| /* |
| * SPDX-License-Identifier: MIT |
| * |
| * Copyright © 2008,2010 Intel Corporation |
| */ |
| |
| #include <linux/intel-iommu.h> |
| #include <linux/dma-resv.h> |
| #include <linux/sync_file.h> |
| #include <linux/uaccess.h> |
| |
| #include <drm/drm_syncobj.h> |
| |
| #include "display/intel_frontbuffer.h" |
| |
| #include "gem/i915_gem_ioctls.h" |
| #include "gt/intel_context.h" |
| #include "gt/intel_gpu_commands.h" |
| #include "gt/intel_gt.h" |
| #include "gt/intel_gt_buffer_pool.h" |
| #include "gt/intel_gt_pm.h" |
| #include "gt/intel_ring.h" |
| |
| #include "pxp/intel_pxp.h" |
| |
| #include "i915_drv.h" |
| #include "i915_gem_clflush.h" |
| #include "i915_gem_context.h" |
| #include "i915_gem_ioctls.h" |
| #include "i915_trace.h" |
| #include "i915_user_extensions.h" |
| |
| struct eb_vma { |
| struct i915_vma *vma; |
| unsigned int flags; |
| |
| /** This vma's place in the execbuf reservation list */ |
| struct drm_i915_gem_exec_object2 *exec; |
| struct list_head bind_link; |
| struct list_head reloc_link; |
| |
| struct hlist_node node; |
| u32 handle; |
| }; |
| |
| enum { |
| FORCE_CPU_RELOC = 1, |
| FORCE_GTT_RELOC, |
| FORCE_GPU_RELOC, |
| #define DBG_FORCE_RELOC 0 /* choose one of the above! */ |
| }; |
| |
| /* __EXEC_OBJECT_NO_RESERVE is BIT(31), defined in i915_vma.h */ |
| #define __EXEC_OBJECT_HAS_PIN BIT(30) |
| #define __EXEC_OBJECT_HAS_FENCE BIT(29) |
| #define __EXEC_OBJECT_USERPTR_INIT BIT(28) |
| #define __EXEC_OBJECT_NEEDS_MAP BIT(27) |
| #define __EXEC_OBJECT_NEEDS_BIAS BIT(26) |
| #define __EXEC_OBJECT_INTERNAL_FLAGS (~0u << 26) /* all of the above + */ |
| #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE) |
| |
| #define __EXEC_HAS_RELOC BIT(31) |
| #define __EXEC_ENGINE_PINNED BIT(30) |
| #define __EXEC_USERPTR_USED BIT(29) |
| #define __EXEC_INTERNAL_FLAGS (~0u << 29) |
| #define UPDATE PIN_OFFSET_FIXED |
| |
| #define BATCH_OFFSET_BIAS (256*1024) |
| |
| #define __I915_EXEC_ILLEGAL_FLAGS \ |
| (__I915_EXEC_UNKNOWN_FLAGS | \ |
| I915_EXEC_CONSTANTS_MASK | \ |
| I915_EXEC_RESOURCE_STREAMER) |
| |
| /* Catch emission of unexpected errors for CI! */ |
| #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) |
| #undef EINVAL |
| #define EINVAL ({ \ |
| DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \ |
| 22; \ |
| }) |
| #endif |
| |
| /** |
| * DOC: User command execution |
| * |
| * Userspace submits commands to be executed on the GPU as an instruction |
| * stream within a GEM object we call a batchbuffer. This instructions may |
| * refer to other GEM objects containing auxiliary state such as kernels, |
| * samplers, render targets and even secondary batchbuffers. Userspace does |
| * not know where in the GPU memory these objects reside and so before the |
| * batchbuffer is passed to the GPU for execution, those addresses in the |
| * batchbuffer and auxiliary objects are updated. This is known as relocation, |
| * or patching. To try and avoid having to relocate each object on the next |
| * execution, userspace is told the location of those objects in this pass, |
| * but this remains just a hint as the kernel may choose a new location for |
| * any object in the future. |
| * |
| * At the level of talking to the hardware, submitting a batchbuffer for the |
| * GPU to execute is to add content to a buffer from which the HW |
| * command streamer is reading. |
| * |
| * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e. |
| * Execlists, this command is not placed on the same buffer as the |
| * remaining items. |
| * |
| * 2. Add a command to invalidate caches to the buffer. |
| * |
| * 3. Add a batchbuffer start command to the buffer; the start command is |
| * essentially a token together with the GPU address of the batchbuffer |
| * to be executed. |
| * |
| * 4. Add a pipeline flush to the buffer. |
| * |
| * 5. Add a memory write command to the buffer to record when the GPU |
| * is done executing the batchbuffer. The memory write writes the |
| * global sequence number of the request, ``i915_request::global_seqno``; |
| * the i915 driver uses the current value in the register to determine |
| * if the GPU has completed the batchbuffer. |
| * |
| * 6. Add a user interrupt command to the buffer. This command instructs |
| * the GPU to issue an interrupt when the command, pipeline flush and |
| * memory write are completed. |
| * |
| * 7. Inform the hardware of the additional commands added to the buffer |
| * (by updating the tail pointer). |
| * |
| * Processing an execbuf ioctl is conceptually split up into a few phases. |
| * |
| * 1. Validation - Ensure all the pointers, handles and flags are valid. |
| * 2. Reservation - Assign GPU address space for every object |
| * 3. Relocation - Update any addresses to point to the final locations |
| * 4. Serialisation - Order the request with respect to its dependencies |
| * 5. Construction - Construct a request to execute the batchbuffer |
| * 6. Submission (at some point in the future execution) |
| * |
| * Reserving resources for the execbuf is the most complicated phase. We |
| * neither want to have to migrate the object in the address space, nor do |
| * we want to have to update any relocations pointing to this object. Ideally, |
| * we want to leave the object where it is and for all the existing relocations |
| * to match. If the object is given a new address, or if userspace thinks the |
| * object is elsewhere, we have to parse all the relocation entries and update |
| * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that |
| * all the target addresses in all of its objects match the value in the |
| * relocation entries and that they all match the presumed offsets given by the |
| * list of execbuffer objects. Using this knowledge, we know that if we haven't |
| * moved any buffers, all the relocation entries are valid and we can skip |
| * the update. (If userspace is wrong, the likely outcome is an impromptu GPU |
| * hang.) The requirement for using I915_EXEC_NO_RELOC are: |
| * |
| * The addresses written in the objects must match the corresponding |
| * reloc.presumed_offset which in turn must match the corresponding |
| * execobject.offset. |
| * |
| * Any render targets written to in the batch must be flagged with |
| * EXEC_OBJECT_WRITE. |
| * |
| * To avoid stalling, execobject.offset should match the current |
| * address of that object within the active context. |
| * |
| * The reservation is done is multiple phases. First we try and keep any |
| * object already bound in its current location - so as long as meets the |
| * constraints imposed by the new execbuffer. Any object left unbound after the |
| * first pass is then fitted into any available idle space. If an object does |
| * not fit, all objects are removed from the reservation and the process rerun |
| * after sorting the objects into a priority order (more difficult to fit |
| * objects are tried first). Failing that, the entire VM is cleared and we try |
| * to fit the execbuf once last time before concluding that it simply will not |
| * fit. |
| * |
| * A small complication to all of this is that we allow userspace not only to |
| * specify an alignment and a size for the object in the address space, but |
| * we also allow userspace to specify the exact offset. This objects are |
| * simpler to place (the location is known a priori) all we have to do is make |
| * sure the space is available. |
| * |
| * Once all the objects are in place, patching up the buried pointers to point |
| * to the final locations is a fairly simple job of walking over the relocation |
| * entry arrays, looking up the right address and rewriting the value into |
| * the object. Simple! ... The relocation entries are stored in user memory |
| * and so to access them we have to copy them into a local buffer. That copy |
| * has to avoid taking any pagefaults as they may lead back to a GEM object |
| * requiring the struct_mutex (i.e. recursive deadlock). So once again we split |
| * the relocation into multiple passes. First we try to do everything within an |
| * atomic context (avoid the pagefaults) which requires that we never wait. If |
| * we detect that we may wait, or if we need to fault, then we have to fallback |
| * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm |
| * bells yet?) Dropping the mutex means that we lose all the state we have |
| * built up so far for the execbuf and we must reset any global data. However, |
| * we do leave the objects pinned in their final locations - which is a |
| * potential issue for concurrent execbufs. Once we have left the mutex, we can |
| * allocate and copy all the relocation entries into a large array at our |
| * leisure, reacquire the mutex, reclaim all the objects and other state and |
| * then proceed to update any incorrect addresses with the objects. |
| * |
| * As we process the relocation entries, we maintain a record of whether the |
| * object is being written to. Using NORELOC, we expect userspace to provide |
| * this information instead. We also check whether we can skip the relocation |
| * by comparing the expected value inside the relocation entry with the target's |
| * final address. If they differ, we have to map the current object and rewrite |
| * the 4 or 8 byte pointer within. |
| * |
| * Serialising an execbuf is quite simple according to the rules of the GEM |
| * ABI. Execution within each context is ordered by the order of submission. |
| * Writes to any GEM object are in order of submission and are exclusive. Reads |
| * from a GEM object are unordered with respect to other reads, but ordered by |
| * writes. A write submitted after a read cannot occur before the read, and |
| * similarly any read submitted after a write cannot occur before the write. |
| * Writes are ordered between engines such that only one write occurs at any |
| * time (completing any reads beforehand) - using semaphores where available |
| * and CPU serialisation otherwise. Other GEM access obey the same rules, any |
| * write (either via mmaps using set-domain, or via pwrite) must flush all GPU |
| * reads before starting, and any read (either using set-domain or pread) must |
| * flush all GPU writes before starting. (Note we only employ a barrier before, |
| * we currently rely on userspace not concurrently starting a new execution |
| * whilst reading or writing to an object. This may be an advantage or not |
| * depending on how much you trust userspace not to shoot themselves in the |
| * foot.) Serialisation may just result in the request being inserted into |
| * a DAG awaiting its turn, but most simple is to wait on the CPU until |
| * all dependencies are resolved. |
| * |
| * After all of that, is just a matter of closing the request and handing it to |
| * the hardware (well, leaving it in a queue to be executed). However, we also |
| * offer the ability for batchbuffers to be run with elevated privileges so |
| * that they access otherwise hidden registers. (Used to adjust L3 cache etc.) |
| * Before any batch is given extra privileges we first must check that it |
| * contains no nefarious instructions, we check that each instruction is from |
| * our whitelist and all registers are also from an allowed list. We first |
| * copy the user's batchbuffer to a shadow (so that the user doesn't have |
| * access to it, either by the CPU or GPU as we scan it) and then parse each |
| * instruction. If everything is ok, we set a flag telling the hardware to run |
| * the batchbuffer in trusted mode, otherwise the ioctl is rejected. |
| */ |
| |
| struct eb_fence { |
| struct drm_syncobj *syncobj; /* Use with ptr_mask_bits() */ |
| struct dma_fence *dma_fence; |
| u64 value; |
| struct dma_fence_chain *chain_fence; |
| }; |
| |
| struct i915_execbuffer { |
| struct drm_i915_private *i915; /** i915 backpointer */ |
| struct drm_file *file; /** per-file lookup tables and limits */ |
| struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */ |
| struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */ |
| struct eb_vma *vma; |
| |
| struct intel_gt *gt; /* gt for the execbuf */ |
| struct intel_context *context; /* logical state for the request */ |
| struct i915_gem_context *gem_context; /** caller's context */ |
| |
| /** our requests to build */ |
| struct i915_request *requests[MAX_ENGINE_INSTANCE + 1]; |
| /** identity of the batch obj/vma */ |
| struct eb_vma *batches[MAX_ENGINE_INSTANCE + 1]; |
| struct i915_vma *trampoline; /** trampoline used for chaining */ |
| |
| /** used for excl fence in dma_resv objects when > 1 BB submitted */ |
| struct dma_fence *composite_fence; |
| |
| /** actual size of execobj[] as we may extend it for the cmdparser */ |
| unsigned int buffer_count; |
| |
| /* number of batches in execbuf IOCTL */ |
| unsigned int num_batches; |
| |
| /** list of vma not yet bound during reservation phase */ |
| struct list_head unbound; |
| |
| /** list of vma that have execobj.relocation_count */ |
| struct list_head relocs; |
| |
| struct i915_gem_ww_ctx ww; |
| |
| /** |
| * Track the most recently used object for relocations, as we |
| * frequently have to perform multiple relocations within the same |
| * obj/page |
| */ |
| struct reloc_cache { |
| struct drm_mm_node node; /** temporary GTT binding */ |
| unsigned long vaddr; /** Current kmap address */ |
| unsigned long page; /** Currently mapped page index */ |
| unsigned int graphics_ver; /** Cached value of GRAPHICS_VER */ |
| bool use_64bit_reloc : 1; |
| bool has_llc : 1; |
| bool has_fence : 1; |
| bool needs_unfenced : 1; |
| } reloc_cache; |
| |
| u64 invalid_flags; /** Set of execobj.flags that are invalid */ |
| |
| /** Length of batch within object */ |
| u64 batch_len[MAX_ENGINE_INSTANCE + 1]; |
| u32 batch_start_offset; /** Location within object of batch */ |
| u32 batch_flags; /** Flags composed for emit_bb_start() */ |
| struct intel_gt_buffer_pool_node *batch_pool; /** pool node for batch buffer */ |
| |
| /** |
| * Indicate either the size of the hastable used to resolve |
| * relocation handles, or if negative that we are using a direct |
| * index into the execobj[]. |
| */ |
| int lut_size; |
| struct hlist_head *buckets; /** ht for relocation handles */ |
| |
| struct eb_fence *fences; |
| unsigned long num_fences; |
| }; |
| |
| static int eb_parse(struct i915_execbuffer *eb); |
| static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle); |
| static void eb_unpin_engine(struct i915_execbuffer *eb); |
| |
| static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb) |
| { |
| return intel_engine_requires_cmd_parser(eb->context->engine) || |
| (intel_engine_using_cmd_parser(eb->context->engine) && |
| eb->args->batch_len); |
| } |
| |
| static int eb_create(struct i915_execbuffer *eb) |
| { |
| if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) { |
| unsigned int size = 1 + ilog2(eb->buffer_count); |
| |
| /* |
| * Without a 1:1 association between relocation handles and |
| * the execobject[] index, we instead create a hashtable. |
| * We size it dynamically based on available memory, starting |
| * first with 1:1 assocative hash and scaling back until |
| * the allocation succeeds. |
| * |
| * Later on we use a positive lut_size to indicate we are |
| * using this hashtable, and a negative value to indicate a |
| * direct lookup. |
| */ |
| do { |
| gfp_t flags; |
| |
| /* While we can still reduce the allocation size, don't |
| * raise a warning and allow the allocation to fail. |
| * On the last pass though, we want to try as hard |
| * as possible to perform the allocation and warn |
| * if it fails. |
| */ |
| flags = GFP_KERNEL; |
| if (size > 1) |
| flags |= __GFP_NORETRY | __GFP_NOWARN; |
| |
| eb->buckets = kzalloc(sizeof(struct hlist_head) << size, |
| flags); |
| if (eb->buckets) |
| break; |
| } while (--size); |
| |
| if (unlikely(!size)) |
| return -ENOMEM; |
| |
| eb->lut_size = size; |
| } else { |
| eb->lut_size = -eb->buffer_count; |
| } |
| |
| return 0; |
| } |
| |
| static bool |
| eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry, |
| const struct i915_vma *vma, |
| unsigned int flags) |
| { |
| if (vma->node.size < entry->pad_to_size) |
| return true; |
| |
| if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment)) |
| return true; |
| |
| if (flags & EXEC_OBJECT_PINNED && |
| vma->node.start != entry->offset) |
| return true; |
| |
| if (flags & __EXEC_OBJECT_NEEDS_BIAS && |
| vma->node.start < BATCH_OFFSET_BIAS) |
| return true; |
| |
| if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) && |
| (vma->node.start + vma->node.size + 4095) >> 32) |
| return true; |
| |
| if (flags & __EXEC_OBJECT_NEEDS_MAP && |
| !i915_vma_is_map_and_fenceable(vma)) |
| return true; |
| |
| return false; |
| } |
| |
| static u64 eb_pin_flags(const struct drm_i915_gem_exec_object2 *entry, |
| unsigned int exec_flags) |
| { |
| u64 pin_flags = 0; |
| |
| if (exec_flags & EXEC_OBJECT_NEEDS_GTT) |
| pin_flags |= PIN_GLOBAL; |
| |
| /* |
| * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset, |
| * limit address to the first 4GBs for unflagged objects. |
| */ |
| if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) |
| pin_flags |= PIN_ZONE_4G; |
| |
| if (exec_flags & __EXEC_OBJECT_NEEDS_MAP) |
| pin_flags |= PIN_MAPPABLE; |
| |
| if (exec_flags & EXEC_OBJECT_PINNED) |
| pin_flags |= entry->offset | PIN_OFFSET_FIXED; |
| else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS) |
| pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS; |
| |
| return pin_flags; |
| } |
| |
| static inline int |
| eb_pin_vma(struct i915_execbuffer *eb, |
| const struct drm_i915_gem_exec_object2 *entry, |
| struct eb_vma *ev) |
| { |
| struct i915_vma *vma = ev->vma; |
| u64 pin_flags; |
| int err; |
| |
| if (vma->node.size) |
| pin_flags = vma->node.start; |
| else |
| pin_flags = entry->offset & PIN_OFFSET_MASK; |
| |
| pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED; |
| if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT)) |
| pin_flags |= PIN_GLOBAL; |
| |
| /* Attempt to reuse the current location if available */ |
| err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, pin_flags); |
| if (err == -EDEADLK) |
| return err; |
| |
| if (unlikely(err)) { |
| if (entry->flags & EXEC_OBJECT_PINNED) |
| return err; |
| |
| /* Failing that pick any _free_ space if suitable */ |
| err = i915_vma_pin_ww(vma, &eb->ww, |
| entry->pad_to_size, |
| entry->alignment, |
| eb_pin_flags(entry, ev->flags) | |
| PIN_USER | PIN_NOEVICT); |
| if (unlikely(err)) |
| return err; |
| } |
| |
| if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { |
| err = i915_vma_pin_fence(vma); |
| if (unlikely(err)) { |
| i915_vma_unpin(vma); |
| return err; |
| } |
| |
| if (vma->fence) |
| ev->flags |= __EXEC_OBJECT_HAS_FENCE; |
| } |
| |
| ev->flags |= __EXEC_OBJECT_HAS_PIN; |
| if (eb_vma_misplaced(entry, vma, ev->flags)) |
| return -EBADSLT; |
| |
| return 0; |
| } |
| |
| static inline void |
| eb_unreserve_vma(struct eb_vma *ev) |
| { |
| if (!(ev->flags & __EXEC_OBJECT_HAS_PIN)) |
| return; |
| |
| if (unlikely(ev->flags & __EXEC_OBJECT_HAS_FENCE)) |
| __i915_vma_unpin_fence(ev->vma); |
| |
| __i915_vma_unpin(ev->vma); |
| ev->flags &= ~__EXEC_OBJECT_RESERVED; |
| } |
| |
| static int |
| eb_validate_vma(struct i915_execbuffer *eb, |
| struct drm_i915_gem_exec_object2 *entry, |
| struct i915_vma *vma) |
| { |
| /* Relocations are disallowed for all platforms after TGL-LP. This |
| * also covers all platforms with local memory. |
| */ |
| if (entry->relocation_count && |
| GRAPHICS_VER(eb->i915) >= 12 && !IS_TIGERLAKE(eb->i915)) |
| return -EINVAL; |
| |
| if (unlikely(entry->flags & eb->invalid_flags)) |
| return -EINVAL; |
| |
| if (unlikely(entry->alignment && |
| !is_power_of_2_u64(entry->alignment))) |
| return -EINVAL; |
| |
| /* |
| * Offset can be used as input (EXEC_OBJECT_PINNED), reject |
| * any non-page-aligned or non-canonical addresses. |
| */ |
| if (unlikely(entry->flags & EXEC_OBJECT_PINNED && |
| entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK))) |
| return -EINVAL; |
| |
| /* pad_to_size was once a reserved field, so sanitize it */ |
| if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) { |
| if (unlikely(offset_in_page(entry->pad_to_size))) |
| return -EINVAL; |
| } else { |
| entry->pad_to_size = 0; |
| } |
| /* |
| * From drm_mm perspective address space is continuous, |
| * so from this point we're always using non-canonical |
| * form internally. |
| */ |
| entry->offset = gen8_noncanonical_addr(entry->offset); |
| |
| if (!eb->reloc_cache.has_fence) { |
| entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE; |
| } else { |
| if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE || |
| eb->reloc_cache.needs_unfenced) && |
| i915_gem_object_is_tiled(vma->obj)) |
| entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP; |
| } |
| |
| return 0; |
| } |
| |
| static inline bool |
| is_batch_buffer(struct i915_execbuffer *eb, unsigned int buffer_idx) |
| { |
| return eb->args->flags & I915_EXEC_BATCH_FIRST ? |
| buffer_idx < eb->num_batches : |
| buffer_idx >= eb->args->buffer_count - eb->num_batches; |
| } |
| |
| static int |
| eb_add_vma(struct i915_execbuffer *eb, |
| unsigned int *current_batch, |
| unsigned int i, |
| struct i915_vma *vma) |
| { |
| struct drm_i915_private *i915 = eb->i915; |
| struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; |
| struct eb_vma *ev = &eb->vma[i]; |
| |
| ev->vma = vma; |
| ev->exec = entry; |
| ev->flags = entry->flags; |
| |
| if (eb->lut_size > 0) { |
| ev->handle = entry->handle; |
| hlist_add_head(&ev->node, |
| &eb->buckets[hash_32(entry->handle, |
| eb->lut_size)]); |
| } |
| |
| if (entry->relocation_count) |
| list_add_tail(&ev->reloc_link, &eb->relocs); |
| |
| /* |
| * SNA is doing fancy tricks with compressing batch buffers, which leads |
| * to negative relocation deltas. Usually that works out ok since the |
| * relocate address is still positive, except when the batch is placed |
| * very low in the GTT. Ensure this doesn't happen. |
| * |
| * Note that actual hangs have only been observed on gen7, but for |
| * paranoia do it everywhere. |
| */ |
| if (is_batch_buffer(eb, i)) { |
| if (entry->relocation_count && |
| !(ev->flags & EXEC_OBJECT_PINNED)) |
| ev->flags |= __EXEC_OBJECT_NEEDS_BIAS; |
| if (eb->reloc_cache.has_fence) |
| ev->flags |= EXEC_OBJECT_NEEDS_FENCE; |
| |
| eb->batches[*current_batch] = ev; |
| |
| if (unlikely(ev->flags & EXEC_OBJECT_WRITE)) { |
| drm_dbg(&i915->drm, |
| "Attempting to use self-modifying batch buffer\n"); |
| return -EINVAL; |
| } |
| |
| if (range_overflows_t(u64, |
| eb->batch_start_offset, |
| eb->args->batch_len, |
| ev->vma->size)) { |
| drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n"); |
| return -EINVAL; |
| } |
| |
| if (eb->args->batch_len == 0) |
| eb->batch_len[*current_batch] = ev->vma->size - |
| eb->batch_start_offset; |
| else |
| eb->batch_len[*current_batch] = eb->args->batch_len; |
| if (unlikely(eb->batch_len[*current_batch] == 0)) { /* impossible! */ |
| drm_dbg(&i915->drm, "Invalid batch length\n"); |
| return -EINVAL; |
| } |
| |
| ++*current_batch; |
| } |
| |
| return 0; |
| } |
| |
| static inline int use_cpu_reloc(const struct reloc_cache *cache, |
| const struct drm_i915_gem_object *obj) |
| { |
| if (!i915_gem_object_has_struct_page(obj)) |
| return false; |
| |
| if (DBG_FORCE_RELOC == FORCE_CPU_RELOC) |
| return true; |
| |
| if (DBG_FORCE_RELOC == FORCE_GTT_RELOC) |
| return false; |
| |
| return (cache->has_llc || |
| obj->cache_dirty || |
| obj->cache_level != I915_CACHE_NONE); |
| } |
| |
| static int eb_reserve_vma(struct i915_execbuffer *eb, |
| struct eb_vma *ev, |
| u64 pin_flags) |
| { |
| struct drm_i915_gem_exec_object2 *entry = ev->exec; |
| struct i915_vma *vma = ev->vma; |
| int err; |
| |
| if (drm_mm_node_allocated(&vma->node) && |
| eb_vma_misplaced(entry, vma, ev->flags)) { |
| err = i915_vma_unbind(vma); |
| if (err) |
| return err; |
| } |
| |
| err = i915_vma_pin_ww(vma, &eb->ww, |
| entry->pad_to_size, entry->alignment, |
| eb_pin_flags(entry, ev->flags) | pin_flags); |
| if (err) |
| return err; |
| |
| if (entry->offset != vma->node.start) { |
| entry->offset = vma->node.start | UPDATE; |
| eb->args->flags |= __EXEC_HAS_RELOC; |
| } |
| |
| if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) { |
| err = i915_vma_pin_fence(vma); |
| if (unlikely(err)) { |
| i915_vma_unpin(vma); |
| return err; |
| } |
| |
| if (vma->fence) |
| ev->flags |= __EXEC_OBJECT_HAS_FENCE; |
| } |
| |
| ev->flags |= __EXEC_OBJECT_HAS_PIN; |
| GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags)); |
| |
| return 0; |
| } |
| |
| static int eb_reserve(struct i915_execbuffer *eb) |
| { |
| const unsigned int count = eb->buffer_count; |
| unsigned int pin_flags = PIN_USER | PIN_NONBLOCK; |
| struct list_head last; |
| struct eb_vma *ev; |
| unsigned int i, pass; |
| int err = 0; |
| |
| /* |
| * Attempt to pin all of the buffers into the GTT. |
| * This is done in 3 phases: |
| * |
| * 1a. Unbind all objects that do not match the GTT constraints for |
| * the execbuffer (fenceable, mappable, alignment etc). |
| * 1b. Increment pin count for already bound objects. |
| * 2. Bind new objects. |
| * 3. Decrement pin count. |
| * |
| * This avoid unnecessary unbinding of later objects in order to make |
| * room for the earlier objects *unless* we need to defragment. |
| */ |
| pass = 0; |
| do { |
| list_for_each_entry(ev, &eb->unbound, bind_link) { |
| err = eb_reserve_vma(eb, ev, pin_flags); |
| if (err) |
| break; |
| } |
| if (err != -ENOSPC) |
| return err; |
| |
| /* Resort *all* the objects into priority order */ |
| INIT_LIST_HEAD(&eb->unbound); |
| INIT_LIST_HEAD(&last); |
| for (i = 0; i < count; i++) { |
| unsigned int flags; |
| |
| ev = &eb->vma[i]; |
| flags = ev->flags; |
| if (flags & EXEC_OBJECT_PINNED && |
| flags & __EXEC_OBJECT_HAS_PIN) |
| continue; |
| |
| eb_unreserve_vma(ev); |
| |
| if (flags & EXEC_OBJECT_PINNED) |
| /* Pinned must have their slot */ |
| list_add(&ev->bind_link, &eb->unbound); |
| else if (flags & __EXEC_OBJECT_NEEDS_MAP) |
| /* Map require the lowest 256MiB (aperture) */ |
| list_add_tail(&ev->bind_link, &eb->unbound); |
| else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) |
| /* Prioritise 4GiB region for restricted bo */ |
| list_add(&ev->bind_link, &last); |
| else |
| list_add_tail(&ev->bind_link, &last); |
| } |
| list_splice_tail(&last, &eb->unbound); |
| |
| switch (pass++) { |
| case 0: |
| break; |
| |
| case 1: |
| /* Too fragmented, unbind everything and retry */ |
| mutex_lock(&eb->context->vm->mutex); |
| err = i915_gem_evict_vm(eb->context->vm); |
| mutex_unlock(&eb->context->vm->mutex); |
| if (err) |
| return err; |
| break; |
| |
| default: |
| return -ENOSPC; |
| } |
| |
| pin_flags = PIN_USER; |
| } while (1); |
| } |
| |
| static int eb_select_context(struct i915_execbuffer *eb) |
| { |
| struct i915_gem_context *ctx; |
| |
| ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1); |
| if (unlikely(IS_ERR(ctx))) |
| return PTR_ERR(ctx); |
| |
| eb->gem_context = ctx; |
| if (i915_gem_context_has_full_ppgtt(ctx)) |
| eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT; |
| |
| return 0; |
| } |
| |
| static int __eb_add_lut(struct i915_execbuffer *eb, |
| u32 handle, struct i915_vma *vma) |
| { |
| struct i915_gem_context *ctx = eb->gem_context; |
| struct i915_lut_handle *lut; |
| int err; |
| |
| lut = i915_lut_handle_alloc(); |
| if (unlikely(!lut)) |
| return -ENOMEM; |
| |
| i915_vma_get(vma); |
| if (!atomic_fetch_inc(&vma->open_count)) |
| i915_vma_reopen(vma); |
| lut->handle = handle; |
| lut->ctx = ctx; |
| |
| /* Check that the context hasn't been closed in the meantime */ |
| err = -EINTR; |
| if (!mutex_lock_interruptible(&ctx->lut_mutex)) { |
| if (likely(!i915_gem_context_is_closed(ctx))) |
| err = radix_tree_insert(&ctx->handles_vma, handle, vma); |
| else |
| err = -ENOENT; |
| if (err == 0) { /* And nor has this handle */ |
| struct drm_i915_gem_object *obj = vma->obj; |
| |
| spin_lock(&obj->lut_lock); |
| if (idr_find(&eb->file->object_idr, handle) == obj) { |
| list_add(&lut->obj_link, &obj->lut_list); |
| } else { |
| radix_tree_delete(&ctx->handles_vma, handle); |
| err = -ENOENT; |
| } |
| spin_unlock(&obj->lut_lock); |
| } |
| mutex_unlock(&ctx->lut_mutex); |
| } |
| if (unlikely(err)) |
| goto err; |
| |
| return 0; |
| |
| err: |
| i915_vma_close(vma); |
| i915_vma_put(vma); |
| i915_lut_handle_free(lut); |
| return err; |
| } |
| |
| static struct i915_vma *eb_lookup_vma(struct i915_execbuffer *eb, u32 handle) |
| { |
| struct i915_address_space *vm = eb->context->vm; |
| |
| do { |
| struct drm_i915_gem_object *obj; |
| struct i915_vma *vma; |
| int err; |
| |
| rcu_read_lock(); |
| vma = radix_tree_lookup(&eb->gem_context->handles_vma, handle); |
| if (likely(vma && vma->vm == vm)) |
| vma = i915_vma_tryget(vma); |
| rcu_read_unlock(); |
| if (likely(vma)) |
| return vma; |
| |
| obj = i915_gem_object_lookup(eb->file, handle); |
| if (unlikely(!obj)) |
| return ERR_PTR(-ENOENT); |
| |
| /* |
| * If the user has opted-in for protected-object tracking, make |
| * sure the object encryption can be used. |
| * We only need to do this when the object is first used with |
| * this context, because the context itself will be banned when |
| * the protected objects become invalid. |
| */ |
| if (i915_gem_context_uses_protected_content(eb->gem_context) && |
| i915_gem_object_is_protected(obj)) { |
| err = intel_pxp_key_check(&vm->gt->pxp, obj, true); |
| if (err) { |
| i915_gem_object_put(obj); |
| return ERR_PTR(err); |
| } |
| } |
| |
| vma = i915_vma_instance(obj, vm, NULL); |
| if (IS_ERR(vma)) { |
| i915_gem_object_put(obj); |
| return vma; |
| } |
| |
| err = __eb_add_lut(eb, handle, vma); |
| if (likely(!err)) |
| return vma; |
| |
| i915_gem_object_put(obj); |
| if (err != -EEXIST) |
| return ERR_PTR(err); |
| } while (1); |
| } |
| |
| static int eb_lookup_vmas(struct i915_execbuffer *eb) |
| { |
| unsigned int i, current_batch = 0; |
| int err = 0; |
| |
| INIT_LIST_HEAD(&eb->relocs); |
| |
| for (i = 0; i < eb->buffer_count; i++) { |
| struct i915_vma *vma; |
| |
| vma = eb_lookup_vma(eb, eb->exec[i].handle); |
| if (IS_ERR(vma)) { |
| err = PTR_ERR(vma); |
| goto err; |
| } |
| |
| err = eb_validate_vma(eb, &eb->exec[i], vma); |
| if (unlikely(err)) { |
| i915_vma_put(vma); |
| goto err; |
| } |
| |
| err = eb_add_vma(eb, ¤t_batch, i, vma); |
| if (err) |
| return err; |
| |
| if (i915_gem_object_is_userptr(vma->obj)) { |
| err = i915_gem_object_userptr_submit_init(vma->obj); |
| if (err) { |
| if (i + 1 < eb->buffer_count) { |
| /* |
| * Execbuffer code expects last vma entry to be NULL, |
| * since we already initialized this entry, |
| * set the next value to NULL or we mess up |
| * cleanup handling. |
| */ |
| eb->vma[i + 1].vma = NULL; |
| } |
| |
| return err; |
| } |
| |
| eb->vma[i].flags |= __EXEC_OBJECT_USERPTR_INIT; |
| eb->args->flags |= __EXEC_USERPTR_USED; |
| } |
| } |
| |
| return 0; |
| |
| err: |
| eb->vma[i].vma = NULL; |
| return err; |
| } |
| |
| static int eb_lock_vmas(struct i915_execbuffer *eb) |
| { |
| unsigned int i; |
| int err; |
| |
| for (i = 0; i < eb->buffer_count; i++) { |
| struct eb_vma *ev = &eb->vma[i]; |
| struct i915_vma *vma = ev->vma; |
| |
| err = i915_gem_object_lock(vma->obj, &eb->ww); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int eb_validate_vmas(struct i915_execbuffer *eb) |
| { |
| unsigned int i; |
| int err; |
| |
| INIT_LIST_HEAD(&eb->unbound); |
| |
| err = eb_lock_vmas(eb); |
| if (err) |
| return err; |
| |
| for (i = 0; i < eb->buffer_count; i++) { |
| struct drm_i915_gem_exec_object2 *entry = &eb->exec[i]; |
| struct eb_vma *ev = &eb->vma[i]; |
| struct i915_vma *vma = ev->vma; |
| |
| err = eb_pin_vma(eb, entry, ev); |
| if (err == -EDEADLK) |
| return err; |
| |
| if (!err) { |
| if (entry->offset != vma->node.start) { |
| entry->offset = vma->node.start | UPDATE; |
| eb->args->flags |= __EXEC_HAS_RELOC; |
| } |
| } else { |
| eb_unreserve_vma(ev); |
| |
| list_add_tail(&ev->bind_link, &eb->unbound); |
| if (drm_mm_node_allocated(&vma->node)) { |
| err = i915_vma_unbind(vma); |
| if (err) |
| return err; |
| } |
| } |
| |
| if (!(ev->flags & EXEC_OBJECT_WRITE)) { |
| err = dma_resv_reserve_shared(vma->resv, 1); |
| if (err) |
| return err; |
| } |
| |
| GEM_BUG_ON(drm_mm_node_allocated(&vma->node) && |
| eb_vma_misplaced(&eb->exec[i], vma, ev->flags)); |
| } |
| |
| if (!list_empty(&eb->unbound)) |
| return eb_reserve(eb); |
| |
| return 0; |
| } |
| |
| static struct eb_vma * |
| eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle) |
| { |
| if (eb->lut_size < 0) { |
| if (handle >= -eb->lut_size) |
| return NULL; |
| return &eb->vma[handle]; |
| } else { |
| struct hlist_head *head; |
| struct eb_vma *ev; |
| |
| head = &eb->buckets[hash_32(handle, eb->lut_size)]; |
| hlist_for_each_entry(ev, head, node) { |
| if (ev->handle == handle) |
| return ev; |
| } |
| return NULL; |
| } |
| } |
| |
| static void eb_release_vmas(struct i915_execbuffer *eb, bool final) |
| { |
| const unsigned int count = eb->buffer_count; |
| unsigned int i; |
| |
| for (i = 0; i < count; i++) { |
| struct eb_vma *ev = &eb->vma[i]; |
| struct i915_vma *vma = ev->vma; |
| |
| if (!vma) |
| break; |
| |
| eb_unreserve_vma(ev); |
| |
| if (final) |
| i915_vma_put(vma); |
| } |
| |
| eb_unpin_engine(eb); |
| } |
| |
| static void eb_destroy(const struct i915_execbuffer *eb) |
| { |
| if (eb->lut_size > 0) |
| kfree(eb->buckets); |
| } |
| |
| static inline u64 |
| relocation_target(const struct drm_i915_gem_relocation_entry *reloc, |
| const struct i915_vma *target) |
| { |
| return gen8_canonical_addr((int)reloc->delta + target->node.start); |
| } |
| |
| static void reloc_cache_init(struct reloc_cache *cache, |
| struct drm_i915_private *i915) |
| { |
| cache->page = -1; |
| cache->vaddr = 0; |
| /* Must be a variable in the struct to allow GCC to unroll. */ |
| cache->graphics_ver = GRAPHICS_VER(i915); |
| cache->has_llc = HAS_LLC(i915); |
| cache->use_64bit_reloc = HAS_64BIT_RELOC(i915); |
| cache->has_fence = cache->graphics_ver < 4; |
| cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment; |
| cache->node.flags = 0; |
| } |
| |
| static inline void *unmask_page(unsigned long p) |
| { |
| return (void *)(uintptr_t)(p & PAGE_MASK); |
| } |
| |
| static inline unsigned int unmask_flags(unsigned long p) |
| { |
| return p & ~PAGE_MASK; |
| } |
| |
| #define KMAP 0x4 /* after CLFLUSH_FLAGS */ |
| |
| static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache) |
| { |
| struct drm_i915_private *i915 = |
| container_of(cache, struct i915_execbuffer, reloc_cache)->i915; |
| return &i915->ggtt; |
| } |
| |
| static void reloc_cache_reset(struct reloc_cache *cache, struct i915_execbuffer *eb) |
| { |
| void *vaddr; |
| |
| if (!cache->vaddr) |
| return; |
| |
| vaddr = unmask_page(cache->vaddr); |
| if (cache->vaddr & KMAP) { |
| struct drm_i915_gem_object *obj = |
| (struct drm_i915_gem_object *)cache->node.mm; |
| if (cache->vaddr & CLFLUSH_AFTER) |
| mb(); |
| |
| kunmap_atomic(vaddr); |
| i915_gem_object_finish_access(obj); |
| } else { |
| struct i915_ggtt *ggtt = cache_to_ggtt(cache); |
| |
| intel_gt_flush_ggtt_writes(ggtt->vm.gt); |
| io_mapping_unmap_atomic((void __iomem *)vaddr); |
| |
| if (drm_mm_node_allocated(&cache->node)) { |
| ggtt->vm.clear_range(&ggtt->vm, |
| cache->node.start, |
| cache->node.size); |
| mutex_lock(&ggtt->vm.mutex); |
| drm_mm_remove_node(&cache->node); |
| mutex_unlock(&ggtt->vm.mutex); |
| } else { |
| i915_vma_unpin((struct i915_vma *)cache->node.mm); |
| } |
| } |
| |
| cache->vaddr = 0; |
| cache->page = -1; |
| } |
| |
| static void *reloc_kmap(struct drm_i915_gem_object *obj, |
| struct reloc_cache *cache, |
| unsigned long pageno) |
| { |
| void *vaddr; |
| struct page *page; |
| |
| if (cache->vaddr) { |
| kunmap_atomic(unmask_page(cache->vaddr)); |
| } else { |
| unsigned int flushes; |
| int err; |
| |
| err = i915_gem_object_prepare_write(obj, &flushes); |
| if (err) |
| return ERR_PTR(err); |
| |
| BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS); |
| BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK); |
| |
| cache->vaddr = flushes | KMAP; |
| cache->node.mm = (void *)obj; |
| if (flushes) |
| mb(); |
| } |
| |
| page = i915_gem_object_get_page(obj, pageno); |
| if (!obj->mm.dirty) |
| set_page_dirty(page); |
| |
| vaddr = kmap_atomic(page); |
| cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr; |
| cache->page = pageno; |
| |
| return vaddr; |
| } |
| |
| static void *reloc_iomap(struct drm_i915_gem_object *obj, |
| struct i915_execbuffer *eb, |
| unsigned long page) |
| { |
| struct reloc_cache *cache = &eb->reloc_cache; |
| struct i915_ggtt *ggtt = cache_to_ggtt(cache); |
| unsigned long offset; |
| void *vaddr; |
| |
| if (cache->vaddr) { |
| intel_gt_flush_ggtt_writes(ggtt->vm.gt); |
| io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr)); |
| } else { |
| struct i915_vma *vma; |
| int err; |
| |
| if (i915_gem_object_is_tiled(obj)) |
| return ERR_PTR(-EINVAL); |
| |
| if (use_cpu_reloc(cache, obj)) |
| return NULL; |
| |
| err = i915_gem_object_set_to_gtt_domain(obj, true); |
| if (err) |
| return ERR_PTR(err); |
| |
| vma = i915_gem_object_ggtt_pin_ww(obj, &eb->ww, NULL, 0, 0, |
| PIN_MAPPABLE | |
| PIN_NONBLOCK /* NOWARN */ | |
| PIN_NOEVICT); |
| if (vma == ERR_PTR(-EDEADLK)) |
| return vma; |
| |
| if (IS_ERR(vma)) { |
| memset(&cache->node, 0, sizeof(cache->node)); |
| mutex_lock(&ggtt->vm.mutex); |
| err = drm_mm_insert_node_in_range |
| (&ggtt->vm.mm, &cache->node, |
| PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, |
| 0, ggtt->mappable_end, |
| DRM_MM_INSERT_LOW); |
| mutex_unlock(&ggtt->vm.mutex); |
| if (err) /* no inactive aperture space, use cpu reloc */ |
| return NULL; |
| } else { |
| cache->node.start = vma->node.start; |
| cache->node.mm = (void *)vma; |
| } |
| } |
| |
| offset = cache->node.start; |
| if (drm_mm_node_allocated(&cache->node)) { |
| ggtt->vm.insert_page(&ggtt->vm, |
| i915_gem_object_get_dma_address(obj, page), |
| offset, I915_CACHE_NONE, 0); |
| } else { |
| offset += page << PAGE_SHIFT; |
| } |
| |
| vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap, |
| offset); |
| cache->page = page; |
| cache->vaddr = (unsigned long)vaddr; |
| |
| return vaddr; |
| } |
| |
| static void *reloc_vaddr(struct drm_i915_gem_object *obj, |
| struct i915_execbuffer *eb, |
| unsigned long page) |
| { |
| struct reloc_cache *cache = &eb->reloc_cache; |
| void *vaddr; |
| |
| if (cache->page == page) { |
| vaddr = unmask_page(cache->vaddr); |
| } else { |
| vaddr = NULL; |
| if ((cache->vaddr & KMAP) == 0) |
| vaddr = reloc_iomap(obj, eb, page); |
| if (!vaddr) |
| vaddr = reloc_kmap(obj, cache, page); |
| } |
| |
| return vaddr; |
| } |
| |
| static void clflush_write32(u32 *addr, u32 value, unsigned int flushes) |
| { |
| if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) { |
| if (flushes & CLFLUSH_BEFORE) { |
| clflushopt(addr); |
| mb(); |
| } |
| |
| *addr = value; |
| |
| /* |
| * Writes to the same cacheline are serialised by the CPU |
| * (including clflush). On the write path, we only require |
| * that it hits memory in an orderly fashion and place |
| * mb barriers at the start and end of the relocation phase |
| * to ensure ordering of clflush wrt to the system. |
| */ |
| if (flushes & CLFLUSH_AFTER) |
| clflushopt(addr); |
| } else |
| *addr = value; |
| } |
| |
| static u64 |
| relocate_entry(struct i915_vma *vma, |
| const struct drm_i915_gem_relocation_entry *reloc, |
| struct i915_execbuffer *eb, |
| const struct i915_vma *target) |
| { |
| u64 target_addr = relocation_target(reloc, target); |
| u64 offset = reloc->offset; |
| bool wide = eb->reloc_cache.use_64bit_reloc; |
| void *vaddr; |
| |
| repeat: |
| vaddr = reloc_vaddr(vma->obj, eb, |
| offset >> PAGE_SHIFT); |
| if (IS_ERR(vaddr)) |
| return PTR_ERR(vaddr); |
| |
| GEM_BUG_ON(!IS_ALIGNED(offset, sizeof(u32))); |
| clflush_write32(vaddr + offset_in_page(offset), |
| lower_32_bits(target_addr), |
| eb->reloc_cache.vaddr); |
| |
| if (wide) { |
| offset += sizeof(u32); |
| target_addr >>= 32; |
| wide = false; |
| goto repeat; |
| } |
| |
| return target->node.start | UPDATE; |
| } |
| |
| static u64 |
| eb_relocate_entry(struct i915_execbuffer *eb, |
| struct eb_vma *ev, |
| const struct drm_i915_gem_relocation_entry *reloc) |
| { |
| struct drm_i915_private *i915 = eb->i915; |
| struct eb_vma *target; |
| int err; |
| |
| /* we've already hold a reference to all valid objects */ |
| target = eb_get_vma(eb, reloc->target_handle); |
| if (unlikely(!target)) |
| return -ENOENT; |
| |
| /* Validate that the target is in a valid r/w GPU domain */ |
| if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) { |
| drm_dbg(&i915->drm, "reloc with multiple write domains: " |
| "target %d offset %d " |
| "read %08x write %08x", |
| reloc->target_handle, |
| (int) reloc->offset, |
| reloc->read_domains, |
| reloc->write_domain); |
| return -EINVAL; |
| } |
| if (unlikely((reloc->write_domain | reloc->read_domains) |
| & ~I915_GEM_GPU_DOMAINS)) { |
| drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: " |
| "target %d offset %d " |
| "read %08x write %08x", |
| reloc->target_handle, |
| (int) reloc->offset, |
| reloc->read_domains, |
| reloc->write_domain); |
| return -EINVAL; |
| } |
| |
| if (reloc->write_domain) { |
| target->flags |= EXEC_OBJECT_WRITE; |
| |
| /* |
| * Sandybridge PPGTT errata: We need a global gtt mapping |
| * for MI and pipe_control writes because the gpu doesn't |
| * properly redirect them through the ppgtt for non_secure |
| * batchbuffers. |
| */ |
| if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION && |
| GRAPHICS_VER(eb->i915) == 6) { |
| err = i915_vma_bind(target->vma, |
| target->vma->obj->cache_level, |
| PIN_GLOBAL, NULL); |
| if (err) |
| return err; |
| } |
| } |
| |
| /* |
| * If the relocation already has the right value in it, no |
| * more work needs to be done. |
| */ |
| if (!DBG_FORCE_RELOC && |
| gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset) |
| return 0; |
| |
| /* Check that the relocation address is valid... */ |
| if (unlikely(reloc->offset > |
| ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) { |
| drm_dbg(&i915->drm, "Relocation beyond object bounds: " |
| "target %d offset %d size %d.\n", |
| reloc->target_handle, |
| (int)reloc->offset, |
| (int)ev->vma->size); |
| return -EINVAL; |
| } |
| if (unlikely(reloc->offset & 3)) { |
| drm_dbg(&i915->drm, "Relocation not 4-byte aligned: " |
| "target %d offset %d.\n", |
| reloc->target_handle, |
| (int)reloc->offset); |
| return -EINVAL; |
| } |
| |
| /* |
| * If we write into the object, we need to force the synchronisation |
| * barrier, either with an asynchronous clflush or if we executed the |
| * patching using the GPU (though that should be serialised by the |
| * timeline). To be completely sure, and since we are required to |
| * do relocations we are already stalling, disable the user's opt |
| * out of our synchronisation. |
| */ |
| ev->flags &= ~EXEC_OBJECT_ASYNC; |
| |
| /* and update the user's relocation entry */ |
| return relocate_entry(ev->vma, reloc, eb, target->vma); |
| } |
| |
| static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev) |
| { |
| #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry)) |
| struct drm_i915_gem_relocation_entry stack[N_RELOC(512)]; |
| const struct drm_i915_gem_exec_object2 *entry = ev->exec; |
| struct drm_i915_gem_relocation_entry __user *urelocs = |
| u64_to_user_ptr(entry->relocs_ptr); |
| unsigned long remain = entry->relocation_count; |
| |
| if (unlikely(remain > N_RELOC(ULONG_MAX))) |
| return -EINVAL; |
| |
| /* |
| * We must check that the entire relocation array is safe |
| * to read. However, if the array is not writable the user loses |
| * the updated relocation values. |
| */ |
| if (unlikely(!access_ok(urelocs, remain * sizeof(*urelocs)))) |
| return -EFAULT; |
| |
| do { |
| struct drm_i915_gem_relocation_entry *r = stack; |
| unsigned int count = |
| min_t(unsigned long, remain, ARRAY_SIZE(stack)); |
| unsigned int copied; |
| |
| /* |
| * This is the fast path and we cannot handle a pagefault |
| * whilst holding the struct mutex lest the user pass in the |
| * relocations contained within a mmaped bo. For in such a case |
| * we, the page fault handler would call i915_gem_fault() and |
| * we would try to acquire the struct mutex again. Obviously |
| * this is bad and so lockdep complains vehemently. |
| */ |
| pagefault_disable(); |
| copied = __copy_from_user_inatomic(r, urelocs, count * sizeof(r[0])); |
| pagefault_enable(); |
| if (unlikely(copied)) { |
| remain = -EFAULT; |
| goto out; |
| } |
| |
| remain -= count; |
| do { |
| u64 offset = eb_relocate_entry(eb, ev, r); |
| |
| if (likely(offset == 0)) { |
| } else if ((s64)offset < 0) { |
| remain = (int)offset; |
| goto out; |
| } else { |
| /* |
| * Note that reporting an error now |
| * leaves everything in an inconsistent |
| * state as we have *already* changed |
| * the relocation value inside the |
| * object. As we have not changed the |
| * reloc.presumed_offset or will not |
| * change the execobject.offset, on the |
| * call we may not rewrite the value |
| * inside the object, leaving it |
| * dangling and causing a GPU hang. Unless |
| * userspace dynamically rebuilds the |
| * relocations on each execbuf rather than |
| * presume a static tree. |
| * |
| * We did previously check if the relocations |
| * were writable (access_ok), an error now |
| * would be a strange race with mprotect, |
| * having already demonstrated that we |
| * can read from this userspace address. |
| */ |
| offset = gen8_canonical_addr(offset & ~UPDATE); |
| __put_user(offset, |
| &urelocs[r - stack].presumed_offset); |
| } |
| } while (r++, --count); |
| urelocs += ARRAY_SIZE(stack); |
| } while (remain); |
| out: |
| reloc_cache_reset(&eb->reloc_cache, eb); |
| return remain; |
| } |
| |
| static int |
| eb_relocate_vma_slow(struct i915_execbuffer *eb, struct eb_vma *ev) |
| { |
| const struct drm_i915_gem_exec_object2 *entry = ev->exec; |
| struct drm_i915_gem_relocation_entry *relocs = |
| u64_to_ptr(typeof(*relocs), entry->relocs_ptr); |
| unsigned int i; |
| int err; |
| |
| for (i = 0; i < entry->relocation_count; i++) { |
| u64 offset = eb_relocate_entry(eb, ev, &relocs[i]); |
| |
| if ((s64)offset < 0) { |
| err = (int)offset; |
| goto err; |
| } |
| } |
| err = 0; |
| err: |
| reloc_cache_reset(&eb->reloc_cache, eb); |
| return err; |
| } |
| |
| static int check_relocations(const struct drm_i915_gem_exec_object2 *entry) |
| { |
| const char __user *addr, *end; |
| unsigned long size; |
| char __maybe_unused c; |
| |
| size = entry->relocation_count; |
| if (size == 0) |
| return 0; |
| |
| if (size > N_RELOC(ULONG_MAX)) |
| return -EINVAL; |
| |
| addr = u64_to_user_ptr(entry->relocs_ptr); |
| size *= sizeof(struct drm_i915_gem_relocation_entry); |
| if (!access_ok(addr, size)) |
| return -EFAULT; |
| |
| end = addr + size; |
| for (; addr < end; addr += PAGE_SIZE) { |
| int err = __get_user(c, addr); |
| if (err) |
| return err; |
| } |
| return __get_user(c, end - 1); |
| } |
| |
| static int eb_copy_relocations(const struct i915_execbuffer *eb) |
| { |
| struct drm_i915_gem_relocation_entry *relocs; |
| const unsigned int count = eb->buffer_count; |
| unsigned int i; |
| int err; |
| |
| for (i = 0; i < count; i++) { |
| const unsigned int nreloc = eb->exec[i].relocation_count; |
| struct drm_i915_gem_relocation_entry __user *urelocs; |
| unsigned long size; |
| unsigned long copied; |
| |
| if (nreloc == 0) |
| continue; |
| |
| err = check_relocations(&eb->exec[i]); |
| if (err) |
| goto err; |
| |
| urelocs = u64_to_user_ptr(eb->exec[i].relocs_ptr); |
| size = nreloc * sizeof(*relocs); |
| |
| relocs = kvmalloc_array(size, 1, GFP_KERNEL); |
| if (!relocs) { |
| err = -ENOMEM; |
| goto err; |
| } |
| |
| /* copy_from_user is limited to < 4GiB */ |
| copied = 0; |
| do { |
| unsigned int len = |
| min_t(u64, BIT_ULL(31), size - copied); |
| |
| if (__copy_from_user((char *)relocs + copied, |
| (char __user *)urelocs + copied, |
| len)) |
| goto end; |
| |
| copied += len; |
| } while (copied < size); |
| |
| /* |
| * As we do not update the known relocation offsets after |
| * relocating (due to the complexities in lock handling), |
| * we need to mark them as invalid now so that we force the |
| * relocation processing next time. Just in case the target |
| * object is evicted and then rebound into its old |
| * presumed_offset before the next execbuffer - if that |
| * happened we would make the mistake of assuming that the |
| * relocations were valid. |
| */ |
| if (!user_access_begin(urelocs, size)) |
| goto end; |
| |
| for (copied = 0; copied < nreloc; copied++) |
| unsafe_put_user(-1, |
| &urelocs[copied].presumed_offset, |
| end_user); |
| user_access_end(); |
| |
| eb->exec[i].relocs_ptr = (uintptr_t)relocs; |
| } |
| |
| return 0; |
| |
| end_user: |
| user_access_end(); |
| end: |
| kvfree(relocs); |
| err = -EFAULT; |
| err: |
| while (i--) { |
| relocs = u64_to_ptr(typeof(*relocs), eb->exec[i].relocs_ptr); |
| if (eb->exec[i].relocation_count) |
| kvfree(relocs); |
| } |
| return err; |
| } |
| |
| static int eb_prefault_relocations(const struct i915_execbuffer *eb) |
| { |
| const unsigned int count = eb->buffer_count; |
| unsigned int i; |
| |
| for (i = 0; i < count; i++) { |
| int err; |
| |
| err = check_relocations(&eb->exec[i]); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int eb_reinit_userptr(struct i915_execbuffer *eb) |
| { |
| const unsigned int count = eb->buffer_count; |
| unsigned int i; |
| int ret; |
| |
| if (likely(!(eb->args->flags & __EXEC_USERPTR_USED))) |
| return 0; |
| |
| for (i = 0; i < count; i++) { |
| struct eb_vma *ev = &eb->vma[i]; |
| |
| if (!i915_gem_object_is_userptr(ev->vma->obj)) |
| continue; |
| |
| ret = i915_gem_object_userptr_submit_init(ev->vma->obj); |
| if (ret) |
| return ret; |
| |
| ev->flags |= __EXEC_OBJECT_USERPTR_INIT; |
| } |
| |
| return 0; |
| } |
| |
| static noinline int eb_relocate_parse_slow(struct i915_execbuffer *eb) |
| { |
| bool have_copy = false; |
| struct eb_vma *ev; |
| int err = 0; |
| |
| repeat: |
| if (signal_pending(current)) { |
| err = -ERESTARTSYS; |
| goto out; |
| } |
| |
| /* We may process another execbuffer during the unlock... */ |
| eb_release_vmas(eb, false); |
| i915_gem_ww_ctx_fini(&eb->ww); |
| |
| /* |
| * We take 3 passes through the slowpatch. |
| * |
| * 1 - we try to just prefault all the user relocation entries and |
| * then attempt to reuse the atomic pagefault disabled fast path again. |
| * |
| * 2 - we copy the user entries to a local buffer here outside of the |
| * local and allow ourselves to wait upon any rendering before |
| * relocations |
| * |
| * 3 - we already have a local copy of the relocation entries, but |
| * were interrupted (EAGAIN) whilst waiting for the objects, try again. |
| */ |
| if (!err) { |
| err = eb_prefault_relocations(eb); |
| } else if (!have_copy) { |
| err = eb_copy_relocations(eb); |
| have_copy = err == 0; |
| } else { |
| cond_resched(); |
| err = 0; |
| } |
| |
| if (!err) |
| err = eb_reinit_userptr(eb); |
| |
| i915_gem_ww_ctx_init(&eb->ww, true); |
| if (err) |
| goto out; |
| |
| /* reacquire the objects */ |
| repeat_validate: |
| err = eb_pin_engine(eb, false); |
| if (err) |
| goto err; |
| |
| err = eb_validate_vmas(eb); |
| if (err) |
| goto err; |
| |
| GEM_BUG_ON(!eb->batches[0]); |
| |
| list_for_each_entry(ev, &eb->relocs, reloc_link) { |
| if (!have_copy) { |
| err = eb_relocate_vma(eb, ev); |
| if (err) |
| break; |
| } else { |
| err = eb_relocate_vma_slow(eb, ev); |
| if (err) |
| break; |
| } |
| } |
| |
| if (err == -EDEADLK) |
| goto err; |
| |
| if (err && !have_copy) |
| goto repeat; |
| |
| if (err) |
| goto err; |
| |
| /* as last step, parse the command buffer */ |
| err = eb_parse(eb); |
| if (err) |
| goto err; |
| |
| /* |
| * Leave the user relocations as are, this is the painfully slow path, |
| * and we want to avoid the complication of dropping the lock whilst |
| * having buffers reserved in the aperture and so causing spurious |
| * ENOSPC for random operations. |
| */ |
| |
| err: |
| if (err == -EDEADLK) { |
| eb_release_vmas(eb, false); |
| err = i915_gem_ww_ctx_backoff(&eb->ww); |
| if (!err) |
| goto repeat_validate; |
| } |
| |
| if (err == -EAGAIN) |
| goto repeat; |
| |
| out: |
| if (have_copy) { |
| const unsigned int count = eb->buffer_count; |
| unsigned int i; |
| |
| for (i = 0; i < count; i++) { |
| const struct drm_i915_gem_exec_object2 *entry = |
| &eb->exec[i]; |
| struct drm_i915_gem_relocation_entry *relocs; |
| |
| if (!entry->relocation_count) |
| continue; |
| |
| relocs = u64_to_ptr(typeof(*relocs), entry->relocs_ptr); |
| kvfree(relocs); |
| } |
| } |
| |
| return err; |
| } |
| |
| static int eb_relocate_parse(struct i915_execbuffer *eb) |
| { |
| int err; |
| bool throttle = true; |
| |
| retry: |
| err = eb_pin_engine(eb, throttle); |
| if (err) { |
| if (err != -EDEADLK) |
| return err; |
| |
| goto err; |
| } |
| |
| /* only throttle once, even if we didn't need to throttle */ |
| throttle = false; |
| |
| err = eb_validate_vmas(eb); |
| if (err == -EAGAIN) |
| goto slow; |
| else if (err) |
| goto err; |
| |
| /* The objects are in their final locations, apply the relocations. */ |
| if (eb->args->flags & __EXEC_HAS_RELOC) { |
| struct eb_vma *ev; |
| |
| list_for_each_entry(ev, &eb->relocs, reloc_link) { |
| err = eb_relocate_vma(eb, ev); |
| if (err) |
| break; |
| } |
| |
| if (err == -EDEADLK) |
| goto err; |
| else if (err) |
| goto slow; |
| } |
| |
| if (!err) |
| err = eb_parse(eb); |
| |
| err: |
| if (err == -EDEADLK) { |
| eb_release_vmas(eb, false); |
| err = i915_gem_ww_ctx_backoff(&eb->ww); |
| if (!err) |
| goto retry; |
| } |
| |
| return err; |
| |
| slow: |
| err = eb_relocate_parse_slow(eb); |
| if (err) |
| /* |
| * If the user expects the execobject.offset and |
| * reloc.presumed_offset to be an exact match, |
| * as for using NO_RELOC, then we cannot update |
| * the execobject.offset until we have completed |
| * relocation. |
| */ |
| eb->args->flags &= ~__EXEC_HAS_RELOC; |
| |
| return err; |
| } |
| |
| /* |
| * Using two helper loops for the order of which requests / batches are created |
| * and added the to backend. Requests are created in order from the parent to |
| * the last child. Requests are added in the reverse order, from the last child |
| * to parent. This is done for locking reasons as the timeline lock is acquired |
| * during request creation and released when the request is added to the |
| * backend. To make lockdep happy (see intel_context_timeline_lock) this must be |
| * the ordering. |
| */ |
| #define for_each_batch_create_order(_eb, _i) \ |
| for ((_i) = 0; (_i) < (_eb)->num_batches; ++(_i)) |
| #define for_each_batch_add_order(_eb, _i) \ |
| BUILD_BUG_ON(!typecheck(int, _i)); \ |
| for ((_i) = (_eb)->num_batches - 1; (_i) >= 0; --(_i)) |
| |
| static struct i915_request * |
| eb_find_first_request_added(struct i915_execbuffer *eb) |
| { |
| int i; |
| |
| for_each_batch_add_order(eb, i) |
| if (eb->requests[i]) |
| return eb->requests[i]; |
| |
| GEM_BUG_ON("Request not found"); |
| |
| return NULL; |
| } |
| |
| static int eb_move_to_gpu(struct i915_execbuffer *eb) |
| { |
| const unsigned int count = eb->buffer_count; |
| unsigned int i = count; |
| int err = 0, j; |
| |
| while (i--) { |
| struct eb_vma *ev = &eb->vma[i]; |
| struct i915_vma *vma = ev->vma; |
| unsigned int flags = ev->flags; |
| struct drm_i915_gem_object *obj = vma->obj; |
| |
| assert_vma_held(vma); |
| |
| if (flags & EXEC_OBJECT_CAPTURE) { |
| struct i915_capture_list *capture; |
| |
| for_each_batch_create_order(eb, j) { |
| if (!eb->requests[j]) |
| break; |
| |
| capture = kmalloc(sizeof(*capture), GFP_KERNEL); |
| if (capture) { |
| capture->next = |
| eb->requests[j]->capture_list; |
| capture->vma = vma; |
| eb->requests[j]->capture_list = capture; |
| } |
| } |
| } |
| |
| /* |
| * If the GPU is not _reading_ through the CPU cache, we need |
| * to make sure that any writes (both previous GPU writes from |
| * before a change in snooping levels and normal CPU writes) |
| * caught in that cache are flushed to main memory. |
| * |
| * We want to say |
| * obj->cache_dirty && |
| * !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ) |
| * but gcc's optimiser doesn't handle that as well and emits |
| * two jumps instead of one. Maybe one day... |
| * |
| * FIXME: There is also sync flushing in set_pages(), which |
| * serves a different purpose(some of the time at least). |
| * |
| * We should consider: |
| * |
| * 1. Rip out the async flush code. |
| * |
| * 2. Or make the sync flushing use the async clflush path |
| * using mandatory fences underneath. Currently the below |
| * async flush happens after we bind the object. |
| */ |
| if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) { |
| if (i915_gem_clflush_object(obj, 0)) |
| flags &= ~EXEC_OBJECT_ASYNC; |
| } |
| |
| /* We only need to await on the first request */ |
| if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) { |
| err = i915_request_await_object |
| (eb_find_first_request_added(eb), obj, |
| flags & EXEC_OBJECT_WRITE); |
| } |
| |
| for_each_batch_add_order(eb, j) { |
| if (err) |
| break; |
| if (!eb->requests[j]) |
| continue; |
| |
| err = _i915_vma_move_to_active(vma, eb->requests[j], |
| j ? NULL : |
| eb->composite_fence ? |
| eb->composite_fence : |
| &eb->requests[j]->fence, |
| flags | __EXEC_OBJECT_NO_RESERVE); |
| } |
| } |
| |
| #ifdef CONFIG_MMU_NOTIFIER |
| if (!err && (eb->args->flags & __EXEC_USERPTR_USED)) { |
| read_lock(&eb->i915->mm.notifier_lock); |
| |
| /* |
| * count is always at least 1, otherwise __EXEC_USERPTR_USED |
| * could not have been set |
| */ |
| for (i = 0; i < count; i++) { |
| struct eb_vma *ev = &eb->vma[i]; |
| struct drm_i915_gem_object *obj = ev->vma->obj; |
| |
| if (!i915_gem_object_is_userptr(obj)) |
| continue; |
| |
| err = i915_gem_object_userptr_submit_done(obj); |
| if (err) |
| break; |
| } |
| |
| read_unlock(&eb->i915->mm.notifier_lock); |
| } |
| #endif |
| |
| if (unlikely(err)) |
| goto err_skip; |
| |
| /* Unconditionally flush any chipset caches (for streaming writes). */ |
| intel_gt_chipset_flush(eb->gt); |
| return 0; |
| |
| err_skip: |
| for_each_batch_create_order(eb, j) { |
| if (!eb->requests[j]) |
| break; |
| |
| i915_request_set_error_once(eb->requests[j], err); |
| } |
| return err; |
| } |
| |
| static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec) |
| { |
| if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS) |
| return -EINVAL; |
| |
| /* Kernel clipping was a DRI1 misfeature */ |
| if (!(exec->flags & (I915_EXEC_FENCE_ARRAY | |
| I915_EXEC_USE_EXTENSIONS))) { |
| if (exec->num_cliprects || exec->cliprects_ptr) |
| return -EINVAL; |
| } |
| |
| if (exec->DR4 == 0xffffffff) { |
| DRM_DEBUG("UXA submitting garbage DR4, fixing up\n"); |
| exec->DR4 = 0; |
| } |
| if (exec->DR1 || exec->DR4) |
| return -EINVAL; |
| |
| if ((exec->batch_start_offset | exec->batch_len) & 0x7) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| static int i915_reset_gen7_sol_offsets(struct i915_request *rq) |
| { |
| u32 *cs; |
| int i; |
| |
| if (GRAPHICS_VER(rq->engine->i915) != 7 || rq->engine->id != RCS0) { |
| drm_dbg(&rq->engine->i915->drm, "sol reset is gen7/rcs only\n"); |
| return -EINVAL; |
| } |
| |
| cs = intel_ring_begin(rq, 4 * 2 + 2); |
| if (IS_ERR(cs)) |
| return PTR_ERR(cs); |
| |
| *cs++ = MI_LOAD_REGISTER_IMM(4); |
| for (i = 0; i < 4; i++) { |
| *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i)); |
| *cs++ = 0; |
| } |
| *cs++ = MI_NOOP; |
| intel_ring_advance(rq, cs); |
| |
| return 0; |
| } |
| |
| static struct i915_vma * |
| shadow_batch_pin(struct i915_execbuffer *eb, |
| struct drm_i915_gem_object *obj, |
| struct i915_address_space *vm, |
| unsigned int flags) |
| { |
| struct i915_vma *vma; |
| int err; |
| |
| vma = i915_vma_instance(obj, vm, NULL); |
| if (IS_ERR(vma)) |
| return vma; |
| |
| err = i915_vma_pin_ww(vma, &eb->ww, 0, 0, flags); |
| if (err) |
| return ERR_PTR(err); |
| |
| return vma; |
| } |
| |
| static struct i915_vma *eb_dispatch_secure(struct i915_execbuffer *eb, struct i915_vma *vma) |
| { |
| /* |
| * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure |
| * batch" bit. Hence we need to pin secure batches into the global gtt. |
| * hsw should have this fixed, but bdw mucks it up again. */ |
| if (eb->batch_flags & I915_DISPATCH_SECURE) |
| return i915_gem_object_ggtt_pin_ww(vma->obj, &eb->ww, NULL, 0, 0, 0); |
| |
| return NULL; |
| } |
| |
| static int eb_parse(struct i915_execbuffer *eb) |
| { |
| struct drm_i915_private *i915 = eb->i915; |
| struct intel_gt_buffer_pool_node *pool = eb->batch_pool; |
| struct i915_vma *shadow, *trampoline, *batch; |
| unsigned long len; |
| int err; |
| |
| if (!eb_use_cmdparser(eb)) { |
| batch = eb_dispatch_secure(eb, eb->batches[0]->vma); |
| if (IS_ERR(batch)) |
| return PTR_ERR(batch); |
| |
| goto secure_batch; |
| } |
| |
| if (intel_context_is_parallel(eb->context)) |
| return -EINVAL; |
| |
| len = eb->batch_len[0]; |
| if (!CMDPARSER_USES_GGTT(eb->i915)) { |
| /* |
| * ppGTT backed shadow buffers must be mapped RO, to prevent |
| * post-scan tampering |
| */ |
| if (!eb->context->vm->has_read_only) { |
| drm_dbg(&i915->drm, |
| "Cannot prevent post-scan tampering without RO capable vm\n"); |
| return -EINVAL; |
| } |
| } else { |
| len += I915_CMD_PARSER_TRAMPOLINE_SIZE; |
| } |
| if (unlikely(len < eb->batch_len[0])) /* last paranoid check of overflow */ |
| return -EINVAL; |
| |
| if (!pool) { |
| pool = intel_gt_get_buffer_pool(eb->gt, len, |
| I915_MAP_WB); |
| if (IS_ERR(pool)) |
| return PTR_ERR(pool); |
| eb->batch_pool = pool; |
| } |
| |
| err = i915_gem_object_lock(pool->obj, &eb->ww); |
| if (err) |
| goto err; |
| |
| shadow = shadow_batch_pin(eb, pool->obj, eb->context->vm, PIN_USER); |
| if (IS_ERR(shadow)) { |
| err = PTR_ERR(shadow); |
| goto err; |
| } |
| intel_gt_buffer_pool_mark_used(pool); |
| i915_gem_object_set_readonly(shadow->obj); |
| shadow->private = pool; |
| |
| trampoline = NULL; |
| if (CMDPARSER_USES_GGTT(eb->i915)) { |
| trampoline = shadow; |
| |
| shadow = shadow_batch_pin(eb, pool->obj, |
| &eb->gt->ggtt->vm, |
| PIN_GLOBAL); |
| if (IS_ERR(shadow)) { |
| err = PTR_ERR(shadow); |
| shadow = trampoline; |
| goto err_shadow; |
| } |
| shadow->private = pool; |
| |
| eb->batch_flags |= I915_DISPATCH_SECURE; |
| } |
| |
| batch = eb_dispatch_secure(eb, shadow); |
| if (IS_ERR(batch)) { |
| err = PTR_ERR(batch); |
| goto err_trampoline; |
| } |
| |
| err = dma_resv_reserve_shared(shadow->resv, 1); |
| if (err) |
| goto err_trampoline; |
| |
| err = intel_engine_cmd_parser(eb->context->engine, |
| eb->batches[0]->vma, |
| eb->batch_start_offset, |
| eb->batch_len[0], |
| shadow, trampoline); |
| if (err) |
| goto err_unpin_batch; |
| |
| eb->batches[0] = &eb->vma[eb->buffer_count++]; |
| eb->batches[0]->vma = i915_vma_get(shadow); |
| eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; |
| |
| eb->trampoline = trampoline; |
| eb->batch_start_offset = 0; |
| |
| secure_batch: |
| if (batch) { |
| if (intel_context_is_parallel(eb->context)) |
| return -EINVAL; |
| |
| eb->batches[0] = &eb->vma[eb->buffer_count++]; |
| eb->batches[0]->flags = __EXEC_OBJECT_HAS_PIN; |
| eb->batches[0]->vma = i915_vma_get(batch); |
| } |
| return 0; |
| |
| err_unpin_batch: |
| if (batch) |
| i915_vma_unpin(batch); |
| err_trampoline: |
| if (trampoline) |
| i915_vma_unpin(trampoline); |
| err_shadow: |
| i915_vma_unpin(shadow); |
| err: |
| return err; |
| } |
| |
| static int eb_request_submit(struct i915_execbuffer *eb, |
| struct i915_request *rq, |
| struct i915_vma *batch, |
| u64 batch_len) |
| { |
| int err; |
| |
| if (intel_context_nopreempt(rq->context)) |
| __set_bit(I915_FENCE_FLAG_NOPREEMPT, &rq->fence.flags); |
| |
| if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) { |
| err = i915_reset_gen7_sol_offsets(rq); |
| if (err) |
| return err; |
| } |
| |
| /* |
| * After we completed waiting for other engines (using HW semaphores) |
| * then we can signal that this request/batch is ready to run. This |
| * allows us to determine if the batch is still waiting on the GPU |
| * or actually running by checking the breadcrumb. |
| */ |
| if (rq->context->engine->emit_init_breadcrumb) { |
| err = rq->context->engine->emit_init_breadcrumb(rq); |
| if (err) |
| return err; |
| } |
| |
| err = rq->context->engine->emit_bb_start(rq, |
| batch->node.start + |
| eb->batch_start_offset, |
| batch_len, |
| eb->batch_flags); |
| if (err) |
| return err; |
| |
| if (eb->trampoline) { |
| GEM_BUG_ON(intel_context_is_parallel(rq->context)); |
| GEM_BUG_ON(eb->batch_start_offset); |
| err = rq->context->engine->emit_bb_start(rq, |
| eb->trampoline->node.start + |
| batch_len, 0, 0); |
| if (err) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static int eb_submit(struct i915_execbuffer *eb) |
| { |
| unsigned int i; |
| int err; |
| |
| err = eb_move_to_gpu(eb); |
| |
| for_each_batch_create_order(eb, i) { |
| if (!eb->requests[i]) |
| break; |
| |
| trace_i915_request_queue(eb->requests[i], eb->batch_flags); |
| if (!err) |
| err = eb_request_submit(eb, eb->requests[i], |
| eb->batches[i]->vma, |
| eb->batch_len[i]); |
| } |
| |
| return err; |
| } |
| |
| static int num_vcs_engines(const struct drm_i915_private *i915) |
| { |
| return hweight_long(VDBOX_MASK(&i915->gt)); |
| } |
| |
| /* |
| * Find one BSD ring to dispatch the corresponding BSD command. |
| * The engine index is returned. |
| */ |
| static unsigned int |
| gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv, |
| struct drm_file *file) |
| { |
| struct drm_i915_file_private *file_priv = file->driver_priv; |
| |
| /* Check whether the file_priv has already selected one ring. */ |
| if ((int)file_priv->bsd_engine < 0) |
| file_priv->bsd_engine = |
| get_random_int() % num_vcs_engines(dev_priv); |
| |
| return file_priv->bsd_engine; |
| } |
| |
| static const enum intel_engine_id user_ring_map[] = { |
| [I915_EXEC_DEFAULT] = RCS0, |
| [I915_EXEC_RENDER] = RCS0, |
| [I915_EXEC_BLT] = BCS0, |
| [I915_EXEC_BSD] = VCS0, |
| [I915_EXEC_VEBOX] = VECS0 |
| }; |
| |
| static struct i915_request *eb_throttle(struct i915_execbuffer *eb, struct intel_context *ce) |
| { |
| struct intel_ring *ring = ce->ring; |
| struct intel_timeline *tl = ce->timeline; |
| struct i915_request *rq; |
| |
| /* |
| * Completely unscientific finger-in-the-air estimates for suitable |
| * maximum user request size (to avoid blocking) and then backoff. |
| */ |
| if (intel_ring_update_space(ring) >= PAGE_SIZE) |
| return NULL; |
| |
| /* |
| * Find a request that after waiting upon, there will be at least half |
| * the ring available. The hysteresis allows us to compete for the |
| * shared ring and should mean that we sleep less often prior to |
| * claiming our resources, but not so long that the ring completely |
| * drains before we can submit our next request. |
| */ |
| list_for_each_entry(rq, &tl->requests, link) { |
| if (rq->ring != ring) |
| continue; |
| |
| if (__intel_ring_space(rq->postfix, |
| ring->emit, ring->size) > ring->size / 2) |
| break; |
| } |
| if (&rq->link == &tl->requests) |
| return NULL; /* weird, we will check again later for real */ |
| |
| return i915_request_get(rq); |
| } |
| |
| static int eb_pin_timeline(struct i915_execbuffer *eb, struct intel_context *ce, |
| bool throttle) |
| { |
| struct intel_timeline *tl; |
| struct i915_request *rq = NULL; |
| |
| /* |
| * Take a local wakeref for preparing to dispatch the execbuf as |
| * we expect to access the hardware fairly frequently in the |
| * process, and require the engine to be kept awake between accesses. |
| * Upon dispatch, we acquire another prolonged wakeref that we hold |
| * until the timeline is idle, which in turn releases the wakeref |
| * taken on the engine, and the parent device. |
| */ |
| tl = intel_context_timeline_lock(ce); |
| if (IS_ERR(tl)) |
| return PTR_ERR(tl); |
| |
| intel_context_enter(ce); |
| if (throttle) |
| rq = eb_throttle(eb, ce); |
| intel_context_timeline_unlock(tl); |
| |
| if (rq) { |
| bool nonblock = eb->file->filp->f_flags & O_NONBLOCK; |
| long timeout = nonblock ? 0 : MAX_SCHEDULE_TIMEOUT; |
| |
| if (i915_request_wait(rq, I915_WAIT_INTERRUPTIBLE, |
| timeout) < 0) { |
| i915_request_put(rq); |
| |
| tl = intel_context_timeline_lock(ce); |
| intel_context_exit(ce); |
| intel_context_timeline_unlock(tl); |
| |
| if (nonblock) |
| return -EWOULDBLOCK; |
| else |
| return -EINTR; |
| } |
| i915_request_put(rq); |
| } |
| |
| return 0; |
| } |
| |
| static int eb_pin_engine(struct i915_execbuffer *eb, bool throttle) |
| { |
| struct intel_context *ce = eb->context, *child; |
| int err; |
| int i = 0, j = 0; |
| |
| GEM_BUG_ON(eb->args->flags & __EXEC_ENGINE_PINNED); |
| |
| if (unlikely(intel_context_is_banned(ce))) |
| return -EIO; |
| |
| /* |
| * Pinning the contexts may generate requests in order to acquire |
| * GGTT space, so do this first before we reserve a seqno for |
| * ourselves. |
| */ |
| err = intel_context_pin_ww(ce, &eb->ww); |
| if (err) |
| return err; |
| for_each_child(ce, child) { |
| err = intel_context_pin_ww(child, &eb->ww); |
| GEM_BUG_ON(err); /* perma-pinned should incr a counter */ |
| } |
| |
| for_each_child(ce, child) { |
| err = eb_pin_timeline(eb, child, throttle); |
| if (err) |
| goto unwind; |
| ++i; |
| } |
| err = eb_pin_timeline(eb, ce, throttle); |
| if (err) |
| goto unwind; |
| |
| eb->args->flags |= __EXEC_ENGINE_PINNED; |
| return 0; |
| |
| unwind: |
| for_each_child(ce, child) { |
| if (j++ < i) { |
| mutex_lock(&child->timeline->mutex); |
| intel_context_exit(child); |
| mutex_unlock(&child->timeline->mutex); |
| } |
| } |
| for_each_child(ce, child) |
| intel_context_unpin(child); |
| intel_context_unpin(ce); |
| return err; |
| } |
| |
| static void eb_unpin_engine(struct i915_execbuffer *eb) |
| { |
| struct intel_context *ce = eb->context, *child; |
| |
| if (!(eb->args->flags & __EXEC_ENGINE_PINNED)) |
| return; |
| |
| eb->args->flags &= ~__EXEC_ENGINE_PINNED; |
| |
| for_each_child(ce, child) { |
| mutex_lock(&child->timeline->mutex); |
| intel_context_exit(child); |
| mutex_unlock(&child->timeline->mutex); |
| |
| intel_context_unpin(child); |
| } |
| |
| mutex_lock(&ce->timeline->mutex); |
| intel_context_exit(ce); |
| mutex_unlock(&ce->timeline->mutex); |
| |
| intel_context_unpin(ce); |
| } |
| |
| static unsigned int |
| eb_select_legacy_ring(struct i915_execbuffer *eb) |
| { |
| struct drm_i915_private *i915 = eb->i915; |
| struct drm_i915_gem_execbuffer2 *args = eb->args; |
| unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK; |
| |
| if (user_ring_id != I915_EXEC_BSD && |
| (args->flags & I915_EXEC_BSD_MASK)) { |
| drm_dbg(&i915->drm, |
| "execbuf with non bsd ring but with invalid " |
| "bsd dispatch flags: %d\n", (int)(args->flags)); |
| return -1; |
| } |
| |
| if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) { |
| unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK; |
| |
| if (bsd_idx == I915_EXEC_BSD_DEFAULT) { |
| bsd_idx = gen8_dispatch_bsd_engine(i915, eb->file); |
| } else if (bsd_idx >= I915_EXEC_BSD_RING1 && |
| bsd_idx <= I915_EXEC_BSD_RING2) { |
| bsd_idx >>= I915_EXEC_BSD_SHIFT; |
| bsd_idx--; |
| } else { |
| drm_dbg(&i915->drm, |
| "execbuf with unknown bsd ring: %u\n", |
| bsd_idx); |
| return -1; |
| } |
| |
| return _VCS(bsd_idx); |
| } |
| |
| if (user_ring_id >= ARRAY_SIZE(user_ring_map)) { |
| drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n", |
| user_ring_id); |
| return -1; |
| } |
| |
| return user_ring_map[user_ring_id]; |
| } |
| |
| static int |
| eb_select_engine(struct i915_execbuffer *eb) |
| { |
| struct intel_context *ce, *child; |
| unsigned int idx; |
| int err; |
| |
| if (i915_gem_context_user_engines(eb->gem_context)) |
| idx = eb->args->flags & I915_EXEC_RING_MASK; |
| else |
| idx = eb_select_legacy_ring(eb); |
| |
| ce = i915_gem_context_get_engine(eb->gem_context, idx); |
| if (IS_ERR(ce)) |
| return PTR_ERR(ce); |
| |
| if (intel_context_is_parallel(ce)) { |
| if (eb->buffer_count < ce->parallel.number_children + 1) { |
| intel_context_put(ce); |
| return -EINVAL; |
| } |
| if (eb->batch_start_offset || eb->args->batch_len) { |
| intel_context_put(ce); |
| return -EINVAL; |
| } |
| } |
| eb->num_batches = ce->parallel.number_children + 1; |
| |
| for_each_child(ce, child) |
| intel_context_get(child); |
| intel_gt_pm_get(ce->engine->gt); |
| |
| if (!test_bit(CONTEXT_ALLOC_BIT, &ce->flags)) { |
| err = intel_context_alloc_state(ce); |
| if (err) |
| goto err; |
| } |
| for_each_child(ce, child) { |
| if (!test_bit(CONTEXT_ALLOC_BIT, &child->flags)) { |
| err = intel_context_alloc_state(child); |
| if (err) |
| goto err; |
| } |
| } |
| |
| /* |
| * ABI: Before userspace accesses the GPU (e.g. execbuffer), report |
| * EIO if the GPU is already wedged. |
| */ |
| err = intel_gt_terminally_wedged(ce->engine->gt); |
| if (err) |
| goto err; |
| |
| eb->context = ce; |
| eb->gt = ce->engine->gt; |
| |
| /* |
| * Make sure engine pool stays alive even if we call intel_context_put |
| * during ww handling. The pool is destroyed when last pm reference |
| * is dropped, which breaks our -EDEADLK handling. |
| */ |
| return err; |
| |
| err: |
| intel_gt_pm_put(ce->engine->gt); |
| for_each_child(ce, child) |
| intel_context_put(child); |
| intel_context_put(ce); |
| return err; |
| } |
| |
| static void |
| eb_put_engine(struct i915_execbuffer *eb) |
| { |
| struct intel_context *child; |
| |
| intel_gt_pm_put(eb->gt); |
| for_each_child(eb->context, child) |
| intel_context_put(child); |
| intel_context_put(eb->context); |
| } |
| |
| static void |
| __free_fence_array(struct eb_fence *fences, unsigned int n) |
| { |
| while (n--) { |
| drm_syncobj_put(ptr_mask_bits(fences[n].syncobj, 2)); |
| dma_fence_put(fences[n].dma_fence); |
| dma_fence_chain_free(fences[n].chain_fence); |
| } |
| kvfree(fences); |
| } |
| |
| static int |
| add_timeline_fence_array(struct i915_execbuffer *eb, |
| const struct drm_i915_gem_execbuffer_ext_timeline_fences *timeline_fences) |
| { |
| struct drm_i915_gem_exec_fence __user *user_fences; |
| u64 __user *user_values; |
| struct eb_fence *f; |
| u64 nfences; |
| int err = 0; |
| |
| nfences = timeline_fences->fence_count; |
| if (!nfences) |
| return 0; |
| |
| /* Check multiplication overflow for access_ok() and kvmalloc_array() */ |
| BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); |
| if (nfences > min_t(unsigned long, |
| ULONG_MAX / sizeof(*user_fences), |
| SIZE_MAX / sizeof(*f)) - eb->num_fences) |
| return -EINVAL; |
| |
| user_fences = u64_to_user_ptr(timeline_fences->handles_ptr); |
| if (!access_ok(user_fences, nfences * sizeof(*user_fences))) |
| return -EFAULT; |
| |
| user_values = u64_to_user_ptr(timeline_fences->values_ptr); |
| if (!access_ok(user_values, nfences * sizeof(*user_values))) |
| return -EFAULT; |
| |
| f = krealloc(eb->fences, |
| (eb->num_fences + nfences) * sizeof(*f), |
| __GFP_NOWARN | GFP_KERNEL); |
| if (!f) |
| return -ENOMEM; |
| |
| eb->fences = f; |
| f += eb->num_fences; |
| |
| BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & |
| ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); |
| |
| while (nfences--) { |
| struct drm_i915_gem_exec_fence user_fence; |
| struct drm_syncobj *syncobj; |
| struct dma_fence *fence = NULL; |
| u64 point; |
| |
| if (__copy_from_user(&user_fence, |
| user_fences++, |
| sizeof(user_fence))) |
| return -EFAULT; |
| |
| if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) |
| return -EINVAL; |
| |
| if (__get_user(point, user_values++)) |
| return -EFAULT; |
| |
| syncobj = drm_syncobj_find(eb->file, user_fence.handle); |
| if (!syncobj) { |
| DRM_DEBUG("Invalid syncobj handle provided\n"); |
| return -ENOENT; |
| } |
| |
| fence = drm_syncobj_fence_get(syncobj); |
| |
| if (!fence && user_fence.flags && |
| !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { |
| DRM_DEBUG("Syncobj handle has no fence\n"); |
| drm_syncobj_put(syncobj); |
| return -EINVAL; |
| } |
| |
| if (fence) |
| err = dma_fence_chain_find_seqno(&fence, point); |
| |
| if (err && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { |
| DRM_DEBUG("Syncobj handle missing requested point %llu\n", point); |
| dma_fence_put(fence); |
| drm_syncobj_put(syncobj); |
| return err; |
| } |
| |
| /* |
| * A point might have been signaled already and |
| * garbage collected from the timeline. In this case |
| * just ignore the point and carry on. |
| */ |
| if (!fence && !(user_fence.flags & I915_EXEC_FENCE_SIGNAL)) { |
| drm_syncobj_put(syncobj); |
| continue; |
| } |
| |
| /* |
| * For timeline syncobjs we need to preallocate chains for |
| * later signaling. |
| */ |
| if (point != 0 && user_fence.flags & I915_EXEC_FENCE_SIGNAL) { |
| /* |
| * Waiting and signaling the same point (when point != |
| * 0) would break the timeline. |
| */ |
| if (user_fence.flags & I915_EXEC_FENCE_WAIT) { |
| DRM_DEBUG("Trying to wait & signal the same timeline point.\n"); |
| dma_fence_put(fence); |
| drm_syncobj_put(syncobj); |
| return -EINVAL; |
| } |
| |
| f->chain_fence = dma_fence_chain_alloc(); |
| if (!f->chain_fence) { |
| drm_syncobj_put(syncobj); |
| dma_fence_put(fence); |
| return -ENOMEM; |
| } |
| } else { |
| f->chain_fence = NULL; |
| } |
| |
| f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); |
| f->dma_fence = fence; |
| f->value = point; |
| f++; |
| eb->num_fences++; |
| } |
| |
| return 0; |
| } |
| |
| static int add_fence_array(struct i915_execbuffer *eb) |
| { |
| struct drm_i915_gem_execbuffer2 *args = eb->args; |
| struct drm_i915_gem_exec_fence __user *user; |
| unsigned long num_fences = args->num_cliprects; |
| struct eb_fence *f; |
| |
| if (!(args->flags & I915_EXEC_FENCE_ARRAY)) |
| return 0; |
| |
| if (!num_fences) |
| return 0; |
| |
| /* Check multiplication overflow for access_ok() and kvmalloc_array() */ |
| BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long)); |
| if (num_fences > min_t(unsigned long, |
| ULONG_MAX / sizeof(*user), |
| SIZE_MAX / sizeof(*f) - eb->num_fences)) |
| return -EINVAL; |
| |
| user = u64_to_user_ptr(args->cliprects_ptr); |
| if (!access_ok(user, num_fences * sizeof(*user))) |
| return -EFAULT; |
| |
| f = krealloc(eb->fences, |
| (eb->num_fences + num_fences) * sizeof(*f), |
| __GFP_NOWARN | GFP_KERNEL); |
| if (!f) |
| return -ENOMEM; |
| |
| eb->fences = f; |
| f += eb->num_fences; |
| while (num_fences--) { |
| struct drm_i915_gem_exec_fence user_fence; |
| struct drm_syncobj *syncobj; |
| struct dma_fence *fence = NULL; |
| |
| if (__copy_from_user(&user_fence, user++, sizeof(user_fence))) |
| return -EFAULT; |
| |
| if (user_fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) |
| return -EINVAL; |
| |
| syncobj = drm_syncobj_find(eb->file, user_fence.handle); |
| if (!syncobj) { |
| DRM_DEBUG("Invalid syncobj handle provided\n"); |
| return -ENOENT; |
| } |
| |
| if (user_fence.flags & I915_EXEC_FENCE_WAIT) { |
| fence = drm_syncobj_fence_get(syncobj); |
| if (!fence) { |
| DRM_DEBUG("Syncobj handle has no fence\n"); |
| drm_syncobj_put(syncobj); |
| return -EINVAL; |
| } |
| } |
| |
| BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) & |
| ~__I915_EXEC_FENCE_UNKNOWN_FLAGS); |
| |
| f->syncobj = ptr_pack_bits(syncobj, user_fence.flags, 2); |
| f->dma_fence = fence; |
| f->value = 0; |
| f->chain_fence = NULL; |
| f++; |
| eb->num_fences++; |
| } |
| |
| return 0; |
| } |
| |
| static void put_fence_array(struct eb_fence *fences, int num_fences) |
| { |
| if (fences) |
| __free_fence_array(fences, num_fences); |
| } |
| |
| static int |
| await_fence_array(struct i915_execbuffer *eb, |
| struct i915_request *rq) |
| { |
| unsigned int n; |
| int err; |
| |
| for (n = 0; n < eb->num_fences; n++) { |
| struct drm_syncobj *syncobj; |
| unsigned int flags; |
| |
| syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); |
| |
| if (!eb->fences[n].dma_fence) |
| continue; |
| |
| err = i915_request_await_dma_fence(rq, eb->fences[n].dma_fence); |
| if (err < 0) |
| return err; |
| } |
| |
| return 0; |
| } |
| |
| static void signal_fence_array(const struct i915_execbuffer *eb, |
| struct dma_fence * const fence) |
| { |
| unsigned int n; |
| |
| for (n = 0; n < eb->num_fences; n++) { |
| struct drm_syncobj *syncobj; |
| unsigned int flags; |
| |
| syncobj = ptr_unpack_bits(eb->fences[n].syncobj, &flags, 2); |
| if (!(flags & I915_EXEC_FENCE_SIGNAL)) |
| continue; |
| |
| if (eb->fences[n].chain_fence) { |
| drm_syncobj_add_point(syncobj, |
| eb->fences[n].chain_fence, |
| fence, |
| eb->fences[n].value); |
| /* |
| * The chain's ownership is transferred to the |
| * timeline. |
| */ |
| eb->fences[n].chain_fence = NULL; |
| } else { |
| drm_syncobj_replace_fence(syncobj, fence); |
| } |
| } |
| } |
| |
| static int |
| parse_timeline_fences(struct i915_user_extension __user *ext, void *data) |
| { |
| struct i915_execbuffer *eb = data; |
| struct drm_i915_gem_execbuffer_ext_timeline_fences timeline_fences; |
| |
| if (copy_from_user(&timeline_fences, ext, sizeof(timeline_fences))) |
| return -EFAULT; |
| |
| return add_timeline_fence_array(eb, &timeline_fences); |
| } |
| |
| static void retire_requests(struct intel_timeline *tl, struct i915_request *end) |
| { |
| struct i915_request *rq, *rn; |
| |
| list_for_each_entry_safe(rq, rn, &tl->requests, link) |
| if (rq == end || !i915_request_retire(rq)) |
| break; |
| } |
| |
| static int eb_request_add(struct i915_execbuffer *eb, struct i915_request *rq, |
| int err, bool last_parallel) |
| { |
| struct intel_timeline * const tl = i915_request_timeline(rq); |
| struct i915_sched_attr attr = {}; |
| struct i915_request *prev; |
| |
| lockdep_assert_held(&tl->mutex); |
| lockdep_unpin_lock(&tl->mutex, rq->cookie); |
| |
| trace_i915_request_add(rq); |
| |
| prev = __i915_request_commit(rq); |
| |
| /* Check that the context wasn't destroyed before submission */ |
| if (likely(!intel_context_is_closed(eb->context))) { |
| attr = eb->gem_context->sched; |
| } else { |
| /* Serialise with context_close via the add_to_timeline */ |
| i915_request_set_error_once(rq, -ENOENT); |
| __i915_request_skip(rq); |
| err = -ENOENT; /* override any transient errors */ |
| } |
| |
| if (intel_context_is_parallel(eb->context)) { |
| if (err) { |
| __i915_request_skip(rq); |
| set_bit(I915_FENCE_FLAG_SKIP_PARALLEL, |
| &rq->fence.flags); |
| } |
| if (last_parallel) |
| set_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, |
| &rq->fence.flags); |
| } |
| |
| __i915_request_queue(rq, &attr); |
| |
| /* Try to clean up the client's timeline after submitting the request */ |
| if (prev) |
| retire_requests(tl, prev); |
| |
| mutex_unlock(&tl->mutex); |
| |
| return err; |
| } |
| |
| static int eb_requests_add(struct i915_execbuffer *eb, int err) |
| { |
| int i; |
| |
| /* |
| * We iterate in reverse order of creation to release timeline mutexes in |
| * same order. |
| */ |
| for_each_batch_add_order(eb, i) { |
| struct i915_request *rq = eb->requests[i]; |
| |
| if (!rq) |
| continue; |
| err |= eb_request_add(eb, rq, err, i == 0); |
| } |
| |
| return err; |
| } |
| |
| static const i915_user_extension_fn execbuf_extensions[] = { |
| [DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES] = parse_timeline_fences, |
| }; |
| |
| static int |
| parse_execbuf2_extensions(struct drm_i915_gem_execbuffer2 *args, |
| struct i915_execbuffer *eb) |
| { |
| if (!(args->flags & I915_EXEC_USE_EXTENSIONS)) |
| return 0; |
| |
| /* The execbuf2 extension mechanism reuses cliprects_ptr. So we cannot |
| * have another flag also using it at the same time. |
| */ |
| if (eb->args->flags & I915_EXEC_FENCE_ARRAY) |
| return -EINVAL; |
| |
| if (args->num_cliprects != 0) |
| return -EINVAL; |
| |
| return i915_user_extensions(u64_to_user_ptr(args->cliprects_ptr), |
| execbuf_extensions, |
| ARRAY_SIZE(execbuf_extensions), |
| eb); |
| } |
| |
| static void eb_requests_get(struct i915_execbuffer *eb) |
| { |
| unsigned int i; |
| |
| for_each_batch_create_order(eb, i) { |
| if (!eb->requests[i]) |
| break; |
| |
| i915_request_get(eb->requests[i]); |
| } |
| } |
| |
| static void eb_requests_put(struct i915_execbuffer *eb) |
| { |
| unsigned int i; |
| |
| for_each_batch_create_order(eb, i) { |
| if (!eb->requests[i]) |
| break; |
| |
| i915_request_put(eb->requests[i]); |
| } |
| } |
| |
| static struct sync_file * |
| eb_composite_fence_create(struct i915_execbuffer *eb, int out_fence_fd) |
| { |
| struct sync_file *out_fence = NULL; |
| struct dma_fence_array *fence_array; |
| struct dma_fence **fences; |
| unsigned int i; |
| |
| GEM_BUG_ON(!intel_context_is_parent(eb->context)); |
| |
| fences = kmalloc_array(eb->num_batches, sizeof(*fences), GFP_KERNEL); |
| if (!fences) |
| return ERR_PTR(-ENOMEM); |
| |
| for_each_batch_create_order(eb, i) { |
| fences[i] = &eb->requests[i]->fence; |
| __set_bit(I915_FENCE_FLAG_COMPOSITE, |
| &eb->requests[i]->fence.flags); |
| } |
| |
| fence_array = dma_fence_array_create(eb->num_batches, |
| fences, |
| eb->context->parallel.fence_context, |
| eb->context->parallel.seqno, |
| false); |
| if (!fence_array) { |
| kfree(fences); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| /* Move ownership to the dma_fence_array created above */ |
| for_each_batch_create_order(eb, i) |
| dma_fence_get(fences[i]); |
| |
| if (out_fence_fd != -1) { |
| out_fence = sync_file_create(&fence_array->base); |
| /* sync_file now owns fence_arry, drop creation ref */ |
| dma_fence_put(&fence_array->base); |
| if (!out_fence) |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| eb->composite_fence = &fence_array->base; |
| |
| return out_fence; |
| } |
| |
| static struct sync_file * |
| eb_fences_add(struct i915_execbuffer *eb, struct i915_request *rq, |
| struct dma_fence *in_fence, int out_fence_fd) |
| { |
| struct sync_file *out_fence = NULL; |
| int err; |
| |
| if (unlikely(eb->gem_context->syncobj)) { |
| struct dma_fence *fence; |
| |
| fence = drm_syncobj_fence_get(eb->gem_context->syncobj); |
| err = i915_request_await_dma_fence(rq, fence); |
| dma_fence_put(fence); |
| if (err) |
| return ERR_PTR(err); |
| } |
| |
| if (in_fence) { |
| if (eb->args->flags & I915_EXEC_FENCE_SUBMIT) |
| err = i915_request_await_execution(rq, in_fence); |
| else |
| err = i915_request_await_dma_fence(rq, in_fence); |
| if (err < 0) |
| return ERR_PTR(err); |
| } |
| |
| if (eb->fences) { |
| err = await_fence_array(eb, rq); |
| if (err) |
| return ERR_PTR(err); |
| } |
| |
| if (intel_context_is_parallel(eb->context)) { |
| out_fence = eb_composite_fence_create(eb, out_fence_fd); |
| if (IS_ERR(out_fence)) |
| return ERR_PTR(-ENOMEM); |
| } else if (out_fence_fd != -1) { |
| out_fence = sync_file_create(&rq->fence); |
| if (!out_fence) |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| return out_fence; |
| } |
| |
| static struct intel_context * |
| eb_find_context(struct i915_execbuffer *eb, unsigned int context_number) |
| { |
| struct intel_context *child; |
| |
| if (likely(context_number == 0)) |
| return eb->context; |
| |
| for_each_child(eb->context, child) |
| if (!--context_number) |
| return child; |
| |
| GEM_BUG_ON("Context not found"); |
| |
| return NULL; |
| } |
| |
| static struct sync_file * |
| eb_requests_create(struct i915_execbuffer *eb, struct dma_fence *in_fence, |
| int out_fence_fd) |
| { |
| struct sync_file *out_fence = NULL; |
| unsigned int i; |
| |
| for_each_batch_create_order(eb, i) { |
| /* Allocate a request for this batch buffer nice and early. */ |
| eb->requests[i] = i915_request_create(eb_find_context(eb, i)); |
| if (IS_ERR(eb->requests[i])) { |
| out_fence = ERR_PTR(PTR_ERR(eb->requests[i])); |
| eb->requests[i] = NULL; |
| return out_fence; |
| } |
| |
| /* |
| * Only the first request added (committed to backend) has to |
| * take the in fences into account as all subsequent requests |
| * will have fences inserted inbetween them. |
| */ |
| if (i + 1 == eb->num_batches) { |
| out_fence = eb_fences_add(eb, eb->requests[i], |
| in_fence, out_fence_fd); |
| if (IS_ERR(out_fence)) |
| return out_fence; |
| } |
| |
| /* |
| * Whilst this request exists, batch_obj will be on the |
| * active_list, and so will hold the active reference. Only when |
| * this request is retired will the batch_obj be moved onto |
| * the inactive_list and lose its active reference. Hence we do |
| * not need to explicitly hold another reference here. |
| */ |
| eb->requests[i]->batch = eb->batches[i]->vma; |
| if (eb->batch_pool) { |
| GEM_BUG_ON(intel_context_is_parallel(eb->context)); |
| intel_gt_buffer_pool_mark_active(eb->batch_pool, |
| eb->requests[i]); |
| } |
| } |
| |
| return out_fence; |
| } |
| |
| static int |
| i915_gem_do_execbuffer(struct drm_device *dev, |
| struct drm_file *file, |
| struct drm_i915_gem_execbuffer2 *args, |
| struct drm_i915_gem_exec_object2 *exec) |
| { |
| struct drm_i915_private *i915 = to_i915(dev); |
| struct i915_execbuffer eb; |
| struct dma_fence *in_fence = NULL; |
| struct sync_file *out_fence = NULL; |
| int out_fence_fd = -1; |
| int err; |
| |
| BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS); |
| BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS & |
| ~__EXEC_OBJECT_UNKNOWN_FLAGS); |
| |
| eb.i915 = i915; |
| eb.file = file; |
| eb.args = args; |
| if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC)) |
| args->flags |= __EXEC_HAS_RELOC; |
| |
| eb.exec = exec; |
| eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1); |
| eb.vma[0].vma = NULL; |
| eb.batch_pool = NULL; |
| |
| eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS; |
| reloc_cache_init(&eb.reloc_cache, eb.i915); |
| |
| eb.buffer_count = args->buffer_count; |
| eb.batch_start_offset = args->batch_start_offset; |
| eb.trampoline = NULL; |
| |
| eb.fences = NULL; |
| eb.num_fences = 0; |
| |
| memset(eb.requests, 0, sizeof(struct i915_request *) * |
| ARRAY_SIZE(eb.requests)); |
| eb.composite_fence = NULL; |
| |
| eb.batch_flags = 0; |
| if (args->flags & I915_EXEC_SECURE) { |
| if (GRAPHICS_VER(i915) >= 11) |
| return -ENODEV; |
| |
| /* Return -EPERM to trigger fallback code on old binaries. */ |
| if (!HAS_SECURE_BATCHES(i915)) |
| return -EPERM; |
| |
| if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN)) |
| return -EPERM; |
| |
| eb.batch_flags |= I915_DISPATCH_SECURE; |
| } |
| if (args->flags & I915_EXEC_IS_PINNED) |
| eb.batch_flags |= I915_DISPATCH_PINNED; |
| |
| err = parse_execbuf2_extensions(args, &eb); |
| if (err) |
| goto err_ext; |
| |
| err = add_fence_array(&eb); |
| if (err) |
| goto err_ext; |
| |
| #define IN_FENCES (I915_EXEC_FENCE_IN | I915_EXEC_FENCE_SUBMIT) |
| if (args->flags & IN_FENCES) { |
| if ((args->flags & IN_FENCES) == IN_FENCES) |
| return -EINVAL; |
| |
| in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2)); |
| if (!in_fence) { |
| err = -EINVAL; |
| goto err_ext; |
| } |
| } |
| #undef IN_FENCES |
| |
| if (args->flags & I915_EXEC_FENCE_OUT) { |
| out_fence_fd = get_unused_fd_flags(O_CLOEXEC); |
| if (out_fence_fd < 0) { |
| err = out_fence_fd; |
| goto err_in_fence; |
| } |
| } |
| |
| err = eb_create(&eb); |
| if (err) |
| goto err_out_fence; |
| |
| GEM_BUG_ON(!eb.lut_size); |
| |
| err = eb_select_context(&eb); |
| if (unlikely(err)) |
| goto err_destroy; |
| |
| err = eb_select_engine(&eb); |
| if (unlikely(err)) |
| goto err_context; |
| |
| err = eb_lookup_vmas(&eb); |
| if (err) { |
| eb_release_vmas(&eb, true); |
| goto err_engine; |
| } |
| |
| i915_gem_ww_ctx_init(&eb.ww, true); |
| |
| err = eb_relocate_parse(&eb); |
| if (err) { |
| /* |
| * If the user expects the execobject.offset and |
| * reloc.presumed_offset to be an exact match, |
| * as for using NO_RELOC, then we cannot update |
| * the execobject.offset until we have completed |
| * relocation. |
| */ |
| args->flags &= ~__EXEC_HAS_RELOC; |
| goto err_vma; |
| } |
| |
| ww_acquire_done(&eb.ww.ctx); |
| |
| out_fence = eb_requests_create(&eb, in_fence, out_fence_fd); |
| if (IS_ERR(out_fence)) { |
| err = PTR_ERR(out_fence); |
| if (eb.requests[0]) |
| goto err_request; |
| else |
| goto err_vma; |
| } |
| |
| err = eb_submit(&eb); |
| |
| err_request: |
| eb_requests_get(&eb); |
| err = eb_requests_add(&eb, err); |
| |
| if (eb.fences) |
| signal_fence_array(&eb, eb.composite_fence ? |
| eb.composite_fence : |
| &eb.requests[0]->fence); |
| |
| if (out_fence) { |
| if (err == 0) { |
| fd_install(out_fence_fd, out_fence->file); |
| args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */ |
| args->rsvd2 |= (u64)out_fence_fd << 32; |
| out_fence_fd = -1; |
| } else { |
| fput(out_fence->file); |
| } |
| } |
| |
| if (unlikely(eb.gem_context->syncobj)) { |
| drm_syncobj_replace_fence(eb.gem_context->syncobj, |
| eb.composite_fence ? |
| eb.composite_fence : |
| &eb.requests[0]->fence); |
| } |
| |
| if (!out_fence && eb.composite_fence) |
| dma_fence_put(eb.composite_fence); |
| |
| eb_requests_put(&eb); |
| |
| err_vma: |
| eb_release_vmas(&eb, true); |
| if (eb.trampoline) |
| i915_vma_unpin(eb.trampoline); |
| WARN_ON(err == -EDEADLK); |
| i915_gem_ww_ctx_fini(&eb.ww); |
| |
| if (eb.batch_pool) |
| intel_gt_buffer_pool_put(eb.batch_pool); |
| err_engine: |
| eb_put_engine(&eb); |
| err_context: |
| i915_gem_context_put(eb.gem_context); |
| err_destroy: |
| eb_destroy(&eb); |
| err_out_fence: |
| if (out_fence_fd != -1) |
| put_unused_fd(out_fence_fd); |
| err_in_fence: |
| dma_fence_put(in_fence); |
| err_ext: |
| put_fence_array(eb.fences, eb.num_fences); |
| return err; |
| } |
| |
| static size_t eb_element_size(void) |
| { |
| return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma); |
| } |
| |
| static bool check_buffer_count(size_t count) |
| { |
| const size_t sz = eb_element_size(); |
| |
| /* |
| * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup |
| * array size (see eb_create()). Otherwise, we can accept an array as |
| * large as can be addressed (though use large arrays at your peril)! |
| */ |
| |
| return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1); |
| } |
| |
| int |
| i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data, |
| struct drm_file *file) |
| { |
| struct drm_i915_private *i915 = to_i915(dev); |
| struct drm_i915_gem_execbuffer2 *args = data; |
| struct drm_i915_gem_exec_object2 *exec2_list; |
| const size_t count = args->buffer_count; |
| int err; |
| |
| if (!check_buffer_count(count)) { |
| drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count); |
| return -EINVAL; |
| } |
| |
| err = i915_gem_check_execbuffer(args); |
| if (err) |
| return err; |
| |
| /* Allocate extra slots for use by the command parser */ |
| exec2_list = kvmalloc_array(count + 2, eb_element_size(), |
| __GFP_NOWARN | GFP_KERNEL); |
| if (exec2_list == NULL) { |
| drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n", |
| count); |
| return -ENOMEM; |
| } |
| if (copy_from_user(exec2_list, |
| u64_to_user_ptr(args->buffers_ptr), |
| sizeof(*exec2_list) * count)) { |
| drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count); |
| kvfree(exec2_list); |
| return -EFAULT; |
| } |
| |
| err = i915_gem_do_execbuffer(dev, file, args, exec2_list); |
| |
| /* |
| * Now that we have begun execution of the batchbuffer, we ignore |
| * any new error after this point. Also given that we have already |
| * updated the associated relocations, we try to write out the current |
| * object locations irrespective of any error. |
| */ |
| if (args->flags & __EXEC_HAS_RELOC) { |
| struct drm_i915_gem_exec_object2 __user *user_exec_list = |
| u64_to_user_ptr(args->buffers_ptr); |
| unsigned int i; |
| |
| /* Copy the new buffer offsets back to the user's exec list. */ |
| /* |
| * Note: count * sizeof(*user_exec_list) does not overflow, |
| * because we checked 'count' in check_buffer_count(). |
| * |
| * And this range already got effectively checked earlier |
| * when we did the "copy_from_user()" above. |
| */ |
| if (!user_write_access_begin(user_exec_list, |
| count * sizeof(*user_exec_list))) |
| goto end; |
| |
| for (i = 0; i < args->buffer_count; i++) { |
| if (!(exec2_list[i].offset & UPDATE)) |
| continue; |
| |
| exec2_list[i].offset = |
| gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK); |
| unsafe_put_user(exec2_list[i].offset, |
| &user_exec_list[i].offset, |
| end_user); |
| } |
| end_user: |
| user_write_access_end(); |
| end:; |
| } |
| |
| args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS; |
| kvfree(exec2_list); |
| return err; |
| } |