| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (C) 2005, Intec Automation Inc. |
| * Copyright (C) 2014, Freescale Semiconductor, Inc. |
| */ |
| |
| #include <linux/bitfield.h> |
| #include <linux/mtd/spi-nor.h> |
| #include <linux/slab.h> |
| #include <linux/sort.h> |
| |
| #include "core.h" |
| |
| #define SFDP_PARAM_HEADER_ID(p) (((p)->id_msb << 8) | (p)->id_lsb) |
| #define SFDP_PARAM_HEADER_PTP(p) \ |
| (((p)->parameter_table_pointer[2] << 16) | \ |
| ((p)->parameter_table_pointer[1] << 8) | \ |
| ((p)->parameter_table_pointer[0] << 0)) |
| #define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4) |
| |
| #define SFDP_BFPT_ID 0xff00 /* Basic Flash Parameter Table */ |
| #define SFDP_SECTOR_MAP_ID 0xff81 /* Sector Map Table */ |
| #define SFDP_4BAIT_ID 0xff84 /* 4-byte Address Instruction Table */ |
| #define SFDP_PROFILE1_ID 0xff05 /* xSPI Profile 1.0 table. */ |
| #define SFDP_SCCR_MAP_ID 0xff87 /* |
| * Status, Control and Configuration |
| * Register Map. |
| */ |
| #define SFDP_SCCR_MAP_MC_ID 0xff88 /* |
| * Status, Control and Configuration |
| * Register Map Offsets for Multi-Chip |
| * SPI Memory Devices. |
| */ |
| |
| #define SFDP_SIGNATURE 0x50444653U |
| |
| struct sfdp_header { |
| u32 signature; /* Ox50444653U <=> "SFDP" */ |
| u8 minor; |
| u8 major; |
| u8 nph; /* 0-base number of parameter headers */ |
| u8 unused; |
| |
| /* Basic Flash Parameter Table. */ |
| struct sfdp_parameter_header bfpt_header; |
| }; |
| |
| /* Fast Read settings. */ |
| struct sfdp_bfpt_read { |
| /* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */ |
| u32 hwcaps; |
| |
| /* |
| * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us |
| * whether the Fast Read x-y-z command is supported. |
| */ |
| u32 supported_dword; |
| u32 supported_bit; |
| |
| /* |
| * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD |
| * encodes the op code, the number of mode clocks and the number of wait |
| * states to be used by Fast Read x-y-z command. |
| */ |
| u32 settings_dword; |
| u32 settings_shift; |
| |
| /* The SPI protocol for this Fast Read x-y-z command. */ |
| enum spi_nor_protocol proto; |
| }; |
| |
| struct sfdp_bfpt_erase { |
| /* |
| * The half-word at offset <shift> in DWORD <dword> encodes the |
| * op code and erase sector size to be used by Sector Erase commands. |
| */ |
| u32 dword; |
| u32 shift; |
| }; |
| |
| #define SMPT_CMD_ADDRESS_LEN_MASK GENMASK(23, 22) |
| #define SMPT_CMD_ADDRESS_LEN_0 (0x0UL << 22) |
| #define SMPT_CMD_ADDRESS_LEN_3 (0x1UL << 22) |
| #define SMPT_CMD_ADDRESS_LEN_4 (0x2UL << 22) |
| #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT (0x3UL << 22) |
| |
| #define SMPT_CMD_READ_DUMMY_MASK GENMASK(19, 16) |
| #define SMPT_CMD_READ_DUMMY_SHIFT 16 |
| #define SMPT_CMD_READ_DUMMY(_cmd) \ |
| (((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT) |
| #define SMPT_CMD_READ_DUMMY_IS_VARIABLE 0xfUL |
| |
| #define SMPT_CMD_READ_DATA_MASK GENMASK(31, 24) |
| #define SMPT_CMD_READ_DATA_SHIFT 24 |
| #define SMPT_CMD_READ_DATA(_cmd) \ |
| (((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT) |
| |
| #define SMPT_CMD_OPCODE_MASK GENMASK(15, 8) |
| #define SMPT_CMD_OPCODE_SHIFT 8 |
| #define SMPT_CMD_OPCODE(_cmd) \ |
| (((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT) |
| |
| #define SMPT_MAP_REGION_COUNT_MASK GENMASK(23, 16) |
| #define SMPT_MAP_REGION_COUNT_SHIFT 16 |
| #define SMPT_MAP_REGION_COUNT(_header) \ |
| ((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \ |
| SMPT_MAP_REGION_COUNT_SHIFT) + 1) |
| |
| #define SMPT_MAP_ID_MASK GENMASK(15, 8) |
| #define SMPT_MAP_ID_SHIFT 8 |
| #define SMPT_MAP_ID(_header) \ |
| (((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT) |
| |
| #define SMPT_MAP_REGION_SIZE_MASK GENMASK(31, 8) |
| #define SMPT_MAP_REGION_SIZE_SHIFT 8 |
| #define SMPT_MAP_REGION_SIZE(_region) \ |
| (((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \ |
| SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256) |
| |
| #define SMPT_MAP_REGION_ERASE_TYPE_MASK GENMASK(3, 0) |
| #define SMPT_MAP_REGION_ERASE_TYPE(_region) \ |
| ((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK) |
| |
| #define SMPT_DESC_TYPE_MAP BIT(1) |
| #define SMPT_DESC_END BIT(0) |
| |
| #define SFDP_4BAIT_DWORD_MAX 2 |
| |
| struct sfdp_4bait { |
| /* The hardware capability. */ |
| u32 hwcaps; |
| |
| /* |
| * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether |
| * the associated 4-byte address op code is supported. |
| */ |
| u32 supported_bit; |
| }; |
| |
| /** |
| * spi_nor_read_raw() - raw read of serial flash memory. read_opcode, |
| * addr_nbytes and read_dummy members of the struct spi_nor |
| * should be previously set. |
| * @nor: pointer to a 'struct spi_nor' |
| * @addr: offset in the serial flash memory |
| * @len: number of bytes to read |
| * @buf: buffer where the data is copied into (dma-safe memory) |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf) |
| { |
| ssize_t ret; |
| |
| while (len) { |
| ret = spi_nor_read_data(nor, addr, len, buf); |
| if (ret < 0) |
| return ret; |
| if (!ret || ret > len) |
| return -EIO; |
| |
| buf += ret; |
| addr += ret; |
| len -= ret; |
| } |
| return 0; |
| } |
| |
| /** |
| * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters. |
| * @nor: pointer to a 'struct spi_nor' |
| * @addr: offset in the SFDP area to start reading data from |
| * @len: number of bytes to read |
| * @buf: buffer where the SFDP data are copied into (dma-safe memory) |
| * |
| * Whatever the actual numbers of bytes for address and dummy cycles are |
| * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always |
| * followed by a 3-byte address and 8 dummy clock cycles. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr, |
| size_t len, void *buf) |
| { |
| u8 addr_nbytes, read_opcode, read_dummy; |
| int ret; |
| |
| read_opcode = nor->read_opcode; |
| addr_nbytes = nor->addr_nbytes; |
| read_dummy = nor->read_dummy; |
| |
| nor->read_opcode = SPINOR_OP_RDSFDP; |
| nor->addr_nbytes = 3; |
| nor->read_dummy = 8; |
| |
| ret = spi_nor_read_raw(nor, addr, len, buf); |
| |
| nor->read_opcode = read_opcode; |
| nor->addr_nbytes = addr_nbytes; |
| nor->read_dummy = read_dummy; |
| |
| return ret; |
| } |
| |
| /** |
| * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters. |
| * @nor: pointer to a 'struct spi_nor' |
| * @addr: offset in the SFDP area to start reading data from |
| * @len: number of bytes to read |
| * @buf: buffer where the SFDP data are copied into |
| * |
| * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not |
| * guaranteed to be dma-safe. |
| * |
| * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp() |
| * otherwise. |
| */ |
| static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr, |
| size_t len, void *buf) |
| { |
| void *dma_safe_buf; |
| int ret; |
| |
| dma_safe_buf = kmalloc(len, GFP_KERNEL); |
| if (!dma_safe_buf) |
| return -ENOMEM; |
| |
| ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf); |
| memcpy(buf, dma_safe_buf, len); |
| kfree(dma_safe_buf); |
| |
| return ret; |
| } |
| |
| static void |
| spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read, |
| u16 half, |
| enum spi_nor_protocol proto) |
| { |
| read->num_mode_clocks = (half >> 5) & 0x07; |
| read->num_wait_states = (half >> 0) & 0x1f; |
| read->opcode = (half >> 8) & 0xff; |
| read->proto = proto; |
| } |
| |
| static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = { |
| /* Fast Read 1-1-2 */ |
| { |
| SNOR_HWCAPS_READ_1_1_2, |
| SFDP_DWORD(1), BIT(16), /* Supported bit */ |
| SFDP_DWORD(4), 0, /* Settings */ |
| SNOR_PROTO_1_1_2, |
| }, |
| |
| /* Fast Read 1-2-2 */ |
| { |
| SNOR_HWCAPS_READ_1_2_2, |
| SFDP_DWORD(1), BIT(20), /* Supported bit */ |
| SFDP_DWORD(4), 16, /* Settings */ |
| SNOR_PROTO_1_2_2, |
| }, |
| |
| /* Fast Read 2-2-2 */ |
| { |
| SNOR_HWCAPS_READ_2_2_2, |
| SFDP_DWORD(5), BIT(0), /* Supported bit */ |
| SFDP_DWORD(6), 16, /* Settings */ |
| SNOR_PROTO_2_2_2, |
| }, |
| |
| /* Fast Read 1-1-4 */ |
| { |
| SNOR_HWCAPS_READ_1_1_4, |
| SFDP_DWORD(1), BIT(22), /* Supported bit */ |
| SFDP_DWORD(3), 16, /* Settings */ |
| SNOR_PROTO_1_1_4, |
| }, |
| |
| /* Fast Read 1-4-4 */ |
| { |
| SNOR_HWCAPS_READ_1_4_4, |
| SFDP_DWORD(1), BIT(21), /* Supported bit */ |
| SFDP_DWORD(3), 0, /* Settings */ |
| SNOR_PROTO_1_4_4, |
| }, |
| |
| /* Fast Read 4-4-4 */ |
| { |
| SNOR_HWCAPS_READ_4_4_4, |
| SFDP_DWORD(5), BIT(4), /* Supported bit */ |
| SFDP_DWORD(7), 16, /* Settings */ |
| SNOR_PROTO_4_4_4, |
| }, |
| }; |
| |
| static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = { |
| /* Erase Type 1 in DWORD8 bits[15:0] */ |
| {SFDP_DWORD(8), 0}, |
| |
| /* Erase Type 2 in DWORD8 bits[31:16] */ |
| {SFDP_DWORD(8), 16}, |
| |
| /* Erase Type 3 in DWORD9 bits[15:0] */ |
| {SFDP_DWORD(9), 0}, |
| |
| /* Erase Type 4 in DWORD9 bits[31:16] */ |
| {SFDP_DWORD(9), 16}, |
| }; |
| |
| /** |
| * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT |
| * @erase: pointer to a structure that describes a SPI NOR erase type |
| * @size: the size of the sector/block erased by the erase type |
| * @opcode: the SPI command op code to erase the sector/block |
| * @i: erase type index as sorted in the Basic Flash Parameter Table |
| * |
| * The supported Erase Types will be sorted at init in ascending order, with |
| * the smallest Erase Type size being the first member in the erase_type array |
| * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in |
| * the Basic Flash Parameter Table since it will be used later on to |
| * synchronize with the supported Erase Types defined in SFDP optional tables. |
| */ |
| static void |
| spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase, |
| u32 size, u8 opcode, u8 i) |
| { |
| erase->idx = i; |
| spi_nor_set_erase_type(erase, size, opcode); |
| } |
| |
| /** |
| * spi_nor_map_cmp_erase_type() - compare the map's erase types by size |
| * @l: member in the left half of the map's erase_type array |
| * @r: member in the right half of the map's erase_type array |
| * |
| * Comparison function used in the sort() call to sort in ascending order the |
| * map's erase types, the smallest erase type size being the first member in the |
| * sorted erase_type array. |
| * |
| * Return: the result of @l->size - @r->size |
| */ |
| static int spi_nor_map_cmp_erase_type(const void *l, const void *r) |
| { |
| const struct spi_nor_erase_type *left = l, *right = r; |
| |
| return left->size - right->size; |
| } |
| |
| /** |
| * spi_nor_sort_erase_mask() - sort erase mask |
| * @map: the erase map of the SPI NOR |
| * @erase_mask: the erase type mask to be sorted |
| * |
| * Replicate the sort done for the map's erase types in BFPT: sort the erase |
| * mask in ascending order with the smallest erase type size starting from |
| * BIT(0) in the sorted erase mask. |
| * |
| * Return: sorted erase mask. |
| */ |
| static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask) |
| { |
| struct spi_nor_erase_type *erase_type = map->erase_type; |
| int i; |
| u8 sorted_erase_mask = 0; |
| |
| if (!erase_mask) |
| return 0; |
| |
| /* Replicate the sort done for the map's erase types. */ |
| for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) |
| if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx)) |
| sorted_erase_mask |= BIT(i); |
| |
| return sorted_erase_mask; |
| } |
| |
| /** |
| * spi_nor_regions_sort_erase_types() - sort erase types in each region |
| * @map: the erase map of the SPI NOR |
| * |
| * Function assumes that the erase types defined in the erase map are already |
| * sorted in ascending order, with the smallest erase type size being the first |
| * member in the erase_type array. It replicates the sort done for the map's |
| * erase types. Each region's erase bitmask will indicate which erase types are |
| * supported from the sorted erase types defined in the erase map. |
| * Sort the all region's erase type at init in order to speed up the process of |
| * finding the best erase command at runtime. |
| */ |
| static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map) |
| { |
| struct spi_nor_erase_region *region = map->regions; |
| u8 sorted_erase_mask; |
| unsigned int i; |
| |
| for (i = 0; i < map->n_regions; i++) { |
| sorted_erase_mask = |
| spi_nor_sort_erase_mask(map, region[i].erase_mask); |
| |
| /* Overwrite erase mask. */ |
| region[i].erase_mask = sorted_erase_mask; |
| } |
| } |
| |
| /** |
| * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table. |
| * @nor: pointer to a 'struct spi_nor' |
| * @bfpt_header: pointer to the 'struct sfdp_parameter_header' describing |
| * the Basic Flash Parameter Table length and version |
| * |
| * The Basic Flash Parameter Table is the main and only mandatory table as |
| * defined by the SFDP (JESD216) specification. |
| * It provides us with the total size (memory density) of the data array and |
| * the number of address bytes for Fast Read, Page Program and Sector Erase |
| * commands. |
| * For Fast READ commands, it also gives the number of mode clock cycles and |
| * wait states (regrouped in the number of dummy clock cycles) for each |
| * supported instruction op code. |
| * For Page Program, the page size is now available since JESD216 rev A, however |
| * the supported instruction op codes are still not provided. |
| * For Sector Erase commands, this table stores the supported instruction op |
| * codes and the associated sector sizes. |
| * Finally, the Quad Enable Requirements (QER) are also available since JESD216 |
| * rev A. The QER bits encode the manufacturer dependent procedure to be |
| * executed to set the Quad Enable (QE) bit in some internal register of the |
| * Quad SPI memory. Indeed the QE bit, when it exists, must be set before |
| * sending any Quad SPI command to the memory. Actually, setting the QE bit |
| * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2 |
| * and IO3 hence enabling 4 (Quad) I/O lines. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_parse_bfpt(struct spi_nor *nor, |
| const struct sfdp_parameter_header *bfpt_header) |
| { |
| struct spi_nor_flash_parameter *params = nor->params; |
| struct spi_nor_erase_map *map = ¶ms->erase_map; |
| struct spi_nor_erase_type *erase_type = map->erase_type; |
| struct sfdp_bfpt bfpt; |
| size_t len; |
| int i, cmd, err; |
| u32 addr, val; |
| u32 dword; |
| u16 half; |
| u8 erase_mask; |
| u8 wait_states, mode_clocks, opcode; |
| |
| /* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */ |
| if (bfpt_header->length < BFPT_DWORD_MAX_JESD216) |
| return -EINVAL; |
| |
| /* Read the Basic Flash Parameter Table. */ |
| len = min_t(size_t, sizeof(bfpt), |
| bfpt_header->length * sizeof(u32)); |
| addr = SFDP_PARAM_HEADER_PTP(bfpt_header); |
| memset(&bfpt, 0, sizeof(bfpt)); |
| err = spi_nor_read_sfdp_dma_unsafe(nor, addr, len, &bfpt); |
| if (err < 0) |
| return err; |
| |
| /* Fix endianness of the BFPT DWORDs. */ |
| le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX); |
| |
| /* Number of address bytes. */ |
| switch (bfpt.dwords[SFDP_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) { |
| case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY: |
| case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4: |
| params->addr_nbytes = 3; |
| params->addr_mode_nbytes = 3; |
| break; |
| |
| case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY: |
| params->addr_nbytes = 4; |
| params->addr_mode_nbytes = 4; |
| break; |
| |
| default: |
| break; |
| } |
| |
| /* Flash Memory Density (in bits). */ |
| val = bfpt.dwords[SFDP_DWORD(2)]; |
| if (val & BIT(31)) { |
| val &= ~BIT(31); |
| |
| /* |
| * Prevent overflows on params->size. Anyway, a NOR of 2^64 |
| * bits is unlikely to exist so this error probably means |
| * the BFPT we are reading is corrupted/wrong. |
| */ |
| if (val > 63) |
| return -EINVAL; |
| |
| params->size = 1ULL << val; |
| } else { |
| params->size = val + 1; |
| } |
| params->size >>= 3; /* Convert to bytes. */ |
| |
| /* Fast Read settings. */ |
| for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) { |
| const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i]; |
| struct spi_nor_read_command *read; |
| |
| if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) { |
| params->hwcaps.mask &= ~rd->hwcaps; |
| continue; |
| } |
| |
| params->hwcaps.mask |= rd->hwcaps; |
| cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps); |
| read = ¶ms->reads[cmd]; |
| half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift; |
| spi_nor_set_read_settings_from_bfpt(read, half, rd->proto); |
| } |
| |
| /* |
| * Sector Erase settings. Reinitialize the uniform erase map using the |
| * Erase Types defined in the bfpt table. |
| */ |
| erase_mask = 0; |
| memset(¶ms->erase_map, 0, sizeof(params->erase_map)); |
| for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) { |
| const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i]; |
| u32 erasesize; |
| u8 opcode; |
| |
| half = bfpt.dwords[er->dword] >> er->shift; |
| erasesize = half & 0xff; |
| |
| /* erasesize == 0 means this Erase Type is not supported. */ |
| if (!erasesize) |
| continue; |
| |
| erasesize = 1U << erasesize; |
| opcode = (half >> 8) & 0xff; |
| erase_mask |= BIT(i); |
| spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize, |
| opcode, i); |
| } |
| spi_nor_init_uniform_erase_map(map, erase_mask, params->size); |
| /* |
| * Sort all the map's Erase Types in ascending order with the smallest |
| * erase size being the first member in the erase_type array. |
| */ |
| sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]), |
| spi_nor_map_cmp_erase_type, NULL); |
| /* |
| * Sort the erase types in the uniform region in order to update the |
| * uniform_erase_type bitmask. The bitmask will be used later on when |
| * selecting the uniform erase. |
| */ |
| spi_nor_regions_sort_erase_types(map); |
| |
| /* Stop here if not JESD216 rev A or later. */ |
| if (bfpt_header->length == BFPT_DWORD_MAX_JESD216) |
| return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); |
| |
| /* Page size: this field specifies 'N' so the page size = 2^N bytes. */ |
| val = bfpt.dwords[SFDP_DWORD(11)]; |
| val &= BFPT_DWORD11_PAGE_SIZE_MASK; |
| val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT; |
| params->page_size = 1U << val; |
| |
| /* Quad Enable Requirements. */ |
| switch (bfpt.dwords[SFDP_DWORD(15)] & BFPT_DWORD15_QER_MASK) { |
| case BFPT_DWORD15_QER_NONE: |
| params->quad_enable = NULL; |
| break; |
| |
| case BFPT_DWORD15_QER_SR2_BIT1_BUGGY: |
| /* |
| * Writing only one byte to the Status Register has the |
| * side-effect of clearing Status Register 2. |
| */ |
| case BFPT_DWORD15_QER_SR2_BIT1_NO_RD: |
| /* |
| * Read Configuration Register (35h) instruction is not |
| * supported. |
| */ |
| nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR; |
| params->quad_enable = spi_nor_sr2_bit1_quad_enable; |
| break; |
| |
| case BFPT_DWORD15_QER_SR1_BIT6: |
| nor->flags &= ~SNOR_F_HAS_16BIT_SR; |
| params->quad_enable = spi_nor_sr1_bit6_quad_enable; |
| break; |
| |
| case BFPT_DWORD15_QER_SR2_BIT7: |
| nor->flags &= ~SNOR_F_HAS_16BIT_SR; |
| params->quad_enable = spi_nor_sr2_bit7_quad_enable; |
| break; |
| |
| case BFPT_DWORD15_QER_SR2_BIT1: |
| /* |
| * JESD216 rev B or later does not specify if writing only one |
| * byte to the Status Register clears or not the Status |
| * Register 2, so let's be cautious and keep the default |
| * assumption of a 16-bit Write Status (01h) command. |
| */ |
| nor->flags |= SNOR_F_HAS_16BIT_SR; |
| |
| params->quad_enable = spi_nor_sr2_bit1_quad_enable; |
| break; |
| |
| default: |
| dev_dbg(nor->dev, "BFPT QER reserved value used\n"); |
| break; |
| } |
| |
| dword = bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_4B_ADDR_MODE_MASK; |
| if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_BRWR)) |
| params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_brwr; |
| else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_WREN_EN4B_EX4B)) |
| params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b; |
| else if (SFDP_MASK_CHECK(dword, BFPT_DWORD16_4B_ADDR_MODE_EN4B_EX4B)) |
| params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b; |
| else |
| dev_dbg(nor->dev, "BFPT: 4-Byte Address Mode method is not recognized or not implemented\n"); |
| |
| /* Soft Reset support. */ |
| if (bfpt.dwords[SFDP_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST) |
| nor->flags |= SNOR_F_SOFT_RESET; |
| |
| /* Stop here if not JESD216 rev C or later. */ |
| if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B) |
| return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); |
| |
| /* Parse 1-1-8 read instruction */ |
| opcode = FIELD_GET(BFPT_DWORD17_RD_1_1_8_CMD, bfpt.dwords[SFDP_DWORD(17)]); |
| if (opcode) { |
| mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_1_8_MODE_CLOCKS, |
| bfpt.dwords[SFDP_DWORD(17)]); |
| wait_states = FIELD_GET(BFPT_DWORD17_RD_1_1_8_WAIT_STATES, |
| bfpt.dwords[SFDP_DWORD(17)]); |
| params->hwcaps.mask |= SNOR_HWCAPS_READ_1_1_8; |
| spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_1_8], |
| mode_clocks, wait_states, opcode, |
| SNOR_PROTO_1_1_8); |
| } |
| |
| /* Parse 1-8-8 read instruction */ |
| opcode = FIELD_GET(BFPT_DWORD17_RD_1_8_8_CMD, bfpt.dwords[SFDP_DWORD(17)]); |
| if (opcode) { |
| mode_clocks = FIELD_GET(BFPT_DWORD17_RD_1_8_8_MODE_CLOCKS, |
| bfpt.dwords[SFDP_DWORD(17)]); |
| wait_states = FIELD_GET(BFPT_DWORD17_RD_1_8_8_WAIT_STATES, |
| bfpt.dwords[SFDP_DWORD(17)]); |
| params->hwcaps.mask |= SNOR_HWCAPS_READ_1_8_8; |
| spi_nor_set_read_settings(¶ms->reads[SNOR_CMD_READ_1_8_8], |
| mode_clocks, wait_states, opcode, |
| SNOR_PROTO_1_8_8); |
| } |
| |
| /* 8D-8D-8D command extension. */ |
| switch (bfpt.dwords[SFDP_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) { |
| case BFPT_DWORD18_CMD_EXT_REP: |
| nor->cmd_ext_type = SPI_NOR_EXT_REPEAT; |
| break; |
| |
| case BFPT_DWORD18_CMD_EXT_INV: |
| nor->cmd_ext_type = SPI_NOR_EXT_INVERT; |
| break; |
| |
| case BFPT_DWORD18_CMD_EXT_RES: |
| dev_dbg(nor->dev, "Reserved command extension used\n"); |
| break; |
| |
| case BFPT_DWORD18_CMD_EXT_16B: |
| dev_dbg(nor->dev, "16-bit opcodes not supported\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt); |
| } |
| |
| /** |
| * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the |
| * configuration detection command. |
| * @nor: pointer to a 'struct spi_nor' |
| * @settings: configuration detection command descriptor, dword1 |
| */ |
| static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings) |
| { |
| switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) { |
| case SMPT_CMD_ADDRESS_LEN_0: |
| return 0; |
| case SMPT_CMD_ADDRESS_LEN_3: |
| return 3; |
| case SMPT_CMD_ADDRESS_LEN_4: |
| return 4; |
| case SMPT_CMD_ADDRESS_LEN_USE_CURRENT: |
| default: |
| return nor->params->addr_mode_nbytes; |
| } |
| } |
| |
| /** |
| * spi_nor_smpt_read_dummy() - return the configuration detection command read |
| * latency, in clock cycles. |
| * @nor: pointer to a 'struct spi_nor' |
| * @settings: configuration detection command descriptor, dword1 |
| * |
| * Return: the number of dummy cycles for an SMPT read |
| */ |
| static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings) |
| { |
| u8 read_dummy = SMPT_CMD_READ_DUMMY(settings); |
| |
| if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE) |
| return nor->read_dummy; |
| return read_dummy; |
| } |
| |
| /** |
| * spi_nor_get_map_in_use() - get the configuration map in use |
| * @nor: pointer to a 'struct spi_nor' |
| * @smpt: pointer to the sector map parameter table |
| * @smpt_len: sector map parameter table length |
| * |
| * Return: pointer to the map in use, ERR_PTR(-errno) otherwise. |
| */ |
| static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt, |
| u8 smpt_len) |
| { |
| const u32 *ret; |
| u8 *buf; |
| u32 addr; |
| int err; |
| u8 i; |
| u8 addr_nbytes, read_opcode, read_dummy; |
| u8 read_data_mask, map_id; |
| |
| /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ |
| buf = kmalloc(sizeof(*buf), GFP_KERNEL); |
| if (!buf) |
| return ERR_PTR(-ENOMEM); |
| |
| addr_nbytes = nor->addr_nbytes; |
| read_dummy = nor->read_dummy; |
| read_opcode = nor->read_opcode; |
| |
| map_id = 0; |
| /* Determine if there are any optional Detection Command Descriptors */ |
| for (i = 0; i < smpt_len; i += 2) { |
| if (smpt[i] & SMPT_DESC_TYPE_MAP) |
| break; |
| |
| read_data_mask = SMPT_CMD_READ_DATA(smpt[i]); |
| nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]); |
| nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]); |
| nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]); |
| addr = smpt[i + 1]; |
| |
| err = spi_nor_read_raw(nor, addr, 1, buf); |
| if (err) { |
| ret = ERR_PTR(err); |
| goto out; |
| } |
| |
| /* |
| * Build an index value that is used to select the Sector Map |
| * Configuration that is currently in use. |
| */ |
| map_id = map_id << 1 | !!(*buf & read_data_mask); |
| } |
| |
| /* |
| * If command descriptors are provided, they always precede map |
| * descriptors in the table. There is no need to start the iteration |
| * over smpt array all over again. |
| * |
| * Find the matching configuration map. |
| */ |
| ret = ERR_PTR(-EINVAL); |
| while (i < smpt_len) { |
| if (SMPT_MAP_ID(smpt[i]) == map_id) { |
| ret = smpt + i; |
| break; |
| } |
| |
| /* |
| * If there are no more configuration map descriptors and no |
| * configuration ID matched the configuration identifier, the |
| * sector address map is unknown. |
| */ |
| if (smpt[i] & SMPT_DESC_END) |
| break; |
| |
| /* increment the table index to the next map */ |
| i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1; |
| } |
| |
| /* fall through */ |
| out: |
| kfree(buf); |
| nor->addr_nbytes = addr_nbytes; |
| nor->read_dummy = read_dummy; |
| nor->read_opcode = read_opcode; |
| return ret; |
| } |
| |
| /** |
| * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid |
| * @region: pointer to a structure that describes a SPI NOR erase region |
| * @erase: pointer to a structure that describes a SPI NOR erase type |
| * @erase_type: erase type bitmask |
| */ |
| static void |
| spi_nor_region_check_overlay(struct spi_nor_erase_region *region, |
| const struct spi_nor_erase_type *erase, |
| const u8 erase_type) |
| { |
| int i; |
| |
| for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { |
| if (!(erase[i].size && erase_type & BIT(erase[i].idx))) |
| continue; |
| if (region->size & erase[i].size_mask) { |
| region->overlaid = true; |
| return; |
| } |
| } |
| } |
| |
| /** |
| * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map |
| * @nor: pointer to a 'struct spi_nor' |
| * @smpt: pointer to the sector map parameter table |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor, |
| const u32 *smpt) |
| { |
| struct spi_nor_erase_map *map = &nor->params->erase_map; |
| struct spi_nor_erase_type *erase = map->erase_type; |
| struct spi_nor_erase_region *region; |
| u64 offset; |
| u32 region_count; |
| int i, j; |
| u8 uniform_erase_type, save_uniform_erase_type; |
| u8 erase_type, regions_erase_type; |
| |
| region_count = SMPT_MAP_REGION_COUNT(*smpt); |
| /* |
| * The regions will be freed when the driver detaches from the |
| * device. |
| */ |
| region = devm_kcalloc(nor->dev, region_count, sizeof(*region), |
| GFP_KERNEL); |
| if (!region) |
| return -ENOMEM; |
| map->regions = region; |
| map->n_regions = region_count; |
| |
| uniform_erase_type = 0xff; |
| regions_erase_type = 0; |
| offset = 0; |
| /* Populate regions. */ |
| for (i = 0; i < region_count; i++) { |
| j = i + 1; /* index for the region dword */ |
| region[i].offset = offset; |
| region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]); |
| erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]); |
| region[i].erase_mask = erase_type; |
| |
| spi_nor_region_check_overlay(®ion[i], erase, erase_type); |
| |
| /* |
| * Save the erase types that are supported in all regions and |
| * can erase the entire flash memory. |
| */ |
| uniform_erase_type &= erase_type; |
| |
| /* |
| * regions_erase_type mask will indicate all the erase types |
| * supported in this configuration map. |
| */ |
| regions_erase_type |= erase_type; |
| |
| offset = region[i].offset + region[i].size; |
| } |
| |
| save_uniform_erase_type = map->uniform_region.erase_mask; |
| map->uniform_region.erase_mask = |
| spi_nor_sort_erase_mask(map, |
| uniform_erase_type); |
| |
| if (!regions_erase_type) { |
| /* |
| * Roll back to the previous uniform_erase_type mask, SMPT is |
| * broken. |
| */ |
| map->uniform_region.erase_mask = save_uniform_erase_type; |
| return -EINVAL; |
| } |
| |
| /* |
| * BFPT advertises all the erase types supported by all the possible |
| * map configurations. Mask out the erase types that are not supported |
| * by the current map configuration. |
| */ |
| for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) |
| if (!(regions_erase_type & BIT(erase[i].idx))) |
| spi_nor_mask_erase_type(&erase[i]); |
| |
| return 0; |
| } |
| |
| /** |
| * spi_nor_parse_smpt() - parse Sector Map Parameter Table |
| * @nor: pointer to a 'struct spi_nor' |
| * @smpt_header: sector map parameter table header |
| * |
| * This table is optional, but when available, we parse it to identify the |
| * location and size of sectors within the main data array of the flash memory |
| * device and to identify which Erase Types are supported by each sector. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_parse_smpt(struct spi_nor *nor, |
| const struct sfdp_parameter_header *smpt_header) |
| { |
| const u32 *sector_map; |
| u32 *smpt; |
| size_t len; |
| u32 addr; |
| int ret; |
| |
| /* Read the Sector Map Parameter Table. */ |
| len = smpt_header->length * sizeof(*smpt); |
| smpt = kmalloc(len, GFP_KERNEL); |
| if (!smpt) |
| return -ENOMEM; |
| |
| addr = SFDP_PARAM_HEADER_PTP(smpt_header); |
| ret = spi_nor_read_sfdp(nor, addr, len, smpt); |
| if (ret) |
| goto out; |
| |
| /* Fix endianness of the SMPT DWORDs. */ |
| le32_to_cpu_array(smpt, smpt_header->length); |
| |
| sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length); |
| if (IS_ERR(sector_map)) { |
| ret = PTR_ERR(sector_map); |
| goto out; |
| } |
| |
| ret = spi_nor_init_non_uniform_erase_map(nor, sector_map); |
| if (ret) |
| goto out; |
| |
| spi_nor_regions_sort_erase_types(&nor->params->erase_map); |
| /* fall through */ |
| out: |
| kfree(smpt); |
| return ret; |
| } |
| |
| /** |
| * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table |
| * @nor: pointer to a 'struct spi_nor'. |
| * @param_header: pointer to the 'struct sfdp_parameter_header' describing |
| * the 4-Byte Address Instruction Table length and version. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_parse_4bait(struct spi_nor *nor, |
| const struct sfdp_parameter_header *param_header) |
| { |
| static const struct sfdp_4bait reads[] = { |
| { SNOR_HWCAPS_READ, BIT(0) }, |
| { SNOR_HWCAPS_READ_FAST, BIT(1) }, |
| { SNOR_HWCAPS_READ_1_1_2, BIT(2) }, |
| { SNOR_HWCAPS_READ_1_2_2, BIT(3) }, |
| { SNOR_HWCAPS_READ_1_1_4, BIT(4) }, |
| { SNOR_HWCAPS_READ_1_4_4, BIT(5) }, |
| { SNOR_HWCAPS_READ_1_1_1_DTR, BIT(13) }, |
| { SNOR_HWCAPS_READ_1_2_2_DTR, BIT(14) }, |
| { SNOR_HWCAPS_READ_1_4_4_DTR, BIT(15) }, |
| { SNOR_HWCAPS_READ_1_1_8, BIT(20) }, |
| { SNOR_HWCAPS_READ_1_8_8, BIT(21) }, |
| }; |
| static const struct sfdp_4bait programs[] = { |
| { SNOR_HWCAPS_PP, BIT(6) }, |
| { SNOR_HWCAPS_PP_1_1_4, BIT(7) }, |
| { SNOR_HWCAPS_PP_1_4_4, BIT(8) }, |
| }; |
| static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = { |
| { 0u /* not used */, BIT(9) }, |
| { 0u /* not used */, BIT(10) }, |
| { 0u /* not used */, BIT(11) }, |
| { 0u /* not used */, BIT(12) }, |
| }; |
| struct spi_nor_flash_parameter *params = nor->params; |
| struct spi_nor_pp_command *params_pp = params->page_programs; |
| struct spi_nor_erase_map *map = ¶ms->erase_map; |
| struct spi_nor_erase_type *erase_type = map->erase_type; |
| u32 *dwords; |
| size_t len; |
| u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask; |
| int i, ret; |
| |
| if (param_header->major != SFDP_JESD216_MAJOR || |
| param_header->length < SFDP_4BAIT_DWORD_MAX) |
| return -EINVAL; |
| |
| /* Read the 4-byte Address Instruction Table. */ |
| len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX; |
| |
| /* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */ |
| dwords = kmalloc(len, GFP_KERNEL); |
| if (!dwords) |
| return -ENOMEM; |
| |
| addr = SFDP_PARAM_HEADER_PTP(param_header); |
| ret = spi_nor_read_sfdp(nor, addr, len, dwords); |
| if (ret) |
| goto out; |
| |
| /* Fix endianness of the 4BAIT DWORDs. */ |
| le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX); |
| |
| /* |
| * Compute the subset of (Fast) Read commands for which the 4-byte |
| * version is supported. |
| */ |
| discard_hwcaps = 0; |
| read_hwcaps = 0; |
| for (i = 0; i < ARRAY_SIZE(reads); i++) { |
| const struct sfdp_4bait *read = &reads[i]; |
| |
| discard_hwcaps |= read->hwcaps; |
| if ((params->hwcaps.mask & read->hwcaps) && |
| (dwords[SFDP_DWORD(1)] & read->supported_bit)) |
| read_hwcaps |= read->hwcaps; |
| } |
| |
| /* |
| * Compute the subset of Page Program commands for which the 4-byte |
| * version is supported. |
| */ |
| pp_hwcaps = 0; |
| for (i = 0; i < ARRAY_SIZE(programs); i++) { |
| const struct sfdp_4bait *program = &programs[i]; |
| |
| /* |
| * The 4 Byte Address Instruction (Optional) Table is the only |
| * SFDP table that indicates support for Page Program Commands. |
| * Bypass the params->hwcaps.mask and consider 4BAIT the biggest |
| * authority for specifying Page Program support. |
| */ |
| discard_hwcaps |= program->hwcaps; |
| if (dwords[SFDP_DWORD(1)] & program->supported_bit) |
| pp_hwcaps |= program->hwcaps; |
| } |
| |
| /* |
| * Compute the subset of Sector Erase commands for which the 4-byte |
| * version is supported. |
| */ |
| erase_mask = 0; |
| for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { |
| const struct sfdp_4bait *erase = &erases[i]; |
| |
| if (dwords[SFDP_DWORD(1)] & erase->supported_bit) |
| erase_mask |= BIT(i); |
| } |
| |
| /* Replicate the sort done for the map's erase types in BFPT. */ |
| erase_mask = spi_nor_sort_erase_mask(map, erase_mask); |
| |
| /* |
| * We need at least one 4-byte op code per read, program and erase |
| * operation; the .read(), .write() and .erase() hooks share the |
| * nor->addr_nbytes value. |
| */ |
| if (!read_hwcaps || !pp_hwcaps || !erase_mask) |
| goto out; |
| |
| /* |
| * Discard all operations from the 4-byte instruction set which are |
| * not supported by this memory. |
| */ |
| params->hwcaps.mask &= ~discard_hwcaps; |
| params->hwcaps.mask |= (read_hwcaps | pp_hwcaps); |
| |
| /* Use the 4-byte address instruction set. */ |
| for (i = 0; i < SNOR_CMD_READ_MAX; i++) { |
| struct spi_nor_read_command *read_cmd = ¶ms->reads[i]; |
| |
| read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode); |
| } |
| |
| /* 4BAIT is the only SFDP table that indicates page program support. */ |
| if (pp_hwcaps & SNOR_HWCAPS_PP) { |
| spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP], |
| SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1); |
| /* |
| * Since xSPI Page Program opcode is backward compatible with |
| * Legacy SPI, use Legacy SPI opcode there as well. |
| */ |
| spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_8_8_8_DTR], |
| SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR); |
| } |
| if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4) |
| spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_1_4], |
| SPINOR_OP_PP_1_1_4_4B, |
| SNOR_PROTO_1_1_4); |
| if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4) |
| spi_nor_set_pp_settings(¶ms_pp[SNOR_CMD_PP_1_4_4], |
| SPINOR_OP_PP_1_4_4_4B, |
| SNOR_PROTO_1_4_4); |
| |
| for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) { |
| if (erase_mask & BIT(i)) |
| erase_type[i].opcode = (dwords[SFDP_DWORD(2)] >> |
| erase_type[i].idx * 8) & 0xFF; |
| else |
| spi_nor_mask_erase_type(&erase_type[i]); |
| } |
| |
| /* |
| * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes() |
| * later because we already did the conversion to 4byte opcodes. Also, |
| * this latest function implements a legacy quirk for the erase size of |
| * Spansion memory. However this quirk is no longer needed with new |
| * SFDP compliant memories. |
| */ |
| params->addr_nbytes = 4; |
| nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT; |
| |
| /* fall through */ |
| out: |
| kfree(dwords); |
| return ret; |
| } |
| |
| #define PROFILE1_DWORD1_RDSR_ADDR_BYTES BIT(29) |
| #define PROFILE1_DWORD1_RDSR_DUMMY BIT(28) |
| #define PROFILE1_DWORD1_RD_FAST_CMD GENMASK(15, 8) |
| #define PROFILE1_DWORD4_DUMMY_200MHZ GENMASK(11, 7) |
| #define PROFILE1_DWORD5_DUMMY_166MHZ GENMASK(31, 27) |
| #define PROFILE1_DWORD5_DUMMY_133MHZ GENMASK(21, 17) |
| #define PROFILE1_DWORD5_DUMMY_100MHZ GENMASK(11, 7) |
| |
| /** |
| * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table |
| * @nor: pointer to a 'struct spi_nor' |
| * @profile1_header: pointer to the 'struct sfdp_parameter_header' describing |
| * the Profile 1.0 Table length and version. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_parse_profile1(struct spi_nor *nor, |
| const struct sfdp_parameter_header *profile1_header) |
| { |
| u32 *dwords, addr; |
| size_t len; |
| int ret; |
| u8 dummy, opcode; |
| |
| len = profile1_header->length * sizeof(*dwords); |
| dwords = kmalloc(len, GFP_KERNEL); |
| if (!dwords) |
| return -ENOMEM; |
| |
| addr = SFDP_PARAM_HEADER_PTP(profile1_header); |
| ret = spi_nor_read_sfdp(nor, addr, len, dwords); |
| if (ret) |
| goto out; |
| |
| le32_to_cpu_array(dwords, profile1_header->length); |
| |
| /* Get 8D-8D-8D fast read opcode and dummy cycles. */ |
| opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[SFDP_DWORD(1)]); |
| |
| /* Set the Read Status Register dummy cycles and dummy address bytes. */ |
| if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_DUMMY) |
| nor->params->rdsr_dummy = 8; |
| else |
| nor->params->rdsr_dummy = 4; |
| |
| if (dwords[SFDP_DWORD(1)] & PROFILE1_DWORD1_RDSR_ADDR_BYTES) |
| nor->params->rdsr_addr_nbytes = 4; |
| else |
| nor->params->rdsr_addr_nbytes = 0; |
| |
| /* |
| * We don't know what speed the controller is running at. Find the |
| * dummy cycles for the fastest frequency the flash can run at to be |
| * sure we are never short of dummy cycles. A value of 0 means the |
| * frequency is not supported. |
| * |
| * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let |
| * flashes set the correct value if needed in their fixup hooks. |
| */ |
| dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[SFDP_DWORD(4)]); |
| if (!dummy) |
| dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, |
| dwords[SFDP_DWORD(5)]); |
| if (!dummy) |
| dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, |
| dwords[SFDP_DWORD(5)]); |
| if (!dummy) |
| dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, |
| dwords[SFDP_DWORD(5)]); |
| if (!dummy) |
| dev_dbg(nor->dev, |
| "Can't find dummy cycles from Profile 1.0 table\n"); |
| |
| /* Round up to an even value to avoid tripping controllers up. */ |
| dummy = round_up(dummy, 2); |
| |
| /* Update the fast read settings. */ |
| nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; |
| spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR], |
| 0, dummy, opcode, |
| SNOR_PROTO_8_8_8_DTR); |
| |
| /* |
| * Page Program is "Required Command" in the xSPI Profile 1.0. Update |
| * the params->hwcaps.mask here. |
| */ |
| nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR; |
| |
| out: |
| kfree(dwords); |
| return ret; |
| } |
| |
| #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE BIT(31) |
| |
| /** |
| * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register |
| * Map. |
| * @nor: pointer to a 'struct spi_nor' |
| * @sccr_header: pointer to the 'struct sfdp_parameter_header' describing |
| * the SCCR Map table length and version. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_parse_sccr(struct spi_nor *nor, |
| const struct sfdp_parameter_header *sccr_header) |
| { |
| struct spi_nor_flash_parameter *params = nor->params; |
| u32 *dwords, addr; |
| size_t len; |
| int ret; |
| |
| len = sccr_header->length * sizeof(*dwords); |
| dwords = kmalloc(len, GFP_KERNEL); |
| if (!dwords) |
| return -ENOMEM; |
| |
| addr = SFDP_PARAM_HEADER_PTP(sccr_header); |
| ret = spi_nor_read_sfdp(nor, addr, len, dwords); |
| if (ret) |
| goto out; |
| |
| le32_to_cpu_array(dwords, sccr_header->length); |
| |
| /* Address offset for volatile registers (die 0) */ |
| if (!params->vreg_offset) { |
| params->vreg_offset = devm_kmalloc(nor->dev, sizeof(*dwords), |
| GFP_KERNEL); |
| if (!params->vreg_offset) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| } |
| params->vreg_offset[0] = dwords[SFDP_DWORD(1)]; |
| params->n_dice = 1; |
| |
| if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, |
| dwords[SFDP_DWORD(22)])) |
| nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE; |
| |
| out: |
| kfree(dwords); |
| return ret; |
| } |
| |
| /** |
| * spi_nor_parse_sccr_mc() - Parse the Status, Control and Configuration |
| * Register Map Offsets for Multi-Chip SPI Memory |
| * Devices. |
| * @nor: pointer to a 'struct spi_nor' |
| * @sccr_mc_header: pointer to the 'struct sfdp_parameter_header' describing |
| * the SCCR Map offsets table length and version. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| static int spi_nor_parse_sccr_mc(struct spi_nor *nor, |
| const struct sfdp_parameter_header *sccr_mc_header) |
| { |
| struct spi_nor_flash_parameter *params = nor->params; |
| u32 *dwords, addr; |
| u8 i, n_dice; |
| size_t len; |
| int ret; |
| |
| len = sccr_mc_header->length * sizeof(*dwords); |
| dwords = kmalloc(len, GFP_KERNEL); |
| if (!dwords) |
| return -ENOMEM; |
| |
| addr = SFDP_PARAM_HEADER_PTP(sccr_mc_header); |
| ret = spi_nor_read_sfdp(nor, addr, len, dwords); |
| if (ret) |
| goto out; |
| |
| le32_to_cpu_array(dwords, sccr_mc_header->length); |
| |
| /* |
| * Pair of DOWRDs (volatile and non-volatile register offsets) per |
| * additional die. Hence, length = 2 * (number of additional dice). |
| */ |
| n_dice = 1 + sccr_mc_header->length / 2; |
| |
| /* Address offset for volatile registers of additional dice */ |
| params->vreg_offset = |
| devm_krealloc(nor->dev, params->vreg_offset, |
| n_dice * sizeof(*dwords), |
| GFP_KERNEL); |
| if (!params->vreg_offset) { |
| ret = -ENOMEM; |
| goto out; |
| } |
| |
| for (i = 1; i < n_dice; i++) |
| params->vreg_offset[i] = dwords[SFDP_DWORD(i) * 2]; |
| |
| params->n_dice = n_dice; |
| |
| out: |
| kfree(dwords); |
| return ret; |
| } |
| |
| /** |
| * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings |
| * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP |
| * tables. |
| * @nor: pointer to a 'struct spi_nor' |
| * |
| * Used to tweak various flash parameters when information provided by the SFDP |
| * tables are wrong. |
| */ |
| static int spi_nor_post_sfdp_fixups(struct spi_nor *nor) |
| { |
| int ret; |
| |
| if (nor->manufacturer && nor->manufacturer->fixups && |
| nor->manufacturer->fixups->post_sfdp) { |
| ret = nor->manufacturer->fixups->post_sfdp(nor); |
| if (ret) |
| return ret; |
| } |
| |
| if (nor->info->fixups && nor->info->fixups->post_sfdp) |
| return nor->info->fixups->post_sfdp(nor); |
| |
| return 0; |
| } |
| |
| /** |
| * spi_nor_check_sfdp_signature() - check for a valid SFDP signature |
| * @nor: pointer to a 'struct spi_nor' |
| * |
| * Used to detect if the flash supports the RDSFDP command as well as the |
| * presence of a valid SFDP table. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| int spi_nor_check_sfdp_signature(struct spi_nor *nor) |
| { |
| u32 signature; |
| int err; |
| |
| /* Get the SFDP header. */ |
| err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature), |
| &signature); |
| if (err < 0) |
| return err; |
| |
| /* Check the SFDP signature. */ |
| if (le32_to_cpu(signature) != SFDP_SIGNATURE) |
| return -EINVAL; |
| |
| return 0; |
| } |
| |
| /** |
| * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters. |
| * @nor: pointer to a 'struct spi_nor' |
| * |
| * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216 |
| * specification. This is a standard which tends to supported by almost all |
| * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at |
| * runtime the main parameters needed to perform basic SPI flash operations such |
| * as Fast Read, Page Program or Sector Erase commands. |
| * |
| * Return: 0 on success, -errno otherwise. |
| */ |
| int spi_nor_parse_sfdp(struct spi_nor *nor) |
| { |
| const struct sfdp_parameter_header *param_header, *bfpt_header; |
| struct sfdp_parameter_header *param_headers = NULL; |
| struct sfdp_header header; |
| struct device *dev = nor->dev; |
| struct sfdp *sfdp; |
| size_t sfdp_size; |
| size_t psize; |
| int i, err; |
| |
| /* Get the SFDP header. */ |
| err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header); |
| if (err < 0) |
| return err; |
| |
| /* Check the SFDP header version. */ |
| if (le32_to_cpu(header.signature) != SFDP_SIGNATURE || |
| header.major != SFDP_JESD216_MAJOR) |
| return -EINVAL; |
| |
| /* |
| * Verify that the first and only mandatory parameter header is a |
| * Basic Flash Parameter Table header as specified in JESD216. |
| */ |
| bfpt_header = &header.bfpt_header; |
| if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID || |
| bfpt_header->major != SFDP_JESD216_MAJOR) |
| return -EINVAL; |
| |
| sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) + |
| SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header); |
| |
| /* |
| * Allocate memory then read all parameter headers with a single |
| * Read SFDP command. These parameter headers will actually be parsed |
| * twice: a first time to get the latest revision of the basic flash |
| * parameter table, then a second time to handle the supported optional |
| * tables. |
| * Hence we read the parameter headers once for all to reduce the |
| * processing time. Also we use kmalloc() instead of devm_kmalloc() |
| * because we don't need to keep these parameter headers: the allocated |
| * memory is always released with kfree() before exiting this function. |
| */ |
| if (header.nph) { |
| psize = header.nph * sizeof(*param_headers); |
| |
| param_headers = kmalloc(psize, GFP_KERNEL); |
| if (!param_headers) |
| return -ENOMEM; |
| |
| err = spi_nor_read_sfdp(nor, sizeof(header), |
| psize, param_headers); |
| if (err < 0) { |
| dev_dbg(dev, "failed to read SFDP parameter headers\n"); |
| goto exit; |
| } |
| } |
| |
| /* |
| * Cache the complete SFDP data. It is not (easily) possible to fetch |
| * SFDP after probe time and we need it for the sysfs access. |
| */ |
| for (i = 0; i < header.nph; i++) { |
| param_header = ¶m_headers[i]; |
| sfdp_size = max_t(size_t, sfdp_size, |
| SFDP_PARAM_HEADER_PTP(param_header) + |
| SFDP_PARAM_HEADER_PARAM_LEN(param_header)); |
| } |
| |
| /* |
| * Limit the total size to a reasonable value to avoid allocating too |
| * much memory just of because the flash returned some insane values. |
| */ |
| if (sfdp_size > PAGE_SIZE) { |
| dev_dbg(dev, "SFDP data (%zu) too big, truncating\n", |
| sfdp_size); |
| sfdp_size = PAGE_SIZE; |
| } |
| |
| sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL); |
| if (!sfdp) { |
| err = -ENOMEM; |
| goto exit; |
| } |
| |
| /* |
| * The SFDP is organized in chunks of DWORDs. Thus, in theory, the |
| * sfdp_size should be a multiple of DWORDs. But in case a flash |
| * is not spec compliant, make sure that we have enough space to store |
| * the complete SFDP data. |
| */ |
| sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords)); |
| sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords, |
| sizeof(*sfdp->dwords), GFP_KERNEL); |
| if (!sfdp->dwords) { |
| err = -ENOMEM; |
| devm_kfree(dev, sfdp); |
| goto exit; |
| } |
| |
| err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords); |
| if (err < 0) { |
| dev_dbg(dev, "failed to read SFDP data\n"); |
| devm_kfree(dev, sfdp->dwords); |
| devm_kfree(dev, sfdp); |
| goto exit; |
| } |
| |
| nor->sfdp = sfdp; |
| |
| /* |
| * Check other parameter headers to get the latest revision of |
| * the basic flash parameter table. |
| */ |
| for (i = 0; i < header.nph; i++) { |
| param_header = ¶m_headers[i]; |
| |
| if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID && |
| param_header->major == SFDP_JESD216_MAJOR && |
| (param_header->minor > bfpt_header->minor || |
| (param_header->minor == bfpt_header->minor && |
| param_header->length > bfpt_header->length))) |
| bfpt_header = param_header; |
| } |
| |
| err = spi_nor_parse_bfpt(nor, bfpt_header); |
| if (err) |
| goto exit; |
| |
| /* Parse optional parameter tables. */ |
| for (i = 0; i < header.nph; i++) { |
| param_header = ¶m_headers[i]; |
| |
| switch (SFDP_PARAM_HEADER_ID(param_header)) { |
| case SFDP_SECTOR_MAP_ID: |
| err = spi_nor_parse_smpt(nor, param_header); |
| break; |
| |
| case SFDP_4BAIT_ID: |
| err = spi_nor_parse_4bait(nor, param_header); |
| break; |
| |
| case SFDP_PROFILE1_ID: |
| err = spi_nor_parse_profile1(nor, param_header); |
| break; |
| |
| case SFDP_SCCR_MAP_ID: |
| err = spi_nor_parse_sccr(nor, param_header); |
| break; |
| |
| case SFDP_SCCR_MAP_MC_ID: |
| err = spi_nor_parse_sccr_mc(nor, param_header); |
| break; |
| |
| default: |
| break; |
| } |
| |
| if (err) { |
| dev_warn(dev, "Failed to parse optional parameter table: %04x\n", |
| SFDP_PARAM_HEADER_ID(param_header)); |
| /* |
| * Let's not drop all information we extracted so far |
| * if optional table parsers fail. In case of failing, |
| * each optional parser is responsible to roll back to |
| * the previously known spi_nor data. |
| */ |
| err = 0; |
| } |
| } |
| |
| err = spi_nor_post_sfdp_fixups(nor); |
| exit: |
| kfree(param_headers); |
| return err; |
| } |