blob: 1b2a400406ae133d643f40f90a2b67443a478aad [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/* Copyright(c) 2019-2020 Realtek Corporation
*/
#include "acpi.h"
#include "debug.h"
#include "phy.h"
#include "reg.h"
#include "sar.h"
#define RTW89_TAS_FACTOR 2 /* unit: 0.25 dBm */
#define RTW89_TAS_DPR_GAP (1 << RTW89_TAS_FACTOR)
#define RTW89_TAS_DELTA (2 << RTW89_TAS_FACTOR)
static enum rtw89_sar_subband rtw89_sar_get_subband(struct rtw89_dev *rtwdev,
u32 center_freq)
{
switch (center_freq) {
default:
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"center freq: %u to SAR subband is unhandled\n",
center_freq);
fallthrough;
case 2412 ... 2484:
return RTW89_SAR_2GHZ_SUBBAND;
case 5180 ... 5320:
return RTW89_SAR_5GHZ_SUBBAND_1_2;
case 5500 ... 5720:
return RTW89_SAR_5GHZ_SUBBAND_2_E;
case 5745 ... 5825:
return RTW89_SAR_5GHZ_SUBBAND_3;
case 5955 ... 6155:
return RTW89_SAR_6GHZ_SUBBAND_5_L;
case 6175 ... 6415:
return RTW89_SAR_6GHZ_SUBBAND_5_H;
case 6435 ... 6515:
return RTW89_SAR_6GHZ_SUBBAND_6;
case 6535 ... 6695:
return RTW89_SAR_6GHZ_SUBBAND_7_L;
case 6715 ... 6855:
return RTW89_SAR_6GHZ_SUBBAND_7_H;
/* freq 6875 (ch 185, 20MHz) spans RTW89_SAR_6GHZ_SUBBAND_7_H
* and RTW89_SAR_6GHZ_SUBBAND_8, so directly describe it with
* struct rtw89_sar_span in the following.
*/
case 6895 ... 7115:
return RTW89_SAR_6GHZ_SUBBAND_8;
}
}
struct rtw89_sar_span {
enum rtw89_sar_subband subband_low;
enum rtw89_sar_subband subband_high;
};
#define RTW89_SAR_SPAN_VALID(span) ((span)->subband_high)
#define RTW89_SAR_6GHZ_SPAN_HEAD 6145
#define RTW89_SAR_6GHZ_SPAN_IDX(center_freq) \
((((int)(center_freq) - RTW89_SAR_6GHZ_SPAN_HEAD) / 5) / 2)
#define RTW89_DECL_SAR_6GHZ_SPAN(center_freq, subband_l, subband_h) \
[RTW89_SAR_6GHZ_SPAN_IDX(center_freq)] = { \
.subband_low = RTW89_SAR_6GHZ_ ## subband_l, \
.subband_high = RTW89_SAR_6GHZ_ ## subband_h, \
}
/* Since 6GHz SAR subbands are not edge aligned, some cases span two SAR
* subbands. In the following, we describe each of them with rtw89_sar_span.
*/
static const struct rtw89_sar_span rtw89_sar_overlapping_6ghz[] = {
RTW89_DECL_SAR_6GHZ_SPAN(6145, SUBBAND_5_L, SUBBAND_5_H),
RTW89_DECL_SAR_6GHZ_SPAN(6165, SUBBAND_5_L, SUBBAND_5_H),
RTW89_DECL_SAR_6GHZ_SPAN(6185, SUBBAND_5_L, SUBBAND_5_H),
RTW89_DECL_SAR_6GHZ_SPAN(6505, SUBBAND_6, SUBBAND_7_L),
RTW89_DECL_SAR_6GHZ_SPAN(6525, SUBBAND_6, SUBBAND_7_L),
RTW89_DECL_SAR_6GHZ_SPAN(6545, SUBBAND_6, SUBBAND_7_L),
RTW89_DECL_SAR_6GHZ_SPAN(6665, SUBBAND_7_L, SUBBAND_7_H),
RTW89_DECL_SAR_6GHZ_SPAN(6705, SUBBAND_7_L, SUBBAND_7_H),
RTW89_DECL_SAR_6GHZ_SPAN(6825, SUBBAND_7_H, SUBBAND_8),
RTW89_DECL_SAR_6GHZ_SPAN(6865, SUBBAND_7_H, SUBBAND_8),
RTW89_DECL_SAR_6GHZ_SPAN(6875, SUBBAND_7_H, SUBBAND_8),
RTW89_DECL_SAR_6GHZ_SPAN(6885, SUBBAND_7_H, SUBBAND_8),
};
static int rtw89_query_sar_config_common(struct rtw89_dev *rtwdev,
u32 center_freq, s32 *cfg)
{
struct rtw89_sar_cfg_common *rtwsar = &rtwdev->sar.cfg_common;
const struct rtw89_sar_span *span = NULL;
enum rtw89_sar_subband subband_l, subband_h;
int idx;
if (center_freq >= RTW89_SAR_6GHZ_SPAN_HEAD) {
idx = RTW89_SAR_6GHZ_SPAN_IDX(center_freq);
/* To decrease size of rtw89_sar_overlapping_6ghz[],
* RTW89_SAR_6GHZ_SPAN_IDX() truncates the leading NULLs
* to make first span as index 0 of the table. So, if center
* frequency is less than the first one, it will get netative.
*/
if (idx >= 0 && idx < ARRAY_SIZE(rtw89_sar_overlapping_6ghz))
span = &rtw89_sar_overlapping_6ghz[idx];
}
if (span && RTW89_SAR_SPAN_VALID(span)) {
subband_l = span->subband_low;
subband_h = span->subband_high;
} else {
subband_l = rtw89_sar_get_subband(rtwdev, center_freq);
subband_h = subband_l;
}
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"center_freq %u: SAR subband {%u, %u}\n",
center_freq, subband_l, subband_h);
if (!rtwsar->set[subband_l] && !rtwsar->set[subband_h])
return -ENODATA;
if (!rtwsar->set[subband_l])
*cfg = rtwsar->cfg[subband_h];
else if (!rtwsar->set[subband_h])
*cfg = rtwsar->cfg[subband_l];
else
*cfg = min(rtwsar->cfg[subband_l], rtwsar->cfg[subband_h]);
return 0;
}
static const
struct rtw89_sar_handler rtw89_sar_handlers[RTW89_SAR_SOURCE_NR] = {
[RTW89_SAR_SOURCE_COMMON] = {
.descr_sar_source = "RTW89_SAR_SOURCE_COMMON",
.txpwr_factor_sar = 2,
.query_sar_config = rtw89_query_sar_config_common,
},
};
#define rtw89_sar_set_src(_dev, _src, _cfg_name, _cfg_data) \
do { \
typeof(_src) _s = (_src); \
typeof(_dev) _d = (_dev); \
BUILD_BUG_ON(!rtw89_sar_handlers[_s].descr_sar_source); \
BUILD_BUG_ON(!rtw89_sar_handlers[_s].query_sar_config); \
lockdep_assert_held(&_d->mutex); \
_d->sar._cfg_name = *(_cfg_data); \
_d->sar.src = _s; \
} while (0)
static s8 rtw89_txpwr_sar_to_mac(struct rtw89_dev *rtwdev, u8 fct, s32 cfg)
{
const u8 fct_mac = rtwdev->chip->txpwr_factor_mac;
s32 cfg_mac;
cfg_mac = fct > fct_mac ?
cfg >> (fct - fct_mac) : cfg << (fct_mac - fct);
return (s8)clamp_t(s32, cfg_mac,
RTW89_SAR_TXPWR_MAC_MIN,
RTW89_SAR_TXPWR_MAC_MAX);
}
static s8 rtw89_txpwr_tas_to_sar(const struct rtw89_sar_handler *sar_hdl,
s8 cfg)
{
const u8 fct = sar_hdl->txpwr_factor_sar;
if (fct > RTW89_TAS_FACTOR)
return cfg << (fct - RTW89_TAS_FACTOR);
else
return cfg >> (RTW89_TAS_FACTOR - fct);
}
static s8 rtw89_txpwr_sar_to_tas(const struct rtw89_sar_handler *sar_hdl,
s8 cfg)
{
const u8 fct = sar_hdl->txpwr_factor_sar;
if (fct > RTW89_TAS_FACTOR)
return cfg >> (fct - RTW89_TAS_FACTOR);
else
return cfg << (RTW89_TAS_FACTOR - fct);
}
s8 rtw89_query_sar(struct rtw89_dev *rtwdev, u32 center_freq)
{
const enum rtw89_sar_sources src = rtwdev->sar.src;
/* its members are protected by rtw89_sar_set_src() */
const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
struct rtw89_tas_info *tas = &rtwdev->tas;
s8 delta;
int ret;
s32 cfg;
u8 fct;
lockdep_assert_held(&rtwdev->mutex);
if (src == RTW89_SAR_SOURCE_NONE)
return RTW89_SAR_TXPWR_MAC_MAX;
ret = sar_hdl->query_sar_config(rtwdev, center_freq, &cfg);
if (ret)
return RTW89_SAR_TXPWR_MAC_MAX;
if (tas->enable) {
switch (tas->state) {
case RTW89_TAS_STATE_DPR_OFF:
return RTW89_SAR_TXPWR_MAC_MAX;
case RTW89_TAS_STATE_DPR_ON:
delta = rtw89_txpwr_tas_to_sar(sar_hdl, tas->delta);
cfg -= delta;
break;
case RTW89_TAS_STATE_DPR_FORBID:
default:
break;
}
}
fct = sar_hdl->txpwr_factor_sar;
return rtw89_txpwr_sar_to_mac(rtwdev, fct, cfg);
}
void rtw89_print_sar(struct seq_file *m, struct rtw89_dev *rtwdev, u32 center_freq)
{
const enum rtw89_sar_sources src = rtwdev->sar.src;
/* its members are protected by rtw89_sar_set_src() */
const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
const u8 fct_mac = rtwdev->chip->txpwr_factor_mac;
int ret;
s32 cfg;
u8 fct;
lockdep_assert_held(&rtwdev->mutex);
if (src == RTW89_SAR_SOURCE_NONE) {
seq_puts(m, "no SAR is applied\n");
return;
}
seq_printf(m, "source: %d (%s)\n", src, sar_hdl->descr_sar_source);
ret = sar_hdl->query_sar_config(rtwdev, center_freq, &cfg);
if (ret) {
seq_printf(m, "config: return code: %d\n", ret);
seq_printf(m, "assign: max setting: %d (unit: 1/%lu dBm)\n",
RTW89_SAR_TXPWR_MAC_MAX, BIT(fct_mac));
return;
}
fct = sar_hdl->txpwr_factor_sar;
seq_printf(m, "config: %d (unit: 1/%lu dBm)\n", cfg, BIT(fct));
}
void rtw89_print_tas(struct seq_file *m, struct rtw89_dev *rtwdev)
{
struct rtw89_tas_info *tas = &rtwdev->tas;
if (!tas->enable) {
seq_puts(m, "no TAS is applied\n");
return;
}
seq_printf(m, "DPR gap: %d\n", tas->dpr_gap);
seq_printf(m, "TAS delta: %d\n", tas->delta);
}
static int rtw89_apply_sar_common(struct rtw89_dev *rtwdev,
const struct rtw89_sar_cfg_common *sar)
{
enum rtw89_sar_sources src;
int ret = 0;
mutex_lock(&rtwdev->mutex);
src = rtwdev->sar.src;
if (src != RTW89_SAR_SOURCE_NONE && src != RTW89_SAR_SOURCE_COMMON) {
rtw89_warn(rtwdev, "SAR source: %d is in use", src);
ret = -EBUSY;
goto exit;
}
rtw89_sar_set_src(rtwdev, RTW89_SAR_SOURCE_COMMON, cfg_common, sar);
rtw89_core_set_chip_txpwr(rtwdev);
exit:
mutex_unlock(&rtwdev->mutex);
return ret;
}
static const struct cfg80211_sar_freq_ranges rtw89_common_sar_freq_ranges[] = {
{ .start_freq = 2412, .end_freq = 2484, },
{ .start_freq = 5180, .end_freq = 5320, },
{ .start_freq = 5500, .end_freq = 5720, },
{ .start_freq = 5745, .end_freq = 5825, },
{ .start_freq = 5955, .end_freq = 6155, },
{ .start_freq = 6175, .end_freq = 6415, },
{ .start_freq = 6435, .end_freq = 6515, },
{ .start_freq = 6535, .end_freq = 6695, },
{ .start_freq = 6715, .end_freq = 6875, },
{ .start_freq = 6875, .end_freq = 7115, },
};
static_assert(RTW89_SAR_SUBBAND_NR ==
ARRAY_SIZE(rtw89_common_sar_freq_ranges));
const struct cfg80211_sar_capa rtw89_sar_capa = {
.type = NL80211_SAR_TYPE_POWER,
.num_freq_ranges = ARRAY_SIZE(rtw89_common_sar_freq_ranges),
.freq_ranges = rtw89_common_sar_freq_ranges,
};
int rtw89_ops_set_sar_specs(struct ieee80211_hw *hw,
const struct cfg80211_sar_specs *sar)
{
struct rtw89_dev *rtwdev = hw->priv;
struct rtw89_sar_cfg_common sar_common = {0};
u8 fct;
u32 freq_start;
u32 freq_end;
s32 power;
u32 i, idx;
if (sar->type != NL80211_SAR_TYPE_POWER)
return -EINVAL;
fct = rtw89_sar_handlers[RTW89_SAR_SOURCE_COMMON].txpwr_factor_sar;
for (i = 0; i < sar->num_sub_specs; i++) {
idx = sar->sub_specs[i].freq_range_index;
if (idx >= ARRAY_SIZE(rtw89_common_sar_freq_ranges))
return -EINVAL;
freq_start = rtw89_common_sar_freq_ranges[idx].start_freq;
freq_end = rtw89_common_sar_freq_ranges[idx].end_freq;
power = sar->sub_specs[i].power;
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"On freq %u to %u, set SAR limit %d (unit: 1/%lu dBm)\n",
freq_start, freq_end, power, BIT(fct));
sar_common.set[idx] = true;
sar_common.cfg[idx] = power;
}
return rtw89_apply_sar_common(rtwdev, &sar_common);
}
static void rtw89_tas_state_update(struct rtw89_dev *rtwdev)
{
const enum rtw89_sar_sources src = rtwdev->sar.src;
/* its members are protected by rtw89_sar_set_src() */
const struct rtw89_sar_handler *sar_hdl = &rtw89_sar_handlers[src];
struct rtw89_tas_info *tas = &rtwdev->tas;
s32 txpwr_avg = tas->total_txpwr / RTW89_TAS_MAX_WINDOW / PERCENT;
s32 dpr_on_threshold, dpr_off_threshold, cfg;
enum rtw89_tas_state state = tas->state;
const struct rtw89_chan *chan;
int ret;
lockdep_assert_held(&rtwdev->mutex);
if (src == RTW89_SAR_SOURCE_NONE)
return;
chan = rtw89_chan_get(rtwdev, RTW89_SUB_ENTITY_0);
ret = sar_hdl->query_sar_config(rtwdev, chan->freq, &cfg);
if (ret)
return;
cfg = rtw89_txpwr_sar_to_tas(sar_hdl, cfg);
if (tas->delta >= cfg) {
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"TAS delta exceed SAR limit\n");
state = RTW89_TAS_STATE_DPR_FORBID;
goto out;
}
dpr_on_threshold = cfg;
dpr_off_threshold = cfg - tas->dpr_gap;
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"DPR_ON thold: %d, DPR_OFF thold: %d, txpwr_avg: %d\n",
dpr_on_threshold, dpr_off_threshold, txpwr_avg);
if (txpwr_avg >= dpr_on_threshold)
state = RTW89_TAS_STATE_DPR_ON;
else if (txpwr_avg < dpr_off_threshold)
state = RTW89_TAS_STATE_DPR_OFF;
out:
if (tas->state == state)
return;
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"TAS old state: %d, new state: %d\n", tas->state, state);
tas->state = state;
rtw89_core_set_chip_txpwr(rtwdev);
}
void rtw89_tas_init(struct rtw89_dev *rtwdev)
{
struct rtw89_tas_info *tas = &rtwdev->tas;
struct rtw89_acpi_dsm_result res = {};
int ret;
u8 val;
ret = rtw89_acpi_evaluate_dsm(rtwdev, RTW89_ACPI_DSM_FUNC_TAS_EN, &res);
if (ret) {
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"acpi: cannot get TAS: %d\n", ret);
return;
}
val = res.u.value;
switch (val) {
case 0:
tas->enable = false;
break;
case 1:
tas->enable = true;
break;
default:
break;
}
if (!tas->enable) {
rtw89_debug(rtwdev, RTW89_DBG_SAR, "TAS not enable\n");
return;
}
tas->dpr_gap = RTW89_TAS_DPR_GAP;
tas->delta = RTW89_TAS_DELTA;
}
void rtw89_tas_reset(struct rtw89_dev *rtwdev)
{
struct rtw89_tas_info *tas = &rtwdev->tas;
if (!tas->enable)
return;
memset(&tas->txpwr_history, 0, sizeof(tas->txpwr_history));
tas->total_txpwr = 0;
tas->cur_idx = 0;
tas->state = RTW89_TAS_STATE_DPR_OFF;
}
static const struct rtw89_reg_def txpwr_regs[] = {
{R_PATH0_TXPWR, B_PATH0_TXPWR},
{R_PATH1_TXPWR, B_PATH1_TXPWR},
};
void rtw89_tas_track(struct rtw89_dev *rtwdev)
{
struct rtw89_env_monitor_info *env = &rtwdev->env_monitor;
const enum rtw89_sar_sources src = rtwdev->sar.src;
u8 max_nss_num = rtwdev->chip->rf_path_num;
struct rtw89_tas_info *tas = &rtwdev->tas;
s16 tmp, txpwr, instant_txpwr = 0;
u32 val;
int i;
if (!tas->enable || src == RTW89_SAR_SOURCE_NONE)
return;
if (env->ccx_watchdog_result != RTW89_PHY_ENV_MON_IFS_CLM)
return;
for (i = 0; i < max_nss_num; i++) {
val = rtw89_phy_read32_mask(rtwdev, txpwr_regs[i].addr,
txpwr_regs[i].mask);
tmp = sign_extend32(val, 8);
if (tmp <= 0)
return;
instant_txpwr += tmp;
}
instant_txpwr /= max_nss_num;
/* in unit of 0.25 dBm multiply by percentage */
txpwr = instant_txpwr * env->ifs_clm_tx_ratio;
tas->total_txpwr += txpwr - tas->txpwr_history[tas->cur_idx];
tas->txpwr_history[tas->cur_idx] = txpwr;
rtw89_debug(rtwdev, RTW89_DBG_SAR,
"instant_txpwr: %d, tx_ratio: %d, txpwr: %d\n",
instant_txpwr, env->ifs_clm_tx_ratio, txpwr);
tas->cur_idx = (tas->cur_idx + 1) % RTW89_TAS_MAX_WINDOW;
rtw89_tas_state_update(rtwdev);
}