv4.tcp_congestion_control, |
| net->ipv4.tcp_congestion_control->owner); |
| |
| for_each_possible_cpu(cpu) |
| inet_ctl_sock_destroy(*per_cpu_ptr(net->ipv4.tcp_sk, cpu)); |
| free_percpu(net->ipv4.tcp_sk); |
| } |
| |
| static int __net_init tcp_sk_init(struct net *net) |
| { |
| int res, cpu, cnt; |
| |
| net->ipv4.tcp_sk = alloc_percpu(struct sock *); |
| if (!net->ipv4.tcp_sk) |
| return -ENOMEM; |
| |
| for_each_possible_cpu(cpu) { |
| struct sock *sk; |
| |
| res = inet_ctl_sock_create(&sk, PF_INET, SOCK_RAW, |
| IPPROTO_TCP, net); |
| if (res) |
| goto fail; |
| sock_set_flag(sk, SOCK_USE_WRITE_QUEUE); |
| |
| /* Please enforce IP_DF and IPID==0 for RST and |
| * ACK sent in SYN-RECV and TIME-WAIT state. |
| */ |
| inet_sk(sk)->pmtudisc = IP_PMTUDISC_DO; |
| |
| *per_cpu_ptr(net->ipv4.tcp_sk, cpu) = sk; |
| } |
| |
| net->ipv4.sysctl_tcp_ecn = 2; |
| net->ipv4.sysctl_tcp_ecn_fallback = 1; |
| |
| net->ipv4.sysctl_tcp_base_mss = TCP_BASE_MSS; |
| net->ipv4.sysctl_tcp_min_snd_mss = TCP_MIN_SND_MSS; |
| net->ipv4.sysctl_tcp_probe_threshold = TCP_PROBE_THRESHOLD; |
| net->ipv4.sysctl_tcp_probe_interval = TCP_PROBE_INTERVAL; |
| net->ipv4.sysctl_tcp_mtu_probe_floor = TCP_MIN_SND_MSS; |
| |
| net->ipv4.sysctl_tcp_keepalive_time = TCP_KEEPALIVE_TIME; |
| net->ipv4.sysctl_tcp_keepalive_probes = TCP_KEEPALIVE_PROBES; |
| net->ipv4.sysctl_tcp_keepalive_intvl = TCP_KEEPALIVE_INTVL; |
| |
| net->ipv4.sysctl_tcp_syn_retries = TCP_SYN_RETRIES; |
| net->ipv4.sysctl_tcp_synack_retries = TCP_SYNACK_RETRIES; |
| net->ipv4.sysctl_tcp_syncookies = 1; |
| net->ipv4.sysctl_tcp_reordering = TCP_FASTRETRANS_THRESH; |
| net->ipv4.sysctl_tcp_retries1 = TCP_RETR1; |
| net->ipv4.sysctl_tcp_retries2 = TCP_RETR2; |
| net->ipv4.sysctl_tcp_orphan_retries = 0; |
| net->ipv4.sysctl_tcp_fin_timeout = TCP_FIN_TIMEOUT; |
| net->ipv4.sysctl_tcp_notsent_lowat = UINT_MAX; |
| net->ipv4.sysctl_tcp_tw_reuse = 2; |
| net->ipv4.sysctl_tcp_no_ssthresh_metrics_save = 1; |
| |
| cnt = tcp_hashinfo.ehash_mask + 1; |
| net->ipv4.tcp_death_row.sysctl_max_tw_buckets = cnt / 2; |
| net->ipv4.tcp_death_row.hashinfo = &tcp_hashinfo; |
| |
| net->ipv4.sysctl_max_syn_backlog = max(128, cnt / 128); |
| net->ipv4.sysctl_tcp_sack = 1; |
| net->ipv4.sysctl_tcp_window_scaling = 1; |
| net->ipv4.sysctl_tcp_timestamps = 1; |
| net->ipv4.sysctl_tcp_early_retrans = 3; |
| net->ipv4.sysctl_tcp_recovery = TCP_RACK_LOSS_DETECTION; |
| net->ipv4.sysctl_tcp_slow_start_after_idle = 1; /* By default, RFC2861 behavior. */ |
| net->ipv4.sysctl_tcp_retrans_collapse = 1; |
| net->ipv4.sysctl_tcp_max_reordering = 300; |
| net->ipv4.sysctl_tcp_dsack = 1; |
| net->ipv4.sysctl_tcp_app_win = 31; |
| net->ipv4.sysctl_tcp_adv_win_scale = 1; |
| net->ipv4.sysctl_tcp_frto = 2; |
| net->ipv4.sysctl_tcp_moderate_rcvbuf = 1; |
| /* This limits the percentage of the congestion window which we |
| * will allow a single TSO frame to consume. Building TSO frames |
| * which are too large can cause TCP streams to be bursty. |
| */ |
| net->ipv4.sysctl_tcp_tso_win_divisor = 3; |
| /* Default TSQ limit of 16 TSO segments */ |
| net->ipv4.sysctl_tcp_limit_output_bytes = 16 * 65536; |
| /* rfc5961 challenge ack rate limiting */ |
| net->ipv4.sysctl_tcp_challenge_ack_limit = 1000; |
| net->ipv4.sysctl_tcp_min_tso_segs = 2; |
| net->ipv4.sysctl_tcp_min_rtt_wlen = 300; |
| net->ipv4.sysctl_tcp_autocorking = 1; |
| net->ipv4.sysctl_tcp_invalid_ratelimit = HZ/2; |
| net->ipv4.sysctl_tcp_pacing_ss_ratio = 200; |
| net->ipv4.sysctl_tcp_pacing_ca_ratio = 120; |
| if (net != &init_net) { |
| memcpy(net->ipv4.sysctl_tcp_rmem, |
| init_net.ipv4.sysctl_tcp_rmem, |
| sizeof(init_net.ipv4.sysctl_tcp_rmem)); |
| memcpy(net->ipv4.sysctl_tcp_wmem, |
| init_net.ipv4.sysctl_tcp_wmem, |
| sizeof(init_net.ipv4.sysctl_tcp_wmem)); |
| } |
| net->ipv4.sysctl_tcp_comp_sack_delay_ns = NSEC_PER_MSEC; |
| net->ipv4.sysctl_tcp_comp_sack_slack_ns = 100 * NSEC_PER_USEC; |
| net->ipv4.sysctl_tcp_comp_sack_nr = 44; |
| net->ipv4.sysctl_tcp_fastopen = TFO_CLIENT_ENABLE; |
| spin_lock_init(&net->ipv4.tcp_fastopen_ctx_lock); |
| net->ipv4.sysctl_tcp_fastopen_blackhole_timeout = 0; |
| atomic_set(&net->ipv4.tfo_active_disable_times, 0); |
| |
| /* Reno is always built in */ |
| if (!net_eq(net, &init_net) && |
| bpf_try_module_get(init_net.ipv4.tcp_congestion_control, |
| init_net.ipv4.tcp_congestion_control->owner)) |
| net->ipv4.tcp_congestion_control = init_net.ipv4.tcp_congestion_control; |
| else |
| net->ipv4.tcp_congestion_control = &tcp_reno; |
| |
| return 0; |
| fail: |
| tcp_sk_exit(net); |
| |
| return res; |
| } |
| |
| static void __net_exit tcp_sk_exit_batch(struct list_head *net_exit_list) |
| { |
| struct net *net; |
| |
| inet_twsk_purge(&tcp_hashinfo, AF_INET); |
| |
| list_for_each_entry(net, net_exit_list, exit_list) |
| tcp_fastopen_ctx_destroy(net); |
| } |
| |
| static struct pernet_operations __net_initdata tcp_sk_ops = { |
| .init = tcp_sk_init, |
| .exit = tcp_sk_exit, |
| .exit_batch = tcp_sk_exit_batch, |
| }; |
| |
| #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) |
| DEFINE_BPF_ITER_FUNC(tcp, struct bpf_iter_meta *meta, |
| struct sock_common *sk_common, uid_t uid) |
| |
| static int bpf_iter_init_tcp(void *priv_data, struct bpf_iter_aux_info *aux) |
| { |
| struct tcp_iter_state *st = priv_data; |
| struct tcp_seq_afinfo *afinfo; |
| int ret; |
| |
| afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN); |
| if (!afinfo) |
| return -ENOMEM; |
| |
| afinfo->family = AF_UNSPEC; |
| st->bpf_seq_afinfo = afinfo; |
| ret = bpf_iter_init_seq_net(priv_data, aux); |
| if (ret) |
| kfree(afinfo); |
| return ret; |
| } |
| |
| static void bpf_iter_fini_tcp(void *priv_data) |
| { |
| struct tcp_iter_state *st = priv_data; |
| |
| kfree(st->bpf_seq_afinfo); |
| bpf_iter_fini_seq_net(priv_data); |
| } |
| |
| static const struct bpf_iter_seq_info tcp_seq_info = { |
| .seq_ops = &bpf_iter_tcp_seq_ops, |
| .init_seq_private = bpf_iter_init_tcp, |
| .fini_seq_private = bpf_iter_fini_tcp, |
| .seq_priv_size = sizeof(struct tcp_iter_state), |
| }; |
| |
| static struct bpf_iter_reg tcp_reg_info = { |
| .target = "tcp", |
| .ctx_arg_info_size = 1, |
| .ctx_arg_info = { |
| { offsetof(struct bpf_iter__tcp, sk_common), |
| PTR_TO_BTF_ID_OR_NULL }, |
| }, |
| .seq_info = &tcp_seq_info, |
| }; |
| |
| static void __init bpf_iter_register(void) |
| { |
| tcp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_SOCK_COMMON]; |
| if (bpf_iter_reg_target(&tcp_reg_info)) |
| pr_warn("Warning: could not register bpf iterator tcp\n"); |
| } |
| |
| #endif |
| |
| void __init tcp_v4_init(void) |
| { |
| if (register_pernet_subsys(&tcp_sk_ops)) |
| panic("Failed to create the TCP control socket.\n"); |
| |
| #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS) |
| bpf_iter_register(); |
| #endif |
| } |