| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2011 Samsung Electronics Co., Ltd. |
| * http://www.samsung.com |
| * |
| * Copyright 2008 Openmoko, Inc. |
| * Copyright 2008 Simtec Electronics |
| * Ben Dooks <ben@simtec.co.uk> |
| * http://armlinux.simtec.co.uk/ |
| * |
| * S3C USB2.0 High-speed / OtG driver |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/spinlock.h> |
| #include <linux/interrupt.h> |
| #include <linux/platform_device.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/mutex.h> |
| #include <linux/seq_file.h> |
| #include <linux/delay.h> |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| #include <linux/of_platform.h> |
| |
| #include <linux/usb/ch9.h> |
| #include <linux/usb/gadget.h> |
| #include <linux/usb/phy.h> |
| #include <linux/usb/composite.h> |
| |
| |
| #include "core.h" |
| #include "hw.h" |
| |
| /* conversion functions */ |
| static inline struct dwc2_hsotg_req *our_req(struct usb_request *req) |
| { |
| return container_of(req, struct dwc2_hsotg_req, req); |
| } |
| |
| static inline struct dwc2_hsotg_ep *our_ep(struct usb_ep *ep) |
| { |
| return container_of(ep, struct dwc2_hsotg_ep, ep); |
| } |
| |
| static inline struct dwc2_hsotg *to_hsotg(struct usb_gadget *gadget) |
| { |
| return container_of(gadget, struct dwc2_hsotg, gadget); |
| } |
| |
| static inline void dwc2_set_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) |
| { |
| dwc2_writel(hsotg, dwc2_readl(hsotg, offset) | val, offset); |
| } |
| |
| static inline void dwc2_clear_bit(struct dwc2_hsotg *hsotg, u32 offset, u32 val) |
| { |
| dwc2_writel(hsotg, dwc2_readl(hsotg, offset) & ~val, offset); |
| } |
| |
| static inline struct dwc2_hsotg_ep *index_to_ep(struct dwc2_hsotg *hsotg, |
| u32 ep_index, u32 dir_in) |
| { |
| if (dir_in) |
| return hsotg->eps_in[ep_index]; |
| else |
| return hsotg->eps_out[ep_index]; |
| } |
| |
| /* forward declaration of functions */ |
| static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg); |
| |
| /** |
| * using_dma - return the DMA status of the driver. |
| * @hsotg: The driver state. |
| * |
| * Return true if we're using DMA. |
| * |
| * Currently, we have the DMA support code worked into everywhere |
| * that needs it, but the AMBA DMA implementation in the hardware can |
| * only DMA from 32bit aligned addresses. This means that gadgets such |
| * as the CDC Ethernet cannot work as they often pass packets which are |
| * not 32bit aligned. |
| * |
| * Unfortunately the choice to use DMA or not is global to the controller |
| * and seems to be only settable when the controller is being put through |
| * a core reset. This means we either need to fix the gadgets to take |
| * account of DMA alignment, or add bounce buffers (yuerk). |
| * |
| * g_using_dma is set depending on dts flag. |
| */ |
| static inline bool using_dma(struct dwc2_hsotg *hsotg) |
| { |
| return hsotg->params.g_dma; |
| } |
| |
| /* |
| * using_desc_dma - return the descriptor DMA status of the driver. |
| * @hsotg: The driver state. |
| * |
| * Return true if we're using descriptor DMA. |
| */ |
| static inline bool using_desc_dma(struct dwc2_hsotg *hsotg) |
| { |
| return hsotg->params.g_dma_desc; |
| } |
| |
| /** |
| * dwc2_gadget_incr_frame_num - Increments the targeted frame number. |
| * @hs_ep: The endpoint |
| * |
| * This function will also check if the frame number overruns DSTS_SOFFN_LIMIT. |
| * If an overrun occurs it will wrap the value and set the frame_overrun flag. |
| */ |
| static inline void dwc2_gadget_incr_frame_num(struct dwc2_hsotg_ep *hs_ep) |
| { |
| struct dwc2_hsotg *hsotg = hs_ep->parent; |
| u16 limit = DSTS_SOFFN_LIMIT; |
| |
| if (hsotg->gadget.speed != USB_SPEED_HIGH) |
| limit >>= 3; |
| |
| hs_ep->target_frame += hs_ep->interval; |
| if (hs_ep->target_frame > limit) { |
| hs_ep->frame_overrun = true; |
| hs_ep->target_frame &= limit; |
| } else { |
| hs_ep->frame_overrun = false; |
| } |
| } |
| |
| /** |
| * dwc2_gadget_dec_frame_num_by_one - Decrements the targeted frame number |
| * by one. |
| * @hs_ep: The endpoint. |
| * |
| * This function used in service interval based scheduling flow to calculate |
| * descriptor frame number filed value. For service interval mode frame |
| * number in descriptor should point to last (u)frame in the interval. |
| * |
| */ |
| static inline void dwc2_gadget_dec_frame_num_by_one(struct dwc2_hsotg_ep *hs_ep) |
| { |
| struct dwc2_hsotg *hsotg = hs_ep->parent; |
| u16 limit = DSTS_SOFFN_LIMIT; |
| |
| if (hsotg->gadget.speed != USB_SPEED_HIGH) |
| limit >>= 3; |
| |
| if (hs_ep->target_frame) |
| hs_ep->target_frame -= 1; |
| else |
| hs_ep->target_frame = limit; |
| } |
| |
| /** |
| * dwc2_hsotg_en_gsint - enable one or more of the general interrupt |
| * @hsotg: The device state |
| * @ints: A bitmask of the interrupts to enable |
| */ |
| static void dwc2_hsotg_en_gsint(struct dwc2_hsotg *hsotg, u32 ints) |
| { |
| u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); |
| u32 new_gsintmsk; |
| |
| new_gsintmsk = gsintmsk | ints; |
| |
| if (new_gsintmsk != gsintmsk) { |
| dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk); |
| dwc2_writel(hsotg, new_gsintmsk, GINTMSK); |
| } |
| } |
| |
| /** |
| * dwc2_hsotg_disable_gsint - disable one or more of the general interrupt |
| * @hsotg: The device state |
| * @ints: A bitmask of the interrupts to enable |
| */ |
| static void dwc2_hsotg_disable_gsint(struct dwc2_hsotg *hsotg, u32 ints) |
| { |
| u32 gsintmsk = dwc2_readl(hsotg, GINTMSK); |
| u32 new_gsintmsk; |
| |
| new_gsintmsk = gsintmsk & ~ints; |
| |
| if (new_gsintmsk != gsintmsk) |
| dwc2_writel(hsotg, new_gsintmsk, GINTMSK); |
| } |
| |
| /** |
| * dwc2_hsotg_ctrl_epint - enable/disable an endpoint irq |
| * @hsotg: The device state |
| * @ep: The endpoint index |
| * @dir_in: True if direction is in. |
| * @en: The enable value, true to enable |
| * |
| * Set or clear the mask for an individual endpoint's interrupt |
| * request. |
| */ |
| static void dwc2_hsotg_ctrl_epint(struct dwc2_hsotg *hsotg, |
| unsigned int ep, unsigned int dir_in, |
| unsigned int en) |
| { |
| unsigned long flags; |
| u32 bit = 1 << ep; |
| u32 daint; |
| |
| if (!dir_in) |
| bit <<= 16; |
| |
| local_irq_save(flags); |
| daint = dwc2_readl(hsotg, DAINTMSK); |
| if (en) |
| daint |= bit; |
| else |
| daint &= ~bit; |
| dwc2_writel(hsotg, daint, DAINTMSK); |
| local_irq_restore(flags); |
| } |
| |
| /** |
| * dwc2_hsotg_tx_fifo_count - return count of TX FIFOs in device mode |
| * |
| * @hsotg: Programming view of the DWC_otg controller |
| */ |
| int dwc2_hsotg_tx_fifo_count(struct dwc2_hsotg *hsotg) |
| { |
| if (hsotg->hw_params.en_multiple_tx_fifo) |
| /* In dedicated FIFO mode we need count of IN EPs */ |
| return hsotg->hw_params.num_dev_in_eps; |
| else |
| /* In shared FIFO mode we need count of Periodic IN EPs */ |
| return hsotg->hw_params.num_dev_perio_in_ep; |
| } |
| |
| /** |
| * dwc2_hsotg_tx_fifo_total_depth - return total FIFO depth available for |
| * device mode TX FIFOs |
| * |
| * @hsotg: Programming view of the DWC_otg controller |
| */ |
| int dwc2_hsotg_tx_fifo_total_depth(struct dwc2_hsotg *hsotg) |
| { |
| int addr; |
| int tx_addr_max; |
| u32 np_tx_fifo_size; |
| |
| np_tx_fifo_size = min_t(u32, hsotg->hw_params.dev_nperio_tx_fifo_size, |
| hsotg->params.g_np_tx_fifo_size); |
| |
| /* Get Endpoint Info Control block size in DWORDs. */ |
| tx_addr_max = hsotg->hw_params.total_fifo_size; |
| |
| addr = hsotg->params.g_rx_fifo_size + np_tx_fifo_size; |
| if (tx_addr_max <= addr) |
| return 0; |
| |
| return tx_addr_max - addr; |
| } |
| |
| /** |
| * dwc2_gadget_wkup_alert_handler - Handler for WKUP_ALERT interrupt |
| * |
| * @hsotg: Programming view of the DWC_otg controller |
| * |
| */ |
| static void dwc2_gadget_wkup_alert_handler(struct dwc2_hsotg *hsotg) |
| { |
| u32 gintsts2; |
| u32 gintmsk2; |
| |
| gintsts2 = dwc2_readl(hsotg, GINTSTS2); |
| gintmsk2 = dwc2_readl(hsotg, GINTMSK2); |
| gintsts2 &= gintmsk2; |
| |
| if (gintsts2 & GINTSTS2_WKUP_ALERT_INT) { |
| dev_dbg(hsotg->dev, "%s: Wkup_Alert_Int\n", __func__); |
| dwc2_set_bit(hsotg, GINTSTS2, GINTSTS2_WKUP_ALERT_INT); |
| dwc2_set_bit(hsotg, DCTL, DCTL_RMTWKUPSIG); |
| } |
| } |
| |
| /** |
| * dwc2_hsotg_tx_fifo_average_depth - returns average depth of device mode |
| * TX FIFOs |
| * |
| * @hsotg: Programming view of the DWC_otg controller |
| */ |
| int dwc2_hsotg_tx_fifo_average_depth(struct dwc2_hsotg *hsotg) |
| { |
| int tx_fifo_count; |
| int tx_fifo_depth; |
| |
| tx_fifo_depth = dwc2_hsotg_tx_fifo_total_depth(hsotg); |
| |
| tx_fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); |
| |
| if (!tx_fifo_count) |
| return tx_fifo_depth; |
| else |
| return tx_fifo_depth / tx_fifo_count; |
| } |
| |
| /** |
| * dwc2_hsotg_init_fifo - initialise non-periodic FIFOs |
| * @hsotg: The device instance. |
| */ |
| static void dwc2_hsotg_init_fifo(struct dwc2_hsotg *hsotg) |
| { |
| unsigned int ep; |
| unsigned int addr; |
| int timeout; |
| |
| u32 val; |
| u32 *txfsz = hsotg->params.g_tx_fifo_size; |
| |
| /* Reset fifo map if not correctly cleared during previous session */ |
| WARN_ON(hsotg->fifo_map); |
| hsotg->fifo_map = 0; |
| |
| /* set RX/NPTX FIFO sizes */ |
| dwc2_writel(hsotg, hsotg->params.g_rx_fifo_size, GRXFSIZ); |
| dwc2_writel(hsotg, (hsotg->params.g_rx_fifo_size << |
| FIFOSIZE_STARTADDR_SHIFT) | |
| (hsotg->params.g_np_tx_fifo_size << FIFOSIZE_DEPTH_SHIFT), |
| GNPTXFSIZ); |
| |
| /* |
| * arange all the rest of the TX FIFOs, as some versions of this |
| * block have overlapping default addresses. This also ensures |
| * that if the settings have been changed, then they are set to |
| * known values. |
| */ |
| |
| /* start at the end of the GNPTXFSIZ, rounded up */ |
| addr = hsotg->params.g_rx_fifo_size + hsotg->params.g_np_tx_fifo_size; |
| |
| /* |
| * Configure fifos sizes from provided configuration and assign |
| * them to endpoints dynamically according to maxpacket size value of |
| * given endpoint. |
| */ |
| for (ep = 1; ep < MAX_EPS_CHANNELS; ep++) { |
| if (!txfsz[ep]) |
| continue; |
| val = addr; |
| val |= txfsz[ep] << FIFOSIZE_DEPTH_SHIFT; |
| WARN_ONCE(addr + txfsz[ep] > hsotg->fifo_mem, |
| "insufficient fifo memory"); |
| addr += txfsz[ep]; |
| |
| dwc2_writel(hsotg, val, DPTXFSIZN(ep)); |
| val = dwc2_readl(hsotg, DPTXFSIZN(ep)); |
| } |
| |
| dwc2_writel(hsotg, hsotg->hw_params.total_fifo_size | |
| addr << GDFIFOCFG_EPINFOBASE_SHIFT, |
| GDFIFOCFG); |
| /* |
| * according to p428 of the design guide, we need to ensure that |
| * all fifos are flushed before continuing |
| */ |
| |
| dwc2_writel(hsotg, GRSTCTL_TXFNUM(0x10) | GRSTCTL_TXFFLSH | |
| GRSTCTL_RXFFLSH, GRSTCTL); |
| |
| /* wait until the fifos are both flushed */ |
| timeout = 100; |
| while (1) { |
| val = dwc2_readl(hsotg, GRSTCTL); |
| |
| if ((val & (GRSTCTL_TXFFLSH | GRSTCTL_RXFFLSH)) == 0) |
| break; |
| |
| if (--timeout == 0) { |
| dev_err(hsotg->dev, |
| "%s: timeout flushing fifos (GRSTCTL=%08x)\n", |
| __func__, val); |
| break; |
| } |
| |
| udelay(1); |
| } |
| |
| dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout); |
| } |
| |
| /** |
| * dwc2_hsotg_ep_alloc_request - allocate USB rerequest structure |
| * @ep: USB endpoint to allocate request for. |
| * @flags: Allocation flags |
| * |
| * Allocate a new USB request structure appropriate for the specified endpoint |
| */ |
| static struct usb_request *dwc2_hsotg_ep_alloc_request(struct usb_ep *ep, |
| gfp_t flags) |
| { |
| struct dwc2_hsotg_req *req; |
| |
| req = kzalloc(sizeof(*req), flags); |
| if (!req) |
| return NULL; |
| |
| INIT_LIST_HEAD(&req->queue); |
| |
| return &req->req; |
| } |
| |
| /** |
| * is_ep_periodic - return true if the endpoint is in periodic mode. |
| * @hs_ep: The endpoint to query. |
| * |
| * Returns true if the endpoint is in periodic mode, meaning it is being |
| * used for an Interrupt or ISO transfer. |
| */ |
| static inline int is_ep_periodic(struct dwc2_hsotg_ep *hs_ep) |
| { |
| return hs_ep->periodic; |
| } |
| |
| /** |
| * dwc2_hsotg_unmap_dma - unmap the DMA memory being used for the request |
| * @hsotg: The device state. |
| * @hs_ep: The endpoint for the request |
| * @hs_req: The request being processed. |
| * |
| * This is the reverse of dwc2_hsotg_map_dma(), called for the completion |
| * of a request to ensure the buffer is ready for access by the caller. |
| */ |
| static void dwc2_hsotg_unmap_dma(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *hs_ep, |
| struct dwc2_hsotg_req *hs_req) |
| { |
| struct usb_request *req = &hs_req->req; |
| |
| usb_gadget_unmap_request(&hsotg->gadget, req, hs_ep->map_dir); |
| } |
| |
| /* |
| * dwc2_gadget_alloc_ctrl_desc_chains - allocate DMA descriptor chains |
| * for Control endpoint |
| * @hsotg: The device state. |
| * |
| * This function will allocate 4 descriptor chains for EP 0: 2 for |
| * Setup stage, per one for IN and OUT data/status transactions. |
| */ |
| static int dwc2_gadget_alloc_ctrl_desc_chains(struct dwc2_hsotg *hsotg) |
| { |
| hsotg->setup_desc[0] = |
| dmam_alloc_coherent(hsotg->dev, |
| sizeof(struct dwc2_dma_desc), |
| &hsotg->setup_desc_dma[0], |
| GFP_KERNEL); |
| if (!hsotg->setup_desc[0]) |
| goto fail; |
| |
| hsotg->setup_desc[1] = |
| dmam_alloc_coherent(hsotg->dev, |
| sizeof(struct dwc2_dma_desc), |
| &hsotg->setup_desc_dma[1], |
| GFP_KERNEL); |
| if (!hsotg->setup_desc[1]) |
| goto fail; |
| |
| hsotg->ctrl_in_desc = |
| dmam_alloc_coherent(hsotg->dev, |
| sizeof(struct dwc2_dma_desc), |
| &hsotg->ctrl_in_desc_dma, |
| GFP_KERNEL); |
| if (!hsotg->ctrl_in_desc) |
| goto fail; |
| |
| hsotg->ctrl_out_desc = |
| dmam_alloc_coherent(hsotg->dev, |
| sizeof(struct dwc2_dma_desc), |
| &hsotg->ctrl_out_desc_dma, |
| GFP_KERNEL); |
| if (!hsotg->ctrl_out_desc) |
| goto fail; |
| |
| return 0; |
| |
| fail: |
| return -ENOMEM; |
| } |
| |
| /** |
| * dwc2_hsotg_write_fifo - write packet Data to the TxFIFO |
| * @hsotg: The controller state. |
| * @hs_ep: The endpoint we're going to write for. |
| * @hs_req: The request to write data for. |
| * |
| * This is called when the TxFIFO has some space in it to hold a new |
| * transmission and we have something to give it. The actual setup of |
| * the data size is done elsewhere, so all we have to do is to actually |
| * write the data. |
| * |
| * The return value is zero if there is more space (or nothing was done) |
| * otherwise -ENOSPC is returned if the FIFO space was used up. |
| * |
| * This routine is only needed for PIO |
| */ |
| static int dwc2_hsotg_write_fifo(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *hs_ep, |
| struct dwc2_hsotg_req *hs_req) |
| { |
| bool periodic = is_ep_periodic(hs_ep); |
| u32 gnptxsts = dwc2_readl(hsotg, GNPTXSTS); |
| int buf_pos = hs_req->req.actual; |
| int to_write = hs_ep->size_loaded; |
| void *data; |
| int can_write; |
| int pkt_round; |
| int max_transfer; |
| |
| to_write -= (buf_pos - hs_ep->last_load); |
| |
| /* if there's nothing to write, get out early */ |
| if (to_write == 0) |
| return 0; |
| |
| if (periodic && !hsotg->dedicated_fifos) { |
| u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); |
| int size_left; |
| int size_done; |
| |
| /* |
| * work out how much data was loaded so we can calculate |
| * how much data is left in the fifo. |
| */ |
| |
| size_left = DXEPTSIZ_XFERSIZE_GET(epsize); |
| |
| /* |
| * if shared fifo, we cannot write anything until the |
| * previous data has been completely sent. |
| */ |
| if (hs_ep->fifo_load != 0) { |
| dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); |
| return -ENOSPC; |
| } |
| |
| dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n", |
| __func__, size_left, |
| hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size); |
| |
| /* how much of the data has moved */ |
| size_done = hs_ep->size_loaded - size_left; |
| |
| /* how much data is left in the fifo */ |
| can_write = hs_ep->fifo_load - size_done; |
| dev_dbg(hsotg->dev, "%s: => can_write1=%d\n", |
| __func__, can_write); |
| |
| can_write = hs_ep->fifo_size - can_write; |
| dev_dbg(hsotg->dev, "%s: => can_write2=%d\n", |
| __func__, can_write); |
| |
| if (can_write <= 0) { |
| dwc2_hsotg_en_gsint(hsotg, GINTSTS_PTXFEMP); |
| return -ENOSPC; |
| } |
| } else if (hsotg->dedicated_fifos && hs_ep->index != 0) { |
| can_write = dwc2_readl(hsotg, |
| DTXFSTS(hs_ep->fifo_index)); |
| |
| can_write &= 0xffff; |
| can_write *= 4; |
| } else { |
| if (GNPTXSTS_NP_TXQ_SPC_AVAIL_GET(gnptxsts) == 0) { |
| dev_dbg(hsotg->dev, |
| "%s: no queue slots available (0x%08x)\n", |
| __func__, gnptxsts); |
| |
| dwc2_hsotg_en_gsint(hsotg, GINTSTS_NPTXFEMP); |
| return -ENOSPC; |
| } |
| |
| can_write = GNPTXSTS_NP_TXF_SPC_AVAIL_GET(gnptxsts); |
| can_write *= 4; /* fifo size is in 32bit quantities. */ |
| } |
| |
| max_transfer = hs_ep->ep.maxpacket * hs_ep->mc; |
| |
| dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, max_transfer %d\n", |
| __func__, gnptxsts, can_write, to_write, max_transfer); |
| |
| /* |
| * limit to 512 bytes of data, it seems at least on the non-periodic |
| * FIFO, requests of >512 cause the endpoint to get stuck with a |
| * fragment of the end of the transfer in it. |
| */ |
| if (can_write > 512 && !periodic) |
| can_write = 512; |
| |
| /* |
| * limit the write to one max-packet size worth of data, but allow |
| * the transfer to return that it did not run out of fifo space |
| * doing it. |
| */ |
| if (to_write > max_transfer) { |
| to_write = max_transfer; |
| |
| /* it's needed only when we do not use dedicated fifos */ |
| if (!hsotg->dedicated_fifos) |
| dwc2_hsotg_en_gsint(hsotg, |
| periodic ? GINTSTS_PTXFEMP : |
| GINTSTS_NPTXFEMP); |
| } |
| |
| /* see if we can write data */ |
| |
| if (to_write > can_write) { |
| to_write = can_write; |
| pkt_round = to_write % max_transfer; |
| |
| /* |
| * Round the write down to an |
| * exact number of packets. |
| * |
| * Note, we do not currently check to see if we can ever |
| * write a full packet or not to the FIFO. |
| */ |
| |
| if (pkt_round) |
| to_write -= pkt_round; |
| |
| /* |
| * enable correct FIFO interrupt to alert us when there |
| * is more room left. |
| */ |
| |
| /* it's needed only when we do not use dedicated fifos */ |
| if (!hsotg->dedicated_fifos) |
| dwc2_hsotg_en_gsint(hsotg, |
| periodic ? GINTSTS_PTXFEMP : |
| GINTSTS_NPTXFEMP); |
| } |
| |
| dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n", |
| to_write, hs_req->req.length, can_write, buf_pos); |
| |
| if (to_write <= 0) |
| return -ENOSPC; |
| |
| hs_req->req.actual = buf_pos + to_write; |
| hs_ep->total_data += to_write; |
| |
| if (periodic) |
| hs_ep->fifo_load += to_write; |
| |
| to_write = DIV_ROUND_UP(to_write, 4); |
| data = hs_req->req.buf + buf_pos; |
| |
| dwc2_writel_rep(hsotg, EPFIFO(hs_ep->index), data, to_write); |
| |
| return (to_write >= can_write) ? -ENOSPC : 0; |
| } |
| |
| /** |
| * get_ep_limit - get the maximum data legnth for this endpoint |
| * @hs_ep: The endpoint |
| * |
| * Return the maximum data that can be queued in one go on a given endpoint |
| * so that transfers that are too long can be split. |
| */ |
| static unsigned int get_ep_limit(struct dwc2_hsotg_ep *hs_ep) |
| { |
| int index = hs_ep->index; |
| unsigned int maxsize; |
| unsigned int maxpkt; |
| |
| if (index != 0) { |
| maxsize = DXEPTSIZ_XFERSIZE_LIMIT + 1; |
| maxpkt = DXEPTSIZ_PKTCNT_LIMIT + 1; |
| } else { |
| maxsize = 64 + 64; |
| if (hs_ep->dir_in) |
| maxpkt = DIEPTSIZ0_PKTCNT_LIMIT + 1; |
| else |
| maxpkt = 2; |
| } |
| |
| /* we made the constant loading easier above by using +1 */ |
| maxpkt--; |
| maxsize--; |
| |
| /* |
| * constrain by packet count if maxpkts*pktsize is greater |
| * than the length register size. |
| */ |
| |
| if ((maxpkt * hs_ep->ep.maxpacket) < maxsize) |
| maxsize = maxpkt * hs_ep->ep.maxpacket; |
| |
| return maxsize; |
| } |
| |
| /** |
| * dwc2_hsotg_read_frameno - read current frame number |
| * @hsotg: The device instance |
| * |
| * Return the current frame number |
| */ |
| static u32 dwc2_hsotg_read_frameno(struct dwc2_hsotg *hsotg) |
| { |
| u32 dsts; |
| |
| dsts = dwc2_readl(hsotg, DSTS); |
| dsts &= DSTS_SOFFN_MASK; |
| dsts >>= DSTS_SOFFN_SHIFT; |
| |
| return dsts; |
| } |
| |
| /** |
| * dwc2_gadget_get_chain_limit - get the maximum data payload value of the |
| * DMA descriptor chain prepared for specific endpoint |
| * @hs_ep: The endpoint |
| * |
| * Return the maximum data that can be queued in one go on a given endpoint |
| * depending on its descriptor chain capacity so that transfers that |
| * are too long can be split. |
| */ |
| static unsigned int dwc2_gadget_get_chain_limit(struct dwc2_hsotg_ep *hs_ep) |
| { |
| const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; |
| int is_isoc = hs_ep->isochronous; |
| unsigned int maxsize; |
| u32 mps = hs_ep->ep.maxpacket; |
| int dir_in = hs_ep->dir_in; |
| |
| if (is_isoc) |
| maxsize = (hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_LIMIT : |
| DEV_DMA_ISOC_RX_NBYTES_LIMIT) * |
| MAX_DMA_DESC_NUM_HS_ISOC; |
| else |
| maxsize = DEV_DMA_NBYTES_LIMIT * MAX_DMA_DESC_NUM_GENERIC; |
| |
| /* Interrupt OUT EP with mps not multiple of 4 */ |
| if (hs_ep->index) |
| if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) |
| maxsize = mps * MAX_DMA_DESC_NUM_GENERIC; |
| |
| return maxsize; |
| } |
| |
| /* |
| * dwc2_gadget_get_desc_params - get DMA descriptor parameters. |
| * @hs_ep: The endpoint |
| * @mask: RX/TX bytes mask to be defined |
| * |
| * Returns maximum data payload for one descriptor after analyzing endpoint |
| * characteristics. |
| * DMA descriptor transfer bytes limit depends on EP type: |
| * Control out - MPS, |
| * Isochronous - descriptor rx/tx bytes bitfield limit, |
| * Control In/Bulk/Interrupt - multiple of mps. This will allow to not |
| * have concatenations from various descriptors within one packet. |
| * Interrupt OUT - if mps not multiple of 4 then a single packet corresponds |
| * to a single descriptor. |
| * |
| * Selects corresponding mask for RX/TX bytes as well. |
| */ |
| static u32 dwc2_gadget_get_desc_params(struct dwc2_hsotg_ep *hs_ep, u32 *mask) |
| { |
| const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; |
| u32 mps = hs_ep->ep.maxpacket; |
| int dir_in = hs_ep->dir_in; |
| u32 desc_size = 0; |
| |
| if (!hs_ep->index && !dir_in) { |
| desc_size = mps; |
| *mask = DEV_DMA_NBYTES_MASK; |
| } else if (hs_ep->isochronous) { |
| if (dir_in) { |
| desc_size = DEV_DMA_ISOC_TX_NBYTES_LIMIT; |
| *mask = DEV_DMA_ISOC_TX_NBYTES_MASK; |
| } else { |
| desc_size = DEV_DMA_ISOC_RX_NBYTES_LIMIT; |
| *mask = DEV_DMA_ISOC_RX_NBYTES_MASK; |
| } |
| } else { |
| desc_size = DEV_DMA_NBYTES_LIMIT; |
| *mask = DEV_DMA_NBYTES_MASK; |
| |
| /* Round down desc_size to be mps multiple */ |
| desc_size -= desc_size % mps; |
| } |
| |
| /* Interrupt OUT EP with mps not multiple of 4 */ |
| if (hs_ep->index) |
| if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) { |
| desc_size = mps; |
| *mask = DEV_DMA_NBYTES_MASK; |
| } |
| |
| return desc_size; |
| } |
| |
| static void dwc2_gadget_fill_nonisoc_xfer_ddma_one(struct dwc2_hsotg_ep *hs_ep, |
| struct dwc2_dma_desc **desc, |
| dma_addr_t dma_buff, |
| unsigned int len, |
| bool true_last) |
| { |
| int dir_in = hs_ep->dir_in; |
| u32 mps = hs_ep->ep.maxpacket; |
| u32 maxsize = 0; |
| u32 offset = 0; |
| u32 mask = 0; |
| int i; |
| |
| maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); |
| |
| hs_ep->desc_count = (len / maxsize) + |
| ((len % maxsize) ? 1 : 0); |
| if (len == 0) |
| hs_ep->desc_count = 1; |
| |
| for (i = 0; i < hs_ep->desc_count; ++i) { |
| (*desc)->status = 0; |
| (*desc)->status |= (DEV_DMA_BUFF_STS_HBUSY |
| << DEV_DMA_BUFF_STS_SHIFT); |
| |
| if (len > maxsize) { |
| if (!hs_ep->index && !dir_in) |
| (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); |
| |
| (*desc)->status |= |
| maxsize << DEV_DMA_NBYTES_SHIFT & mask; |
| (*desc)->buf = dma_buff + offset; |
| |
| len -= maxsize; |
| offset += maxsize; |
| } else { |
| if (true_last) |
| (*desc)->status |= (DEV_DMA_L | DEV_DMA_IOC); |
| |
| if (dir_in) |
| (*desc)->status |= (len % mps) ? DEV_DMA_SHORT : |
| ((hs_ep->send_zlp && true_last) ? |
| DEV_DMA_SHORT : 0); |
| |
| (*desc)->status |= |
| len << DEV_DMA_NBYTES_SHIFT & mask; |
| (*desc)->buf = dma_buff + offset; |
| } |
| |
| (*desc)->status &= ~DEV_DMA_BUFF_STS_MASK; |
| (*desc)->status |= (DEV_DMA_BUFF_STS_HREADY |
| << DEV_DMA_BUFF_STS_SHIFT); |
| (*desc)++; |
| } |
| } |
| |
| /* |
| * dwc2_gadget_config_nonisoc_xfer_ddma - prepare non ISOC DMA desc chain. |
| * @hs_ep: The endpoint |
| * @ureq: Request to transfer |
| * @offset: offset in bytes |
| * @len: Length of the transfer |
| * |
| * This function will iterate over descriptor chain and fill its entries |
| * with corresponding information based on transfer data. |
| */ |
| static void dwc2_gadget_config_nonisoc_xfer_ddma(struct dwc2_hsotg_ep *hs_ep, |
| dma_addr_t dma_buff, |
| unsigned int len) |
| { |
| struct usb_request *ureq = NULL; |
| struct dwc2_dma_desc *desc = hs_ep->desc_list; |
| struct scatterlist *sg; |
| int i; |
| u8 desc_count = 0; |
| |
| if (hs_ep->req) |
| ureq = &hs_ep->req->req; |
| |
| /* non-DMA sg buffer */ |
| if (!ureq || !ureq->num_sgs) { |
| dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, |
| dma_buff, len, true); |
| return; |
| } |
| |
| /* DMA sg buffer */ |
| for_each_sg(ureq->sg, sg, ureq->num_sgs, i) { |
| dwc2_gadget_fill_nonisoc_xfer_ddma_one(hs_ep, &desc, |
| sg_dma_address(sg) + sg->offset, sg_dma_len(sg), |
| sg_is_last(sg)); |
| desc_count += hs_ep->desc_count; |
| } |
| |
| hs_ep->desc_count = desc_count; |
| } |
| |
| /* |
| * dwc2_gadget_fill_isoc_desc - fills next isochronous descriptor in chain. |
| * @hs_ep: The isochronous endpoint. |
| * @dma_buff: usb requests dma buffer. |
| * @len: usb request transfer length. |
| * |
| * Fills next free descriptor with the data of the arrived usb request, |
| * frame info, sets Last and IOC bits increments next_desc. If filled |
| * descriptor is not the first one, removes L bit from the previous descriptor |
| * status. |
| */ |
| static int dwc2_gadget_fill_isoc_desc(struct dwc2_hsotg_ep *hs_ep, |
| dma_addr_t dma_buff, unsigned int len) |
| { |
| struct dwc2_dma_desc *desc; |
| struct dwc2_hsotg *hsotg = hs_ep->parent; |
| u32 index; |
| u32 mask = 0; |
| u8 pid = 0; |
| |
| dwc2_gadget_get_desc_params(hs_ep, &mask); |
| |
| index = hs_ep->next_desc; |
| desc = &hs_ep->desc_list[index]; |
| |
| /* Check if descriptor chain full */ |
| if ((desc->status >> DEV_DMA_BUFF_STS_SHIFT) == |
| DEV_DMA_BUFF_STS_HREADY) { |
| dev_dbg(hsotg->dev, "%s: desc chain full\n", __func__); |
| return 1; |
| } |
| |
| /* Clear L bit of previous desc if more than one entries in the chain */ |
| if (hs_ep->next_desc) |
| hs_ep->desc_list[index - 1].status &= ~DEV_DMA_L; |
| |
| dev_dbg(hsotg->dev, "%s: Filling ep %d, dir %s isoc desc # %d\n", |
| __func__, hs_ep->index, hs_ep->dir_in ? "in" : "out", index); |
| |
| desc->status = 0; |
| desc->status |= (DEV_DMA_BUFF_STS_HBUSY << DEV_DMA_BUFF_STS_SHIFT); |
| |
| desc->buf = dma_buff; |
| desc->status |= (DEV_DMA_L | DEV_DMA_IOC | |
| ((len << DEV_DMA_NBYTES_SHIFT) & mask)); |
| |
| if (hs_ep->dir_in) { |
| if (len) |
| pid = DIV_ROUND_UP(len, hs_ep->ep.maxpacket); |
| else |
| pid = 1; |
| desc->status |= ((pid << DEV_DMA_ISOC_PID_SHIFT) & |
| DEV_DMA_ISOC_PID_MASK) | |
| ((len % hs_ep->ep.maxpacket) ? |
| DEV_DMA_SHORT : 0) | |
| ((hs_ep->target_frame << |
| DEV_DMA_ISOC_FRNUM_SHIFT) & |
| DEV_DMA_ISOC_FRNUM_MASK); |
| } |
| |
| desc->status &= ~DEV_DMA_BUFF_STS_MASK; |
| desc->status |= (DEV_DMA_BUFF_STS_HREADY << DEV_DMA_BUFF_STS_SHIFT); |
| |
| /* Increment frame number by interval for IN */ |
| if (hs_ep->dir_in) |
| dwc2_gadget_incr_frame_num(hs_ep); |
| |
| /* Update index of last configured entry in the chain */ |
| hs_ep->next_desc++; |
| if (hs_ep->next_desc >= MAX_DMA_DESC_NUM_HS_ISOC) |
| hs_ep->next_desc = 0; |
| |
| return 0; |
| } |
| |
| /* |
| * dwc2_gadget_start_isoc_ddma - start isochronous transfer in DDMA |
| * @hs_ep: The isochronous endpoint. |
| * |
| * Prepare descriptor chain for isochronous endpoints. Afterwards |
| * write DMA address to HW and enable the endpoint. |
| */ |
| static void dwc2_gadget_start_isoc_ddma(struct dwc2_hsotg_ep *hs_ep) |
| { |
| struct dwc2_hsotg *hsotg = hs_ep->parent; |
| struct dwc2_hsotg_req *hs_req, *treq; |
| int index = hs_ep->index; |
| int ret; |
| int i; |
| u32 dma_reg; |
| u32 depctl; |
| u32 ctrl; |
| struct dwc2_dma_desc *desc; |
| |
| if (list_empty(&hs_ep->queue)) { |
| hs_ep->target_frame = TARGET_FRAME_INITIAL; |
| dev_dbg(hsotg->dev, "%s: No requests in queue\n", __func__); |
| return; |
| } |
| |
| /* Initialize descriptor chain by Host Busy status */ |
| for (i = 0; i < MAX_DMA_DESC_NUM_HS_ISOC; i++) { |
| desc = &hs_ep->desc_list[i]; |
| desc->status = 0; |
| desc->status |= (DEV_DMA_BUFF_STS_HBUSY |
| << DEV_DMA_BUFF_STS_SHIFT); |
| } |
| |
| hs_ep->next_desc = 0; |
| list_for_each_entry_safe(hs_req, treq, &hs_ep->queue, queue) { |
| dma_addr_t dma_addr = hs_req->req.dma; |
| |
| if (hs_req->req.num_sgs) { |
| WARN_ON(hs_req->req.num_sgs > 1); |
| dma_addr = sg_dma_address(hs_req->req.sg); |
| } |
| ret = dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, |
| hs_req->req.length); |
| if (ret) |
| break; |
| } |
| |
| hs_ep->compl_desc = 0; |
| depctl = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); |
| dma_reg = hs_ep->dir_in ? DIEPDMA(index) : DOEPDMA(index); |
| |
| /* write descriptor chain address to control register */ |
| dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); |
| |
| ctrl = dwc2_readl(hsotg, depctl); |
| ctrl |= DXEPCTL_EPENA | DXEPCTL_CNAK; |
| dwc2_writel(hsotg, ctrl, depctl); |
| } |
| |
| static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep); |
| static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *hs_ep, |
| struct dwc2_hsotg_req *hs_req, |
| int result); |
| |
| /** |
| * dwc2_hsotg_start_req - start a USB request from an endpoint's queue |
| * @hsotg: The controller state. |
| * @hs_ep: The endpoint to process a request for |
| * @hs_req: The request to start. |
| * @continuing: True if we are doing more for the current request. |
| * |
| * Start the given request running by setting the endpoint registers |
| * appropriately, and writing any data to the FIFOs. |
| */ |
| static void dwc2_hsotg_start_req(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *hs_ep, |
| struct dwc2_hsotg_req *hs_req, |
| bool continuing) |
| { |
| struct usb_request *ureq = &hs_req->req; |
| int index = hs_ep->index; |
| int dir_in = hs_ep->dir_in; |
| u32 epctrl_reg; |
| u32 epsize_reg; |
| u32 epsize; |
| u32 ctrl; |
| unsigned int length; |
| unsigned int packets; |
| unsigned int maxreq; |
| unsigned int dma_reg; |
| |
| if (index != 0) { |
| if (hs_ep->req && !continuing) { |
| dev_err(hsotg->dev, "%s: active request\n", __func__); |
| WARN_ON(1); |
| return; |
| } else if (hs_ep->req != hs_req && continuing) { |
| dev_err(hsotg->dev, |
| "%s: continue different req\n", __func__); |
| WARN_ON(1); |
| return; |
| } |
| } |
| |
| dma_reg = dir_in ? DIEPDMA(index) : DOEPDMA(index); |
| epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); |
| epsize_reg = dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); |
| |
| dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n", |
| __func__, dwc2_readl(hsotg, epctrl_reg), index, |
| hs_ep->dir_in ? "in" : "out"); |
| |
| /* If endpoint is stalled, we will restart request later */ |
| ctrl = dwc2_readl(hsotg, epctrl_reg); |
| |
| if (index && ctrl & DXEPCTL_STALL) { |
| dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index); |
| return; |
| } |
| |
| length = ureq->length - ureq->actual; |
| dev_dbg(hsotg->dev, "ureq->length:%d ureq->actual:%d\n", |
| ureq->length, ureq->actual); |
| |
| if (!using_desc_dma(hsotg)) |
| maxreq = get_ep_limit(hs_ep); |
| else |
| maxreq = dwc2_gadget_get_chain_limit(hs_ep); |
| |
| if (length > maxreq) { |
| int round = maxreq % hs_ep->ep.maxpacket; |
| |
| dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n", |
| __func__, length, maxreq, round); |
| |
| /* round down to multiple of packets */ |
| if (round) |
| maxreq -= round; |
| |
| length = maxreq; |
| } |
| |
| if (length) |
| packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket); |
| else |
| packets = 1; /* send one packet if length is zero. */ |
| |
| if (dir_in && index != 0) |
| if (hs_ep->isochronous) |
| epsize = DXEPTSIZ_MC(packets); |
| else |
| epsize = DXEPTSIZ_MC(1); |
| else |
| epsize = 0; |
| |
| /* |
| * zero length packet should be programmed on its own and should not |
| * be counted in DIEPTSIZ.PktCnt with other packets. |
| */ |
| if (dir_in && ureq->zero && !continuing) { |
| /* Test if zlp is actually required. */ |
| if ((ureq->length >= hs_ep->ep.maxpacket) && |
| !(ureq->length % hs_ep->ep.maxpacket)) |
| hs_ep->send_zlp = 1; |
| } |
| |
| epsize |= DXEPTSIZ_PKTCNT(packets); |
| epsize |= DXEPTSIZ_XFERSIZE(length); |
| |
| dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n", |
| __func__, packets, length, ureq->length, epsize, epsize_reg); |
| |
| /* store the request as the current one we're doing */ |
| hs_ep->req = hs_req; |
| |
| if (using_desc_dma(hsotg)) { |
| u32 offset = 0; |
| u32 mps = hs_ep->ep.maxpacket; |
| |
| /* Adjust length: EP0 - MPS, other OUT EPs - multiple of MPS */ |
| if (!dir_in) { |
| if (!index) |
| length = mps; |
| else if (length % mps) |
| length += (mps - (length % mps)); |
| } |
| |
| if (continuing) |
| offset = ureq->actual; |
| |
| /* Fill DDMA chain entries */ |
| dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, ureq->dma + offset, |
| length); |
| |
| /* write descriptor chain address to control register */ |
| dwc2_writel(hsotg, hs_ep->desc_list_dma, dma_reg); |
| |
| dev_dbg(hsotg->dev, "%s: %08x pad => 0x%08x\n", |
| __func__, (u32)hs_ep->desc_list_dma, dma_reg); |
| } else { |
| /* write size / packets */ |
| dwc2_writel(hsotg, epsize, epsize_reg); |
| |
| if (using_dma(hsotg) && !continuing && (length != 0)) { |
| /* |
| * write DMA address to control register, buffer |
| * already synced by dwc2_hsotg_ep_queue(). |
| */ |
| |
| dwc2_writel(hsotg, ureq->dma, dma_reg); |
| |
| dev_dbg(hsotg->dev, "%s: %pad => 0x%08x\n", |
| __func__, &ureq->dma, dma_reg); |
| } |
| } |
| |
| if (hs_ep->isochronous) { |
| if (!dwc2_gadget_target_frame_elapsed(hs_ep)) { |
| if (hs_ep->interval == 1) { |
| if (hs_ep->target_frame & 0x1) |
| ctrl |= DXEPCTL_SETODDFR; |
| else |
| ctrl |= DXEPCTL_SETEVENFR; |
| } |
| ctrl |= DXEPCTL_CNAK; |
| } else { |
| dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA); |
| return; |
| } |
| } |
| |
| ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ |
| |
| dev_dbg(hsotg->dev, "ep0 state:%d\n", hsotg->ep0_state); |
| |
| /* For Setup request do not clear NAK */ |
| if (!(index == 0 && hsotg->ep0_state == DWC2_EP0_SETUP)) |
| ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ |
| |
| dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); |
| dwc2_writel(hsotg, ctrl, epctrl_reg); |
| |
| /* |
| * set these, it seems that DMA support increments past the end |
| * of the packet buffer so we need to calculate the length from |
| * this information. |
| */ |
| hs_ep->size_loaded = length; |
| hs_ep->last_load = ureq->actual; |
| |
| if (dir_in && !using_dma(hsotg)) { |
| /* set these anyway, we may need them for non-periodic in */ |
| hs_ep->fifo_load = 0; |
| |
| dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); |
| } |
| |
| /* |
| * Note, trying to clear the NAK here causes problems with transmit |
| * on the S3C6400 ending up with the TXFIFO becoming full. |
| */ |
| |
| /* check ep is enabled */ |
| if (!(dwc2_readl(hsotg, epctrl_reg) & DXEPCTL_EPENA)) |
| dev_dbg(hsotg->dev, |
| "ep%d: failed to become enabled (DXEPCTL=0x%08x)?\n", |
| index, dwc2_readl(hsotg, epctrl_reg)); |
| |
| dev_dbg(hsotg->dev, "%s: DXEPCTL=0x%08x\n", |
| __func__, dwc2_readl(hsotg, epctrl_reg)); |
| |
| /* enable ep interrupts */ |
| dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 1); |
| } |
| |
| /** |
| * dwc2_hsotg_map_dma - map the DMA memory being used for the request |
| * @hsotg: The device state. |
| * @hs_ep: The endpoint the request is on. |
| * @req: The request being processed. |
| * |
| * We've been asked to queue a request, so ensure that the memory buffer |
| * is correctly setup for DMA. If we've been passed an extant DMA address |
| * then ensure the buffer has been synced to memory. If our buffer has no |
| * DMA memory, then we map the memory and mark our request to allow us to |
| * cleanup on completion. |
| */ |
| static int dwc2_hsotg_map_dma(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *hs_ep, |
| struct usb_request *req) |
| { |
| int ret; |
| |
| hs_ep->map_dir = hs_ep->dir_in; |
| ret = usb_gadget_map_request(&hsotg->gadget, req, hs_ep->dir_in); |
| if (ret) |
| goto dma_error; |
| |
| return 0; |
| |
| dma_error: |
| dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n", |
| __func__, req->buf, req->length); |
| |
| return -EIO; |
| } |
| |
| static int dwc2_hsotg_handle_unaligned_buf_start(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *hs_ep, |
| struct dwc2_hsotg_req *hs_req) |
| { |
| void *req_buf = hs_req->req.buf; |
| |
| /* If dma is not being used or buffer is aligned */ |
| if (!using_dma(hsotg) || !((long)req_buf & 3)) |
| return 0; |
| |
| WARN_ON(hs_req->saved_req_buf); |
| |
| dev_dbg(hsotg->dev, "%s: %s: buf=%p length=%d\n", __func__, |
| hs_ep->ep.name, req_buf, hs_req->req.length); |
| |
| hs_req->req.buf = kmalloc(hs_req->req.length, GFP_ATOMIC); |
| if (!hs_req->req.buf) { |
| hs_req->req.buf = req_buf; |
| dev_err(hsotg->dev, |
| "%s: unable to allocate memory for bounce buffer\n", |
| __func__); |
| return -ENOMEM; |
| } |
| |
| /* Save actual buffer */ |
| hs_req->saved_req_buf = req_buf; |
| |
| if (hs_ep->dir_in) |
| memcpy(hs_req->req.buf, req_buf, hs_req->req.length); |
| return 0; |
| } |
| |
| static void |
| dwc2_hsotg_handle_unaligned_buf_complete(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *hs_ep, |
| struct dwc2_hsotg_req *hs_req) |
| { |
| /* If dma is not being used or buffer was aligned */ |
| if (!using_dma(hsotg) || !hs_req->saved_req_buf) |
| return; |
| |
| dev_dbg(hsotg->dev, "%s: %s: status=%d actual-length=%d\n", __func__, |
| hs_ep->ep.name, hs_req->req.status, hs_req->req.actual); |
| |
| /* Copy data from bounce buffer on successful out transfer */ |
| if (!hs_ep->dir_in && !hs_req->req.status) |
| memcpy(hs_req->saved_req_buf, hs_req->req.buf, |
| hs_req->req.actual); |
| |
| /* Free bounce buffer */ |
| kfree(hs_req->req.buf); |
| |
| hs_req->req.buf = hs_req->saved_req_buf; |
| hs_req->saved_req_buf = NULL; |
| } |
| |
| /** |
| * dwc2_gadget_target_frame_elapsed - Checks target frame |
| * @hs_ep: The driver endpoint to check |
| * |
| * Returns 1 if targeted frame elapsed. If returned 1 then we need to drop |
| * corresponding transfer. |
| */ |
| static bool dwc2_gadget_target_frame_elapsed(struct dwc2_hsotg_ep *hs_ep) |
| { |
| struct dwc2_hsotg *hsotg = hs_ep->parent; |
| u32 target_frame = hs_ep->target_frame; |
| u32 current_frame = hsotg->frame_number; |
| bool frame_overrun = hs_ep->frame_overrun; |
| u16 limit = DSTS_SOFFN_LIMIT; |
| |
| if (hsotg->gadget.speed != USB_SPEED_HIGH) |
| limit >>= 3; |
| |
| if (!frame_overrun && current_frame >= target_frame) |
| return true; |
| |
| if (frame_overrun && current_frame >= target_frame && |
| ((current_frame - target_frame) < limit / 2)) |
| return true; |
| |
| return false; |
| } |
| |
| /* |
| * dwc2_gadget_set_ep0_desc_chain - Set EP's desc chain pointers |
| * @hsotg: The driver state |
| * @hs_ep: the ep descriptor chain is for |
| * |
| * Called to update EP0 structure's pointers depend on stage of |
| * control transfer. |
| */ |
| static int dwc2_gadget_set_ep0_desc_chain(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *hs_ep) |
| { |
| switch (hsotg->ep0_state) { |
| case DWC2_EP0_SETUP: |
| case DWC2_EP0_STATUS_OUT: |
| hs_ep->desc_list = hsotg->setup_desc[0]; |
| hs_ep->desc_list_dma = hsotg->setup_desc_dma[0]; |
| break; |
| case DWC2_EP0_DATA_IN: |
| case DWC2_EP0_STATUS_IN: |
| hs_ep->desc_list = hsotg->ctrl_in_desc; |
| hs_ep->desc_list_dma = hsotg->ctrl_in_desc_dma; |
| break; |
| case DWC2_EP0_DATA_OUT: |
| hs_ep->desc_list = hsotg->ctrl_out_desc; |
| hs_ep->desc_list_dma = hsotg->ctrl_out_desc_dma; |
| break; |
| default: |
| dev_err(hsotg->dev, "invalid EP 0 state in queue %d\n", |
| hsotg->ep0_state); |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static int dwc2_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req, |
| gfp_t gfp_flags) |
| { |
| struct dwc2_hsotg_req *hs_req = our_req(req); |
| struct dwc2_hsotg_ep *hs_ep = our_ep(ep); |
| struct dwc2_hsotg *hs = hs_ep->parent; |
| bool first; |
| int ret; |
| u32 maxsize = 0; |
| u32 mask = 0; |
| |
| |
| dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n", |
| ep->name, req, req->length, req->buf, req->no_interrupt, |
| req->zero, req->short_not_ok); |
| |
| /* Prevent new request submission when controller is suspended */ |
| if (hs->lx_state != DWC2_L0) { |
| dev_dbg(hs->dev, "%s: submit request only in active state\n", |
| __func__); |
| return -EAGAIN; |
| } |
| |
| /* initialise status of the request */ |
| INIT_LIST_HEAD(&hs_req->queue); |
| req->actual = 0; |
| req->status = -EINPROGRESS; |
| |
| /* Don't queue ISOC request if length greater than mps*mc */ |
| if (hs_ep->isochronous && |
| req->length > (hs_ep->mc * hs_ep->ep.maxpacket)) { |
| dev_err(hs->dev, "req length > maxpacket*mc\n"); |
| return -EINVAL; |
| } |
| |
| /* In DDMA mode for ISOC's don't queue request if length greater |
| * than descriptor limits. |
| */ |
| if (using_desc_dma(hs) && hs_ep->isochronous) { |
| maxsize = dwc2_gadget_get_desc_params(hs_ep, &mask); |
| if (hs_ep->dir_in && req->length > maxsize) { |
| dev_err(hs->dev, "wrong length %d (maxsize=%d)\n", |
| req->length, maxsize); |
| return -EINVAL; |
| } |
| |
| if (!hs_ep->dir_in && req->length > hs_ep->ep.maxpacket) { |
| dev_err(hs->dev, "ISOC OUT: wrong length %d (mps=%d)\n", |
| req->length, hs_ep->ep.maxpacket); |
| return -EINVAL; |
| } |
| } |
| |
| ret = dwc2_hsotg_handle_unaligned_buf_start(hs, hs_ep, hs_req); |
| if (ret) |
| return ret; |
| |
| /* if we're using DMA, sync the buffers as necessary */ |
| if (using_dma(hs)) { |
| ret = dwc2_hsotg_map_dma(hs, hs_ep, req); |
| if (ret) |
| return ret; |
| } |
| /* If using descriptor DMA configure EP0 descriptor chain pointers */ |
| if (using_desc_dma(hs) && !hs_ep->index) { |
| ret = dwc2_gadget_set_ep0_desc_chain(hs, hs_ep); |
| if (ret) |
| return ret; |
| } |
| |
| first = list_empty(&hs_ep->queue); |
| list_add_tail(&hs_req->queue, &hs_ep->queue); |
| |
| /* |
| * Handle DDMA isochronous transfers separately - just add new entry |
| * to the descriptor chain. |
| * Transfer will be started once SW gets either one of NAK or |
| * OutTknEpDis interrupts. |
| */ |
| if (using_desc_dma(hs) && hs_ep->isochronous) { |
| if (hs_ep->target_frame != TARGET_FRAME_INITIAL) { |
| dma_addr_t dma_addr = hs_req->req.dma; |
| |
| if (hs_req->req.num_sgs) { |
| WARN_ON(hs_req->req.num_sgs > 1); |
| dma_addr = sg_dma_address(hs_req->req.sg); |
| } |
| dwc2_gadget_fill_isoc_desc(hs_ep, dma_addr, |
| hs_req->req.length); |
| } |
| return 0; |
| } |
| |
| /* Change EP direction if status phase request is after data out */ |
| if (!hs_ep->index && !req->length && !hs_ep->dir_in && |
| hs->ep0_state == DWC2_EP0_DATA_OUT) |
| hs_ep->dir_in = 1; |
| |
| if (first) { |
| if (!hs_ep->isochronous) { |
| dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); |
| return 0; |
| } |
| |
| /* Update current frame number value. */ |
| hs->frame_number = dwc2_hsotg_read_frameno(hs); |
| while (dwc2_gadget_target_frame_elapsed(hs_ep)) { |
| dwc2_gadget_incr_frame_num(hs_ep); |
| /* Update current frame number value once more as it |
| * changes here. |
| */ |
| hs->frame_number = dwc2_hsotg_read_frameno(hs); |
| } |
| |
| if (hs_ep->target_frame != TARGET_FRAME_INITIAL) |
| dwc2_hsotg_start_req(hs, hs_ep, hs_req, false); |
| } |
| return 0; |
| } |
| |
| static int dwc2_hsotg_ep_queue_lock(struct usb_ep *ep, struct usb_request *req, |
| gfp_t gfp_flags) |
| { |
| struct dwc2_hsotg_ep *hs_ep = our_ep(ep); |
| struct dwc2_hsotg *hs = hs_ep->parent; |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&hs->lock, flags); |
| ret = dwc2_hsotg_ep_queue(ep, req, gfp_flags); |
| spin_unlock_irqrestore(&hs->lock, flags); |
| |
| return ret; |
| } |
| |
| static void dwc2_hsotg_ep_free_request(struct usb_ep *ep, |
| struct usb_request *req) |
| { |
| struct dwc2_hsotg_req *hs_req = our_req(req); |
| |
| kfree(hs_req); |
| } |
| |
| /** |
| * dwc2_hsotg_complete_oursetup - setup completion callback |
| * @ep: The endpoint the request was on. |
| * @req: The request completed. |
| * |
| * Called on completion of any requests the driver itself |
| * submitted that need cleaning up. |
| */ |
| static void dwc2_hsotg_complete_oursetup(struct usb_ep *ep, |
| struct usb_request *req) |
| { |
| struct dwc2_hsotg_ep *hs_ep = our_ep(ep); |
| struct dwc2_hsotg *hsotg = hs_ep->parent; |
| |
| dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req); |
| |
| dwc2_hsotg_ep_free_request(ep, req); |
| } |
| |
| /** |
| * ep_from_windex - convert control wIndex value to endpoint |
| * @hsotg: The driver state. |
| * @windex: The control request wIndex field (in host order). |
| * |
| * Convert the given wIndex into a pointer to an driver endpoint |
| * structure, or return NULL if it is not a valid endpoint. |
| */ |
| static struct dwc2_hsotg_ep *ep_from_windex(struct dwc2_hsotg *hsotg, |
| u32 windex) |
| { |
| int dir = (windex & USB_DIR_IN) ? 1 : 0; |
| int idx = windex & 0x7F; |
| |
| if (windex >= 0x100) |
| return NULL; |
| |
| if (idx > hsotg->num_of_eps) |
| return NULL; |
| |
| return index_to_ep(hsotg, idx, dir); |
| } |
| |
| /** |
| * dwc2_hsotg_set_test_mode - Enable usb Test Modes |
| * @hsotg: The driver state. |
| * @testmode: requested usb test mode |
| * Enable usb Test Mode requested by the Host. |
| */ |
| int dwc2_hsotg_set_test_mode(struct dwc2_hsotg *hsotg, int testmode) |
| { |
| int dctl = dwc2_readl(hsotg, DCTL); |
| |
| dctl &= ~DCTL_TSTCTL_MASK; |
| switch (testmode) { |
| case USB_TEST_J: |
| case USB_TEST_K: |
| case USB_TEST_SE0_NAK: |
| case USB_TEST_PACKET: |
| case USB_TEST_FORCE_ENABLE: |
| dctl |= testmode << DCTL_TSTCTL_SHIFT; |
| break; |
| default: |
| return -EINVAL; |
| } |
| dwc2_writel(hsotg, dctl, DCTL); |
| return 0; |
| } |
| |
| /** |
| * dwc2_hsotg_send_reply - send reply to control request |
| * @hsotg: The device state |
| * @ep: Endpoint 0 |
| * @buff: Buffer for request |
| * @length: Length of reply. |
| * |
| * Create a request and queue it on the given endpoint. This is useful as |
| * an internal method of sending replies to certain control requests, etc. |
| */ |
| static int dwc2_hsotg_send_reply(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *ep, |
| void *buff, |
| int length) |
| { |
| struct usb_request *req; |
| int ret; |
| |
| dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length); |
| |
| req = dwc2_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC); |
| hsotg->ep0_reply = req; |
| if (!req) { |
| dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__); |
| return -ENOMEM; |
| } |
| |
| req->buf = hsotg->ep0_buff; |
| req->length = length; |
| /* |
| * zero flag is for sending zlp in DATA IN stage. It has no impact on |
| * STATUS stage. |
| */ |
| req->zero = 0; |
| req->complete = dwc2_hsotg_complete_oursetup; |
| |
| if (length) |
| memcpy(req->buf, buff, length); |
| |
| ret = dwc2_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC); |
| if (ret) { |
| dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * dwc2_hsotg_process_req_status - process request GET_STATUS |
| * @hsotg: The device state |
| * @ctrl: USB control request |
| */ |
| static int dwc2_hsotg_process_req_status(struct dwc2_hsotg *hsotg, |
| struct usb_ctrlrequest *ctrl) |
| { |
| struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; |
| struct dwc2_hsotg_ep *ep; |
| __le16 reply; |
| u16 status; |
| int ret; |
| |
| dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__); |
| |
| if (!ep0->dir_in) { |
| dev_warn(hsotg->dev, "%s: direction out?\n", __func__); |
| return -EINVAL; |
| } |
| |
| switch (ctrl->bRequestType & USB_RECIP_MASK) { |
| case USB_RECIP_DEVICE: |
| status = hsotg->gadget.is_selfpowered << |
| USB_DEVICE_SELF_POWERED; |
| status |= hsotg->remote_wakeup_allowed << |
| USB_DEVICE_REMOTE_WAKEUP; |
| reply = cpu_to_le16(status); |
| break; |
| |
| case USB_RECIP_INTERFACE: |
| /* currently, the data result should be zero */ |
| reply = cpu_to_le16(0); |
| break; |
| |
| case USB_RECIP_ENDPOINT: |
| ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex)); |
| if (!ep) |
| return -ENOENT; |
| |
| reply = cpu_to_le16(ep->halted ? 1 : 0); |
| break; |
| |
| default: |
| return 0; |
| } |
| |
| if (le16_to_cpu(ctrl->wLength) != 2) |
| return -EINVAL; |
| |
| ret = dwc2_hsotg_send_reply(hsotg, ep0, &reply, 2); |
| if (ret) { |
| dev_err(hsotg->dev, "%s: failed to send reply\n", __func__); |
| return ret; |
| } |
| |
| return 1; |
| } |
| |
| static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now); |
| |
| /** |
| * get_ep_head - return the first request on the endpoint |
| * @hs_ep: The controller endpoint to get |
| * |
| * Get the first request on the endpoint. |
| */ |
| static struct dwc2_hsotg_req *get_ep_head(struct dwc2_hsotg_ep *hs_ep) |
| { |
| return list_first_entry_or_null(&hs_ep->queue, struct dwc2_hsotg_req, |
| queue); |
| } |
| |
| /** |
| * dwc2_gadget_start_next_request - Starts next request from ep queue |
| * @hs_ep: Endpoint structure |
| * |
| * If queue is empty and EP is ISOC-OUT - unmasks OUTTKNEPDIS which is masked |
| * in its handler. Hence we need to unmask it here to be able to do |
| * resynchronization. |
| */ |
| static void dwc2_gadget_start_next_request(struct dwc2_hsotg_ep *hs_ep) |
| { |
| struct dwc2_hsotg *hsotg = hs_ep->parent; |
| int dir_in = hs_ep->dir_in; |
| struct dwc2_hsotg_req *hs_req; |
| |
| if (!list_empty(&hs_ep->queue)) { |
| hs_req = get_ep_head(hs_ep); |
| dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, false); |
| return; |
| } |
| if (!hs_ep->isochronous) |
| return; |
| |
| if (dir_in) { |
| dev_dbg(hsotg->dev, "%s: No more ISOC-IN requests\n", |
| __func__); |
| } else { |
| dev_dbg(hsotg->dev, "%s: No more ISOC-OUT requests\n", |
| __func__); |
| } |
| } |
| |
| /** |
| * dwc2_hsotg_process_req_feature - process request {SET,CLEAR}_FEATURE |
| * @hsotg: The device state |
| * @ctrl: USB control request |
| */ |
| static int dwc2_hsotg_process_req_feature(struct dwc2_hsotg *hsotg, |
| struct usb_ctrlrequest *ctrl) |
| { |
| struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; |
| struct dwc2_hsotg_req *hs_req; |
| bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); |
| struct dwc2_hsotg_ep *ep; |
| int ret; |
| bool halted; |
| u32 recip; |
| u32 wValue; |
| u32 wIndex; |
| |
| dev_dbg(hsotg->dev, "%s: %s_FEATURE\n", |
| __func__, set ? "SET" : "CLEAR"); |
| |
| wValue = le16_to_cpu(ctrl->wValue); |
| wIndex = le16_to_cpu(ctrl->wIndex); |
| recip = ctrl->bRequestType & USB_RECIP_MASK; |
| |
| switch (recip) { |
| case USB_RECIP_DEVICE: |
| switch (wValue) { |
| case USB_DEVICE_REMOTE_WAKEUP: |
| if (set) |
| hsotg->remote_wakeup_allowed = 1; |
| else |
| hsotg->remote_wakeup_allowed = 0; |
| break; |
| |
| case USB_DEVICE_TEST_MODE: |
| if ((wIndex & 0xff) != 0) |
| return -EINVAL; |
| if (!set) |
| return -EINVAL; |
| |
| hsotg->test_mode = wIndex >> 8; |
| break; |
| default: |
| return -ENOENT; |
| } |
| |
| ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); |
| if (ret) { |
| dev_err(hsotg->dev, |
| "%s: failed to send reply\n", __func__); |
| return ret; |
| } |
| break; |
| |
| case USB_RECIP_ENDPOINT: |
| ep = ep_from_windex(hsotg, wIndex); |
| if (!ep) { |
| dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n", |
| __func__, wIndex); |
| return -ENOENT; |
| } |
| |
| switch (wValue) { |
| case USB_ENDPOINT_HALT: |
| halted = ep->halted; |
| |
| if (!ep->wedged) |
| dwc2_hsotg_ep_sethalt(&ep->ep, set, true); |
| |
| ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); |
| if (ret) { |
| dev_err(hsotg->dev, |
| "%s: failed to send reply\n", __func__); |
| return ret; |
| } |
| |
| /* |
| * we have to complete all requests for ep if it was |
| * halted, and the halt was cleared by CLEAR_FEATURE |
| */ |
| |
| if (!set && halted) { |
| /* |
| * If we have request in progress, |
| * then complete it |
| */ |
| if (ep->req) { |
| hs_req = ep->req; |
| ep->req = NULL; |
| list_del_init(&hs_req->queue); |
| if (hs_req->req.complete) { |
| spin_unlock(&hsotg->lock); |
| usb_gadget_giveback_request( |
| &ep->ep, &hs_req->req); |
| spin_lock(&hsotg->lock); |
| } |
| } |
| |
| /* If we have pending request, then start it */ |
| if (!ep->req) |
| dwc2_gadget_start_next_request(ep); |
| } |
| |
| break; |
| |
| default: |
| return -ENOENT; |
| } |
| break; |
| default: |
| return -ENOENT; |
| } |
| return 1; |
| } |
| |
| static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg); |
| |
| /** |
| * dwc2_hsotg_stall_ep0 - stall ep0 |
| * @hsotg: The device state |
| * |
| * Set stall for ep0 as response for setup request. |
| */ |
| static void dwc2_hsotg_stall_ep0(struct dwc2_hsotg *hsotg) |
| { |
| struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; |
| u32 reg; |
| u32 ctrl; |
| |
| dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in); |
| reg = (ep0->dir_in) ? DIEPCTL0 : DOEPCTL0; |
| |
| /* |
| * DxEPCTL_Stall will be cleared by EP once it has |
| * taken effect, so no need to clear later. |
| */ |
| |
| ctrl = dwc2_readl(hsotg, reg); |
| ctrl |= DXEPCTL_STALL; |
| ctrl |= DXEPCTL_CNAK; |
| dwc2_writel(hsotg, ctrl, reg); |
| |
| dev_dbg(hsotg->dev, |
| "written DXEPCTL=0x%08x to %08x (DXEPCTL=0x%08x)\n", |
| ctrl, reg, dwc2_readl(hsotg, reg)); |
| |
| /* |
| * complete won't be called, so we enqueue |
| * setup request here |
| */ |
| dwc2_hsotg_enqueue_setup(hsotg); |
| } |
| |
| /** |
| * dwc2_hsotg_process_control - process a control request |
| * @hsotg: The device state |
| * @ctrl: The control request received |
| * |
| * The controller has received the SETUP phase of a control request, and |
| * needs to work out what to do next (and whether to pass it on to the |
| * gadget driver). |
| */ |
| static void dwc2_hsotg_process_control(struct dwc2_hsotg *hsotg, |
| struct usb_ctrlrequest *ctrl) |
| { |
| struct dwc2_hsotg_ep *ep0 = hsotg->eps_out[0]; |
| int ret = 0; |
| u32 dcfg; |
| |
| dev_dbg(hsotg->dev, |
| "ctrl Type=%02x, Req=%02x, V=%04x, I=%04x, L=%04x\n", |
| ctrl->bRequestType, ctrl->bRequest, ctrl->wValue, |
| ctrl->wIndex, ctrl->wLength); |
| |
| if (ctrl->wLength == 0) { |
| ep0->dir_in = 1; |
| hsotg->ep0_state = DWC2_EP0_STATUS_IN; |
| } else if (ctrl->bRequestType & USB_DIR_IN) { |
| ep0->dir_in = 1; |
| hsotg->ep0_state = DWC2_EP0_DATA_IN; |
| } else { |
| ep0->dir_in = 0; |
| hsotg->ep0_state = DWC2_EP0_DATA_OUT; |
| } |
| |
| if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) { |
| switch (ctrl->bRequest) { |
| case USB_REQ_SET_ADDRESS: |
| hsotg->connected = 1; |
| dcfg = dwc2_readl(hsotg, DCFG); |
| dcfg &= ~DCFG_DEVADDR_MASK; |
| dcfg |= (le16_to_cpu(ctrl->wValue) << |
| DCFG_DEVADDR_SHIFT) & DCFG_DEVADDR_MASK; |
| dwc2_writel(hsotg, dcfg, DCFG); |
| |
| dev_info(hsotg->dev, "new address %d\n", ctrl->wValue); |
| |
| ret = dwc2_hsotg_send_reply(hsotg, ep0, NULL, 0); |
| return; |
| |
| case USB_REQ_GET_STATUS: |
| ret = dwc2_hsotg_process_req_status(hsotg, ctrl); |
| break; |
| |
| case USB_REQ_CLEAR_FEATURE: |
| case USB_REQ_SET_FEATURE: |
| ret = dwc2_hsotg_process_req_feature(hsotg, ctrl); |
| break; |
| } |
| } |
| |
| /* as a fallback, try delivering it to the driver to deal with */ |
| |
| if (ret == 0 && hsotg->driver) { |
| spin_unlock(&hsotg->lock); |
| ret = hsotg->driver->setup(&hsotg->gadget, ctrl); |
| spin_lock(&hsotg->lock); |
| if (ret < 0) |
| dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret); |
| } |
| |
| hsotg->delayed_status = false; |
| if (ret == USB_GADGET_DELAYED_STATUS) |
| hsotg->delayed_status = true; |
| |
| /* |
| * the request is either unhandlable, or is not formatted correctly |
| * so respond with a STALL for the status stage to indicate failure. |
| */ |
| |
| if (ret < 0) |
| dwc2_hsotg_stall_ep0(hsotg); |
| } |
| |
| /** |
| * dwc2_hsotg_complete_setup - completion of a setup transfer |
| * @ep: The endpoint the request was on. |
| * @req: The request completed. |
| * |
| * Called on completion of any requests the driver itself submitted for |
| * EP0 setup packets |
| */ |
| static void dwc2_hsotg_complete_setup(struct usb_ep *ep, |
| struct usb_request *req) |
| { |
| struct dwc2_hsotg_ep *hs_ep = our_ep(ep); |
| struct dwc2_hsotg *hsotg = hs_ep->parent; |
| |
| if (req->status < 0) { |
| dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status); |
| return; |
| } |
| |
| spin_lock(&hsotg->lock); |
| if (req->actual == 0) |
| dwc2_hsotg_enqueue_setup(hsotg); |
| else |
| dwc2_hsotg_process_control(hsotg, req->buf); |
| spin_unlock(&hsotg->lock); |
| } |
| |
| /** |
| * dwc2_hsotg_enqueue_setup - start a request for EP0 packets |
| * @hsotg: The device state. |
| * |
| * Enqueue a request on EP0 if necessary to received any SETUP packets |
| * received from the host. |
| */ |
| static void dwc2_hsotg_enqueue_setup(struct dwc2_hsotg *hsotg) |
| { |
| struct usb_request *req = hsotg->ctrl_req; |
| struct dwc2_hsotg_req *hs_req = our_req(req); |
| int ret; |
| |
| dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__); |
| |
| req->zero = 0; |
| req->length = 8; |
| req->buf = hsotg->ctrl_buff; |
| req->complete = dwc2_hsotg_complete_setup; |
| |
| if (!list_empty(&hs_req->queue)) { |
| dev_dbg(hsotg->dev, "%s already queued???\n", __func__); |
| return; |
| } |
| |
| hsotg->eps_out[0]->dir_in = 0; |
| hsotg->eps_out[0]->send_zlp = 0; |
| hsotg->ep0_state = DWC2_EP0_SETUP; |
| |
| ret = dwc2_hsotg_ep_queue(&hsotg->eps_out[0]->ep, req, GFP_ATOMIC); |
| if (ret < 0) { |
| dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret); |
| /* |
| * Don't think there's much we can do other than watch the |
| * driver fail. |
| */ |
| } |
| } |
| |
| static void dwc2_hsotg_program_zlp(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *hs_ep) |
| { |
| u32 ctrl; |
| u8 index = hs_ep->index; |
| u32 epctl_reg = hs_ep->dir_in ? DIEPCTL(index) : DOEPCTL(index); |
| u32 epsiz_reg = hs_ep->dir_in ? DIEPTSIZ(index) : DOEPTSIZ(index); |
| |
| if (hs_ep->dir_in) |
| dev_dbg(hsotg->dev, "Sending zero-length packet on ep%d\n", |
| index); |
| else |
| dev_dbg(hsotg->dev, "Receiving zero-length packet on ep%d\n", |
| index); |
| if (using_desc_dma(hsotg)) { |
| /* Not specific buffer needed for ep0 ZLP */ |
| dma_addr_t dma = hs_ep->desc_list_dma; |
| |
| if (!index) |
| dwc2_gadget_set_ep0_desc_chain(hsotg, hs_ep); |
| |
| dwc2_gadget_config_nonisoc_xfer_ddma(hs_ep, dma, 0); |
| } else { |
| dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | |
| DXEPTSIZ_XFERSIZE(0), |
| epsiz_reg); |
| } |
| |
| ctrl = dwc2_readl(hsotg, epctl_reg); |
| ctrl |= DXEPCTL_CNAK; /* clear NAK set by core */ |
| ctrl |= DXEPCTL_EPENA; /* ensure ep enabled */ |
| ctrl |= DXEPCTL_USBACTEP; |
| dwc2_writel(hsotg, ctrl, epctl_reg); |
| } |
| |
| /** |
| * dwc2_hsotg_complete_request - complete a request given to us |
| * @hsotg: The device state. |
| * @hs_ep: The endpoint the request was on. |
| * @hs_req: The request to complete. |
| * @result: The result code (0 => Ok, otherwise errno) |
| * |
| * The given request has finished, so call the necessary completion |
| * if it has one and then look to see if we can start a new request |
| * on the endpoint. |
| * |
| * Note, expects the ep to already be locked as appropriate. |
| */ |
| static void dwc2_hsotg_complete_request(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *hs_ep, |
| struct dwc2_hsotg_req *hs_req, |
| int result) |
| { |
| if (!hs_req) { |
| dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__); |
| return; |
| } |
| |
| dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n", |
| hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete); |
| |
| /* |
| * only replace the status if we've not already set an error |
| * from a previous transaction |
| */ |
| |
| if (hs_req->req.status == -EINPROGRESS) |
| hs_req->req.status = result; |
| |
| if (using_dma(hsotg)) |
| dwc2_hsotg_unmap_dma(hsotg, hs_ep, hs_req); |
| |
| dwc2_hsotg_handle_unaligned_buf_complete(hsotg, hs_ep, hs_req); |
| |
| hs_ep->req = NULL; |
| list_del_init(&hs_req->queue); |
| |
| /* |
| * call the complete request with the locks off, just in case the |
| * request tries to queue more work for this endpoint. |
| */ |
| |
| if (hs_req->req.complete) { |
| spin_unlock(&hsotg->lock); |
| usb_gadget_giveback_request(&hs_ep->ep, &hs_req->req); |
| spin_lock(&hsotg->lock); |
| } |
| |
| /* In DDMA don't need to proceed to starting of next ISOC request */ |
| if (using_desc_dma(hsotg) && hs_ep->isochronous) |
| return; |
| |
| /* |
| * Look to see if there is anything else to do. Note, the completion |
| * of the previous request may have caused a new request to be started |
| * so be careful when doing this. |
| */ |
| |
| if (!hs_ep->req && result >= 0) |
| dwc2_gadget_start_next_request(hs_ep); |
| } |
| |
| /* |
| * dwc2_gadget_complete_isoc_request_ddma - complete an isoc request in DDMA |
| * @hs_ep: The endpoint the request was on. |
| * |
| * Get first request from the ep queue, determine descriptor on which complete |
| * happened. SW discovers which descriptor currently in use by HW, adjusts |
| * dma_address and calculates index of completed descriptor based on the value |
| * of DEPDMA register. Update actual length of request, giveback to gadget. |
| */ |
| static void dwc2_gadget_complete_isoc_request_ddma(struct dwc2_hsotg_ep *hs_ep) |
| { |
| struct dwc2_hsotg *hsotg = hs_ep->parent; |
| struct dwc2_hsotg_req *hs_req; |
| struct usb_request *ureq; |
| u32 desc_sts; |
| u32 mask; |
| |
| desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; |
| |
| /* Process only descriptors with buffer status set to DMA done */ |
| while ((desc_sts & DEV_DMA_BUFF_STS_MASK) >> |
| DEV_DMA_BUFF_STS_SHIFT == DEV_DMA_BUFF_STS_DMADONE) { |
| |
| hs_req = get_ep_head(hs_ep); |
| if (!hs_req) { |
| dev_warn(hsotg->dev, "%s: ISOC EP queue empty\n", __func__); |
| return; |
| } |
| ureq = &hs_req->req; |
| |
| /* Check completion status */ |
| if ((desc_sts & DEV_DMA_STS_MASK) >> DEV_DMA_STS_SHIFT == |
| DEV_DMA_STS_SUCC) { |
| mask = hs_ep->dir_in ? DEV_DMA_ISOC_TX_NBYTES_MASK : |
| DEV_DMA_ISOC_RX_NBYTES_MASK; |
| ureq->actual = ureq->length - ((desc_sts & mask) >> |
| DEV_DMA_ISOC_NBYTES_SHIFT); |
| |
| /* Adjust actual len for ISOC Out if len is |
| * not align of 4 |
| */ |
| if (!hs_ep->dir_in && ureq->length & 0x3) |
| ureq->actual += 4 - (ureq->length & 0x3); |
| |
| /* Set actual frame number for completed transfers */ |
| ureq->frame_number = |
| (desc_sts & DEV_DMA_ISOC_FRNUM_MASK) >> |
| DEV_DMA_ISOC_FRNUM_SHIFT; |
| } |
| |
| dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); |
| |
| hs_ep->compl_desc++; |
| if (hs_ep->compl_desc > (MAX_DMA_DESC_NUM_HS_ISOC - 1)) |
| hs_ep->compl_desc = 0; |
| desc_sts = hs_ep->desc_list[hs_ep->compl_desc].status; |
| } |
| } |
| |
| /* |
| * dwc2_gadget_handle_isoc_bna - handle BNA interrupt for ISOC. |
| * @hs_ep: The isochronous endpoint. |
| * |
| * If EP ISOC OUT then need to flush RX FIFO to remove source of BNA |
| * interrupt. Reset target frame and next_desc to allow to start |
| * ISOC's on NAK interrupt for IN direction or on OUTTKNEPDIS |
| * interrupt for OUT direction. |
| */ |
| static void dwc2_gadget_handle_isoc_bna(struct dwc2_hsotg_ep *hs_ep) |
| { |
| struct dwc2_hsotg *hsotg = hs_ep->parent; |
| |
| if (!hs_ep->dir_in) |
| dwc2_flush_rx_fifo(hsotg); |
| dwc2_hsotg_complete_request(hsotg, hs_ep, get_ep_head(hs_ep), 0); |
| |
| hs_ep->target_frame = TARGET_FRAME_INITIAL; |
| hs_ep->next_desc = 0; |
| hs_ep->compl_desc = 0; |
| } |
| |
| /** |
| * dwc2_hsotg_rx_data - receive data from the FIFO for an endpoint |
| * @hsotg: The device state. |
| * @ep_idx: The endpoint index for the data |
| * @size: The size of data in the fifo, in bytes |
| * |
| * The FIFO status shows there is data to read from the FIFO for a given |
| * endpoint, so sort out whether we need to read the data into a request |
| * that has been made for that endpoint. |
| */ |
| static void dwc2_hsotg_rx_data(struct dwc2_hsotg *hsotg, int ep_idx, int size) |
| { |
| struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[ep_idx]; |
| struct dwc2_hsotg_req *hs_req = hs_ep->req; |
| int to_read; |
| int max_req; |
| int read_ptr; |
| |
| if (!hs_req) { |
| u32 epctl = dwc2_readl(hsotg, DOEPCTL(ep_idx)); |
| int ptr; |
| |
| dev_dbg(hsotg->dev, |
| "%s: FIFO %d bytes on ep%d but no req (DXEPCTl=0x%08x)\n", |
| __func__, size, ep_idx, epctl); |
| |
| /* dump the data from the FIFO, we've nothing we can do */ |
| for (ptr = 0; ptr < size; ptr += 4) |
| (void)dwc2_readl(hsotg, EPFIFO(ep_idx)); |
| |
| return; |
| } |
| |
| to_read = size; |
| read_ptr = hs_req->req.actual; |
| max_req = hs_req->req.length - read_ptr; |
| |
| dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n", |
| __func__, to_read, max_req, read_ptr, hs_req->req.length); |
| |
| if (to_read > max_req) { |
| /* |
| * more data appeared than we where willing |
| * to deal with in this request. |
| */ |
| |
| /* currently we don't deal this */ |
| WARN_ON_ONCE(1); |
| } |
| |
| hs_ep->total_data += to_read; |
| hs_req->req.actual += to_read; |
| to_read = DIV_ROUND_UP(to_read, 4); |
| |
| /* |
| * note, we might over-write the buffer end by 3 bytes depending on |
| * alignment of the data. |
| */ |
| dwc2_readl_rep(hsotg, EPFIFO(ep_idx), |
| hs_req->req.buf + read_ptr, to_read); |
| } |
| |
| /** |
| * dwc2_hsotg_ep0_zlp - send/receive zero-length packet on control endpoint |
| * @hsotg: The device instance |
| * @dir_in: If IN zlp |
| * |
| * Generate a zero-length IN packet request for terminating a SETUP |
| * transaction. |
| * |
| * Note, since we don't write any data to the TxFIFO, then it is |
| * currently believed that we do not need to wait for any space in |
| * the TxFIFO. |
| */ |
| static void dwc2_hsotg_ep0_zlp(struct dwc2_hsotg *hsotg, bool dir_in) |
| { |
| /* eps_out[0] is used in both directions */ |
| hsotg->eps_out[0]->dir_in = dir_in; |
| hsotg->ep0_state = dir_in ? DWC2_EP0_STATUS_IN : DWC2_EP0_STATUS_OUT; |
| |
| dwc2_hsotg_program_zlp(hsotg, hsotg->eps_out[0]); |
| } |
| |
| /* |
| * dwc2_gadget_get_xfersize_ddma - get transferred bytes amount from desc |
| * @hs_ep - The endpoint on which transfer went |
| * |
| * Iterate over endpoints descriptor chain and get info on bytes remained |
| * in DMA descriptors after transfer has completed. Used for non isoc EPs. |
| */ |
| static unsigned int dwc2_gadget_get_xfersize_ddma(struct dwc2_hsotg_ep *hs_ep) |
| { |
| const struct usb_endpoint_descriptor *ep_desc = hs_ep->ep.desc; |
| struct dwc2_hsotg *hsotg = hs_ep->parent; |
| unsigned int bytes_rem = 0; |
| unsigned int bytes_rem_correction = 0; |
| struct dwc2_dma_desc *desc = hs_ep->desc_list; |
| int i; |
| u32 status; |
| u32 mps = hs_ep->ep.maxpacket; |
| int dir_in = hs_ep->dir_in; |
| |
| if (!desc) |
| return -EINVAL; |
| |
| /* Interrupt OUT EP with mps not multiple of 4 */ |
| if (hs_ep->index) |
| if (usb_endpoint_xfer_int(ep_desc) && !dir_in && (mps % 4)) |
| bytes_rem_correction = 4 - (mps % 4); |
| |
| for (i = 0; i < hs_ep->desc_count; ++i) { |
| status = desc->status; |
| bytes_rem += status & DEV_DMA_NBYTES_MASK; |
| bytes_rem -= bytes_rem_correction; |
| |
| if (status & DEV_DMA_STS_MASK) |
| dev_err(hsotg->dev, "descriptor %d closed with %x\n", |
| i, status & DEV_DMA_STS_MASK); |
| |
| if (status & DEV_DMA_L) |
| break; |
| |
| desc++; |
| } |
| |
| return bytes_rem; |
| } |
| |
| /** |
| * dwc2_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO |
| * @hsotg: The device instance |
| * @epnum: The endpoint received from |
| * |
| * The RXFIFO has delivered an OutDone event, which means that the data |
| * transfer for an OUT endpoint has been completed, either by a short |
| * packet or by the finish of a transfer. |
| */ |
| static void dwc2_hsotg_handle_outdone(struct dwc2_hsotg *hsotg, int epnum) |
| { |
| u32 epsize = dwc2_readl(hsotg, DOEPTSIZ(epnum)); |
| struct dwc2_hsotg_ep *hs_ep = hsotg->eps_out[epnum]; |
| struct dwc2_hsotg_req *hs_req = hs_ep->req; |
| struct usb_request *req = &hs_req->req; |
| unsigned int size_left = DXEPTSIZ_XFERSIZE_GET(epsize); |
| int result = 0; |
| |
| if (!hs_req) { |
| dev_dbg(hsotg->dev, "%s: no request active\n", __func__); |
| return; |
| } |
| |
| if (epnum == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_OUT) { |
| dev_dbg(hsotg->dev, "zlp packet received\n"); |
| dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); |
| dwc2_hsotg_enqueue_setup(hsotg); |
| return; |
| } |
| |
| if (using_desc_dma(hsotg)) |
| size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); |
| |
| if (using_dma(hsotg)) { |
| unsigned int size_done; |
| |
| /* |
| * Calculate the size of the transfer by checking how much |
| * is left in the endpoint size register and then working it |
| * out from the amount we loaded for the transfer. |
| * |
| * We need to do this as DMA pointers are always 32bit aligned |
| * so may overshoot/undershoot the transfer. |
| */ |
| |
| size_done = hs_ep->size_loaded - size_left; |
| size_done += hs_ep->last_load; |
| |
| req->actual = size_done; |
| } |
| |
| /* if there is more request to do, schedule new transfer */ |
| if (req->actual < req->length && size_left == 0) { |
| dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); |
| return; |
| } |
| |
| if (req->actual < req->length && req->short_not_ok) { |
| dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n", |
| __func__, req->actual, req->length); |
| |
| /* |
| * todo - what should we return here? there's no one else |
| * even bothering to check the status. |
| */ |
| } |
| |
| /* DDMA IN status phase will start from StsPhseRcvd interrupt */ |
| if (!using_desc_dma(hsotg) && epnum == 0 && |
| hsotg->ep0_state == DWC2_EP0_DATA_OUT) { |
| /* Move to STATUS IN */ |
| if (!hsotg->delayed_status) |
| dwc2_hsotg_ep0_zlp(hsotg, true); |
| } |
| |
| /* Set actual frame number for completed transfers */ |
| if (!using_desc_dma(hsotg) && hs_ep->isochronous) { |
| req->frame_number = hs_ep->target_frame; |
| dwc2_gadget_incr_frame_num(hs_ep); |
| } |
| |
| dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, result); |
| } |
| |
| /** |
| * dwc2_hsotg_handle_rx - RX FIFO has data |
| * @hsotg: The device instance |
| * |
| * The IRQ handler has detected that the RX FIFO has some data in it |
| * that requires processing, so find out what is in there and do the |
| * appropriate read. |
| * |
| * The RXFIFO is a true FIFO, the packets coming out are still in packet |
| * chunks, so if you have x packets received on an endpoint you'll get x |
| * FIFO events delivered, each with a packet's worth of data in it. |
| * |
| * When using DMA, we should not be processing events from the RXFIFO |
| * as the actual data should be sent to the memory directly and we turn |
| * on the completion interrupts to get notifications of transfer completion. |
| */ |
| static void dwc2_hsotg_handle_rx(struct dwc2_hsotg *hsotg) |
| { |
| u32 grxstsr = dwc2_readl(hsotg, GRXSTSP); |
| u32 epnum, status, size; |
| |
| WARN_ON(using_dma(hsotg)); |
| |
| epnum = grxstsr & GRXSTS_EPNUM_MASK; |
| status = grxstsr & GRXSTS_PKTSTS_MASK; |
| |
| size = grxstsr & GRXSTS_BYTECNT_MASK; |
| size >>= GRXSTS_BYTECNT_SHIFT; |
| |
| dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n", |
| __func__, grxstsr, size, epnum); |
| |
| switch ((status & GRXSTS_PKTSTS_MASK) >> GRXSTS_PKTSTS_SHIFT) { |
| case GRXSTS_PKTSTS_GLOBALOUTNAK: |
| dev_dbg(hsotg->dev, "GLOBALOUTNAK\n"); |
| break; |
| |
| case GRXSTS_PKTSTS_OUTDONE: |
| dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n", |
| dwc2_hsotg_read_frameno(hsotg)); |
| |
| if (!using_dma(hsotg)) |
| dwc2_hsotg_handle_outdone(hsotg, epnum); |
| break; |
| |
| case GRXSTS_PKTSTS_SETUPDONE: |
| dev_dbg(hsotg->dev, |
| "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n", |
| dwc2_hsotg_read_frameno(hsotg), |
| dwc2_readl(hsotg, DOEPCTL(0))); |
| /* |
| * Call dwc2_hsotg_handle_outdone here if it was not called from |
| * GRXSTS_PKTSTS_OUTDONE. That is, if the core didn't |
| * generate GRXSTS_PKTSTS_OUTDONE for setup packet. |
| */ |
| if (hsotg->ep0_state == DWC2_EP0_SETUP) |
| dwc2_hsotg_handle_outdone(hsotg, epnum); |
| break; |
| |
| case GRXSTS_PKTSTS_OUTRX: |
| dwc2_hsotg_rx_data(hsotg, epnum, size); |
| break; |
| |
| case GRXSTS_PKTSTS_SETUPRX: |
| dev_dbg(hsotg->dev, |
| "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n", |
| dwc2_hsotg_read_frameno(hsotg), |
| dwc2_readl(hsotg, DOEPCTL(0))); |
| |
| WARN_ON(hsotg->ep0_state != DWC2_EP0_SETUP); |
| |
| dwc2_hsotg_rx_data(hsotg, epnum, size); |
| break; |
| |
| default: |
| dev_warn(hsotg->dev, "%s: unknown status %08x\n", |
| __func__, grxstsr); |
| |
| dwc2_hsotg_dump(hsotg); |
| break; |
| } |
| } |
| |
| /** |
| * dwc2_hsotg_ep0_mps - turn max packet size into register setting |
| * @mps: The maximum packet size in bytes. |
| */ |
| static u32 dwc2_hsotg_ep0_mps(unsigned int mps) |
| { |
| switch (mps) { |
| case 64: |
| return D0EPCTL_MPS_64; |
| case 32: |
| return D0EPCTL_MPS_32; |
| case 16: |
| return D0EPCTL_MPS_16; |
| case 8: |
| return D0EPCTL_MPS_8; |
| } |
| |
| /* bad max packet size, warn and return invalid result */ |
| WARN_ON(1); |
| return (u32)-1; |
| } |
| |
| /** |
| * dwc2_hsotg_set_ep_maxpacket - set endpoint's max-packet field |
| * @hsotg: The driver state. |
| * @ep: The index number of the endpoint |
| * @mps: The maximum packet size in bytes |
| * @mc: The multicount value |
| * @dir_in: True if direction is in. |
| * |
| * Configure the maximum packet size for the given endpoint, updating |
| * the hardware control registers to reflect this. |
| */ |
| static void dwc2_hsotg_set_ep_maxpacket(struct dwc2_hsotg *hsotg, |
| unsigned int ep, unsigned int mps, |
| unsigned int mc, unsigned int dir_in) |
| { |
| struct dwc2_hsotg_ep *hs_ep; |
| u32 reg; |
| |
| hs_ep = index_to_ep(hsotg, ep, dir_in); |
| if (!hs_ep) |
| return; |
| |
| if (ep == 0) { |
| u32 mps_bytes = mps; |
| |
| /* EP0 is a special case */ |
| mps = dwc2_hsotg_ep0_mps(mps_bytes); |
| if (mps > 3) |
| goto bad_mps; |
| hs_ep->ep.maxpacket = mps_bytes; |
| hs_ep->mc = 1; |
| } else { |
| if (mps > 1024) |
| goto bad_mps; |
| hs_ep->mc = mc; |
| if (mc > 3) |
| goto bad_mps; |
| hs_ep->ep.maxpacket = mps; |
| } |
| |
| if (dir_in) { |
| reg = dwc2_readl(hsotg, DIEPCTL(ep)); |
| reg &= ~DXEPCTL_MPS_MASK; |
| reg |= mps; |
| dwc2_writel(hsotg, reg, DIEPCTL(ep)); |
| } else { |
| reg = dwc2_readl(hsotg, DOEPCTL(ep)); |
| reg &= ~DXEPCTL_MPS_MASK; |
| reg |= mps; |
| dwc2_writel(hsotg, reg, DOEPCTL(ep)); |
| } |
| |
| return; |
| |
| bad_mps: |
| dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps); |
| } |
| |
| /** |
| * dwc2_hsotg_txfifo_flush - flush Tx FIFO |
| * @hsotg: The driver state |
| * @idx: The index for the endpoint (0..15) |
| */ |
| static void dwc2_hsotg_txfifo_flush(struct dwc2_hsotg *hsotg, unsigned int idx) |
| { |
| dwc2_writel(hsotg, GRSTCTL_TXFNUM(idx) | GRSTCTL_TXFFLSH, |
| GRSTCTL); |
| |
| /* wait until the fifo is flushed */ |
| if (dwc2_hsotg_wait_bit_clear(hsotg, GRSTCTL, GRSTCTL_TXFFLSH, 100)) |
| dev_warn(hsotg->dev, "%s: timeout flushing fifo GRSTCTL_TXFFLSH\n", |
| __func__); |
| } |
| |
| /** |
| * dwc2_hsotg_trytx - check to see if anything needs transmitting |
| * @hsotg: The driver state |
| * @hs_ep: The driver endpoint to check. |
| * |
| * Check to see if there is a request that has data to send, and if so |
| * make an attempt to write data into the FIFO. |
| */ |
| static int dwc2_hsotg_trytx(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *hs_ep) |
| { |
| struct dwc2_hsotg_req *hs_req = hs_ep->req; |
| |
| if (!hs_ep->dir_in || !hs_req) { |
| /** |
| * if request is not enqueued, we disable interrupts |
| * for endpoints, excepting ep0 |
| */ |
| if (hs_ep->index != 0) |
| dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, |
| hs_ep->dir_in, 0); |
| return 0; |
| } |
| |
| if (hs_req->req.actual < hs_req->req.length) { |
| dev_dbg(hsotg->dev, "trying to write more for ep%d\n", |
| hs_ep->index); |
| return dwc2_hsotg_write_fifo(hsotg, hs_ep, hs_req); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * dwc2_hsotg_complete_in - complete IN transfer |
| * @hsotg: The device state. |
| * @hs_ep: The endpoint that has just completed. |
| * |
| * An IN transfer has been completed, update the transfer's state and then |
| * call the relevant completion routines. |
| */ |
| static void dwc2_hsotg_complete_in(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *hs_ep) |
| { |
| struct dwc2_hsotg_req *hs_req = hs_ep->req; |
| u32 epsize = dwc2_readl(hsotg, DIEPTSIZ(hs_ep->index)); |
| int size_left, size_done; |
| |
| if (!hs_req) { |
| dev_dbg(hsotg->dev, "XferCompl but no req\n"); |
| return; |
| } |
| |
| /* Finish ZLP handling for IN EP0 transactions */ |
| if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_STATUS_IN) { |
| dev_dbg(hsotg->dev, "zlp packet sent\n"); |
| |
| /* |
| * While send zlp for DWC2_EP0_STATUS_IN EP direction was |
| * changed to IN. Change back to complete OUT transfer request |
| */ |
| hs_ep->dir_in = 0; |
| |
| dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); |
| if (hsotg->test_mode) { |
| int ret; |
| |
| ret = dwc2_hsotg_set_test_mode(hsotg, hsotg->test_mode); |
| if (ret < 0) { |
| dev_dbg(hsotg->dev, "Invalid Test #%d\n", |
| hsotg->test_mode); |
| dwc2_hsotg_stall_ep0(hsotg); |
| return; |
| } |
| } |
| dwc2_hsotg_enqueue_setup(hsotg); |
| return; |
| } |
| |
| /* |
| * Calculate the size of the transfer by checking how much is left |
| * in the endpoint size register and then working it out from |
| * the amount we loaded for the transfer. |
| * |
| * We do this even for DMA, as the transfer may have incremented |
| * past the end of the buffer (DMA transfers are always 32bit |
| * aligned). |
| */ |
| if (using_desc_dma(hsotg)) { |
| size_left = dwc2_gadget_get_xfersize_ddma(hs_ep); |
| if (size_left < 0) |
| dev_err(hsotg->dev, "error parsing DDMA results %d\n", |
| size_left); |
| } else { |
| size_left = DXEPTSIZ_XFERSIZE_GET(epsize); |
| } |
| |
| size_done = hs_ep->size_loaded - size_left; |
| size_done += hs_ep->last_load; |
| |
| if (hs_req->req.actual != size_done) |
| dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n", |
| __func__, hs_req->req.actual, size_done); |
| |
| hs_req->req.actual = size_done; |
| dev_dbg(hsotg->dev, "req->length:%d req->actual:%d req->zero:%d\n", |
| hs_req->req.length, hs_req->req.actual, hs_req->req.zero); |
| |
| if (!size_left && hs_req->req.actual < hs_req->req.length) { |
| dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__); |
| dwc2_hsotg_start_req(hsotg, hs_ep, hs_req, true); |
| return; |
| } |
| |
| /* Zlp for all endpoints in non DDMA, for ep0 only in DATA IN stage */ |
| if (hs_ep->send_zlp) { |
| hs_ep->send_zlp = 0; |
| if (!using_desc_dma(hsotg)) { |
| dwc2_hsotg_program_zlp(hsotg, hs_ep); |
| /* transfer will be completed on next complete interrupt */ |
| return; |
| } |
| } |
| |
| if (hs_ep->index == 0 && hsotg->ep0_state == DWC2_EP0_DATA_IN) { |
| /* Move to STATUS OUT */ |
| dwc2_hsotg_ep0_zlp(hsotg, false); |
| return; |
| } |
| |
| /* Set actual frame number for completed transfers */ |
| if (!using_desc_dma(hsotg) && hs_ep->isochronous) { |
| hs_req->req.frame_number = hs_ep->target_frame; |
| dwc2_gadget_incr_frame_num(hs_ep); |
| } |
| |
| dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, 0); |
| } |
| |
| /** |
| * dwc2_gadget_read_ep_interrupts - reads interrupts for given ep |
| * @hsotg: The device state. |
| * @idx: Index of ep. |
| * @dir_in: Endpoint direction 1-in 0-out. |
| * |
| * Reads for endpoint with given index and direction, by masking |
| * epint_reg with coresponding mask. |
| */ |
| static u32 dwc2_gadget_read_ep_interrupts(struct dwc2_hsotg *hsotg, |
| unsigned int idx, int dir_in) |
| { |
| u32 epmsk_reg = dir_in ? DIEPMSK : DOEPMSK; |
| u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); |
| u32 ints; |
| u32 mask; |
| u32 diepempmsk; |
| |
| mask = dwc2_readl(hsotg, epmsk_reg); |
| diepempmsk = dwc2_readl(hsotg, DIEPEMPMSK); |
| mask |= ((diepempmsk >> idx) & 0x1) ? DIEPMSK_TXFIFOEMPTY : 0; |
| mask |= DXEPINT_SETUP_RCVD; |
| |
| ints = dwc2_readl(hsotg, epint_reg); |
| ints &= mask; |
| return ints; |
| } |
| |
| /** |
| * dwc2_gadget_handle_ep_disabled - handle DXEPINT_EPDISBLD |
| * @hs_ep: The endpoint on which interrupt is asserted. |
| * |
| * This interrupt indicates that the endpoint has been disabled per the |
| * application's request. |
| * |
| * For IN endpoints flushes txfifo, in case of BULK clears DCTL_CGNPINNAK, |
| * in case of ISOC completes current request. |
| * |
| * For ISOC-OUT endpoints completes expired requests. If there is remaining |
| * request starts it. |
| */ |
| static void dwc2_gadget_handle_ep_disabled(struct dwc2_hsotg_ep *hs_ep) |
| { |
| struct dwc2_hsotg *hsotg = hs_ep->parent; |
| struct dwc2_hsotg_req *hs_req; |
| unsigned char idx = hs_ep->index; |
| int dir_in = hs_ep->dir_in; |
| u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); |
| int dctl = dwc2_readl(hsotg, DCTL); |
| |
| dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__); |
| |
| if (dir_in) { |
| int epctl = dwc2_readl(hsotg, epctl_reg); |
| |
| dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); |
| |
| if ((epctl & DXEPCTL_STALL) && (epctl & DXEPCTL_EPTYPE_BULK)) { |
| int dctl = dwc2_readl(hsotg, DCTL); |
| |
| dctl |= DCTL_CGNPINNAK; |
| dwc2_writel(hsotg, dctl, DCTL); |
| } |
| } else { |
| |
| if (dctl & DCTL_GOUTNAKSTS) { |
| dctl |= DCTL_CGOUTNAK; |
| dwc2_writel(hsotg, dctl, DCTL); |
| } |
| } |
| |
| if (!hs_ep->isochronous) |
| return; |
| |
| if (list_empty(&hs_ep->queue)) { |
| dev_dbg(hsotg->dev, "%s: complete_ep 0x%p, ep->queue empty!\n", |
| __func__, hs_ep); |
| return; |
| } |
| |
| do { |
| hs_req = get_ep_head(hs_ep); |
| if (hs_req) |
| dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, |
| -ENODATA); |
| dwc2_gadget_incr_frame_num(hs_ep); |
| /* Update current frame number value. */ |
| hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); |
| } while (dwc2_gadget_target_frame_elapsed(hs_ep)); |
| } |
| |
| /** |
| * dwc2_gadget_handle_out_token_ep_disabled - handle DXEPINT_OUTTKNEPDIS |
| * @ep: The endpoint on which interrupt is asserted. |
| * |
| * This is starting point for ISOC-OUT transfer, synchronization done with |
| * first out token received from host while corresponding EP is disabled. |
| * |
| * Device does not know initial frame in which out token will come. For this |
| * HW generates OUTTKNEPDIS - out token is received while EP is disabled. Upon |
| * getting this interrupt SW starts calculation for next transfer frame. |
| */ |
| static void dwc2_gadget_handle_out_token_ep_disabled(struct dwc2_hsotg_ep *ep) |
| { |
| struct dwc2_hsotg *hsotg = ep->parent; |
| struct dwc2_hsotg_req *hs_req; |
| int dir_in = ep->dir_in; |
| |
| if (dir_in || !ep->isochronous) |
| return; |
| |
| if (using_desc_dma(hsotg)) { |
| if (ep->target_frame == TARGET_FRAME_INITIAL) { |
| /* Start first ISO Out */ |
| ep->target_frame = hsotg->frame_number; |
| dwc2_gadget_start_isoc_ddma(ep); |
| } |
| return; |
| } |
| |
| if (ep->target_frame == TARGET_FRAME_INITIAL) { |
| u32 ctrl; |
| |
| ep->target_frame = hsotg->frame_number; |
| if (ep->interval > 1) { |
| ctrl = dwc2_readl(hsotg, DOEPCTL(ep->index)); |
| if (ep->target_frame & 0x1) |
| ctrl |= DXEPCTL_SETODDFR; |
| else |
| ctrl |= DXEPCTL_SETEVENFR; |
| |
| dwc2_writel(hsotg, ctrl, DOEPCTL(ep->index)); |
| } |
| } |
| |
| while (dwc2_gadget_target_frame_elapsed(ep)) { |
| hs_req = get_ep_head(ep); |
| if (hs_req) |
| dwc2_hsotg_complete_request(hsotg, ep, hs_req, -ENODATA); |
| |
| dwc2_gadget_incr_frame_num(ep); |
| /* Update current frame number value. */ |
| hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); |
| } |
| |
| if (!ep->req) |
| dwc2_gadget_start_next_request(ep); |
| |
| } |
| |
| static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *hs_ep); |
| |
| /** |
| * dwc2_gadget_handle_nak - handle NAK interrupt |
| * @hs_ep: The endpoint on which interrupt is asserted. |
| * |
| * This is starting point for ISOC-IN transfer, synchronization done with |
| * first IN token received from host while corresponding EP is disabled. |
| * |
| * Device does not know when first one token will arrive from host. On first |
| * token arrival HW generates 2 interrupts: 'in token received while FIFO empty' |
| * and 'NAK'. NAK interrupt for ISOC-IN means that token has arrived and ZLP was |
| * sent in response to that as there was no data in FIFO. SW is basing on this |
| * interrupt to obtain frame in which token has come and then based on the |
| * interval calculates next frame for transfer. |
| */ |
| static void dwc2_gadget_handle_nak(struct dwc2_hsotg_ep *hs_ep) |
| { |
| struct dwc2_hsotg *hsotg = hs_ep->parent; |
| struct dwc2_hsotg_req *hs_req; |
| int dir_in = hs_ep->dir_in; |
| u32 ctrl; |
| |
| if (!dir_in || !hs_ep->isochronous) |
| return; |
| |
| if (hs_ep->target_frame == TARGET_FRAME_INITIAL) { |
| |
| if (using_desc_dma(hsotg)) { |
| hs_ep->target_frame = hsotg->frame_number; |
| dwc2_gadget_incr_frame_num(hs_ep); |
| |
| /* In service interval mode target_frame must |
| * be set to last (u)frame of the service interval. |
| */ |
| if (hsotg->params.service_interval) { |
| /* Set target_frame to the first (u)frame of |
| * the service interval |
| */ |
| hs_ep->target_frame &= ~hs_ep->interval + 1; |
| |
| /* Set target_frame to the last (u)frame of |
| * the service interval |
| */ |
| dwc2_gadget_incr_frame_num(hs_ep); |
| dwc2_gadget_dec_frame_num_by_one(hs_ep); |
| } |
| |
| dwc2_gadget_start_isoc_ddma(hs_ep); |
| return; |
| } |
| |
| hs_ep->target_frame = hsotg->frame_number; |
| if (hs_ep->interval > 1) { |
| u32 ctrl = dwc2_readl(hsotg, |
| DIEPCTL(hs_ep->index)); |
| if (hs_ep->target_frame & 0x1) |
| ctrl |= DXEPCTL_SETODDFR; |
| else |
| ctrl |= DXEPCTL_SETEVENFR; |
| |
| dwc2_writel(hsotg, ctrl, DIEPCTL(hs_ep->index)); |
| } |
| } |
| |
| if (using_desc_dma(hsotg)) |
| return; |
| |
| ctrl = dwc2_readl(hsotg, DIEPCTL(hs_ep->index)); |
| if (ctrl & DXEPCTL_EPENA) |
| dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); |
| else |
| dwc2_hsotg_txfifo_flush(hsotg, hs_ep->fifo_index); |
| |
| while (dwc2_gadget_target_frame_elapsed(hs_ep)) { |
| hs_req = get_ep_head(hs_ep); |
| if (hs_req) |
| dwc2_hsotg_complete_request(hsotg, hs_ep, hs_req, -ENODATA); |
| |
| dwc2_gadget_incr_frame_num(hs_ep); |
| /* Update current frame number value. */ |
| hsotg->frame_number = dwc2_hsotg_read_frameno(hsotg); |
| } |
| |
| if (!hs_ep->req) |
| dwc2_gadget_start_next_request(hs_ep); |
| } |
| |
| /** |
| * dwc2_hsotg_epint - handle an in/out endpoint interrupt |
| * @hsotg: The driver state |
| * @idx: The index for the endpoint (0..15) |
| * @dir_in: Set if this is an IN endpoint |
| * |
| * Process and clear any interrupt pending for an individual endpoint |
| */ |
| static void dwc2_hsotg_epint(struct dwc2_hsotg *hsotg, unsigned int idx, |
| int dir_in) |
| { |
| struct dwc2_hsotg_ep *hs_ep = index_to_ep(hsotg, idx, dir_in); |
| u32 epint_reg = dir_in ? DIEPINT(idx) : DOEPINT(idx); |
| u32 epctl_reg = dir_in ? DIEPCTL(idx) : DOEPCTL(idx); |
| u32 epsiz_reg = dir_in ? DIEPTSIZ(idx) : DOEPTSIZ(idx); |
| u32 ints; |
| |
| ints = dwc2_gadget_read_ep_interrupts(hsotg, idx, dir_in); |
| |
| /* Clear endpoint interrupts */ |
| dwc2_writel(hsotg, ints, epint_reg); |
| |
| if (!hs_ep) { |
| dev_err(hsotg->dev, "%s:Interrupt for unconfigured ep%d(%s)\n", |
| __func__, idx, dir_in ? "in" : "out"); |
| return; |
| } |
| |
| dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n", |
| __func__, idx, dir_in ? "in" : "out", ints); |
| |
| /* Don't process XferCompl interrupt if it is a setup packet */ |
| if (idx == 0 && (ints & (DXEPINT_SETUP | DXEPINT_SETUP_RCVD))) |
| ints &= ~DXEPINT_XFERCOMPL; |
| |
| /* |
| * Don't process XferCompl interrupt in DDMA if EP0 is still in SETUP |
| * stage and xfercomplete was generated without SETUP phase done |
| * interrupt. SW should parse received setup packet only after host's |
| * exit from setup phase of control transfer. |
| */ |
| if (using_desc_dma(hsotg) && idx == 0 && !hs_ep->dir_in && |
| hsotg->ep0_state == DWC2_EP0_SETUP && !(ints & DXEPINT_SETUP)) |
| ints &= ~DXEPINT_XFERCOMPL; |
| |
| if (ints & DXEPINT_XFERCOMPL) { |
| dev_dbg(hsotg->dev, |
| "%s: XferCompl: DxEPCTL=0x%08x, DXEPTSIZ=%08x\n", |
| __func__, dwc2_readl(hsotg, epctl_reg), |
| dwc2_readl(hsotg, epsiz_reg)); |
| |
| /* In DDMA handle isochronous requests separately */ |
| if (using_desc_dma(hsotg) && hs_ep->isochronous) { |
| dwc2_gadget_complete_isoc_request_ddma(hs_ep); |
| } else if (dir_in) { |
| /* |
| * We get OutDone from the FIFO, so we only |
| * need to look at completing IN requests here |
| * if operating slave mode |
| */ |
| if (!hs_ep->isochronous || !(ints & DXEPINT_NAKINTRPT)) |
| dwc2_hsotg_complete_in(hsotg, hs_ep); |
| |
| if (idx == 0 && !hs_ep->req) |
| dwc2_hsotg_enqueue_setup(hsotg); |
| } else if (using_dma(hsotg)) { |
| /* |
| * We're using DMA, we need to fire an OutDone here |
| * as we ignore the RXFIFO. |
| */ |
| if (!hs_ep->isochronous || !(ints & DXEPINT_OUTTKNEPDIS)) |
| dwc2_hsotg_handle_outdone(hsotg, idx); |
| } |
| } |
| |
| if (ints & DXEPINT_EPDISBLD) |
| dwc2_gadget_handle_ep_disabled(hs_ep); |
| |
| if (ints & DXEPINT_OUTTKNEPDIS) |
| dwc2_gadget_handle_out_token_ep_disabled(hs_ep); |
| |
| if (ints & DXEPINT_NAKINTRPT) |
| dwc2_gadget_handle_nak(hs_ep); |
| |
| if (ints & DXEPINT_AHBERR) |
| dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__); |
| |
| if (ints & DXEPINT_SETUP) { /* Setup or Timeout */ |
| dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__); |
| |
| if (using_dma(hsotg) && idx == 0) { |
| /* |
| * this is the notification we've received a |
| * setup packet. In non-DMA mode we'd get this |
| * from the RXFIFO, instead we need to process |
| * the setup here. |
| */ |
| |
| if (dir_in) |
| WARN_ON_ONCE(1); |
| else |
| dwc2_hsotg_handle_outdone(hsotg, 0); |
| } |
| } |
| |
| if (ints & DXEPINT_STSPHSERCVD) { |
| dev_dbg(hsotg->dev, "%s: StsPhseRcvd\n", __func__); |
| |
| /* Safety check EP0 state when STSPHSERCVD asserted */ |
| if (hsotg->ep0_state == DWC2_EP0_DATA_OUT) { |
| /* Move to STATUS IN for DDMA */ |
| if (using_desc_dma(hsotg)) { |
| if (!hsotg->delayed_status) |
| dwc2_hsotg_ep0_zlp(hsotg, true); |
| else |
| /* In case of 3 stage Control Write with delayed |
| * status, when Status IN transfer started |
| * before STSPHSERCVD asserted, NAKSTS bit not |
| * cleared by CNAK in dwc2_hsotg_start_req() |
| * function. Clear now NAKSTS to allow complete |
| * transfer. |
| */ |
| dwc2_set_bit(hsotg, DIEPCTL(0), |
| DXEPCTL_CNAK); |
| } |
| } |
| |
| } |
| |
| if (ints & DXEPINT_BACK2BACKSETUP) |
| dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__); |
| |
| if (ints & DXEPINT_BNAINTR) { |
| dev_dbg(hsotg->dev, "%s: BNA interrupt\n", __func__); |
| if (hs_ep->isochronous) |
| dwc2_gadget_handle_isoc_bna(hs_ep); |
| } |
| |
| if (dir_in && !hs_ep->isochronous) { |
| /* not sure if this is important, but we'll clear it anyway */ |
| if (ints & DXEPINT_INTKNTXFEMP) { |
| dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n", |
| __func__, idx); |
| } |
| |
| /* this probably means something bad is happening */ |
| if (ints & DXEPINT_INTKNEPMIS) { |
| dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n", |
| __func__, idx); |
| } |
| |
| /* FIFO has space or is empty (see GAHBCFG) */ |
| if (hsotg->dedicated_fifos && |
| ints & DXEPINT_TXFEMP) { |
| dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n", |
| __func__, idx); |
| if (!using_dma(hsotg)) |
| dwc2_hsotg_trytx(hsotg, hs_ep); |
| } |
| } |
| } |
| |
| /** |
| * dwc2_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done) |
| * @hsotg: The device state. |
| * |
| * Handle updating the device settings after the enumeration phase has |
| * been completed. |
| */ |
| static void dwc2_hsotg_irq_enumdone(struct dwc2_hsotg *hsotg) |
| { |
| u32 dsts = dwc2_readl(hsotg, DSTS); |
| int ep0_mps = 0, ep_mps = 8; |
| |
| /* |
| * This should signal the finish of the enumeration phase |
| * of the USB handshaking, so we should now know what rate |
| * we connected at. |
| */ |
| |
| dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts); |
| |
| /* |
| * note, since we're limited by the size of transfer on EP0, and |
| * it seems IN transfers must be a even number of packets we do |
| * not advertise a 64byte MPS on EP0. |
| */ |
| |
| /* catch both EnumSpd_FS and EnumSpd_FS48 */ |
| switch ((dsts & DSTS_ENUMSPD_MASK) >> DSTS_ENUMSPD_SHIFT) { |
| case DSTS_ENUMSPD_FS: |
| case DSTS_ENUMSPD_FS48: |
| hsotg->gadget.speed = USB_SPEED_FULL; |
| ep0_mps = EP0_MPS_LIMIT; |
| ep_mps = 1023; |
| break; |
| |
| case DSTS_ENUMSPD_HS: |
| hsotg->gadget.speed = USB_SPEED_HIGH; |
| ep0_mps = EP0_MPS_LIMIT; |
| ep_mps = 1024; |
| break; |
| |
| case DSTS_ENUMSPD_LS: |
| hsotg->gadget.speed = USB_SPEED_LOW; |
| ep0_mps = 8; |
| ep_mps = 8; |
| /* |
| * note, we don't actually support LS in this driver at the |
| * moment, and the documentation seems to imply that it isn't |
| * supported by the PHYs on some of the devices. |
| */ |
| break; |
| } |
| dev_info(hsotg->dev, "new device is %s\n", |
| usb_speed_string(hsotg->gadget.speed)); |
| |
| /* |
| * we should now know the maximum packet size for an |
| * endpoint, so set the endpoints to a default value. |
| */ |
| |
| if (ep0_mps) { |
| int i; |
| /* Initialize ep0 for both in and out directions */ |
| dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 1); |
| dwc2_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps, 0, 0); |
| for (i = 1; i < hsotg->num_of_eps; i++) { |
| if (hsotg->eps_in[i]) |
| dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, |
| 0, 1); |
| if (hsotg->eps_out[i]) |
| dwc2_hsotg_set_ep_maxpacket(hsotg, i, ep_mps, |
| 0, 0); |
| } |
| } |
| |
| /* ensure after enumeration our EP0 is active */ |
| |
| dwc2_hsotg_enqueue_setup(hsotg); |
| |
| dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", |
| dwc2_readl(hsotg, DIEPCTL0), |
| dwc2_readl(hsotg, DOEPCTL0)); |
| } |
| |
| /** |
| * kill_all_requests - remove all requests from the endpoint's queue |
| * @hsotg: The device state. |
| * @ep: The endpoint the requests may be on. |
| * @result: The result code to use. |
| * |
| * Go through the requests on the given endpoint and mark them |
| * completed with the given result code. |
| */ |
| static void kill_all_requests(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *ep, |
| int result) |
| { |
| unsigned int size; |
| |
| ep->req = NULL; |
| |
| while (!list_empty(&ep->queue)) { |
| struct dwc2_hsotg_req *req = get_ep_head(ep); |
| |
| dwc2_hsotg_complete_request(hsotg, ep, req, result); |
| } |
| |
| if (!hsotg->dedicated_fifos) |
| return; |
| size = (dwc2_readl(hsotg, DTXFSTS(ep->fifo_index)) & 0xffff) * 4; |
| if (size < ep->fifo_size) |
| dwc2_hsotg_txfifo_flush(hsotg, ep->fifo_index); |
| } |
| |
| /** |
| * dwc2_hsotg_disconnect - disconnect service |
| * @hsotg: The device state. |
| * |
| * The device has been disconnected. Remove all current |
| * transactions and signal the gadget driver that this |
| * has happened. |
| */ |
| void dwc2_hsotg_disconnect(struct dwc2_hsotg *hsotg) |
| { |
| unsigned int ep; |
| |
| if (!hsotg->connected) |
| return; |
| |
| hsotg->connected = 0; |
| hsotg->test_mode = 0; |
| |
| /* all endpoints should be shutdown */ |
| for (ep = 0; ep < hsotg->num_of_eps; ep++) { |
| if (hsotg->eps_in[ep]) |
| kill_all_requests(hsotg, hsotg->eps_in[ep], |
| -ESHUTDOWN); |
| if (hsotg->eps_out[ep]) |
| kill_all_requests(hsotg, hsotg->eps_out[ep], |
| -ESHUTDOWN); |
| } |
| |
| call_gadget(hsotg, disconnect); |
| hsotg->lx_state = DWC2_L3; |
| |
| usb_gadget_set_state(&hsotg->gadget, USB_STATE_NOTATTACHED); |
| } |
| |
| /** |
| * dwc2_hsotg_irq_fifoempty - TX FIFO empty interrupt handler |
| * @hsotg: The device state: |
| * @periodic: True if this is a periodic FIFO interrupt |
| */ |
| static void dwc2_hsotg_irq_fifoempty(struct dwc2_hsotg *hsotg, bool periodic) |
| { |
| struct dwc2_hsotg_ep *ep; |
| int epno, ret; |
| |
| /* look through for any more data to transmit */ |
| for (epno = 0; epno < hsotg->num_of_eps; epno++) { |
| ep = index_to_ep(hsotg, epno, 1); |
| |
| if (!ep) |
| continue; |
| |
| if (!ep->dir_in) |
| continue; |
| |
| if ((periodic && !ep->periodic) || |
| (!periodic && ep->periodic)) |
| continue; |
| |
| ret = dwc2_hsotg_trytx(hsotg, ep); |
| if (ret < 0) |
| break; |
| } |
| } |
| |
| /* IRQ flags which will trigger a retry around the IRQ loop */ |
| #define IRQ_RETRY_MASK (GINTSTS_NPTXFEMP | \ |
| GINTSTS_PTXFEMP | \ |
| GINTSTS_RXFLVL) |
| |
| static int dwc2_hsotg_ep_disable(struct usb_ep *ep); |
| /** |
| * dwc2_hsotg_core_init_disconnected - issue softreset to the core |
| * @hsotg: The device state |
| * @is_usb_reset: Usb resetting flag |
| * |
| * Issue a soft reset to the core, and await the core finishing it. |
| */ |
| void dwc2_hsotg_core_init_disconnected(struct dwc2_hsotg *hsotg, |
| bool is_usb_reset) |
| { |
| u32 intmsk; |
| u32 val; |
| u32 usbcfg; |
| u32 dcfg = 0; |
| int ep; |
| |
| /* Kill any ep0 requests as controller will be reinitialized */ |
| kill_all_requests(hsotg, hsotg->eps_out[0], -ECONNRESET); |
| |
| if (!is_usb_reset) { |
| if (dwc2_core_reset(hsotg, true)) |
| return; |
| } else { |
| /* all endpoints should be shutdown */ |
| for (ep = 1; ep < hsotg->num_of_eps; ep++) { |
| if (hsotg->eps_in[ep]) |
| dwc2_hsotg_ep_disable(&hsotg->eps_in[ep]->ep); |
| if (hsotg->eps_out[ep]) |
| dwc2_hsotg_ep_disable(&hsotg->eps_out[ep]->ep); |
| } |
| } |
| |
| /* |
| * we must now enable ep0 ready for host detection and then |
| * set configuration. |
| */ |
| |
| /* keep other bits untouched (so e.g. forced modes are not lost) */ |
| usbcfg = dwc2_readl(hsotg, GUSBCFG); |
| usbcfg &= ~GUSBCFG_TOUTCAL_MASK; |
| usbcfg |= GUSBCFG_TOUTCAL(7); |
| |
| /* remove the HNP/SRP and set the PHY */ |
| usbcfg &= ~(GUSBCFG_SRPCAP | GUSBCFG_HNPCAP); |
| dwc2_writel(hsotg, usbcfg, GUSBCFG); |
| |
| dwc2_phy_init(hsotg, true); |
| |
| dwc2_hsotg_init_fifo(hsotg); |
| |
| if (!is_usb_reset) |
| dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); |
| |
| dcfg |= DCFG_EPMISCNT(1); |
| |
| switch (hsotg->params.speed) { |
| case DWC2_SPEED_PARAM_LOW: |
| dcfg |= DCFG_DEVSPD_LS; |
| break; |
| case DWC2_SPEED_PARAM_FULL: |
| if (hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) |
| dcfg |= DCFG_DEVSPD_FS48; |
| else |
| dcfg |= DCFG_DEVSPD_FS; |
| break; |
| default: |
| dcfg |= DCFG_DEVSPD_HS; |
| } |
| |
| if (hsotg->params.ipg_isoc_en) |
| dcfg |= DCFG_IPG_ISOC_SUPPORDED; |
| |
| dwc2_writel(hsotg, dcfg, DCFG); |
| |
| /* Clear any pending OTG interrupts */ |
| dwc2_writel(hsotg, 0xffffffff, GOTGINT); |
| |
| /* Clear any pending interrupts */ |
| dwc2_writel(hsotg, 0xffffffff, GINTSTS); |
| intmsk = GINTSTS_ERLYSUSP | GINTSTS_SESSREQINT | |
| GINTSTS_GOUTNAKEFF | GINTSTS_GINNAKEFF | |
| GINTSTS_USBRST | GINTSTS_RESETDET | |
| GINTSTS_ENUMDONE | GINTSTS_OTGINT | |
| GINTSTS_USBSUSP | GINTSTS_WKUPINT | |
| GINTSTS_LPMTRANRCVD; |
| |
| if (!using_desc_dma(hsotg)) |
| intmsk |= GINTSTS_INCOMPL_SOIN | GINTSTS_INCOMPL_SOOUT; |
| |
| if (!hsotg->params.external_id_pin_ctl) |
| intmsk |= GINTSTS_CONIDSTSCHNG; |
| |
| dwc2_writel(hsotg, intmsk, GINTMSK); |
| |
| if (using_dma(hsotg)) { |
| dwc2_writel(hsotg, GAHBCFG_GLBL_INTR_EN | GAHBCFG_DMA_EN | |
| hsotg->params.ahbcfg, |
| GAHBCFG); |
| |
| /* Set DDMA mode support in the core if needed */ |
| if (using_desc_dma(hsotg)) |
| dwc2_set_bit(hsotg, DCFG, DCFG_DESCDMA_EN); |
| |
| } else { |
| dwc2_writel(hsotg, ((hsotg->dedicated_fifos) ? |
| (GAHBCFG_NP_TXF_EMP_LVL | |
| GAHBCFG_P_TXF_EMP_LVL) : 0) | |
| GAHBCFG_GLBL_INTR_EN, GAHBCFG); |
| } |
| |
| /* |
| * If INTknTXFEmpMsk is enabled, it's important to disable ep interrupts |
| * when we have no data to transfer. Otherwise we get being flooded by |
| * interrupts. |
| */ |
| |
| dwc2_writel(hsotg, ((hsotg->dedicated_fifos && !using_dma(hsotg)) ? |
| DIEPMSK_TXFIFOEMPTY | DIEPMSK_INTKNTXFEMPMSK : 0) | |
| DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK | |
| DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK, |
| DIEPMSK); |
| |
| /* |
| * don't need XferCompl, we get that from RXFIFO in slave mode. In |
| * DMA mode we may need this and StsPhseRcvd. |
| */ |
| dwc2_writel(hsotg, (using_dma(hsotg) ? (DIEPMSK_XFERCOMPLMSK | |
| DOEPMSK_STSPHSERCVDMSK) : 0) | |
| DOEPMSK_EPDISBLDMSK | DOEPMSK_AHBERRMSK | |
| DOEPMSK_SETUPMSK, |
| DOEPMSK); |
| |
| /* Enable BNA interrupt for DDMA */ |
| if (using_desc_dma(hsotg)) { |
| dwc2_set_bit(hsotg, DOEPMSK, DOEPMSK_BNAMSK); |
| dwc2_set_bit(hsotg, DIEPMSK, DIEPMSK_BNAININTRMSK); |
| } |
| |
| /* Enable Service Interval mode if supported */ |
| if (using_desc_dma(hsotg) && hsotg->params.service_interval) |
| dwc2_set_bit(hsotg, DCTL, DCTL_SERVICE_INTERVAL_SUPPORTED); |
| |
| dwc2_writel(hsotg, 0, DAINTMSK); |
| |
| dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", |
| dwc2_readl(hsotg, DIEPCTL0), |
| dwc2_readl(hsotg, DOEPCTL0)); |
| |
| /* enable in and out endpoint interrupts */ |
| dwc2_hsotg_en_gsint(hsotg, GINTSTS_OEPINT | GINTSTS_IEPINT); |
| |
| /* |
| * Enable the RXFIFO when in slave mode, as this is how we collect |
| * the data. In DMA mode, we get events from the FIFO but also |
| * things we cannot process, so do not use it. |
| */ |
| if (!using_dma(hsotg)) |
| dwc2_hsotg_en_gsint(hsotg, GINTSTS_RXFLVL); |
| |
| /* Enable interrupts for EP0 in and out */ |
| dwc2_hsotg_ctrl_epint(hsotg, 0, 0, 1); |
| dwc2_hsotg_ctrl_epint(hsotg, 0, 1, 1); |
| |
| if (!is_usb_reset) { |
| dwc2_set_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); |
| udelay(10); /* see openiboot */ |
| dwc2_clear_bit(hsotg, DCTL, DCTL_PWRONPRGDONE); |
| } |
| |
| dev_dbg(hsotg->dev, "DCTL=0x%08x\n", dwc2_readl(hsotg, DCTL)); |
| |
| /* |
| * DxEPCTL_USBActEp says RO in manual, but seems to be set by |
| * writing to the EPCTL register.. |
| */ |
| |
| /* set to read 1 8byte packet */ |
| dwc2_writel(hsotg, DXEPTSIZ_MC(1) | DXEPTSIZ_PKTCNT(1) | |
| DXEPTSIZ_XFERSIZE(8), DOEPTSIZ0); |
| |
| dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | |
| DXEPCTL_CNAK | DXEPCTL_EPENA | |
| DXEPCTL_USBACTEP, |
| DOEPCTL0); |
| |
| /* enable, but don't activate EP0in */ |
| dwc2_writel(hsotg, dwc2_hsotg_ep0_mps(hsotg->eps_out[0]->ep.maxpacket) | |
| DXEPCTL_USBACTEP, DIEPCTL0); |
| |
| /* clear global NAKs */ |
| val = DCTL_CGOUTNAK | DCTL_CGNPINNAK; |
| if (!is_usb_reset) |
| val |= DCTL_SFTDISCON; |
| dwc2_set_bit(hsotg, DCTL, val); |
| |
| /* configure the core to support LPM */ |
| dwc2_gadget_init_lpm(hsotg); |
| |
| /* program GREFCLK register if needed */ |
| if (using_desc_dma(hsotg) && hsotg->params.service_interval) |
| dwc2_gadget_program_ref_clk(hsotg); |
| |
| /* must be at-least 3ms to allow bus to see disconnect */ |
| mdelay(3); |
| |
| hsotg->lx_state = DWC2_L0; |
| |
| dwc2_hsotg_enqueue_setup(hsotg); |
| |
| dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n", |
| dwc2_readl(hsotg, DIEPCTL0), |
| dwc2_readl(hsotg, DOEPCTL0)); |
| } |
| |
| void dwc2_hsotg_core_disconnect(struct dwc2_hsotg *hsotg) |
| { |
| /* set the soft-disconnect bit */ |
| dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); |
| } |
| |
| void dwc2_hsotg_core_connect(struct dwc2_hsotg *hsotg) |
| { |
| /* remove the soft-disconnect and let's go */ |
| dwc2_clear_bit(hsotg, DCTL, DCTL_SFTDISCON); |
| } |
| |
| /** |
| * dwc2_gadget_handle_incomplete_isoc_in - handle incomplete ISO IN Interrupt. |
| * @hsotg: The device state: |
| * |
| * This interrupt indicates one of the following conditions occurred while |
| * transmitting an ISOC transaction. |
| * - Corrupted IN Token for ISOC EP. |
| * - Packet not complete in FIFO. |
| * |
| * The following actions will be taken: |
| * - Determine the EP |
| * - Disable EP; when 'Endpoint Disabled' interrupt is received Flush FIFO |
| */ |
| static void dwc2_gadget_handle_incomplete_isoc_in(struct dwc2_hsotg *hsotg) |
| { |
| struct dwc2_hsotg_ep *hs_ep; |
| u32 epctrl; |
| u32 daintmsk; |
| u32 idx; |
| |
| dev_dbg(hsotg->dev, "Incomplete isoc in interrupt received:\n"); |
| |
| daintmsk = dwc2_readl(hsotg, DAINTMSK); |
| |
| for (idx = 1; idx < hsotg->num_of_eps; idx++) { |
| hs_ep = hsotg->eps_in[idx]; |
| /* Proceed only unmasked ISOC EPs */ |
| if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) |
| continue; |
| |
| epctrl = dwc2_readl(hsotg, DIEPCTL(idx)); |
| if ((epctrl & DXEPCTL_EPENA) && |
| dwc2_gadget_target_frame_elapsed(hs_ep)) { |
| epctrl |= DXEPCTL_SNAK; |
| epctrl |= DXEPCTL_EPDIS; |
| dwc2_writel(hsotg, epctrl, DIEPCTL(idx)); |
| } |
| } |
| |
| /* Clear interrupt */ |
| dwc2_writel(hsotg, GINTSTS_INCOMPL_SOIN, GINTSTS); |
| } |
| |
| /** |
| * dwc2_gadget_handle_incomplete_isoc_out - handle incomplete ISO OUT Interrupt |
| * @hsotg: The device state: |
| * |
| * This interrupt indicates one of the following conditions occurred while |
| * transmitting an ISOC transaction. |
| * - Corrupted OUT Token for ISOC EP. |
| * - Packet not complete in FIFO. |
| * |
| * The following actions will be taken: |
| * - Determine the EP |
| * - Set DCTL_SGOUTNAK and unmask GOUTNAKEFF if target frame elapsed. |
| */ |
| static void dwc2_gadget_handle_incomplete_isoc_out(struct dwc2_hsotg *hsotg) |
| { |
| u32 gintsts; |
| u32 gintmsk; |
| u32 daintmsk; |
| u32 epctrl; |
| struct dwc2_hsotg_ep *hs_ep; |
| int idx; |
| |
| dev_dbg(hsotg->dev, "%s: GINTSTS_INCOMPL_SOOUT\n", __func__); |
| |
| daintmsk = dwc2_readl(hsotg, DAINTMSK); |
| daintmsk >>= DAINT_OUTEP_SHIFT; |
| |
| for (idx = 1; idx < hsotg->num_of_eps; idx++) { |
| hs_ep = hsotg->eps_out[idx]; |
| /* Proceed only unmasked ISOC EPs */ |
| if ((BIT(idx) & ~daintmsk) || !hs_ep->isochronous) |
| continue; |
| |
| epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); |
| if ((epctrl & DXEPCTL_EPENA) && |
| dwc2_gadget_target_frame_elapsed(hs_ep)) { |
| /* Unmask GOUTNAKEFF interrupt */ |
| gintmsk = dwc2_readl(hsotg, GINTMSK); |
| gintmsk |= GINTSTS_GOUTNAKEFF; |
| dwc2_writel(hsotg, gintmsk, GINTMSK); |
| |
| gintsts = dwc2_readl(hsotg, GINTSTS); |
| if (!(gintsts & GINTSTS_GOUTNAKEFF)) { |
| dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); |
| break; |
| } |
| } |
| } |
| |
| /* Clear interrupt */ |
| dwc2_writel(hsotg, GINTSTS_INCOMPL_SOOUT, GINTSTS); |
| } |
| |
| /** |
| * dwc2_hsotg_irq - handle device interrupt |
| * @irq: The IRQ number triggered |
| * @pw: The pw value when registered the handler. |
| */ |
| static irqreturn_t dwc2_hsotg_irq(int irq, void *pw) |
| { |
| struct dwc2_hsotg *hsotg = pw; |
| int retry_count = 8; |
| u32 gintsts; |
| u32 gintmsk; |
| |
| if (!dwc2_is_device_mode(hsotg)) |
| return IRQ_NONE; |
| |
| spin_lock(&hsotg->lock); |
| irq_retry: |
| gintsts = dwc2_readl(hsotg, GINTSTS); |
| gintmsk = dwc2_readl(hsotg, GINTMSK); |
| |
| dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n", |
| __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count); |
| |
| gintsts &= gintmsk; |
| |
| if (gintsts & GINTSTS_RESETDET) { |
| dev_dbg(hsotg->dev, "%s: USBRstDet\n", __func__); |
| |
| dwc2_writel(hsotg, GINTSTS_RESETDET, GINTSTS); |
| |
| /* This event must be used only if controller is suspended */ |
| if (hsotg->in_ppd && hsotg->lx_state == DWC2_L2) |
| dwc2_exit_partial_power_down(hsotg, 0, true); |
| |
| hsotg->lx_state = DWC2_L0; |
| } |
| |
| if (gintsts & (GINTSTS_USBRST | GINTSTS_RESETDET)) { |
| u32 usb_status = dwc2_readl(hsotg, GOTGCTL); |
| u32 connected = hsotg->connected; |
| |
| dev_dbg(hsotg->dev, "%s: USBRst\n", __func__); |
| dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n", |
| dwc2_readl(hsotg, GNPTXSTS)); |
| |
| dwc2_writel(hsotg, GINTSTS_USBRST, GINTSTS); |
| |
| /* Report disconnection if it is not already done. */ |
| dwc2_hsotg_disconnect(hsotg); |
| |
| /* Reset device address to zero */ |
| dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); |
| |
| if (usb_status & GOTGCTL_BSESVLD && connected) |
| dwc2_hsotg_core_init_disconnected(hsotg, true); |
| } |
| |
| if (gintsts & GINTSTS_ENUMDONE) { |
| dwc2_writel(hsotg, GINTSTS_ENUMDONE, GINTSTS); |
| |
| dwc2_hsotg_irq_enumdone(hsotg); |
| } |
| |
| if (gintsts & (GINTSTS_OEPINT | GINTSTS_IEPINT)) { |
| u32 daint = dwc2_readl(hsotg, DAINT); |
| u32 daintmsk = dwc2_readl(hsotg, DAINTMSK); |
| u32 daint_out, daint_in; |
| int ep; |
| |
| daint &= daintmsk; |
| daint_out = daint >> DAINT_OUTEP_SHIFT; |
| daint_in = daint & ~(daint_out << DAINT_OUTEP_SHIFT); |
| |
| dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint); |
| |
| for (ep = 0; ep < hsotg->num_of_eps && daint_out; |
| ep++, daint_out >>= 1) { |
| if (daint_out & 1) |
| dwc2_hsotg_epint(hsotg, ep, 0); |
| } |
| |
| for (ep = 0; ep < hsotg->num_of_eps && daint_in; |
| ep++, daint_in >>= 1) { |
| if (daint_in & 1) |
| dwc2_hsotg_epint(hsotg, ep, 1); |
| } |
| } |
| |
| /* check both FIFOs */ |
| |
| if (gintsts & GINTSTS_NPTXFEMP) { |
| dev_dbg(hsotg->dev, "NPTxFEmp\n"); |
| |
| /* |
| * Disable the interrupt to stop it happening again |
| * unless one of these endpoint routines decides that |
| * it needs re-enabling |
| */ |
| |
| dwc2_hsotg_disable_gsint(hsotg, GINTSTS_NPTXFEMP); |
| dwc2_hsotg_irq_fifoempty(hsotg, false); |
| } |
| |
| if (gintsts & GINTSTS_PTXFEMP) { |
| dev_dbg(hsotg->dev, "PTxFEmp\n"); |
| |
| /* See note in GINTSTS_NPTxFEmp */ |
| |
| dwc2_hsotg_disable_gsint(hsotg, GINTSTS_PTXFEMP); |
| dwc2_hsotg_irq_fifoempty(hsotg, true); |
| } |
| |
| if (gintsts & GINTSTS_RXFLVL) { |
| /* |
| * note, since GINTSTS_RxFLvl doubles as FIFO-not-empty, |
| * we need to retry dwc2_hsotg_handle_rx if this is still |
| * set. |
| */ |
| |
| dwc2_hsotg_handle_rx(hsotg); |
| } |
| |
| if (gintsts & GINTSTS_ERLYSUSP) { |
| dev_dbg(hsotg->dev, "GINTSTS_ErlySusp\n"); |
| dwc2_writel(hsotg, GINTSTS_ERLYSUSP, GINTSTS); |
| } |
| |
| /* |
| * these next two seem to crop-up occasionally causing the core |
| * to shutdown the USB transfer, so try clearing them and logging |
| * the occurrence. |
| */ |
| |
| if (gintsts & GINTSTS_GOUTNAKEFF) { |
| u8 idx; |
| u32 epctrl; |
| u32 gintmsk; |
| u32 daintmsk; |
| struct dwc2_hsotg_ep *hs_ep; |
| |
| daintmsk = dwc2_readl(hsotg, DAINTMSK); |
| daintmsk >>= DAINT_OUTEP_SHIFT; |
| /* Mask this interrupt */ |
| gintmsk = dwc2_readl(hsotg, GINTMSK); |
| gintmsk &= ~GINTSTS_GOUTNAKEFF; |
| dwc2_writel(hsotg, gintmsk, GINTMSK); |
| |
| dev_dbg(hsotg->dev, "GOUTNakEff triggered\n"); |
| for (idx = 1; idx < hsotg->num_of_eps; idx++) { |
| hs_ep = hsotg->eps_out[idx]; |
| /* Proceed only unmasked ISOC EPs */ |
| if (BIT(idx) & ~daintmsk) |
| continue; |
| |
| epctrl = dwc2_readl(hsotg, DOEPCTL(idx)); |
| |
| //ISOC Ep's only |
| if ((epctrl & DXEPCTL_EPENA) && hs_ep->isochronous) { |
| epctrl |= DXEPCTL_SNAK; |
| epctrl |= DXEPCTL_EPDIS; |
| dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); |
| continue; |
| } |
| |
| //Non-ISOC EP's |
| if (hs_ep->halted) { |
| if (!(epctrl & DXEPCTL_EPENA)) |
| epctrl |= DXEPCTL_EPENA; |
| epctrl |= DXEPCTL_EPDIS; |
| epctrl |= DXEPCTL_STALL; |
| dwc2_writel(hsotg, epctrl, DOEPCTL(idx)); |
| } |
| } |
| |
| /* This interrupt bit is cleared in DXEPINT_EPDISBLD handler */ |
| } |
| |
| if (gintsts & GINTSTS_GINNAKEFF) { |
| dev_info(hsotg->dev, "GINNakEff triggered\n"); |
| |
| dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); |
| |
| dwc2_hsotg_dump(hsotg); |
| } |
| |
| if (gintsts & GINTSTS_INCOMPL_SOIN) |
| dwc2_gadget_handle_incomplete_isoc_in(hsotg); |
| |
| if (gintsts & GINTSTS_INCOMPL_SOOUT) |
| dwc2_gadget_handle_incomplete_isoc_out(hsotg); |
| |
| /* |
| * if we've had fifo events, we should try and go around the |
| * loop again to see if there's any point in returning yet. |
| */ |
| |
| if (gintsts & IRQ_RETRY_MASK && --retry_count > 0) |
| goto irq_retry; |
| |
| /* Check WKUP_ALERT interrupt*/ |
| if (hsotg->params.service_interval) |
| dwc2_gadget_wkup_alert_handler(hsotg); |
| |
| spin_unlock(&hsotg->lock); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static void dwc2_hsotg_ep_stop_xfr(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *hs_ep) |
| { |
| u32 epctrl_reg; |
| u32 epint_reg; |
| |
| epctrl_reg = hs_ep->dir_in ? DIEPCTL(hs_ep->index) : |
| DOEPCTL(hs_ep->index); |
| epint_reg = hs_ep->dir_in ? DIEPINT(hs_ep->index) : |
| DOEPINT(hs_ep->index); |
| |
| dev_dbg(hsotg->dev, "%s: stopping transfer on %s\n", __func__, |
| hs_ep->name); |
| |
| if (hs_ep->dir_in) { |
| if (hsotg->dedicated_fifos || hs_ep->periodic) { |
| dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_SNAK); |
| /* Wait for Nak effect */ |
| if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, |
| DXEPINT_INEPNAKEFF, 100)) |
| dev_warn(hsotg->dev, |
| "%s: timeout DIEPINT.NAKEFF\n", |
| __func__); |
| } else { |
| dwc2_set_bit(hsotg, DCTL, DCTL_SGNPINNAK); |
| /* Wait for Nak effect */ |
| if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, |
| GINTSTS_GINNAKEFF, 100)) |
| dev_warn(hsotg->dev, |
| "%s: timeout GINTSTS.GINNAKEFF\n", |
| __func__); |
| } |
| } else { |
| /* Mask GINTSTS_GOUTNAKEFF interrupt */ |
| dwc2_hsotg_disable_gsint(hsotg, GINTSTS_GOUTNAKEFF); |
| |
| if (!(dwc2_readl(hsotg, GINTSTS) & GINTSTS_GOUTNAKEFF)) |
| dwc2_set_bit(hsotg, DCTL, DCTL_SGOUTNAK); |
| |
| if (!using_dma(hsotg)) { |
| /* Wait for GINTSTS_RXFLVL interrupt */ |
| if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, |
| GINTSTS_RXFLVL, 100)) { |
| dev_warn(hsotg->dev, "%s: timeout GINTSTS.RXFLVL\n", |
| __func__); |
| } else { |
| /* |
| * Pop GLOBAL OUT NAK status packet from RxFIFO |
| * to assert GOUTNAKEFF interrupt |
| */ |
| dwc2_readl(hsotg, GRXSTSP); |
| } |
| } |
| |
| /* Wait for global nak to take effect */ |
| if (dwc2_hsotg_wait_bit_set(hsotg, GINTSTS, |
| GINTSTS_GOUTNAKEFF, 100)) |
| dev_warn(hsotg->dev, "%s: timeout GINTSTS.GOUTNAKEFF\n", |
| __func__); |
| } |
| |
| /* Disable ep */ |
| dwc2_set_bit(hsotg, epctrl_reg, DXEPCTL_EPDIS | DXEPCTL_SNAK); |
| |
| /* Wait for ep to be disabled */ |
| if (dwc2_hsotg_wait_bit_set(hsotg, epint_reg, DXEPINT_EPDISBLD, 100)) |
| dev_warn(hsotg->dev, |
| "%s: timeout DOEPCTL.EPDisable\n", __func__); |
| |
| /* Clear EPDISBLD interrupt */ |
| dwc2_set_bit(hsotg, epint_reg, DXEPINT_EPDISBLD); |
| |
| if (hs_ep->dir_in) { |
| unsigned short fifo_index; |
| |
| if (hsotg->dedicated_fifos || hs_ep->periodic) |
| fifo_index = hs_ep->fifo_index; |
| else |
| fifo_index = 0; |
| |
| /* Flush TX FIFO */ |
| dwc2_flush_tx_fifo(hsotg, fifo_index); |
| |
| /* Clear Global In NP NAK in Shared FIFO for non periodic ep */ |
| if (!hsotg->dedicated_fifos && !hs_ep->periodic) |
| dwc2_set_bit(hsotg, DCTL, DCTL_CGNPINNAK); |
| |
| } else { |
| /* Remove global NAKs */ |
| dwc2_set_bit(hsotg, DCTL, DCTL_CGOUTNAK); |
| } |
| } |
| |
| /** |
| * dwc2_hsotg_ep_enable - enable the given endpoint |
| * @ep: The USB endpint to configure |
| * @desc: The USB endpoint descriptor to configure with. |
| * |
| * This is called from the USB gadget code's usb_ep_enable(). |
| */ |
| static int dwc2_hsotg_ep_enable(struct usb_ep *ep, |
| const struct usb_endpoint_descriptor *desc) |
| { |
| struct dwc2_hsotg_ep *hs_ep = our_ep(ep); |
| struct dwc2_hsotg *hsotg = hs_ep->parent; |
| unsigned long flags; |
| unsigned int index = hs_ep->index; |
| u32 epctrl_reg; |
| u32 epctrl; |
| u32 mps; |
| u32 mc; |
| u32 mask; |
| unsigned int dir_in; |
| unsigned int i, val, size; |
| int ret = 0; |
| unsigned char ep_type; |
| int desc_num; |
| |
| dev_dbg(hsotg->dev, |
| "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n", |
| __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes, |
| desc->wMaxPacketSize, desc->bInterval); |
| |
| /* not to be called for EP0 */ |
| if (index == 0) { |
| dev_err(hsotg->dev, "%s: called for EP 0\n", __func__); |
| return -EINVAL; |
| } |
| |
| dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0; |
| if (dir_in != hs_ep->dir_in) { |
| dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__); |
| return -EINVAL; |
| } |
| |
| ep_type = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK; |
| mps = usb_endpoint_maxp(desc); |
| mc = usb_endpoint_maxp_mult(desc); |
| |
| /* ISOC IN in DDMA supported bInterval up to 10 */ |
| if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && |
| dir_in && desc->bInterval > 10) { |
| dev_err(hsotg->dev, |
| "%s: ISOC IN, DDMA: bInterval>10 not supported!\n", __func__); |
| return -EINVAL; |
| } |
| |
| /* High bandwidth ISOC OUT in DDMA not supported */ |
| if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC && |
| !dir_in && mc > 1) { |
| dev_err(hsotg->dev, |
| "%s: ISOC OUT, DDMA: HB not supported!\n", __func__); |
| return -EINVAL; |
| } |
| |
| /* note, we handle this here instead of dwc2_hsotg_set_ep_maxpacket */ |
| |
| epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); |
| epctrl = dwc2_readl(hsotg, epctrl_reg); |
| |
| dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n", |
| __func__, epctrl, epctrl_reg); |
| |
| if (using_desc_dma(hsotg) && ep_type == USB_ENDPOINT_XFER_ISOC) |
| desc_num = MAX_DMA_DESC_NUM_HS_ISOC; |
| else |
| desc_num = MAX_DMA_DESC_NUM_GENERIC; |
| |
| /* Allocate DMA descriptor chain for non-ctrl endpoints */ |
| if (using_desc_dma(hsotg) && !hs_ep->desc_list) { |
| hs_ep->desc_list = dmam_alloc_coherent(hsotg->dev, |
| desc_num * sizeof(struct dwc2_dma_desc), |
| &hs_ep->desc_list_dma, GFP_ATOMIC); |
| if (!hs_ep->desc_list) { |
| ret = -ENOMEM; |
| goto error2; |
| } |
| } |
| |
| spin_lock_irqsave(&hsotg->lock, flags); |
| |
| epctrl &= ~(DXEPCTL_EPTYPE_MASK | DXEPCTL_MPS_MASK); |
| epctrl |= DXEPCTL_MPS(mps); |
| |
| /* |
| * mark the endpoint as active, otherwise the core may ignore |
| * transactions entirely for this endpoint |
| */ |
| epctrl |= DXEPCTL_USBACTEP; |
| |
| /* update the endpoint state */ |
| dwc2_hsotg_set_ep_maxpacket(hsotg, hs_ep->index, mps, mc, dir_in); |
| |
| /* default, set to non-periodic */ |
| hs_ep->isochronous = 0; |
| hs_ep->periodic = 0; |
| hs_ep->halted = 0; |
| hs_ep->wedged = 0; |
| hs_ep->interval = desc->bInterval; |
| |
| switch (ep_type) { |
| case USB_ENDPOINT_XFER_ISOC: |
| epctrl |= DXEPCTL_EPTYPE_ISO; |
| epctrl |= DXEPCTL_SETEVENFR; |
| hs_ep->isochronous = 1; |
| hs_ep->interval = 1 << (desc->bInterval - 1); |
| hs_ep->target_frame = TARGET_FRAME_INITIAL; |
| hs_ep->next_desc = 0; |
| hs_ep->compl_desc = 0; |
| if (dir_in) { |
| hs_ep->periodic = 1; |
| mask = dwc2_readl(hsotg, DIEPMSK); |
| mask |= DIEPMSK_NAKMSK; |
| dwc2_writel(hsotg, mask, DIEPMSK); |
| } else { |
| epctrl |= DXEPCTL_SNAK; |
| mask = dwc2_readl(hsotg, DOEPMSK); |
| mask |= DOEPMSK_OUTTKNEPDISMSK; |
| dwc2_writel(hsotg, mask, DOEPMSK); |
| } |
| break; |
| |
| case USB_ENDPOINT_XFER_BULK: |
| epctrl |= DXEPCTL_EPTYPE_BULK; |
| break; |
| |
| case USB_ENDPOINT_XFER_INT: |
| if (dir_in) |
| hs_ep->periodic = 1; |
| |
| if (hsotg->gadget.speed == USB_SPEED_HIGH) |
| hs_ep->interval = 1 << (desc->bInterval - 1); |
| |
| epctrl |= DXEPCTL_EPTYPE_INTERRUPT; |
| break; |
| |
| case USB_ENDPOINT_XFER_CONTROL: |
| epctrl |= DXEPCTL_EPTYPE_CONTROL; |
| break; |
| } |
| |
| /* |
| * if the hardware has dedicated fifos, we must give each IN EP |
| * a unique tx-fifo even if it is non-periodic. |
| */ |
| if (dir_in && hsotg->dedicated_fifos) { |
| unsigned fifo_count = dwc2_hsotg_tx_fifo_count(hsotg); |
| u32 fifo_index = 0; |
| u32 fifo_size = UINT_MAX; |
| |
| size = hs_ep->ep.maxpacket * hs_ep->mc; |
| for (i = 1; i <= fifo_count; ++i) { |
| if (hsotg->fifo_map & (1 << i)) |
| continue; |
| val = dwc2_readl(hsotg, DPTXFSIZN(i)); |
| val = (val >> FIFOSIZE_DEPTH_SHIFT) * 4; |
| if (val < size) |
| continue; |
| /* Search for smallest acceptable fifo */ |
| if (val < fifo_size) { |
| fifo_size = val; |
| fifo_index = i; |
| } |
| } |
| if (!fifo_index) { |
| dev_err(hsotg->dev, |
| "%s: No suitable fifo found\n", __func__); |
| ret = -ENOMEM; |
| goto error1; |
| } |
| epctrl &= ~(DXEPCTL_TXFNUM_LIMIT << DXEPCTL_TXFNUM_SHIFT); |
| hsotg->fifo_map |= 1 << fifo_index; |
| epctrl |= DXEPCTL_TXFNUM(fifo_index); |
| hs_ep->fifo_index = fifo_index; |
| hs_ep->fifo_size = fifo_size; |
| } |
| |
| /* for non control endpoints, set PID to D0 */ |
| if (index && !hs_ep->isochronous) |
| epctrl |= DXEPCTL_SETD0PID; |
| |
| /* WA for Full speed ISOC IN in DDMA mode. |
| * By Clear NAK status of EP, core will send ZLP |
| * to IN token and assert NAK interrupt relying |
| * on TxFIFO status only |
| */ |
| |
| if (hsotg->gadget.speed == USB_SPEED_FULL && |
| hs_ep->isochronous && dir_in) { |
| /* The WA applies only to core versions from 2.72a |
| * to 4.00a (including both). Also for FS_IOT_1.00a |
| * and HS_IOT_1.00a. |
| */ |
| u32 gsnpsid = dwc2_readl(hsotg, GSNPSID); |
| |
| if ((gsnpsid >= DWC2_CORE_REV_2_72a && |
| gsnpsid <= DWC2_CORE_REV_4_00a) || |
| gsnpsid == DWC2_FS_IOT_REV_1_00a || |
| gsnpsid == DWC2_HS_IOT_REV_1_00a) |
| epctrl |= DXEPCTL_CNAK; |
| } |
| |
| dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n", |
| __func__, epctrl); |
| |
| dwc2_writel(hsotg, epctrl, epctrl_reg); |
| dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n", |
| __func__, dwc2_readl(hsotg, epctrl_reg)); |
| |
| /* enable the endpoint interrupt */ |
| dwc2_hsotg_ctrl_epint(hsotg, index, dir_in, 1); |
| |
| error1: |
| spin_unlock_irqrestore(&hsotg->lock, flags); |
| |
| error2: |
| if (ret && using_desc_dma(hsotg) && hs_ep->desc_list) { |
| dmam_free_coherent(hsotg->dev, desc_num * |
| sizeof(struct dwc2_dma_desc), |
| hs_ep->desc_list, hs_ep->desc_list_dma); |
| hs_ep->desc_list = NULL; |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * dwc2_hsotg_ep_disable - disable given endpoint |
| * @ep: The endpoint to disable. |
| */ |
| static int dwc2_hsotg_ep_disable(struct usb_ep *ep) |
| { |
| struct dwc2_hsotg_ep *hs_ep = our_ep(ep); |
| struct dwc2_hsotg *hsotg = hs_ep->parent; |
| int dir_in = hs_ep->dir_in; |
| int index = hs_ep->index; |
| u32 epctrl_reg; |
| u32 ctrl; |
| |
| dev_dbg(hsotg->dev, "%s(ep %p)\n", __func__, ep); |
| |
| if (ep == &hsotg->eps_out[0]->ep) { |
| dev_err(hsotg->dev, "%s: called for ep0\n", __func__); |
| return -EINVAL; |
| } |
| |
| if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { |
| dev_err(hsotg->dev, "%s: called in host mode?\n", __func__); |
| return -EINVAL; |
| } |
| |
| epctrl_reg = dir_in ? DIEPCTL(index) : DOEPCTL(index); |
| |
| ctrl = dwc2_readl(hsotg, epctrl_reg); |
| |
| if (ctrl & DXEPCTL_EPENA) |
| dwc2_hsotg_ep_stop_xfr(hsotg, hs_ep); |
| |
| ctrl &= ~DXEPCTL_EPENA; |
| ctrl &= ~DXEPCTL_USBACTEP; |
| ctrl |= DXEPCTL_SNAK; |
| |
| dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl); |
| dwc2_writel(hsotg, ctrl, epctrl_reg); |
| |
| /* disable endpoint interrupts */ |
| dwc2_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0); |
| |
| /* terminate all requests with shutdown */ |
| kill_all_requests(hsotg, hs_ep, -ESHUTDOWN); |
| |
| hsotg->fifo_map &= ~(1 << hs_ep->fifo_index); |
| hs_ep->fifo_index = 0; |
| hs_ep->fifo_size = 0; |
| |
| return 0; |
| } |
| |
| static int dwc2_hsotg_ep_disable_lock(struct usb_ep *ep) |
| { |
| struct dwc2_hsotg_ep *hs_ep = our_ep(ep); |
| struct dwc2_hsotg *hsotg = hs_ep->parent; |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&hsotg->lock, flags); |
| ret = dwc2_hsotg_ep_disable(ep); |
| spin_unlock_irqrestore(&hsotg->lock, flags); |
| return ret; |
| } |
| |
| /** |
| * on_list - check request is on the given endpoint |
| * @ep: The endpoint to check. |
| * @test: The request to test if it is on the endpoint. |
| */ |
| static bool on_list(struct dwc2_hsotg_ep *ep, struct dwc2_hsotg_req *test) |
| { |
| struct dwc2_hsotg_req *req, *treq; |
| |
| list_for_each_entry_safe(req, treq, &ep->queue, queue) { |
| if (req == test) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /** |
| * dwc2_hsotg_ep_dequeue - dequeue given endpoint |
| * @ep: The endpoint to dequeue. |
| * @req: The request to be removed from a queue. |
| */ |
| static int dwc2_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req) |
| { |
| struct dwc2_hsotg_req *hs_req = our_req(req); |
| struct dwc2_hsotg_ep *hs_ep = our_ep(ep); |
| struct dwc2_hsotg *hs = hs_ep->parent; |
| unsigned long flags; |
| |
| dev_dbg(hs->dev, "ep_dequeue(%p,%p)\n", ep, req); |
| |
| spin_lock_irqsave(&hs->lock, flags); |
| |
| if (!on_list(hs_ep, hs_req)) { |
| spin_unlock_irqrestore(&hs->lock, flags); |
| return -EINVAL; |
| } |
| |
| /* Dequeue already started request */ |
| if (req == &hs_ep->req->req) |
| dwc2_hsotg_ep_stop_xfr(hs, hs_ep); |
| |
| dwc2_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET); |
| spin_unlock_irqrestore(&hs->lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * dwc2_gadget_ep_set_wedge - set wedge on a given endpoint |
| * @ep: The endpoint to be wedged. |
| * |
| */ |
| static int dwc2_gadget_ep_set_wedge(struct usb_ep *ep) |
| { |
| struct dwc2_hsotg_ep *hs_ep = our_ep(ep); |
| struct dwc2_hsotg *hs = hs_ep->parent; |
| |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&hs->lock, flags); |
| hs_ep->wedged = 1; |
| ret = dwc2_hsotg_ep_sethalt(ep, 1, false); |
| spin_unlock_irqrestore(&hs->lock, flags); |
| |
| return ret; |
| } |
| |
| /** |
| * dwc2_hsotg_ep_sethalt - set halt on a given endpoint |
| * @ep: The endpoint to set halt. |
| * @value: Set or unset the halt. |
| * @now: If true, stall the endpoint now. Otherwise return -EAGAIN if |
| * the endpoint is busy processing requests. |
| * |
| * We need to stall the endpoint immediately if request comes from set_feature |
| * protocol command handler. |
| */ |
| static int dwc2_hsotg_ep_sethalt(struct usb_ep *ep, int value, bool now) |
| { |
| struct dwc2_hsotg_ep *hs_ep = our_ep(ep); |
| struct dwc2_hsotg *hs = hs_ep->parent; |
| int index = hs_ep->index; |
| u32 epreg; |
| u32 epctl; |
| u32 xfertype; |
| |
| dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value); |
| |
| if (index == 0) { |
| if (value) |
| dwc2_hsotg_stall_ep0(hs); |
| else |
| dev_warn(hs->dev, |
| "%s: can't clear halt on ep0\n", __func__); |
| return 0; |
| } |
| |
| if (hs_ep->isochronous) { |
| dev_err(hs->dev, "%s is Isochronous Endpoint\n", ep->name); |
| return -EINVAL; |
| } |
| |
| if (!now && value && !list_empty(&hs_ep->queue)) { |
| dev_dbg(hs->dev, "%s request is pending, cannot halt\n", |
| ep->name); |
| return -EAGAIN; |
| } |
| |
| if (hs_ep->dir_in) { |
| epreg = DIEPCTL(index); |
| epctl = dwc2_readl(hs, epreg); |
| |
| if (value) { |
| epctl |= DXEPCTL_STALL | DXEPCTL_SNAK; |
| if (epctl & DXEPCTL_EPENA) |
| epctl |= DXEPCTL_EPDIS; |
| } else { |
| epctl &= ~DXEPCTL_STALL; |
| hs_ep->wedged = 0; |
| xfertype = epctl & DXEPCTL_EPTYPE_MASK; |
| if (xfertype == DXEPCTL_EPTYPE_BULK || |
| xfertype == DXEPCTL_EPTYPE_INTERRUPT) |
| epctl |= DXEPCTL_SETD0PID; |
| } |
| dwc2_writel(hs, epctl, epreg); |
| } else { |
| epreg = DOEPCTL(index); |
| epctl = dwc2_readl(hs, epreg); |
| |
| if (value) { |
| /* Unmask GOUTNAKEFF interrupt */ |
| dwc2_hsotg_en_gsint(hs, GINTSTS_GOUTNAKEFF); |
| |
| if (!(dwc2_readl(hs, GINTSTS) & GINTSTS_GOUTNAKEFF)) |
| dwc2_set_bit(hs, DCTL, DCTL_SGOUTNAK); |
| // STALL bit will be set in GOUTNAKEFF interrupt handler |
| } else { |
| epctl &= ~DXEPCTL_STALL; |
| hs_ep->wedged = 0; |
| xfertype = epctl & DXEPCTL_EPTYPE_MASK; |
| if (xfertype == DXEPCTL_EPTYPE_BULK || |
| xfertype == DXEPCTL_EPTYPE_INTERRUPT) |
| epctl |= DXEPCTL_SETD0PID; |
| dwc2_writel(hs, epctl, epreg); |
| } |
| } |
| |
| hs_ep->halted = value; |
| return 0; |
| } |
| |
| /** |
| * dwc2_hsotg_ep_sethalt_lock - set halt on a given endpoint with lock held |
| * @ep: The endpoint to set halt. |
| * @value: Set or unset the halt. |
| */ |
| static int dwc2_hsotg_ep_sethalt_lock(struct usb_ep *ep, int value) |
| { |
| struct dwc2_hsotg_ep *hs_ep = our_ep(ep); |
| struct dwc2_hsotg *hs = hs_ep->parent; |
| unsigned long flags; |
| int ret; |
| |
| spin_lock_irqsave(&hs->lock, flags); |
| ret = dwc2_hsotg_ep_sethalt(ep, value, false); |
| spin_unlock_irqrestore(&hs->lock, flags); |
| |
| return ret; |
| } |
| |
| static const struct usb_ep_ops dwc2_hsotg_ep_ops = { |
| .enable = dwc2_hsotg_ep_enable, |
| .disable = dwc2_hsotg_ep_disable_lock, |
| .alloc_request = dwc2_hsotg_ep_alloc_request, |
| .free_request = dwc2_hsotg_ep_free_request, |
| .queue = dwc2_hsotg_ep_queue_lock, |
| .dequeue = dwc2_hsotg_ep_dequeue, |
| .set_halt = dwc2_hsotg_ep_sethalt_lock, |
| .set_wedge = dwc2_gadget_ep_set_wedge, |
| /* note, don't believe we have any call for the fifo routines */ |
| }; |
| |
| /** |
| * dwc2_hsotg_init - initialize the usb core |
| * @hsotg: The driver state |
| */ |
| static void dwc2_hsotg_init(struct dwc2_hsotg *hsotg) |
| { |
| /* unmask subset of endpoint interrupts */ |
| |
| dwc2_writel(hsotg, DIEPMSK_TIMEOUTMSK | DIEPMSK_AHBERRMSK | |
| DIEPMSK_EPDISBLDMSK | DIEPMSK_XFERCOMPLMSK, |
| DIEPMSK); |
| |
| dwc2_writel(hsotg, DOEPMSK_SETUPMSK | DOEPMSK_AHBERRMSK | |
| DOEPMSK_EPDISBLDMSK | DOEPMSK_XFERCOMPLMSK, |
| DOEPMSK); |
| |
| dwc2_writel(hsotg, 0, DAINTMSK); |
| |
| /* Be in disconnected state until gadget is registered */ |
| dwc2_set_bit(hsotg, DCTL, DCTL_SFTDISCON); |
| |
| /* setup fifos */ |
| |
| dev_dbg(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", |
| dwc2_readl(hsotg, GRXFSIZ), |
| dwc2_readl(hsotg, GNPTXFSIZ)); |
| |
| dwc2_hsotg_init_fifo(hsotg); |
| |
| if (using_dma(hsotg)) |
| dwc2_set_bit(hsotg, GAHBCFG, GAHBCFG_DMA_EN); |
| } |
| |
| /** |
| * dwc2_hsotg_udc_start - prepare the udc for work |
| * @gadget: The usb gadget state |
| * @driver: The usb gadget driver |
| * |
| * Perform initialization to prepare udc device and driver |
| * to work. |
| */ |
| static int dwc2_hsotg_udc_start(struct usb_gadget *gadget, |
| struct usb_gadget_driver *driver) |
| { |
| struct dwc2_hsotg *hsotg = to_hsotg(gadget); |
| unsigned long flags; |
| int ret; |
| |
| if (!hsotg) { |
| pr_err("%s: called with no device\n", __func__); |
| return -ENODEV; |
| } |
| |
| if (!driver) { |
| dev_err(hsotg->dev, "%s: no driver\n", __func__); |
| return -EINVAL; |
| } |
| |
| if (driver->max_speed < USB_SPEED_FULL) |
| dev_err(hsotg->dev, "%s: bad speed\n", __func__); |
| |
| if (!driver->setup) { |
| dev_err(hsotg->dev, "%s: missing entry points\n", __func__); |
| return -EINVAL; |
| } |
| |
| WARN_ON(hsotg->driver); |
| |
| driver->driver.bus = NULL; |
| hsotg->driver = driver; |
| hsotg->gadget.dev.of_node = hsotg->dev->of_node; |
| hsotg->gadget.speed = USB_SPEED_UNKNOWN; |
| |
| if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) { |
| ret = dwc2_lowlevel_hw_enable(hsotg); |
| if (ret) |
| goto err; |
| } |
| |
| if (!IS_ERR_OR_NULL(hsotg->uphy)) |
| otg_set_peripheral(hsotg->uphy->otg, &hsotg->gadget); |
| |
| spin_lock_irqsave(&hsotg->lock, flags); |
| if (dwc2_hw_is_device(hsotg)) { |
| dwc2_hsotg_init(hsotg); |
| dwc2_hsotg_core_init_disconnected(hsotg, false); |
| } |
| |
| hsotg->enabled = 0; |
| spin_unlock_irqrestore(&hsotg->lock, flags); |
| |
| gadget->sg_supported = using_desc_dma(hsotg); |
| dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name); |
| |
| return 0; |
| |
| err: |
| hsotg->driver = NULL; |
| return ret; |
| } |
| |
| /** |
| * dwc2_hsotg_udc_stop - stop the udc |
| * @gadget: The usb gadget state |
| * |
| * Stop udc hw block and stay tunned for future transmissions |
| */ |
| static int dwc2_hsotg_udc_stop(struct usb_gadget *gadget) |
| { |
| struct dwc2_hsotg *hsotg = to_hsotg(gadget); |
| unsigned long flags; |
| int ep; |
| |
| if (!hsotg) |
| return -ENODEV; |
| |
| /* all endpoints should be shutdown */ |
| for (ep = 1; ep < hsotg->num_of_eps; ep++) { |
| if (hsotg->eps_in[ep]) |
| dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); |
| if (hsotg->eps_out[ep]) |
| dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); |
| } |
| |
| spin_lock_irqsave(&hsotg->lock, flags); |
| |
| hsotg->driver = NULL; |
| hsotg->gadget.speed = USB_SPEED_UNKNOWN; |
| hsotg->enabled = 0; |
| |
| spin_unlock_irqrestore(&hsotg->lock, flags); |
| |
| if (!IS_ERR_OR_NULL(hsotg->uphy)) |
| otg_set_peripheral(hsotg->uphy->otg, NULL); |
| |
| if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) |
| dwc2_lowlevel_hw_disable(hsotg); |
| |
| return 0; |
| } |
| |
| /** |
| * dwc2_hsotg_gadget_getframe - read the frame number |
| * @gadget: The usb gadget state |
| * |
| * Read the {micro} frame number |
| */ |
| static int dwc2_hsotg_gadget_getframe(struct usb_gadget *gadget) |
| { |
| return dwc2_hsotg_read_frameno(to_hsotg(gadget)); |
| } |
| |
| /** |
| * dwc2_hsotg_set_selfpowered - set if device is self/bus powered |
| * @gadget: The usb gadget state |
| * @is_selfpowered: Whether the device is self-powered |
| * |
| * Set if the device is self or bus powered. |
| */ |
| static int dwc2_hsotg_set_selfpowered(struct usb_gadget *gadget, |
| int is_selfpowered) |
| { |
| struct dwc2_hsotg *hsotg = to_hsotg(gadget); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&hsotg->lock, flags); |
| gadget->is_selfpowered = !!is_selfpowered; |
| spin_unlock_irqrestore(&hsotg->lock, flags); |
| |
| return 0; |
| } |
| |
| /** |
| * dwc2_hsotg_pullup - connect/disconnect the USB PHY |
| * @gadget: The usb gadget state |
| * @is_on: Current state of the USB PHY |
| * |
| * Connect/Disconnect the USB PHY pullup |
| */ |
| static int dwc2_hsotg_pullup(struct usb_gadget *gadget, int is_on) |
| { |
| struct dwc2_hsotg *hsotg = to_hsotg(gadget); |
| unsigned long flags; |
| |
| dev_dbg(hsotg->dev, "%s: is_on: %d op_state: %d\n", __func__, is_on, |
| hsotg->op_state); |
| |
| /* Don't modify pullup state while in host mode */ |
| if (hsotg->op_state != OTG_STATE_B_PERIPHERAL) { |
| hsotg->enabled = is_on; |
| return 0; |
| } |
| |
| spin_lock_irqsave(&hsotg->lock, flags); |
| if (is_on) { |
| hsotg->enabled = 1; |
| dwc2_hsotg_core_init_disconnected(hsotg, false); |
| /* Enable ACG feature in device mode,if supported */ |
| dwc2_enable_acg(hsotg); |
| dwc2_hsotg_core_connect(hsotg); |
| } else { |
| dwc2_hsotg_core_disconnect(hsotg); |
| dwc2_hsotg_disconnect(hsotg); |
| hsotg->enabled = 0; |
| } |
| |
| hsotg->gadget.speed = USB_SPEED_UNKNOWN; |
| spin_unlock_irqrestore(&hsotg->lock, flags); |
| |
| return 0; |
| } |
| |
| static int dwc2_hsotg_vbus_session(struct usb_gadget *gadget, int is_active) |
| { |
| struct dwc2_hsotg *hsotg = to_hsotg(gadget); |
| unsigned long flags; |
| |
| dev_dbg(hsotg->dev, "%s: is_active: %d\n", __func__, is_active); |
| spin_lock_irqsave(&hsotg->lock, flags); |
| |
| /* |
| * If controller is in partial power down state, it must exit from |
| * that state before being initialized / de-initialized |
| */ |
| if (hsotg->lx_state == DWC2_L2 && hsotg->in_ppd) |
| /* |
| * No need to check the return value as |
| * registers are not being restored. |
| */ |
| dwc2_exit_partial_power_down(hsotg, 0, false); |
| |
| if (is_active) { |
| hsotg->op_state = OTG_STATE_B_PERIPHERAL; |
| |
| dwc2_hsotg_core_init_disconnected(hsotg, false); |
| if (hsotg->enabled) { |
| /* Enable ACG feature in device mode,if supported */ |
| dwc2_enable_acg(hsotg); |
| dwc2_hsotg_core_connect(hsotg); |
| } |
| } else { |
| dwc2_hsotg_core_disconnect(hsotg); |
| dwc2_hsotg_disconnect(hsotg); |
| } |
| |
| spin_unlock_irqrestore(&hsotg->lock, flags); |
| return 0; |
| } |
| |
| /** |
| * dwc2_hsotg_vbus_draw - report bMaxPower field |
| * @gadget: The usb gadget state |
| * @mA: Amount of current |
| * |
| * Report how much power the device may consume to the phy. |
| */ |
| static int dwc2_hsotg_vbus_draw(struct usb_gadget *gadget, unsigned int mA) |
| { |
| struct dwc2_hsotg *hsotg = to_hsotg(gadget); |
| |
| if (IS_ERR_OR_NULL(hsotg->uphy)) |
| return -ENOTSUPP; |
| return usb_phy_set_power(hsotg->uphy, mA); |
| } |
| |
| static void dwc2_gadget_set_speed(struct usb_gadget *g, enum usb_device_speed speed) |
| { |
| struct dwc2_hsotg *hsotg = to_hsotg(g); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&hsotg->lock, flags); |
| switch (speed) { |
| case USB_SPEED_HIGH: |
| hsotg->params.speed = DWC2_SPEED_PARAM_HIGH; |
| break; |
| case USB_SPEED_FULL: |
| hsotg->params.speed = DWC2_SPEED_PARAM_FULL; |
| break; |
| case USB_SPEED_LOW: |
| hsotg->params.speed = DWC2_SPEED_PARAM_LOW; |
| break; |
| default: |
| dev_err(hsotg->dev, "invalid speed (%d)\n", speed); |
| } |
| spin_unlock_irqrestore(&hsotg->lock, flags); |
| } |
| |
| static const struct usb_gadget_ops dwc2_hsotg_gadget_ops = { |
| .get_frame = dwc2_hsotg_gadget_getframe, |
| .set_selfpowered = dwc2_hsotg_set_selfpowered, |
| .udc_start = dwc2_hsotg_udc_start, |
| .udc_stop = dwc2_hsotg_udc_stop, |
| .pullup = dwc2_hsotg_pullup, |
| .udc_set_speed = dwc2_gadget_set_speed, |
| .vbus_session = dwc2_hsotg_vbus_session, |
| .vbus_draw = dwc2_hsotg_vbus_draw, |
| }; |
| |
| /** |
| * dwc2_hsotg_initep - initialise a single endpoint |
| * @hsotg: The device state. |
| * @hs_ep: The endpoint to be initialised. |
| * @epnum: The endpoint number |
| * @dir_in: True if direction is in. |
| * |
| * Initialise the given endpoint (as part of the probe and device state |
| * creation) to give to the gadget driver. Setup the endpoint name, any |
| * direction information and other state that may be required. |
| */ |
| static void dwc2_hsotg_initep(struct dwc2_hsotg *hsotg, |
| struct dwc2_hsotg_ep *hs_ep, |
| int epnum, |
| bool dir_in) |
| { |
| char *dir; |
| |
| if (epnum == 0) |
| dir = ""; |
| else if (dir_in) |
| dir = "in"; |
| else |
| dir = "out"; |
| |
| hs_ep->dir_in = dir_in; |
| hs_ep->index = epnum; |
| |
| snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir); |
| |
| INIT_LIST_HEAD(&hs_ep->queue); |
| INIT_LIST_HEAD(&hs_ep->ep.ep_list); |
| |
| /* add to the list of endpoints known by the gadget driver */ |
| if (epnum) |
| list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list); |
| |
| hs_ep->parent = hsotg; |
| hs_ep->ep.name = hs_ep->name; |
| |
| if (hsotg->params.speed == DWC2_SPEED_PARAM_LOW) |
| usb_ep_set_maxpacket_limit(&hs_ep->ep, 8); |
| else |
| usb_ep_set_maxpacket_limit(&hs_ep->ep, |
| epnum ? 1024 : EP0_MPS_LIMIT); |
| hs_ep->ep.ops = &dwc2_hsotg_ep_ops; |
| |
| if (epnum == 0) { |
| hs_ep->ep.caps.type_control = true; |
| } else { |
| if (hsotg->params.speed != DWC2_SPEED_PARAM_LOW) { |
| hs_ep->ep.caps.type_iso = true; |
| hs_ep->ep.caps.type_bulk = true; |
| } |
| hs_ep->ep.caps.type_int = true; |
| } |
| |
| if (dir_in) |
| hs_ep->ep.caps.dir_in = true; |
| else |
| hs_ep->ep.caps.dir_out = true; |
| |
| /* |
| * if we're using dma, we need to set the next-endpoint pointer |
| * to be something valid. |
| */ |
| |
| if (using_dma(hsotg)) { |
| u32 next = DXEPCTL_NEXTEP((epnum + 1) % 15); |
| |
| if (dir_in) |
| dwc2_writel(hsotg, next, DIEPCTL(epnum)); |
| else |
| dwc2_writel(hsotg, next, DOEPCTL(epnum)); |
| } |
| } |
| |
| /** |
| * dwc2_hsotg_hw_cfg - read HW configuration registers |
| * @hsotg: Programming view of the DWC_otg controller |
| * |
| * Read the USB core HW configuration registers |
| */ |
| static int dwc2_hsotg_hw_cfg(struct dwc2_hsotg *hsotg) |
| { |
| u32 cfg; |
| u32 ep_type; |
| u32 i; |
| |
| /* check hardware configuration */ |
| |
| hsotg->num_of_eps = hsotg->hw_params.num_dev_ep; |
| |
| /* Add ep0 */ |
| hsotg->num_of_eps++; |
| |
| hsotg->eps_in[0] = devm_kzalloc(hsotg->dev, |
| sizeof(struct dwc2_hsotg_ep), |
| GFP_KERNEL); |
| if (!hsotg->eps_in[0]) |
| return -ENOMEM; |
| /* Same dwc2_hsotg_ep is used in both directions for ep0 */ |
| hsotg->eps_out[0] = hsotg->eps_in[0]; |
| |
| cfg = hsotg->hw_params.dev_ep_dirs; |
| for (i = 1, cfg >>= 2; i < hsotg->num_of_eps; i++, cfg >>= 2) { |
| ep_type = cfg & 3; |
| /* Direction in or both */ |
| if (!(ep_type & 2)) { |
| hsotg->eps_in[i] = devm_kzalloc(hsotg->dev, |
| sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); |
| if (!hsotg->eps_in[i]) |
| return -ENOMEM; |
| } |
| /* Direction out or both */ |
| if (!(ep_type & 1)) { |
| hsotg->eps_out[i] = devm_kzalloc(hsotg->dev, |
| sizeof(struct dwc2_hsotg_ep), GFP_KERNEL); |
| if (!hsotg->eps_out[i]) |
| return -ENOMEM; |
| } |
| } |
| |
| hsotg->fifo_mem = hsotg->hw_params.total_fifo_size; |
| hsotg->dedicated_fifos = hsotg->hw_params.en_multiple_tx_fifo; |
| |
| dev_info(hsotg->dev, "EPs: %d, %s fifos, %d entries in SPRAM\n", |
| hsotg->num_of_eps, |
| hsotg->dedicated_fifos ? "dedicated" : "shared", |
| hsotg->fifo_mem); |
| return 0; |
| } |
| |
| /** |
| * dwc2_hsotg_dump - dump state of the udc |
| * @hsotg: Programming view of the DWC_otg controller |
| * |
| */ |
| static void dwc2_hsotg_dump(struct dwc2_hsotg *hsotg) |
| { |
| #ifdef DEBUG |
| struct device *dev = hsotg->dev; |
| u32 val; |
| int idx; |
| |
| dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n", |
| dwc2_readl(hsotg, DCFG), dwc2_readl(hsotg, DCTL), |
| dwc2_readl(hsotg, DIEPMSK)); |
| |
| dev_info(dev, "GAHBCFG=0x%08x, GHWCFG1=0x%08x\n", |
| dwc2_readl(hsotg, GAHBCFG), dwc2_readl(hsotg, GHWCFG1)); |
| |
| dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n", |
| dwc2_readl(hsotg, GRXFSIZ), dwc2_readl(hsotg, GNPTXFSIZ)); |
| |
| /* show periodic fifo settings */ |
| |
| for (idx = 1; idx < hsotg->num_of_eps; idx++) { |
| val = dwc2_readl(hsotg, DPTXFSIZN(idx)); |
| dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx, |
| val >> FIFOSIZE_DEPTH_SHIFT, |
| val & FIFOSIZE_STARTADDR_MASK); |
| } |
| |
| for (idx = 0; idx < hsotg->num_of_eps; idx++) { |
| dev_info(dev, |
| "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx, |
| dwc2_readl(hsotg, DIEPCTL(idx)), |
| dwc2_readl(hsotg, DIEPTSIZ(idx)), |
| dwc2_readl(hsotg, DIEPDMA(idx))); |
| |
| val = dwc2_readl(hsotg, DOEPCTL(idx)); |
| dev_info(dev, |
| "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", |
| idx, dwc2_readl(hsotg, DOEPCTL(idx)), |
| dwc2_readl(hsotg, DOEPTSIZ(idx)), |
| dwc2_readl(hsotg, DOEPDMA(idx))); |
| } |
| |
| dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n", |
| dwc2_readl(hsotg, DVBUSDIS), dwc2_readl(hsotg, DVBUSPULSE)); |
| #endif |
| } |
| |
| /** |
| * dwc2_gadget_init - init function for gadget |
| * @hsotg: Programming view of the DWC_otg controller |
| * |
| */ |
| int dwc2_gadget_init(struct dwc2_hsotg *hsotg) |
| { |
| struct device *dev = hsotg->dev; |
| int epnum; |
| int ret; |
| |
| /* Dump fifo information */ |
| dev_dbg(dev, "NonPeriodic TXFIFO size: %d\n", |
| hsotg->params.g_np_tx_fifo_size); |
| dev_dbg(dev, "RXFIFO size: %d\n", hsotg->params.g_rx_fifo_size); |
| |
| hsotg->gadget.max_speed = USB_SPEED_HIGH; |
| hsotg->gadget.ops = &dwc2_hsotg_gadget_ops; |
| hsotg->gadget.name = dev_name(dev); |
| hsotg->gadget.otg_caps = &hsotg->params.otg_caps; |
| hsotg->remote_wakeup_allowed = 0; |
| |
| if (hsotg->params.lpm) |
| hsotg->gadget.lpm_capable = true; |
| |
| if (hsotg->dr_mode == USB_DR_MODE_OTG) |
| hsotg->gadget.is_otg = 1; |
| else if (hsotg->dr_mode == USB_DR_MODE_PERIPHERAL) |
| hsotg->op_state = OTG_STATE_B_PERIPHERAL; |
| |
| ret = dwc2_hsotg_hw_cfg(hsotg); |
| if (ret) { |
| dev_err(hsotg->dev, "Hardware configuration failed: %d\n", ret); |
| return ret; |
| } |
| |
| hsotg->ctrl_buff = devm_kzalloc(hsotg->dev, |
| DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); |
| if (!hsotg->ctrl_buff) |
| return -ENOMEM; |
| |
| hsotg->ep0_buff = devm_kzalloc(hsotg->dev, |
| DWC2_CTRL_BUFF_SIZE, GFP_KERNEL); |
| if (!hsotg->ep0_buff) |
| return -ENOMEM; |
| |
| if (using_desc_dma(hsotg)) { |
| ret = dwc2_gadget_alloc_ctrl_desc_chains(hsotg); |
| if (ret < 0) |
| return ret; |
| } |
| |
| ret = devm_request_irq(hsotg->dev, hsotg->irq, dwc2_hsotg_irq, |
| IRQF_SHARED, dev_name(hsotg->dev), hsotg); |
| if (ret < 0) { |
| dev_err(dev, "cannot claim IRQ for gadget\n"); |
| return ret; |
| } |
| |
| /* hsotg->num_of_eps holds number of EPs other than ep0 */ |
| |
| if (hsotg->num_of_eps == 0) { |
| dev_err(dev, "wrong number of EPs (zero)\n"); |
| return -EINVAL; |
| } |
| |
| /* setup endpoint information */ |
| |
| INIT_LIST_HEAD(&hsotg->gadget.ep_list); |
| hsotg->gadget.ep0 = &hsotg->eps_out[0]->ep; |
| |
| /* allocate EP0 request */ |
| |
| hsotg->ctrl_req = dwc2_hsotg_ep_alloc_request(&hsotg->eps_out[0]->ep, |
| GFP_KERNEL); |
| if (!hsotg->ctrl_req) { |
| dev_err(dev, "failed to allocate ctrl req\n"); |
| return -ENOMEM; |
| } |
| |
| /* initialise the endpoints now the core has been initialised */ |
| for (epnum = 0; epnum < hsotg->num_of_eps; epnum++) { |
| if (hsotg->eps_in[epnum]) |
| dwc2_hsotg_initep(hsotg, hsotg->eps_in[epnum], |
| epnum, 1); |
| if (hsotg->eps_out[epnum]) |
| dwc2_hsotg_initep(hsotg, hsotg->eps_out[epnum], |
| epnum, 0); |
| } |
| |
| dwc2_hsotg_dump(hsotg); |
| |
| return 0; |
| } |
| |
| /** |
| * dwc2_hsotg_remove - remove function for hsotg driver |
| * @hsotg: Programming view of the DWC_otg controller |
| * |
| */ |
| int dwc2_hsotg_remove(struct dwc2_hsotg *hsotg) |
| { |
| usb_del_gadget_udc(&hsotg->gadget); |
| dwc2_hsotg_ep_free_request(&hsotg->eps_out[0]->ep, hsotg->ctrl_req); |
| |
| return 0; |
| } |
| |
| int dwc2_hsotg_suspend(struct dwc2_hsotg *hsotg) |
| { |
| unsigned long flags; |
| |
| if (hsotg->lx_state != DWC2_L0) |
| return 0; |
| |
| if (hsotg->driver) { |
| int ep; |
| |
| dev_info(hsotg->dev, "suspending usb gadget %s\n", |
| hsotg->driver->driver.name); |
| |
| spin_lock_irqsave(&hsotg->lock, flags); |
| if (hsotg->enabled) |
| dwc2_hsotg_core_disconnect(hsotg); |
| dwc2_hsotg_disconnect(hsotg); |
| hsotg->gadget.speed = USB_SPEED_UNKNOWN; |
| spin_unlock_irqrestore(&hsotg->lock, flags); |
| |
| for (ep = 0; ep < hsotg->num_of_eps; ep++) { |
| if (hsotg->eps_in[ep]) |
| dwc2_hsotg_ep_disable_lock(&hsotg->eps_in[ep]->ep); |
| if (hsotg->eps_out[ep]) |
| dwc2_hsotg_ep_disable_lock(&hsotg->eps_out[ep]->ep); |
| } |
| } |
| |
| return 0; |
| } |
| |
| int dwc2_hsotg_resume(struct dwc2_hsotg *hsotg) |
| { |
| unsigned long flags; |
| |
| if (hsotg->lx_state == DWC2_L2) |
| return 0; |
| |
| if (hsotg->driver) { |
| dev_info(hsotg->dev, "resuming usb gadget %s\n", |
| hsotg->driver->driver.name); |
| |
| spin_lock_irqsave(&hsotg->lock, flags); |
| dwc2_hsotg_core_init_disconnected(hsotg, false); |
| if (hsotg->enabled) { |
| /* Enable ACG feature in device mode,if supported */ |
| dwc2_enable_acg(hsotg); |
| dwc2_hsotg_core_connect(hsotg); |
| } |
| spin_unlock_irqrestore(&hsotg->lock, flags); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * dwc2_backup_device_registers() - Backup controller device registers. |
| * When suspending usb bus, registers needs to be backuped |
| * if controller power is disabled once suspended. |
| * |
| * @hsotg: Programming view of the DWC_otg controller |
| */ |
| int dwc2_backup_device_registers(struct dwc2_hsotg *hsotg) |
| { |
| struct dwc2_dregs_backup *dr; |
| int i; |
| |
| dev_dbg(hsotg->dev, "%s\n", __func__); |
| |
| /* Backup dev regs */ |
| dr = &hsotg->dr_backup; |
| |
| dr->dcfg = dwc2_readl(hsotg, DCFG); |
| dr->dctl = dwc2_readl(hsotg, DCTL); |
| dr->daintmsk = dwc2_readl(hsotg, DAINTMSK); |
| dr->diepmsk = dwc2_readl(hsotg, DIEPMSK); |
| dr->doepmsk = dwc2_readl(hsotg, DOEPMSK); |
| |
| for (i = 0; i < hsotg->num_of_eps; i++) { |
| /* Backup IN EPs */ |
| dr->diepctl[i] = dwc2_readl(hsotg, DIEPCTL(i)); |
| |
| /* Ensure DATA PID is correctly configured */ |
| if (dr->diepctl[i] & DXEPCTL_DPID) |
| dr->diepctl[i] |= DXEPCTL_SETD1PID; |
| else |
| dr->diepctl[i] |= DXEPCTL_SETD0PID; |
| |
| dr->dieptsiz[i] = dwc2_readl(hsotg, DIEPTSIZ(i)); |
| dr->diepdma[i] = dwc2_readl(hsotg, DIEPDMA(i)); |
| |
| /* Backup OUT EPs */ |
| dr->doepctl[i] = dwc2_readl(hsotg, DOEPCTL(i)); |
| |
| /* Ensure DATA PID is correctly configured */ |
| if (dr->doepctl[i] & DXEPCTL_DPID) |
| dr->doepctl[i] |= DXEPCTL_SETD1PID; |
| else |
| dr->doepctl[i] |= DXEPCTL_SETD0PID; |
| |
| dr->doeptsiz[i] = dwc2_readl(hsotg, DOEPTSIZ(i)); |
| dr->doepdma[i] = dwc2_readl(hsotg, DOEPDMA(i)); |
| dr->dtxfsiz[i] = dwc2_readl(hsotg, DPTXFSIZN(i)); |
| } |
| dr->valid = true; |
| return 0; |
| } |
| |
| /** |
| * dwc2_restore_device_registers() - Restore controller device registers. |
| * When resuming usb bus, device registers needs to be restored |
| * if controller power were disabled. |
| * |
| * @hsotg: Programming view of the DWC_otg controller |
| * @remote_wakeup: Indicates whether resume is initiated by Device or Host. |
| * |
| * Return: 0 if successful, negative error code otherwise |
| */ |
| int dwc2_restore_device_registers(struct dwc2_hsotg *hsotg, int remote_wakeup) |
| { |
| struct dwc2_dregs_backup *dr; |
| int i; |
| |
| dev_dbg(hsotg->dev, "%s\n", __func__); |
| |
| /* Restore dev regs */ |
| dr = &hsotg->dr_backup; |
| if (!dr->valid) { |
| dev_err(hsotg->dev, "%s: no device registers to restore\n", |
| __func__); |
| return -EINVAL; |
| } |
| dr->valid = false; |
| |
| if (!remote_wakeup) |
| dwc2_writel(hsotg, dr->dctl, DCTL); |
| |
| dwc2_writel(hsotg, dr->daintmsk, DAINTMSK); |
| dwc2_writel(hsotg, dr->diepmsk, DIEPMSK); |
| dwc2_writel(hsotg, dr->doepmsk, DOEPMSK); |
| |
| for (i = 0; i < hsotg->num_of_eps; i++) { |
| /* Restore IN EPs */ |
| dwc2_writel(hsotg, dr->dieptsiz[i], DIEPTSIZ(i)); |
| dwc2_writel(hsotg, dr->diepdma[i], DIEPDMA(i)); |
| dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); |
| /** WA for enabled EPx's IN in DDMA mode. On entering to |
| * hibernation wrong value read and saved from DIEPDMAx, |
| * as result BNA interrupt asserted on hibernation exit |
| * by restoring from saved area. |
| */ |
| if (hsotg->params.g_dma_desc && |
| (dr->diepctl[i] & DXEPCTL_EPENA)) |
| dr->diepdma[i] = hsotg->eps_in[i]->desc_list_dma; |
| dwc2_writel(hsotg, dr->dtxfsiz[i], DPTXFSIZN(i)); |
| dwc2_writel(hsotg, dr->diepctl[i], DIEPCTL(i)); |
| /* Restore OUT EPs */ |
| dwc2_writel(hsotg, dr->doeptsiz[i], DOEPTSIZ(i)); |
| /* WA for enabled EPx's OUT in DDMA mode. On entering to |
| * hibernation wrong value read and saved from DOEPDMAx, |
| * as result BNA interrupt asserted on hibernation exit |
| * by restoring from saved area. |
| */ |
| if (hsotg->params.g_dma_desc && |
| (dr->doepctl[i] & DXEPCTL_EPENA)) |
| dr->doepdma[i] = hsotg->eps_out[i]->desc_list_dma; |
| dwc2_writel(hsotg, dr->doepdma[i], DOEPDMA(i)); |
| dwc2_writel(hsotg, dr->doepctl[i], DOEPCTL(i)); |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * dwc2_gadget_init_lpm - Configure the core to support LPM in device mode |
| * |
| * @hsotg: Programming view of DWC_otg controller |
| * |
| */ |
| void dwc2_gadget_init_lpm(struct dwc2_hsotg *hsotg) |
| { |
| u32 val; |
| |
| if (!hsotg->params.lpm) |
| return; |
| |
| val = GLPMCFG_LPMCAP | GLPMCFG_APPL1RES; |
| val |= hsotg->params.hird_threshold_en ? GLPMCFG_HIRD_THRES_EN : 0; |
| val |= hsotg->params.lpm_clock_gating ? GLPMCFG_ENBLSLPM : 0; |
| val |= hsotg->params.hird_threshold << GLPMCFG_HIRD_THRES_SHIFT; |
| val |= hsotg->params.besl ? GLPMCFG_ENBESL : 0; |
| val |= GLPMCFG_LPM_REJECT_CTRL_CONTROL; |
| val |= GLPMCFG_LPM_ACCEPT_CTRL_ISOC; |
| dwc2_writel(hsotg, val, GLPMCFG); |
| dev_dbg(hsotg->dev, "GLPMCFG=0x%08x\n", dwc2_readl(hsotg, GLPMCFG)); |
| |
| /* Unmask WKUP_ALERT Interrupt */ |
| if (hsotg->params.service_interval) |
| dwc2_set_bit(hsotg, GINTMSK2, GINTMSK2_WKUP_ALERT_INT_MSK); |
| } |
| |
| /** |
| * dwc2_gadget_program_ref_clk - Program GREFCLK register in device mode |
| * |
| * @hsotg: Programming view of DWC_otg controller |
| * |
| */ |
| void dwc2_gadget_program_ref_clk(struct dwc2_hsotg *hsotg) |
| { |
| u32 val = 0; |
| |
| val |= GREFCLK_REF_CLK_MODE; |
| val |= hsotg->params.ref_clk_per << GREFCLK_REFCLKPER_SHIFT; |
| val |= hsotg->params.sof_cnt_wkup_alert << |
| GREFCLK_SOF_CNT_WKUP_ALERT_SHIFT; |
| |
| dwc2_writel(hsotg, val, GREFCLK); |
| dev_dbg(hsotg->dev, "GREFCLK=0x%08x\n", dwc2_readl(hsotg, GREFCLK)); |
| } |
| |
| /** |
| * dwc2_gadget_enter_hibernation() - Put controller in Hibernation. |
| * |
| * @hsotg: Programming view of the DWC_otg controller |
| * |
| * Return non-zero if failed to enter to hibernation. |
| */ |
| int dwc2_gadget_enter_hibernation(struct dwc2_hsotg *hsotg) |
| { |
| u32 gpwrdn; |
| int ret = 0; |
| |
| /* Change to L2(suspend) state */ |
| hsotg->lx_state = DWC2_L2; |
| dev_dbg(hsotg->dev, "Start of hibernation completed\n"); |
| ret = dwc2_backup_global_registers(hsotg); |
| if (ret) { |
| dev_err(hsotg->dev, "%s: failed to backup global registers\n", |
| __func__); |
| return ret; |
| } |
| ret = dwc2_backup_device_registers(hsotg); |
| if (ret) { |
| dev_err(hsotg->dev, "%s: failed to backup device registers\n", |
| __func__); |
| return ret; |
| } |
| |
| gpwrdn = GPWRDN_PWRDNRSTN; |
| gpwrdn |= GPWRDN_PMUACTV; |
| dwc2_writel(hsotg, gpwrdn, GPWRDN); |
| udelay(10); |
| |
| /* Set flag to indicate that we are in hibernation */ |
| hsotg->hibernated = 1; |
| |
| /* Enable interrupts from wake up logic */ |
| gpwrdn = dwc2_readl(hsotg, GPWRDN); |
| gpwrdn |= GPWRDN_PMUINTSEL; |
| dwc2_writel(hsotg, gpwrdn, GPWRDN); |
| udelay(10); |
| |
| /* Unmask device mode interrupts in GPWRDN */ |
| gpwrdn = dwc2_readl(hsotg, GPWRDN); |
| gpwrdn |= GPWRDN_RST_DET_MSK; |
| gpwrdn |= GPWRDN_LNSTSCHG_MSK; |
| gpwrdn |= GPWRDN_STS_CHGINT_MSK; |
| dwc2_writel(hsotg, gpwrdn, GPWRDN); |
| udelay(10); |
| |
| /* Enable Power Down Clamp */ |
| gpwrdn = dwc2_readl(hsotg, GPWRDN); |
| gpwrdn |= GPWRDN_PWRDNCLMP; |
| dwc2_writel(hsotg, gpwrdn, GPWRDN); |
| udelay(10); |
| |
| /* Switch off VDD */ |
| gpwrdn = dwc2_readl(hsotg, GPWRDN); |
| gpwrdn |= GPWRDN_PWRDNSWTCH; |
| dwc2_writel(hsotg, gpwrdn, GPWRDN); |
| udelay(10); |
| |
| /* Save gpwrdn register for further usage if stschng interrupt */ |
| hsotg->gr_backup.gpwrdn = dwc2_readl(hsotg, GPWRDN); |
| dev_dbg(hsotg->dev, "Hibernation completed\n"); |
| |
| return ret; |
| } |
| |
| /** |
| * dwc2_gadget_exit_hibernation() |
| * This function is for exiting from Device mode hibernation by host initiated |
| * resume/reset and device initiated remote-wakeup. |
| * |
| * @hsotg: Programming view of the DWC_otg controller |
| * @rem_wakeup: indicates whether resume is initiated by Device or Host. |
| * @reset: indicates whether resume is initiated by Reset. |
| * |
| * Return non-zero if failed to exit from hibernation. |
| */ |
| int dwc2_gadget_exit_hibernation(struct dwc2_hsotg *hsotg, |
| int rem_wakeup, int reset) |
| { |
| u32 pcgcctl; |
| u32 gpwrdn; |
| u32 dctl; |
| int ret = 0; |
| struct dwc2_gregs_backup *gr; |
| struct dwc2_dregs_backup *dr; |
| |
| gr = &hsotg->gr_backup; |
| dr = &hsotg->dr_backup; |
| |
| if (!hsotg->hibernated) { |
| dev_dbg(hsotg->dev, "Already exited from Hibernation\n"); |
| return 1; |
| } |
| dev_dbg(hsotg->dev, |
| "%s: called with rem_wakeup = %d reset = %d\n", |
| __func__, rem_wakeup, reset); |
| |
| dwc2_hib_restore_common(hsotg, rem_wakeup, 0); |
| |
| if (!reset) { |
| /* Clear all pending interupts */ |
| dwc2_writel(hsotg, 0xffffffff, GINTSTS); |
| } |
| |
| /* De-assert Restore */ |
| gpwrdn = dwc2_readl(hsotg, GPWRDN); |
| gpwrdn &= ~GPWRDN_RESTORE; |
| dwc2_writel(hsotg, gpwrdn, GPWRDN); |
| udelay(10); |
| |
| if (!rem_wakeup) { |
| pcgcctl = dwc2_readl(hsotg, PCGCTL); |
| pcgcctl &= ~PCGCTL_RSTPDWNMODULE; |
| dwc2_writel(hsotg, pcgcctl, PCGCTL); |
| } |
| |
| /* Restore GUSBCFG, DCFG and DCTL */ |
| dwc2_writel(hsotg, gr->gusbcfg, GUSBCFG); |
| dwc2_writel(hsotg, dr->dcfg, DCFG); |
| dwc2_writel(hsotg, dr->dctl, DCTL); |
| |
| /* On USB Reset, reset device address to zero */ |
| if (reset) |
| dwc2_clear_bit(hsotg, DCFG, DCFG_DEVADDR_MASK); |
| |
| /* De-assert Wakeup Logic */ |
| gpwrdn = dwc2_readl(hsotg, GPWRDN); |
| gpwrdn &= ~GPWRDN_PMUACTV; |
| dwc2_writel(hsotg, gpwrdn, GPWRDN); |
| |
| if (rem_wakeup) { |
| udelay(10); |
| /* Start Remote Wakeup Signaling */ |
| dwc2_writel(hsotg, dr->dctl | DCTL_RMTWKUPSIG, DCTL); |
| } else { |
| udelay(50); |
| /* Set Device programming done bit */ |
| dctl = dwc2_readl(hsotg, DCTL); |
| dctl |= DCTL_PWRONPRGDONE; |
| dwc2_writel(hsotg, dctl, DCTL); |
| } |
| /* Wait for interrupts which must be cleared */ |
| mdelay(2); |
| /* Clear all pending interupts */ |
| dwc2_writel(hsotg, 0xffffffff, GINTSTS); |
| |
| /* Restore global registers */ |
| ret = dwc2_restore_global_registers(hsotg); |
| if (ret) { |
| dev_err(hsotg->dev, "%s: failed to restore registers\n", |
| __func__); |
| return ret; |
| } |
| |
| /* Restore device registers */ |
| ret = dwc2_restore_device_registers(hsotg, rem_wakeup); |
| if (ret) { |
| dev_err(hsotg->dev, "%s: failed to restore device registers\n", |
| __func__); |
| return ret; |
| } |
| |
| if (rem_wakeup) { |
| mdelay(10); |
| dctl = dwc2_readl(hsotg, DCTL); |
| dctl &= ~DCTL_RMTWKUPSIG; |
| dwc2_writel(hsotg, dctl, DCTL); |
| } |
| |
| hsotg->hibernated = 0; |
| hsotg->lx_state = DWC2_L0; |
| dev_dbg(hsotg->dev, "Hibernation recovery completes here\n"); |
| |
| return ret; |
| } |
| |
| /** |
| * dwc2_gadget_enter_partial_power_down() - Put controller in partial |
| * power down. |
| * |
| * @hsotg: Programming view of the DWC_otg controller |
| * |
| * Return: non-zero if failed to enter device partial power down. |
| * |
| * This function is for entering device mode partial power down. |
| */ |
| int dwc2_gadget_enter_partial_power_down(struct dwc2_hsotg *hsotg) |
| { |
| u32 pcgcctl; |
| int ret = 0; |
| |
| dev_dbg(hsotg->dev, "Entering device partial power down started.\n"); |
| |
| /* Backup all registers */ |
| ret = dwc2_backup_global_registers(hsotg); |
| if (ret) { |
| dev_err(hsotg->dev, "%s: failed to backup global registers\n", |
| __func__); |
| return ret; |
| } |
| |
| ret = dwc2_backup_device_registers(hsotg); |
| if (ret) { |
| dev_err(hsotg->dev, "%s: failed to backup device registers\n", |
| __func__); |
| return ret; |
| } |
| |
| /* |
| * Clear any pending interrupts since dwc2 will not be able to |
| * clear them after entering partial_power_down. |
| */ |
| dwc2_writel(hsotg, 0xffffffff, GINTSTS); |
| |
| /* Put the controller in low power state */ |
| pcgcctl = dwc2_readl(hsotg, PCGCTL); |
| |
| pcgcctl |= PCGCTL_PWRCLMP; |
| dwc2_writel(hsotg, pcgcctl, PCGCTL); |
| udelay(5); |
| |
| pcgcctl |= PCGCTL_RSTPDWNMODULE; |
| dwc2_writel(hsotg, pcgcctl, PCGCTL); |
| udelay(5); |
| |
| pcgcctl |= PCGCTL_STOPPCLK; |
| dwc2_writel(hsotg, pcgcctl, PCGCTL); |
| |
| /* Set in_ppd flag to 1 as here core enters suspend. */ |
| hsotg->in_ppd = 1; |
| hsotg->lx_state = DWC2_L2; |
| |
| dev_dbg(hsotg->dev, "Entering device partial power down completed.\n"); |
| |
| return ret; |
| } |
| |
| /* |
| * dwc2_gadget_exit_partial_power_down() - Exit controller from device partial |
| * power down. |
| * |
| * @hsotg: Programming view of the DWC_otg controller |
| * @restore: indicates whether need to restore the registers or not. |
| * |
| * Return: non-zero if failed to exit device partial power down. |
| * |
| * This function is for exiting from device mode partial power down. |
| */ |
| int dwc2_gadget_exit_partial_power_down(struct dwc2_hsotg *hsotg, |
| bool restore) |
| { |
| u32 pcgcctl; |
| u32 dctl; |
| struct dwc2_dregs_backup *dr; |
| int ret = 0; |
| |
| dr = &hsotg->dr_backup; |
| |
| dev_dbg(hsotg->dev, "Exiting device partial Power Down started.\n"); |
| |
| pcgcctl = dwc2_readl(hsotg, PCGCTL); |
| pcgcctl &= ~PCGCTL_STOPPCLK; |
| dwc2_writel(hsotg, pcgcctl, PCGCTL); |
| |
| pcgcctl = dwc2_readl(hsotg, PCGCTL); |
| pcgcctl &= ~PCGCTL_PWRCLMP; |
| dwc2_writel(hsotg, pcgcctl, PCGCTL); |
| |
| pcgcctl = dwc2_readl(hsotg, PCGCTL); |
| pcgcctl &= ~PCGCTL_RSTPDWNMODULE; |
| dwc2_writel(hsotg, pcgcctl, PCGCTL); |
| |
| udelay(100); |
| if (restore) { |
| ret = dwc2_restore_global_registers(hsotg); |
| if (ret) { |
| dev_err(hsotg->dev, "%s: failed to restore registers\n", |
| __func__); |
| return ret; |
| } |
| /* Restore DCFG */ |
| dwc2_writel(hsotg, dr->dcfg, DCFG); |
| |
| ret = dwc2_restore_device_registers(hsotg, 0); |
| if (ret) { |
| dev_err(hsotg->dev, "%s: failed to restore device registers\n", |
| __func__); |
| return ret; |
| } |
| } |
| |
| /* Set the Power-On Programming done bit */ |
| dctl = dwc2_readl(hsotg, DCTL); |
| dctl |= DCTL_PWRONPRGDONE; |
| dwc2_writel(hsotg, dctl, DCTL); |
| |
| /* Set in_ppd flag to 0 as here core exits from suspend. */ |
| hsotg->in_ppd = 0; |
| hsotg->lx_state = DWC2_L0; |
| |
| dev_dbg(hsotg->dev, "Exiting device partial Power Down completed.\n"); |
| return ret; |
| } |
| |
| /** |
| * dwc2_gadget_enter_clock_gating() - Put controller in clock gating. |
| * |
| * @hsotg: Programming view of the DWC_otg controller |
| * |
| * Return: non-zero if failed to enter device partial power down. |
| * |
| * This function is for entering device mode clock gating. |
| */ |
| void dwc2_gadget_enter_clock_gating(struct dwc2_hsotg *hsotg) |
| { |
| u32 pcgctl; |
| |
| dev_dbg(hsotg->dev, "Entering device clock gating.\n"); |
| |
| /* Set the Phy Clock bit as suspend is received. */ |
| pcgctl = dwc2_readl(hsotg, PCGCTL); |
| pcgctl |= PCGCTL_STOPPCLK; |
| dwc2_writel(hsotg, pcgctl, PCGCTL); |
| udelay(5); |
| |
| /* Set the Gate hclk as suspend is received. */ |
| pcgctl = dwc2_readl(hsotg, PCGCTL); |
| pcgctl |= PCGCTL_GATEHCLK; |
| dwc2_writel(hsotg, pcgctl, PCGCTL); |
| udelay(5); |
| |
| hsotg->lx_state = DWC2_L2; |
| hsotg->bus_suspended = true; |
| } |
| |
| /* |
| * dwc2_gadget_exit_clock_gating() - Exit controller from device clock gating. |
| * |
| * @hsotg: Programming view of the DWC_otg controller |
| * @rem_wakeup: indicates whether remote wake up is enabled. |
| * |
| * This function is for exiting from device mode clock gating. |
| */ |
| void dwc2_gadget_exit_clock_gating(struct dwc2_hsotg *hsotg, int rem_wakeup) |
| { |
| u32 pcgctl; |
| u32 dctl; |
| |
| dev_dbg(hsotg->dev, "Exiting device clock gating.\n"); |
| |
| /* Clear the Gate hclk. */ |
| pcgctl = dwc2_readl(hsotg, PCGCTL); |
| pcgctl &= ~PCGCTL_GATEHCLK; |
| dwc2_writel(hsotg, pcgctl, PCGCTL); |
| udelay(5); |
| |
| /* Phy Clock bit. */ |
| pcgctl = dwc2_readl(hsotg, PCGCTL); |
| pcgctl &= ~PCGCTL_STOPPCLK; |
| dwc2_writel(hsotg, pcgctl, PCGCTL); |
| udelay(5); |
| |
| if (rem_wakeup) { |
| /* Set Remote Wakeup Signaling */ |
| dctl = dwc2_readl(hsotg, DCTL); |
| dctl |= DCTL_RMTWKUPSIG; |
| dwc2_writel(hsotg, dctl, DCTL); |
| } |
| |
| /* Change to L0 state */ |
| call_gadget(hsotg, resume); |
| hsotg->lx_state = DWC2_L0; |
| hsotg->bus_suspended = false; |
| } |