blob: 241762606a6679aa5a4085621847c70ee59c70e5 [file] [log] [blame]
/*
* Copyright (c) 2016 Mellanox Technologies Ltd. All rights reserved.
* Copyright (c) 2015 System Fabric Works, Inc. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/skbuff.h>
#include <linux/if_arp.h>
#include <linux/netdevice.h>
#include <linux/if.h>
#include <linux/if_vlan.h>
#include <net/udp_tunnel.h>
#include <net/sch_generic.h>
#include <linux/netfilter.h>
#include <rdma/ib_addr.h>
#include "rxe.h"
#include "rxe_net.h"
#include "rxe_loc.h"
static LIST_HEAD(rxe_dev_list);
static DEFINE_SPINLOCK(dev_list_lock); /* spinlock for device list */
struct rxe_dev *net_to_rxe(struct net_device *ndev)
{
struct rxe_dev *rxe;
struct rxe_dev *found = NULL;
spin_lock_bh(&dev_list_lock);
list_for_each_entry(rxe, &rxe_dev_list, list) {
if (rxe->ndev == ndev) {
found = rxe;
break;
}
}
spin_unlock_bh(&dev_list_lock);
return found;
}
struct rxe_dev *get_rxe_by_name(const char *name)
{
struct rxe_dev *rxe;
struct rxe_dev *found = NULL;
spin_lock_bh(&dev_list_lock);
list_for_each_entry(rxe, &rxe_dev_list, list) {
if (!strcmp(name, rxe->ib_dev.name)) {
found = rxe;
break;
}
}
spin_unlock_bh(&dev_list_lock);
return found;
}
static struct rxe_recv_sockets recv_sockets;
struct device *rxe_dma_device(struct rxe_dev *rxe)
{
struct net_device *ndev;
ndev = rxe->ndev;
if (is_vlan_dev(ndev))
ndev = vlan_dev_real_dev(ndev);
return ndev->dev.parent;
}
int rxe_mcast_add(struct rxe_dev *rxe, union ib_gid *mgid)
{
int err;
unsigned char ll_addr[ETH_ALEN];
ipv6_eth_mc_map((struct in6_addr *)mgid->raw, ll_addr);
err = dev_mc_add(rxe->ndev, ll_addr);
return err;
}
int rxe_mcast_delete(struct rxe_dev *rxe, union ib_gid *mgid)
{
int err;
unsigned char ll_addr[ETH_ALEN];
ipv6_eth_mc_map((struct in6_addr *)mgid->raw, ll_addr);
err = dev_mc_del(rxe->ndev, ll_addr);
return err;
}
static struct dst_entry *rxe_find_route4(struct net_device *ndev,
struct in_addr *saddr,
struct in_addr *daddr)
{
struct rtable *rt;
struct flowi4 fl = { { 0 } };
memset(&fl, 0, sizeof(fl));
fl.flowi4_oif = ndev->ifindex;
memcpy(&fl.saddr, saddr, sizeof(*saddr));
memcpy(&fl.daddr, daddr, sizeof(*daddr));
fl.flowi4_proto = IPPROTO_UDP;
rt = ip_route_output_key(&init_net, &fl);
if (IS_ERR(rt)) {
pr_err_ratelimited("no route to %pI4\n", &daddr->s_addr);
return NULL;
}
return &rt->dst;
}
#if IS_ENABLED(CONFIG_IPV6)
static struct dst_entry *rxe_find_route6(struct net_device *ndev,
struct in6_addr *saddr,
struct in6_addr *daddr)
{
struct dst_entry *ndst;
struct flowi6 fl6 = { { 0 } };
memset(&fl6, 0, sizeof(fl6));
fl6.flowi6_oif = ndev->ifindex;
memcpy(&fl6.saddr, saddr, sizeof(*saddr));
memcpy(&fl6.daddr, daddr, sizeof(*daddr));
fl6.flowi6_proto = IPPROTO_UDP;
if (unlikely(ipv6_stub->ipv6_dst_lookup(sock_net(recv_sockets.sk6->sk),
recv_sockets.sk6->sk, &ndst, &fl6))) {
pr_err_ratelimited("no route to %pI6\n", daddr);
goto put;
}
if (unlikely(ndst->error)) {
pr_err("no route to %pI6\n", daddr);
goto put;
}
return ndst;
put:
dst_release(ndst);
return NULL;
}
#else
static struct dst_entry *rxe_find_route6(struct net_device *ndev,
struct in6_addr *saddr,
struct in6_addr *daddr)
{
return NULL;
}
#endif
/*
* Derive the net_device from the av.
* For physical devices, this will just return rxe->ndev.
* But for VLAN devices, it will return the vlan dev.
* Caller should dev_put() the returned net_device.
*/
static struct net_device *rxe_netdev_from_av(struct rxe_dev *rxe,
int port_num,
struct rxe_av *av)
{
union ib_gid gid;
struct ib_gid_attr attr;
struct net_device *ndev = rxe->ndev;
if (ib_get_cached_gid(&rxe->ib_dev, port_num, av->grh.sgid_index,
&gid, &attr) == 0 &&
attr.ndev && attr.ndev != ndev)
ndev = attr.ndev;
else
/* Only to ensure that caller may call dev_put() */
dev_hold(ndev);
return ndev;
}
static struct dst_entry *rxe_find_route(struct rxe_dev *rxe,
struct rxe_qp *qp,
struct rxe_av *av)
{
struct dst_entry *dst = NULL;
struct net_device *ndev;
ndev = rxe_netdev_from_av(rxe, qp->attr.port_num, av);
if (qp_type(qp) == IB_QPT_RC)
dst = sk_dst_get(qp->sk->sk);
if (!dst || !dst_check(dst, qp->dst_cookie)) {
if (dst)
dst_release(dst);
if (av->network_type == RDMA_NETWORK_IPV4) {
struct in_addr *saddr;
struct in_addr *daddr;
saddr = &av->sgid_addr._sockaddr_in.sin_addr;
daddr = &av->dgid_addr._sockaddr_in.sin_addr;
dst = rxe_find_route4(ndev, saddr, daddr);
} else if (av->network_type == RDMA_NETWORK_IPV6) {
struct in6_addr *saddr6;
struct in6_addr *daddr6;
saddr6 = &av->sgid_addr._sockaddr_in6.sin6_addr;
daddr6 = &av->dgid_addr._sockaddr_in6.sin6_addr;
dst = rxe_find_route6(ndev, saddr6, daddr6);
#if IS_ENABLED(CONFIG_IPV6)
if (dst)
qp->dst_cookie =
rt6_get_cookie((struct rt6_info *)dst);
#endif
}
}
dev_put(ndev);
return dst;
}
static int rxe_udp_encap_recv(struct sock *sk, struct sk_buff *skb)
{
struct udphdr *udph;
struct net_device *ndev = skb->dev;
struct net_device *rdev = ndev;
struct rxe_dev *rxe = net_to_rxe(ndev);
struct rxe_pkt_info *pkt = SKB_TO_PKT(skb);
if (!rxe && is_vlan_dev(rdev)) {
rdev = vlan_dev_real_dev(ndev);
rxe = net_to_rxe(rdev);
}
if (!rxe)
goto drop;
if (skb_linearize(skb)) {
pr_err("skb_linearize failed\n");
goto drop;
}
udph = udp_hdr(skb);
pkt->rxe = rxe;
pkt->port_num = 1;
pkt->hdr = (u8 *)(udph + 1);
pkt->mask = RXE_GRH_MASK;
pkt->paylen = be16_to_cpu(udph->len) - sizeof(*udph);
return rxe_rcv(skb);
drop:
kfree_skb(skb);
return 0;
}
static struct socket *rxe_setup_udp_tunnel(struct net *net, __be16 port,
bool ipv6)
{
int err;
struct socket *sock;
struct udp_port_cfg udp_cfg = { };
struct udp_tunnel_sock_cfg tnl_cfg = { };
if (ipv6) {
udp_cfg.family = AF_INET6;
udp_cfg.ipv6_v6only = 1;
} else {
udp_cfg.family = AF_INET;
}
udp_cfg.local_udp_port = port;
/* Create UDP socket */
err = udp_sock_create(net, &udp_cfg, &sock);
if (err < 0) {
pr_err("failed to create udp socket. err = %d\n", err);
return ERR_PTR(err);
}
tnl_cfg.encap_type = 1;
tnl_cfg.encap_rcv = rxe_udp_encap_recv;
/* Setup UDP tunnel */
setup_udp_tunnel_sock(net, sock, &tnl_cfg);
return sock;
}
void rxe_release_udp_tunnel(struct socket *sk)
{
if (sk)
udp_tunnel_sock_release(sk);
}
static void prepare_udp_hdr(struct sk_buff *skb, __be16 src_port,
__be16 dst_port)
{
struct udphdr *udph;
__skb_push(skb, sizeof(*udph));
skb_reset_transport_header(skb);
udph = udp_hdr(skb);
udph->dest = dst_port;
udph->source = src_port;
udph->len = htons(skb->len);
udph->check = 0;
}
static void prepare_ipv4_hdr(struct dst_entry *dst, struct sk_buff *skb,
__be32 saddr, __be32 daddr, __u8 proto,
__u8 tos, __u8 ttl, __be16 df, bool xnet)
{
struct iphdr *iph;
skb_scrub_packet(skb, xnet);
skb_clear_hash(skb);
skb_dst_set(skb, dst_clone(dst));
memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
skb_push(skb, sizeof(struct iphdr));
skb_reset_network_header(skb);
iph = ip_hdr(skb);
iph->version = IPVERSION;
iph->ihl = sizeof(struct iphdr) >> 2;
iph->frag_off = df;
iph->protocol = proto;
iph->tos = tos;
iph->daddr = daddr;
iph->saddr = saddr;
iph->ttl = ttl;
__ip_select_ident(dev_net(dst->dev), iph,
skb_shinfo(skb)->gso_segs ?: 1);
iph->tot_len = htons(skb->len);
ip_send_check(iph);
}
static void prepare_ipv6_hdr(struct dst_entry *dst, struct sk_buff *skb,
struct in6_addr *saddr, struct in6_addr *daddr,
__u8 proto, __u8 prio, __u8 ttl)
{
struct ipv6hdr *ip6h;
memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
IPCB(skb)->flags &= ~(IPSKB_XFRM_TUNNEL_SIZE | IPSKB_XFRM_TRANSFORMED
| IPSKB_REROUTED);
skb_dst_set(skb, dst_clone(dst));
__skb_push(skb, sizeof(*ip6h));
skb_reset_network_header(skb);
ip6h = ipv6_hdr(skb);
ip6_flow_hdr(ip6h, prio, htonl(0));
ip6h->payload_len = htons(skb->len);
ip6h->nexthdr = proto;
ip6h->hop_limit = ttl;
ip6h->daddr = *daddr;
ip6h->saddr = *saddr;
ip6h->payload_len = htons(skb->len - sizeof(*ip6h));
}
static int prepare4(struct rxe_dev *rxe, struct rxe_pkt_info *pkt,
struct sk_buff *skb, struct rxe_av *av)
{
struct rxe_qp *qp = pkt->qp;
struct dst_entry *dst;
bool xnet = false;
__be16 df = htons(IP_DF);
struct in_addr *saddr = &av->sgid_addr._sockaddr_in.sin_addr;
struct in_addr *daddr = &av->dgid_addr._sockaddr_in.sin_addr;
dst = rxe_find_route(rxe, qp, av);
if (!dst) {
pr_err("Host not reachable\n");
return -EHOSTUNREACH;
}
if (!memcmp(saddr, daddr, sizeof(*daddr)))
pkt->mask |= RXE_LOOPBACK_MASK;
prepare_udp_hdr(skb, htons(RXE_ROCE_V2_SPORT),
htons(ROCE_V2_UDP_DPORT));
prepare_ipv4_hdr(dst, skb, saddr->s_addr, daddr->s_addr, IPPROTO_UDP,
av->grh.traffic_class, av->grh.hop_limit, df, xnet);
if (qp_type(qp) == IB_QPT_RC)
sk_dst_set(qp->sk->sk, dst);
else
dst_release(dst);
return 0;
}
static int prepare6(struct rxe_dev *rxe, struct rxe_pkt_info *pkt,
struct sk_buff *skb, struct rxe_av *av)
{
struct rxe_qp *qp = pkt->qp;
struct dst_entry *dst;
struct in6_addr *saddr = &av->sgid_addr._sockaddr_in6.sin6_addr;
struct in6_addr *daddr = &av->dgid_addr._sockaddr_in6.sin6_addr;
dst = rxe_find_route(rxe, qp, av);
if (!dst) {
pr_err("Host not reachable\n");
return -EHOSTUNREACH;
}
if (!memcmp(saddr, daddr, sizeof(*daddr)))
pkt->mask |= RXE_LOOPBACK_MASK;
prepare_udp_hdr(skb, htons(RXE_ROCE_V2_SPORT),
htons(ROCE_V2_UDP_DPORT));
prepare_ipv6_hdr(dst, skb, saddr, daddr, IPPROTO_UDP,
av->grh.traffic_class,
av->grh.hop_limit);
if (qp_type(qp) == IB_QPT_RC)
sk_dst_set(qp->sk->sk, dst);
else
dst_release(dst);
return 0;
}
int rxe_prepare(struct rxe_dev *rxe, struct rxe_pkt_info *pkt,
struct sk_buff *skb, u32 *crc)
{
int err = 0;
struct rxe_av *av = rxe_get_av(pkt);
if (av->network_type == RDMA_NETWORK_IPV4)
err = prepare4(rxe, pkt, skb, av);
else if (av->network_type == RDMA_NETWORK_IPV6)
err = prepare6(rxe, pkt, skb, av);
*crc = rxe_icrc_hdr(pkt, skb);
return err;
}
static void rxe_skb_tx_dtor(struct sk_buff *skb)
{
struct sock *sk = skb->sk;
struct rxe_qp *qp = sk->sk_user_data;
int skb_out = atomic_dec_return(&qp->skb_out);
if (unlikely(qp->need_req_skb &&
skb_out < RXE_INFLIGHT_SKBS_PER_QP_LOW))
rxe_run_task(&qp->req.task, 1);
rxe_drop_ref(qp);
}
int rxe_send(struct rxe_pkt_info *pkt, struct sk_buff *skb)
{
struct rxe_av *av;
int err;
av = rxe_get_av(pkt);
skb->destructor = rxe_skb_tx_dtor;
skb->sk = pkt->qp->sk->sk;
rxe_add_ref(pkt->qp);
atomic_inc(&pkt->qp->skb_out);
if (av->network_type == RDMA_NETWORK_IPV4) {
err = ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
} else if (av->network_type == RDMA_NETWORK_IPV6) {
err = ip6_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
} else {
pr_err("Unknown layer 3 protocol: %d\n", av->network_type);
atomic_dec(&pkt->qp->skb_out);
rxe_drop_ref(pkt->qp);
kfree_skb(skb);
return -EINVAL;
}
if (unlikely(net_xmit_eval(err))) {
pr_debug("error sending packet: %d\n", err);
return -EAGAIN;
}
return 0;
}
int rxe_loopback(struct sk_buff *skb)
{
return rxe_rcv(skb);
}
static inline int addr_same(struct rxe_dev *rxe, struct rxe_av *av)
{
return rxe->port.port_guid == av->grh.dgid.global.interface_id;
}
struct sk_buff *rxe_init_packet(struct rxe_dev *rxe, struct rxe_av *av,
int paylen, struct rxe_pkt_info *pkt)
{
unsigned int hdr_len;
struct sk_buff *skb;
struct net_device *ndev;
const int port_num = 1;
ndev = rxe_netdev_from_av(rxe, port_num, av);
if (av->network_type == RDMA_NETWORK_IPV4)
hdr_len = ETH_HLEN + sizeof(struct udphdr) +
sizeof(struct iphdr);
else
hdr_len = ETH_HLEN + sizeof(struct udphdr) +
sizeof(struct ipv6hdr);
skb = alloc_skb(paylen + hdr_len + LL_RESERVED_SPACE(ndev),
GFP_ATOMIC);
if (unlikely(!skb)) {
dev_put(ndev);
return NULL;
}
skb_reserve(skb, hdr_len + LL_RESERVED_SPACE(rxe->ndev));
skb->dev = ndev;
if (av->network_type == RDMA_NETWORK_IPV4)
skb->protocol = htons(ETH_P_IP);
else
skb->protocol = htons(ETH_P_IPV6);
pkt->rxe = rxe;
pkt->port_num = port_num;
pkt->hdr = skb_put(skb, paylen);
pkt->mask |= RXE_GRH_MASK;
memset(pkt->hdr, 0, paylen);
dev_put(ndev);
return skb;
}
/*
* this is required by rxe_cfg to match rxe devices in
* /sys/class/infiniband up with their underlying ethernet devices
*/
const char *rxe_parent_name(struct rxe_dev *rxe, unsigned int port_num)
{
return rxe->ndev->name;
}
enum rdma_link_layer rxe_link_layer(struct rxe_dev *rxe, unsigned int port_num)
{
return IB_LINK_LAYER_ETHERNET;
}
struct rxe_dev *rxe_net_add(struct net_device *ndev)
{
int err;
struct rxe_dev *rxe = NULL;
rxe = (struct rxe_dev *)ib_alloc_device(sizeof(*rxe));
if (!rxe)
return NULL;
rxe->ndev = ndev;
err = rxe_add(rxe, ndev->mtu);
if (err) {
ib_dealloc_device(&rxe->ib_dev);
return NULL;
}
spin_lock_bh(&dev_list_lock);
list_add_tail(&rxe->list, &rxe_dev_list);
spin_unlock_bh(&dev_list_lock);
return rxe;
}
void rxe_remove_all(void)
{
spin_lock_bh(&dev_list_lock);
while (!list_empty(&rxe_dev_list)) {
struct rxe_dev *rxe =
list_first_entry(&rxe_dev_list, struct rxe_dev, list);
list_del(&rxe->list);
spin_unlock_bh(&dev_list_lock);
rxe_remove(rxe);
spin_lock_bh(&dev_list_lock);
}
spin_unlock_bh(&dev_list_lock);
}
EXPORT_SYMBOL(rxe_remove_all);
static void rxe_port_event(struct rxe_dev *rxe,
enum ib_event_type event)
{
struct ib_event ev;
ev.device = &rxe->ib_dev;
ev.element.port_num = 1;
ev.event = event;
ib_dispatch_event(&ev);
}
/* Caller must hold net_info_lock */
void rxe_port_up(struct rxe_dev *rxe)
{
struct rxe_port *port;
port = &rxe->port;
port->attr.state = IB_PORT_ACTIVE;
port->attr.phys_state = IB_PHYS_STATE_LINK_UP;
rxe_port_event(rxe, IB_EVENT_PORT_ACTIVE);
pr_info("set %s active\n", rxe->ib_dev.name);
}
/* Caller must hold net_info_lock */
void rxe_port_down(struct rxe_dev *rxe)
{
struct rxe_port *port;
port = &rxe->port;
port->attr.state = IB_PORT_DOWN;
port->attr.phys_state = IB_PHYS_STATE_LINK_DOWN;
rxe_port_event(rxe, IB_EVENT_PORT_ERR);
pr_info("set %s down\n", rxe->ib_dev.name);
}
static int rxe_notify(struct notifier_block *not_blk,
unsigned long event,
void *arg)
{
struct net_device *ndev = netdev_notifier_info_to_dev(arg);
struct rxe_dev *rxe = net_to_rxe(ndev);
if (!rxe)
goto out;
switch (event) {
case NETDEV_UNREGISTER:
list_del(&rxe->list);
rxe_remove(rxe);
break;
case NETDEV_UP:
rxe_port_up(rxe);
break;
case NETDEV_DOWN:
rxe_port_down(rxe);
break;
case NETDEV_CHANGEMTU:
pr_info("%s changed mtu to %d\n", ndev->name, ndev->mtu);
rxe_set_mtu(rxe, ndev->mtu);
break;
case NETDEV_CHANGE:
if (netif_running(ndev) && netif_carrier_ok(ndev))
rxe_port_up(rxe);
else
rxe_port_down(rxe);
break;
case NETDEV_REBOOT:
case NETDEV_GOING_DOWN:
case NETDEV_CHANGEADDR:
case NETDEV_CHANGENAME:
case NETDEV_FEAT_CHANGE:
default:
pr_info("ignoring netdev event = %ld for %s\n",
event, ndev->name);
break;
}
out:
return NOTIFY_OK;
}
static struct notifier_block rxe_net_notifier = {
.notifier_call = rxe_notify,
};
static int rxe_net_ipv4_init(void)
{
recv_sockets.sk4 = rxe_setup_udp_tunnel(&init_net,
htons(ROCE_V2_UDP_DPORT), false);
if (IS_ERR(recv_sockets.sk4)) {
recv_sockets.sk4 = NULL;
pr_err("Failed to create IPv4 UDP tunnel\n");
return -1;
}
return 0;
}
static int rxe_net_ipv6_init(void)
{
#if IS_ENABLED(CONFIG_IPV6)
recv_sockets.sk6 = rxe_setup_udp_tunnel(&init_net,
htons(ROCE_V2_UDP_DPORT), true);
if (IS_ERR(recv_sockets.sk6)) {
recv_sockets.sk6 = NULL;
pr_err("Failed to create IPv6 UDP tunnel\n");
return -1;
}
#endif
return 0;
}
void rxe_net_exit(void)
{
rxe_release_udp_tunnel(recv_sockets.sk6);
rxe_release_udp_tunnel(recv_sockets.sk4);
unregister_netdevice_notifier(&rxe_net_notifier);
}
int rxe_net_init(void)
{
int err;
recv_sockets.sk6 = NULL;
err = rxe_net_ipv4_init();
if (err)
return err;
err = rxe_net_ipv6_init();
if (err)
goto err_out;
err = register_netdevice_notifier(&rxe_net_notifier);
if (err) {
pr_err("Failed to register netdev notifier\n");
goto err_out;
}
return 0;
err_out:
rxe_net_exit();
return err;
}