| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Endpoint Function Driver to implement Non-Transparent Bridge functionality |
| * |
| * Copyright (C) 2020 Texas Instruments |
| * Author: Kishon Vijay Abraham I <kishon@ti.com> |
| */ |
| |
| /* |
| * The PCI NTB function driver configures the SoC with multiple PCIe Endpoint |
| * (EP) controller instances (see diagram below) in such a way that |
| * transactions from one EP controller are routed to the other EP controller. |
| * Once PCI NTB function driver configures the SoC with multiple EP instances, |
| * HOST1 and HOST2 can communicate with each other using SoC as a bridge. |
| * |
| * +-------------+ +-------------+ |
| * | | | | |
| * | HOST1 | | HOST2 | |
| * | | | | |
| * +------^------+ +------^------+ |
| * | | |
| * | | |
| * +---------|-------------------------------------------------|---------+ |
| * | +------v------+ +------v------+ | |
| * | | | | | | |
| * | | EP | | EP | | |
| * | | CONTROLLER1 | | CONTROLLER2 | | |
| * | | <-----------------------------------> | | |
| * | | | | | | |
| * | | | | | | |
| * | | | SoC With Multiple EP Instances | | | |
| * | | | (Configured using NTB Function) | | | |
| * | +-------------+ +-------------+ | |
| * +---------------------------------------------------------------------+ |
| */ |
| |
| #include <linux/delay.h> |
| #include <linux/io.h> |
| #include <linux/module.h> |
| #include <linux/slab.h> |
| |
| #include <linux/pci-epc.h> |
| #include <linux/pci-epf.h> |
| |
| static struct workqueue_struct *kpcintb_workqueue; |
| |
| #define COMMAND_CONFIGURE_DOORBELL 1 |
| #define COMMAND_TEARDOWN_DOORBELL 2 |
| #define COMMAND_CONFIGURE_MW 3 |
| #define COMMAND_TEARDOWN_MW 4 |
| #define COMMAND_LINK_UP 5 |
| #define COMMAND_LINK_DOWN 6 |
| |
| #define COMMAND_STATUS_OK 1 |
| #define COMMAND_STATUS_ERROR 2 |
| |
| #define LINK_STATUS_UP BIT(0) |
| |
| #define SPAD_COUNT 64 |
| #define DB_COUNT 4 |
| #define NTB_MW_OFFSET 2 |
| #define DB_COUNT_MASK GENMASK(15, 0) |
| #define MSIX_ENABLE BIT(16) |
| #define MAX_DB_COUNT 32 |
| #define MAX_MW 4 |
| |
| enum epf_ntb_bar { |
| BAR_CONFIG, |
| BAR_PEER_SPAD, |
| BAR_DB_MW1, |
| BAR_MW2, |
| BAR_MW3, |
| BAR_MW4, |
| }; |
| |
| struct epf_ntb { |
| u32 num_mws; |
| u32 db_count; |
| u32 spad_count; |
| struct pci_epf *epf; |
| u64 mws_size[MAX_MW]; |
| struct config_group group; |
| struct epf_ntb_epc *epc[2]; |
| }; |
| |
| #define to_epf_ntb(epf_group) container_of((epf_group), struct epf_ntb, group) |
| |
| struct epf_ntb_epc { |
| u8 func_no; |
| u8 vfunc_no; |
| bool linkup; |
| bool is_msix; |
| int msix_bar; |
| u32 spad_size; |
| struct pci_epc *epc; |
| struct epf_ntb *epf_ntb; |
| void __iomem *mw_addr[6]; |
| size_t msix_table_offset; |
| struct epf_ntb_ctrl *reg; |
| struct pci_epf_bar *epf_bar; |
| enum pci_barno epf_ntb_bar[6]; |
| struct delayed_work cmd_handler; |
| enum pci_epc_interface_type type; |
| const struct pci_epc_features *epc_features; |
| }; |
| |
| struct epf_ntb_ctrl { |
| u32 command; |
| u32 argument; |
| u16 command_status; |
| u16 link_status; |
| u32 topology; |
| u64 addr; |
| u64 size; |
| u32 num_mws; |
| u32 mw1_offset; |
| u32 spad_offset; |
| u32 spad_count; |
| u32 db_entry_size; |
| u32 db_data[MAX_DB_COUNT]; |
| u32 db_offset[MAX_DB_COUNT]; |
| } __packed; |
| |
| static struct pci_epf_header epf_ntb_header = { |
| .vendorid = PCI_ANY_ID, |
| .deviceid = PCI_ANY_ID, |
| .baseclass_code = PCI_BASE_CLASS_MEMORY, |
| .interrupt_pin = PCI_INTERRUPT_INTA, |
| }; |
| |
| /** |
| * epf_ntb_link_up() - Raise link_up interrupt to both the hosts |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @link_up: true or false indicating Link is UP or Down |
| * |
| * Once NTB function in HOST1 and the NTB function in HOST2 invoke |
| * ntb_link_enable(), this NTB function driver will trigger a link event to |
| * the NTB client in both the hosts. |
| */ |
| static int epf_ntb_link_up(struct epf_ntb *ntb, bool link_up) |
| { |
| enum pci_epc_interface_type type; |
| struct epf_ntb_epc *ntb_epc; |
| struct epf_ntb_ctrl *ctrl; |
| unsigned int irq_type; |
| struct pci_epc *epc; |
| u8 func_no, vfunc_no; |
| bool is_msix; |
| int ret; |
| |
| for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { |
| ntb_epc = ntb->epc[type]; |
| epc = ntb_epc->epc; |
| func_no = ntb_epc->func_no; |
| vfunc_no = ntb_epc->vfunc_no; |
| is_msix = ntb_epc->is_msix; |
| ctrl = ntb_epc->reg; |
| if (link_up) |
| ctrl->link_status |= LINK_STATUS_UP; |
| else |
| ctrl->link_status &= ~LINK_STATUS_UP; |
| irq_type = is_msix ? PCI_IRQ_MSIX : PCI_IRQ_MSI; |
| ret = pci_epc_raise_irq(epc, func_no, vfunc_no, irq_type, 1); |
| if (ret) { |
| dev_err(&epc->dev, |
| "%s intf: Failed to raise Link Up IRQ\n", |
| pci_epc_interface_string(type)); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * epf_ntb_configure_mw() - Configure the Outbound Address Space for one host |
| * to access the memory window of other host |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @type: PRIMARY interface or SECONDARY interface |
| * @mw: Index of the memory window (either 0, 1, 2 or 3) |
| * |
| * +-----------------+ +---->+----------------+-----------+-----------------+ |
| * | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 | |
| * +-----------------+ | +----------------+ +-----------------+ |
| * | BAR1 | | | Doorbell 2 +---------+ | | |
| * +-----------------+----+ +----------------+ | | | |
| * | BAR2 | | Doorbell 3 +-------+ | +-----------------+ |
| * +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 | |
| * | BAR3 | | | Doorbell 4 +-----+ | +-----------------+ |
| * +-----------------+ | |----------------+ | | | | |
| * | BAR4 | | | | | | +-----------------+ |
| * +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3|| |
| * | BAR5 | | | | | | +-----------------+ |
| * +-----------------+ +---->-----------------+ | | | | |
| * EP CONTROLLER 1 | | | | +-----------------+ |
| * | | | +---->+ MSI|X ADDRESS 4 | |
| * +----------------+ | +-----------------+ |
| * (A) EP CONTROLLER 2 | | | |
| * (OB SPACE) | | | |
| * +-------> MW1 | |
| * | | |
| * | | |
| * (B) +-----------------+ |
| * | | |
| * | | |
| * | | |
| * | | |
| * | | |
| * +-----------------+ |
| * PCI Address Space |
| * (Managed by HOST2) |
| * |
| * This function performs stage (B) in the above diagram (see MW1) i.e., map OB |
| * address space of memory window to PCI address space. |
| * |
| * This operation requires 3 parameters |
| * 1) Address in the outbound address space |
| * 2) Address in the PCI Address space |
| * 3) Size of the address region to be mapped |
| * |
| * The address in the outbound address space (for MW1, MW2, MW3 and MW4) is |
| * stored in epf_bar corresponding to BAR_DB_MW1 for MW1 and BAR_MW2, BAR_MW3 |
| * BAR_MW4 for rest of the BARs of epf_ntb_epc that is connected to HOST1. This |
| * is populated in epf_ntb_alloc_peer_mem() in this driver. |
| * |
| * The address and size of the PCI address region that has to be mapped would |
| * be provided by HOST2 in ctrl->addr and ctrl->size of epf_ntb_epc that is |
| * connected to HOST2. |
| * |
| * Please note Memory window1 (MW1) and Doorbell registers together will be |
| * mapped to a single BAR (BAR2) above for 32-bit BARs. The exact BAR that's |
| * used for Memory window (MW) can be obtained from epf_ntb_bar[BAR_DB_MW1], |
| * epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2], epf_ntb_bar[BAR_MW2]. |
| */ |
| static int epf_ntb_configure_mw(struct epf_ntb *ntb, |
| enum pci_epc_interface_type type, u32 mw) |
| { |
| struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; |
| struct pci_epf_bar *peer_epf_bar; |
| enum pci_barno peer_barno; |
| struct epf_ntb_ctrl *ctrl; |
| phys_addr_t phys_addr; |
| u8 func_no, vfunc_no; |
| struct pci_epc *epc; |
| u64 addr, size; |
| int ret = 0; |
| |
| ntb_epc = ntb->epc[type]; |
| epc = ntb_epc->epc; |
| |
| peer_ntb_epc = ntb->epc[!type]; |
| peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET]; |
| peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; |
| |
| phys_addr = peer_epf_bar->phys_addr; |
| ctrl = ntb_epc->reg; |
| addr = ctrl->addr; |
| size = ctrl->size; |
| if (mw + NTB_MW_OFFSET == BAR_DB_MW1) |
| phys_addr += ctrl->mw1_offset; |
| |
| if (size > ntb->mws_size[mw]) { |
| dev_err(&epc->dev, |
| "%s intf: MW: %d Req Sz:%llxx > Supported Sz:%llx\n", |
| pci_epc_interface_string(type), mw, size, |
| ntb->mws_size[mw]); |
| ret = -EINVAL; |
| goto err_invalid_size; |
| } |
| |
| func_no = ntb_epc->func_no; |
| vfunc_no = ntb_epc->vfunc_no; |
| |
| ret = pci_epc_map_addr(epc, func_no, vfunc_no, phys_addr, addr, size); |
| if (ret) |
| dev_err(&epc->dev, |
| "%s intf: Failed to map memory window %d address\n", |
| pci_epc_interface_string(type), mw); |
| |
| err_invalid_size: |
| |
| return ret; |
| } |
| |
| /** |
| * epf_ntb_teardown_mw() - Teardown the configured OB ATU |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @type: PRIMARY interface or SECONDARY interface |
| * @mw: Index of the memory window (either 0, 1, 2 or 3) |
| * |
| * Teardown the configured OB ATU configured in epf_ntb_configure_mw() using |
| * pci_epc_unmap_addr() |
| */ |
| static void epf_ntb_teardown_mw(struct epf_ntb *ntb, |
| enum pci_epc_interface_type type, u32 mw) |
| { |
| struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; |
| struct pci_epf_bar *peer_epf_bar; |
| enum pci_barno peer_barno; |
| struct epf_ntb_ctrl *ctrl; |
| phys_addr_t phys_addr; |
| u8 func_no, vfunc_no; |
| struct pci_epc *epc; |
| |
| ntb_epc = ntb->epc[type]; |
| epc = ntb_epc->epc; |
| |
| peer_ntb_epc = ntb->epc[!type]; |
| peer_barno = peer_ntb_epc->epf_ntb_bar[mw + NTB_MW_OFFSET]; |
| peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; |
| |
| phys_addr = peer_epf_bar->phys_addr; |
| ctrl = ntb_epc->reg; |
| if (mw + NTB_MW_OFFSET == BAR_DB_MW1) |
| phys_addr += ctrl->mw1_offset; |
| func_no = ntb_epc->func_no; |
| vfunc_no = ntb_epc->vfunc_no; |
| |
| pci_epc_unmap_addr(epc, func_no, vfunc_no, phys_addr); |
| } |
| |
| /** |
| * epf_ntb_configure_msi() - Map OB address space to MSI address |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @type: PRIMARY interface or SECONDARY interface |
| * @db_count: Number of doorbell interrupts to map |
| * |
| *+-----------------+ +----->+----------------+-----------+-----------------+ |
| *| BAR0 | | | Doorbell 1 +---+-------> MSI ADDRESS | |
| *+-----------------+ | +----------------+ | +-----------------+ |
| *| BAR1 | | | Doorbell 2 +---+ | | |
| *+-----------------+----+ +----------------+ | | | |
| *| BAR2 | | Doorbell 3 +---+ | | |
| *+-----------------+----+ +----------------+ | | | |
| *| BAR3 | | | Doorbell 4 +---+ | | |
| *+-----------------+ | |----------------+ | | |
| *| BAR4 | | | | | | |
| *+-----------------+ | | MW1 | | | |
| *| BAR5 | | | | | | |
| *+-----------------+ +----->-----------------+ | | |
| * EP CONTROLLER 1 | | | | |
| * | | | | |
| * +----------------+ +-----------------+ |
| * (A) EP CONTROLLER 2 | | |
| * (OB SPACE) | | |
| * | MW1 | |
| * | | |
| * | | |
| * (B) +-----------------+ |
| * | | |
| * | | |
| * | | |
| * | | |
| * | | |
| * +-----------------+ |
| * PCI Address Space |
| * (Managed by HOST2) |
| * |
| * |
| * This function performs stage (B) in the above diagram (see Doorbell 1, |
| * Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to |
| * doorbell to MSI address in PCI address space. |
| * |
| * This operation requires 3 parameters |
| * 1) Address reserved for doorbell in the outbound address space |
| * 2) MSI-X address in the PCIe Address space |
| * 3) Number of MSI-X interrupts that has to be configured |
| * |
| * The address in the outbound address space (for the Doorbell) is stored in |
| * epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to |
| * HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along |
| * with address for MW1. |
| * |
| * pci_epc_map_msi_irq() takes the MSI address from MSI capability register |
| * and maps the OB address (obtained in epf_ntb_alloc_peer_mem()) to the MSI |
| * address. |
| * |
| * epf_ntb_configure_msi() also stores the MSI data to raise each interrupt |
| * in db_data of the peer's control region. This helps the peer to raise |
| * doorbell of the other host by writing db_data to the BAR corresponding to |
| * BAR_DB_MW1. |
| */ |
| static int epf_ntb_configure_msi(struct epf_ntb *ntb, |
| enum pci_epc_interface_type type, u16 db_count) |
| { |
| struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; |
| u32 db_entry_size, db_data, db_offset; |
| struct pci_epf_bar *peer_epf_bar; |
| struct epf_ntb_ctrl *peer_ctrl; |
| enum pci_barno peer_barno; |
| phys_addr_t phys_addr; |
| u8 func_no, vfunc_no; |
| struct pci_epc *epc; |
| int ret, i; |
| |
| ntb_epc = ntb->epc[type]; |
| epc = ntb_epc->epc; |
| |
| peer_ntb_epc = ntb->epc[!type]; |
| peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1]; |
| peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; |
| peer_ctrl = peer_ntb_epc->reg; |
| db_entry_size = peer_ctrl->db_entry_size; |
| |
| phys_addr = peer_epf_bar->phys_addr; |
| func_no = ntb_epc->func_no; |
| vfunc_no = ntb_epc->vfunc_no; |
| |
| ret = pci_epc_map_msi_irq(epc, func_no, vfunc_no, phys_addr, db_count, |
| db_entry_size, &db_data, &db_offset); |
| if (ret) { |
| dev_err(&epc->dev, "%s intf: Failed to map MSI IRQ\n", |
| pci_epc_interface_string(type)); |
| return ret; |
| } |
| |
| for (i = 0; i < db_count; i++) { |
| peer_ctrl->db_data[i] = db_data | i; |
| peer_ctrl->db_offset[i] = db_offset; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * epf_ntb_configure_msix() - Map OB address space to MSI-X address |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @type: PRIMARY interface or SECONDARY interface |
| * @db_count: Number of doorbell interrupts to map |
| * |
| *+-----------------+ +----->+----------------+-----------+-----------------+ |
| *| BAR0 | | | Doorbell 1 +-----------> MSI-X ADDRESS 1 | |
| *+-----------------+ | +----------------+ +-----------------+ |
| *| BAR1 | | | Doorbell 2 +---------+ | | |
| *+-----------------+----+ +----------------+ | | | |
| *| BAR2 | | Doorbell 3 +-------+ | +-----------------+ |
| *+-----------------+----+ +----------------+ | +-> MSI-X ADDRESS 2 | |
| *| BAR3 | | | Doorbell 4 +-----+ | +-----------------+ |
| *+-----------------+ | |----------------+ | | | | |
| *| BAR4 | | | | | | +-----------------+ |
| *+-----------------+ | | MW1 + | +-->+ MSI-X ADDRESS 3|| |
| *| BAR5 | | | | | +-----------------+ |
| *+-----------------+ +----->-----------------+ | | | |
| * EP CONTROLLER 1 | | | +-----------------+ |
| * | | +---->+ MSI-X ADDRESS 4 | |
| * +----------------+ +-----------------+ |
| * (A) EP CONTROLLER 2 | | |
| * (OB SPACE) | | |
| * | MW1 | |
| * | | |
| * | | |
| * (B) +-----------------+ |
| * | | |
| * | | |
| * | | |
| * | | |
| * | | |
| * +-----------------+ |
| * PCI Address Space |
| * (Managed by HOST2) |
| * |
| * This function performs stage (B) in the above diagram (see Doorbell 1, |
| * Doorbell 2, Doorbell 3, Doorbell 4) i.e map OB address space corresponding to |
| * doorbell to MSI-X address in PCI address space. |
| * |
| * This operation requires 3 parameters |
| * 1) Address reserved for doorbell in the outbound address space |
| * 2) MSI-X address in the PCIe Address space |
| * 3) Number of MSI-X interrupts that has to be configured |
| * |
| * The address in the outbound address space (for the Doorbell) is stored in |
| * epf_bar corresponding to BAR_DB_MW1 of epf_ntb_epc that is connected to |
| * HOST1. This is populated in epf_ntb_alloc_peer_mem() in this driver along |
| * with address for MW1. |
| * |
| * The MSI-X address is in the MSI-X table of EP CONTROLLER 2 and |
| * the count of doorbell is in ctrl->argument of epf_ntb_epc that is connected |
| * to HOST2. MSI-X table is stored memory mapped to ntb_epc->msix_bar and the |
| * offset is in ntb_epc->msix_table_offset. From this epf_ntb_configure_msix() |
| * gets the MSI-X address and data. |
| * |
| * epf_ntb_configure_msix() also stores the MSI-X data to raise each interrupt |
| * in db_data of the peer's control region. This helps the peer to raise |
| * doorbell of the other host by writing db_data to the BAR corresponding to |
| * BAR_DB_MW1. |
| */ |
| static int epf_ntb_configure_msix(struct epf_ntb *ntb, |
| enum pci_epc_interface_type type, |
| u16 db_count) |
| { |
| const struct pci_epc_features *epc_features; |
| struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; |
| struct pci_epf_bar *peer_epf_bar, *epf_bar; |
| struct pci_epf_msix_tbl *msix_tbl; |
| struct epf_ntb_ctrl *peer_ctrl; |
| u32 db_entry_size, msg_data; |
| enum pci_barno peer_barno; |
| phys_addr_t phys_addr; |
| u8 func_no, vfunc_no; |
| struct pci_epc *epc; |
| size_t align; |
| u64 msg_addr; |
| int ret, i; |
| |
| ntb_epc = ntb->epc[type]; |
| epc = ntb_epc->epc; |
| |
| epf_bar = &ntb_epc->epf_bar[ntb_epc->msix_bar]; |
| msix_tbl = epf_bar->addr + ntb_epc->msix_table_offset; |
| |
| peer_ntb_epc = ntb->epc[!type]; |
| peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1]; |
| peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; |
| phys_addr = peer_epf_bar->phys_addr; |
| peer_ctrl = peer_ntb_epc->reg; |
| epc_features = ntb_epc->epc_features; |
| align = epc_features->align; |
| |
| func_no = ntb_epc->func_no; |
| vfunc_no = ntb_epc->vfunc_no; |
| db_entry_size = peer_ctrl->db_entry_size; |
| |
| for (i = 0; i < db_count; i++) { |
| msg_addr = ALIGN_DOWN(msix_tbl[i].msg_addr, align); |
| msg_data = msix_tbl[i].msg_data; |
| ret = pci_epc_map_addr(epc, func_no, vfunc_no, phys_addr, msg_addr, |
| db_entry_size); |
| if (ret) { |
| dev_err(&epc->dev, |
| "%s intf: Failed to configure MSI-X IRQ\n", |
| pci_epc_interface_string(type)); |
| return ret; |
| } |
| phys_addr = phys_addr + db_entry_size; |
| peer_ctrl->db_data[i] = msg_data; |
| peer_ctrl->db_offset[i] = msix_tbl[i].msg_addr & (align - 1); |
| } |
| ntb_epc->is_msix = true; |
| |
| return 0; |
| } |
| |
| /** |
| * epf_ntb_configure_db() - Configure the Outbound Address Space for one host |
| * to ring the doorbell of other host |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @type: PRIMARY interface or SECONDARY interface |
| * @db_count: Count of the number of doorbells that has to be configured |
| * @msix: Indicates whether MSI-X or MSI should be used |
| * |
| * Invokes epf_ntb_configure_msix() or epf_ntb_configure_msi() required for |
| * one HOST to ring the doorbell of other HOST. |
| */ |
| static int epf_ntb_configure_db(struct epf_ntb *ntb, |
| enum pci_epc_interface_type type, |
| u16 db_count, bool msix) |
| { |
| struct epf_ntb_epc *ntb_epc; |
| struct pci_epc *epc; |
| int ret; |
| |
| if (db_count > MAX_DB_COUNT) |
| return -EINVAL; |
| |
| ntb_epc = ntb->epc[type]; |
| epc = ntb_epc->epc; |
| |
| if (msix) |
| ret = epf_ntb_configure_msix(ntb, type, db_count); |
| else |
| ret = epf_ntb_configure_msi(ntb, type, db_count); |
| |
| if (ret) |
| dev_err(&epc->dev, "%s intf: Failed to configure DB\n", |
| pci_epc_interface_string(type)); |
| |
| return ret; |
| } |
| |
| /** |
| * epf_ntb_teardown_db() - Unmap address in OB address space to MSI/MSI-X |
| * address |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @type: PRIMARY interface or SECONDARY interface |
| * |
| * Invoke pci_epc_unmap_addr() to unmap OB address to MSI/MSI-X address. |
| */ |
| static void |
| epf_ntb_teardown_db(struct epf_ntb *ntb, enum pci_epc_interface_type type) |
| { |
| struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; |
| struct pci_epf_bar *peer_epf_bar; |
| enum pci_barno peer_barno; |
| phys_addr_t phys_addr; |
| u8 func_no, vfunc_no; |
| struct pci_epc *epc; |
| |
| ntb_epc = ntb->epc[type]; |
| epc = ntb_epc->epc; |
| |
| peer_ntb_epc = ntb->epc[!type]; |
| peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_DB_MW1]; |
| peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; |
| phys_addr = peer_epf_bar->phys_addr; |
| func_no = ntb_epc->func_no; |
| vfunc_no = ntb_epc->vfunc_no; |
| |
| pci_epc_unmap_addr(epc, func_no, vfunc_no, phys_addr); |
| } |
| |
| /** |
| * epf_ntb_cmd_handler() - Handle commands provided by the NTB Host |
| * @work: work_struct for the two epf_ntb_epc (PRIMARY and SECONDARY) |
| * |
| * Workqueue function that gets invoked for the two epf_ntb_epc |
| * periodically (once every 5ms) to see if it has received any commands |
| * from NTB host. The host can send commands to configure doorbell or |
| * configure memory window or to update link status. |
| */ |
| static void epf_ntb_cmd_handler(struct work_struct *work) |
| { |
| enum pci_epc_interface_type type; |
| struct epf_ntb_epc *ntb_epc; |
| struct epf_ntb_ctrl *ctrl; |
| u32 command, argument; |
| struct epf_ntb *ntb; |
| struct device *dev; |
| u16 db_count; |
| bool is_msix; |
| int ret; |
| |
| ntb_epc = container_of(work, struct epf_ntb_epc, cmd_handler.work); |
| ctrl = ntb_epc->reg; |
| command = ctrl->command; |
| if (!command) |
| goto reset_handler; |
| argument = ctrl->argument; |
| |
| ctrl->command = 0; |
| ctrl->argument = 0; |
| |
| ctrl = ntb_epc->reg; |
| type = ntb_epc->type; |
| ntb = ntb_epc->epf_ntb; |
| dev = &ntb->epf->dev; |
| |
| switch (command) { |
| case COMMAND_CONFIGURE_DOORBELL: |
| db_count = argument & DB_COUNT_MASK; |
| is_msix = argument & MSIX_ENABLE; |
| ret = epf_ntb_configure_db(ntb, type, db_count, is_msix); |
| if (ret < 0) |
| ctrl->command_status = COMMAND_STATUS_ERROR; |
| else |
| ctrl->command_status = COMMAND_STATUS_OK; |
| break; |
| case COMMAND_TEARDOWN_DOORBELL: |
| epf_ntb_teardown_db(ntb, type); |
| ctrl->command_status = COMMAND_STATUS_OK; |
| break; |
| case COMMAND_CONFIGURE_MW: |
| ret = epf_ntb_configure_mw(ntb, type, argument); |
| if (ret < 0) |
| ctrl->command_status = COMMAND_STATUS_ERROR; |
| else |
| ctrl->command_status = COMMAND_STATUS_OK; |
| break; |
| case COMMAND_TEARDOWN_MW: |
| epf_ntb_teardown_mw(ntb, type, argument); |
| ctrl->command_status = COMMAND_STATUS_OK; |
| break; |
| case COMMAND_LINK_UP: |
| ntb_epc->linkup = true; |
| if (ntb->epc[PRIMARY_INTERFACE]->linkup && |
| ntb->epc[SECONDARY_INTERFACE]->linkup) { |
| ret = epf_ntb_link_up(ntb, true); |
| if (ret < 0) |
| ctrl->command_status = COMMAND_STATUS_ERROR; |
| else |
| ctrl->command_status = COMMAND_STATUS_OK; |
| goto reset_handler; |
| } |
| ctrl->command_status = COMMAND_STATUS_OK; |
| break; |
| case COMMAND_LINK_DOWN: |
| ntb_epc->linkup = false; |
| ret = epf_ntb_link_up(ntb, false); |
| if (ret < 0) |
| ctrl->command_status = COMMAND_STATUS_ERROR; |
| else |
| ctrl->command_status = COMMAND_STATUS_OK; |
| break; |
| default: |
| dev_err(dev, "%s intf UNKNOWN command: %d\n", |
| pci_epc_interface_string(type), command); |
| break; |
| } |
| |
| reset_handler: |
| queue_delayed_work(kpcintb_workqueue, &ntb_epc->cmd_handler, |
| msecs_to_jiffies(5)); |
| } |
| |
| /** |
| * epf_ntb_peer_spad_bar_clear() - Clear Peer Scratchpad BAR |
| * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound |
| * address. |
| * |
| *+-----------------+------->+------------------+ +-----------------+ |
| *| BAR0 | | CONFIG REGION | | BAR0 | |
| *+-----------------+----+ +------------------+<-------+-----------------+ |
| *| BAR1 | | |SCRATCHPAD REGION | | BAR1 | |
| *+-----------------+ +-->+------------------+<-------+-----------------+ |
| *| BAR2 | Local Memory | BAR2 | |
| *+-----------------+ +-----------------+ |
| *| BAR3 | | BAR3 | |
| *+-----------------+ +-----------------+ |
| *| BAR4 | | BAR4 | |
| *+-----------------+ +-----------------+ |
| *| BAR5 | | BAR5 | |
| *+-----------------+ +-----------------+ |
| * EP CONTROLLER 1 EP CONTROLLER 2 |
| * |
| * Clear BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad |
| * region. While BAR1 is the default peer scratchpad BAR, an NTB could have |
| * other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs). |
| * This function can get the exact BAR used for peer scratchpad from |
| * epf_ntb_bar[BAR_PEER_SPAD]. |
| * |
| * Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function |
| * gets the address of peer scratchpad from |
| * peer_ntb_epc->epf_ntb_bar[BAR_CONFIG]. |
| */ |
| static void epf_ntb_peer_spad_bar_clear(struct epf_ntb_epc *ntb_epc) |
| { |
| struct pci_epf_bar *epf_bar; |
| enum pci_barno barno; |
| u8 func_no, vfunc_no; |
| struct pci_epc *epc; |
| |
| epc = ntb_epc->epc; |
| func_no = ntb_epc->func_no; |
| vfunc_no = ntb_epc->vfunc_no; |
| barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD]; |
| epf_bar = &ntb_epc->epf_bar[barno]; |
| pci_epc_clear_bar(epc, func_no, vfunc_no, epf_bar); |
| } |
| |
| /** |
| * epf_ntb_peer_spad_bar_set() - Set peer scratchpad BAR |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @type: PRIMARY interface or SECONDARY interface |
| * |
| *+-----------------+------->+------------------+ +-----------------+ |
| *| BAR0 | | CONFIG REGION | | BAR0 | |
| *+-----------------+----+ +------------------+<-------+-----------------+ |
| *| BAR1 | | |SCRATCHPAD REGION | | BAR1 | |
| *+-----------------+ +-->+------------------+<-------+-----------------+ |
| *| BAR2 | Local Memory | BAR2 | |
| *+-----------------+ +-----------------+ |
| *| BAR3 | | BAR3 | |
| *+-----------------+ +-----------------+ |
| *| BAR4 | | BAR4 | |
| *+-----------------+ +-----------------+ |
| *| BAR5 | | BAR5 | |
| *+-----------------+ +-----------------+ |
| * EP CONTROLLER 1 EP CONTROLLER 2 |
| * |
| * Set BAR1 of EP CONTROLLER 2 which contains the HOST2's peer scratchpad |
| * region. While BAR1 is the default peer scratchpad BAR, an NTB could have |
| * other BARs for peer scratchpad (because of 64-bit BARs or reserved BARs). |
| * This function can get the exact BAR used for peer scratchpad from |
| * epf_ntb_bar[BAR_PEER_SPAD]. |
| * |
| * Since HOST2's peer scratchpad is also HOST1's self scratchpad, this function |
| * gets the address of peer scratchpad from |
| * peer_ntb_epc->epf_ntb_bar[BAR_CONFIG]. |
| */ |
| static int epf_ntb_peer_spad_bar_set(struct epf_ntb *ntb, |
| enum pci_epc_interface_type type) |
| { |
| struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; |
| struct pci_epf_bar *peer_epf_bar, *epf_bar; |
| enum pci_barno peer_barno, barno; |
| u32 peer_spad_offset; |
| u8 func_no, vfunc_no; |
| struct pci_epc *epc; |
| struct device *dev; |
| int ret; |
| |
| dev = &ntb->epf->dev; |
| |
| peer_ntb_epc = ntb->epc[!type]; |
| peer_barno = peer_ntb_epc->epf_ntb_bar[BAR_CONFIG]; |
| peer_epf_bar = &peer_ntb_epc->epf_bar[peer_barno]; |
| |
| ntb_epc = ntb->epc[type]; |
| barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD]; |
| epf_bar = &ntb_epc->epf_bar[barno]; |
| func_no = ntb_epc->func_no; |
| vfunc_no = ntb_epc->vfunc_no; |
| epc = ntb_epc->epc; |
| |
| peer_spad_offset = peer_ntb_epc->reg->spad_offset; |
| epf_bar->phys_addr = peer_epf_bar->phys_addr + peer_spad_offset; |
| epf_bar->size = peer_ntb_epc->spad_size; |
| epf_bar->barno = barno; |
| epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32; |
| |
| ret = pci_epc_set_bar(epc, func_no, vfunc_no, epf_bar); |
| if (ret) { |
| dev_err(dev, "%s intf: peer SPAD BAR set failed\n", |
| pci_epc_interface_string(type)); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * epf_ntb_config_sspad_bar_clear() - Clear Config + Self scratchpad BAR |
| * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound |
| * address. |
| * |
| * +-----------------+------->+------------------+ +-----------------+ |
| * | BAR0 | | CONFIG REGION | | BAR0 | |
| * +-----------------+----+ +------------------+<-------+-----------------+ |
| * | BAR1 | | |SCRATCHPAD REGION | | BAR1 | |
| * +-----------------+ +-->+------------------+<-------+-----------------+ |
| * | BAR2 | Local Memory | BAR2 | |
| * +-----------------+ +-----------------+ |
| * | BAR3 | | BAR3 | |
| * +-----------------+ +-----------------+ |
| * | BAR4 | | BAR4 | |
| * +-----------------+ +-----------------+ |
| * | BAR5 | | BAR5 | |
| * +-----------------+ +-----------------+ |
| * EP CONTROLLER 1 EP CONTROLLER 2 |
| * |
| * Clear BAR0 of EP CONTROLLER 1 which contains the HOST1's config and |
| * self scratchpad region (removes inbound ATU configuration). While BAR0 is |
| * the default self scratchpad BAR, an NTB could have other BARs for self |
| * scratchpad (because of reserved BARs). This function can get the exact BAR |
| * used for self scratchpad from epf_ntb_bar[BAR_CONFIG]. |
| * |
| * Please note the self scratchpad region and config region is combined to |
| * a single region and mapped using the same BAR. Also note HOST2's peer |
| * scratchpad is HOST1's self scratchpad. |
| */ |
| static void epf_ntb_config_sspad_bar_clear(struct epf_ntb_epc *ntb_epc) |
| { |
| struct pci_epf_bar *epf_bar; |
| enum pci_barno barno; |
| u8 func_no, vfunc_no; |
| struct pci_epc *epc; |
| |
| epc = ntb_epc->epc; |
| func_no = ntb_epc->func_no; |
| vfunc_no = ntb_epc->vfunc_no; |
| barno = ntb_epc->epf_ntb_bar[BAR_CONFIG]; |
| epf_bar = &ntb_epc->epf_bar[barno]; |
| pci_epc_clear_bar(epc, func_no, vfunc_no, epf_bar); |
| } |
| |
| /** |
| * epf_ntb_config_sspad_bar_set() - Set Config + Self scratchpad BAR |
| * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound |
| * address. |
| * |
| * +-----------------+------->+------------------+ +-----------------+ |
| * | BAR0 | | CONFIG REGION | | BAR0 | |
| * +-----------------+----+ +------------------+<-------+-----------------+ |
| * | BAR1 | | |SCRATCHPAD REGION | | BAR1 | |
| * +-----------------+ +-->+------------------+<-------+-----------------+ |
| * | BAR2 | Local Memory | BAR2 | |
| * +-----------------+ +-----------------+ |
| * | BAR3 | | BAR3 | |
| * +-----------------+ +-----------------+ |
| * | BAR4 | | BAR4 | |
| * +-----------------+ +-----------------+ |
| * | BAR5 | | BAR5 | |
| * +-----------------+ +-----------------+ |
| * EP CONTROLLER 1 EP CONTROLLER 2 |
| * |
| * Map BAR0 of EP CONTROLLER 1 which contains the HOST1's config and |
| * self scratchpad region. While BAR0 is the default self scratchpad BAR, an |
| * NTB could have other BARs for self scratchpad (because of reserved BARs). |
| * This function can get the exact BAR used for self scratchpad from |
| * epf_ntb_bar[BAR_CONFIG]. |
| * |
| * Please note the self scratchpad region and config region is combined to |
| * a single region and mapped using the same BAR. Also note HOST2's peer |
| * scratchpad is HOST1's self scratchpad. |
| */ |
| static int epf_ntb_config_sspad_bar_set(struct epf_ntb_epc *ntb_epc) |
| { |
| struct pci_epf_bar *epf_bar; |
| enum pci_barno barno; |
| u8 func_no, vfunc_no; |
| struct epf_ntb *ntb; |
| struct pci_epc *epc; |
| struct device *dev; |
| int ret; |
| |
| ntb = ntb_epc->epf_ntb; |
| dev = &ntb->epf->dev; |
| |
| epc = ntb_epc->epc; |
| func_no = ntb_epc->func_no; |
| vfunc_no = ntb_epc->vfunc_no; |
| barno = ntb_epc->epf_ntb_bar[BAR_CONFIG]; |
| epf_bar = &ntb_epc->epf_bar[barno]; |
| |
| ret = pci_epc_set_bar(epc, func_no, vfunc_no, epf_bar); |
| if (ret) { |
| dev_err(dev, "%s inft: Config/Status/SPAD BAR set failed\n", |
| pci_epc_interface_string(ntb_epc->type)); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * epf_ntb_config_spad_bar_free() - Free the physical memory associated with |
| * config + scratchpad region |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * |
| * +-----------------+------->+------------------+ +-----------------+ |
| * | BAR0 | | CONFIG REGION | | BAR0 | |
| * +-----------------+----+ +------------------+<-------+-----------------+ |
| * | BAR1 | | |SCRATCHPAD REGION | | BAR1 | |
| * +-----------------+ +-->+------------------+<-------+-----------------+ |
| * | BAR2 | Local Memory | BAR2 | |
| * +-----------------+ +-----------------+ |
| * | BAR3 | | BAR3 | |
| * +-----------------+ +-----------------+ |
| * | BAR4 | | BAR4 | |
| * +-----------------+ +-----------------+ |
| * | BAR5 | | BAR5 | |
| * +-----------------+ +-----------------+ |
| * EP CONTROLLER 1 EP CONTROLLER 2 |
| * |
| * Free the Local Memory mentioned in the above diagram. After invoking this |
| * function, any of config + self scratchpad region of HOST1 or peer scratchpad |
| * region of HOST2 should not be accessed. |
| */ |
| static void epf_ntb_config_spad_bar_free(struct epf_ntb *ntb) |
| { |
| enum pci_epc_interface_type type; |
| struct epf_ntb_epc *ntb_epc; |
| enum pci_barno barno; |
| struct pci_epf *epf; |
| |
| epf = ntb->epf; |
| for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { |
| ntb_epc = ntb->epc[type]; |
| barno = ntb_epc->epf_ntb_bar[BAR_CONFIG]; |
| if (ntb_epc->reg) |
| pci_epf_free_space(epf, ntb_epc->reg, barno, type); |
| } |
| } |
| |
| /** |
| * epf_ntb_config_spad_bar_alloc() - Allocate memory for config + scratchpad |
| * region |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @type: PRIMARY interface or SECONDARY interface |
| * |
| * +-----------------+------->+------------------+ +-----------------+ |
| * | BAR0 | | CONFIG REGION | | BAR0 | |
| * +-----------------+----+ +------------------+<-------+-----------------+ |
| * | BAR1 | | |SCRATCHPAD REGION | | BAR1 | |
| * +-----------------+ +-->+------------------+<-------+-----------------+ |
| * | BAR2 | Local Memory | BAR2 | |
| * +-----------------+ +-----------------+ |
| * | BAR3 | | BAR3 | |
| * +-----------------+ +-----------------+ |
| * | BAR4 | | BAR4 | |
| * +-----------------+ +-----------------+ |
| * | BAR5 | | BAR5 | |
| * +-----------------+ +-----------------+ |
| * EP CONTROLLER 1 EP CONTROLLER 2 |
| * |
| * Allocate the Local Memory mentioned in the above diagram. The size of |
| * CONFIG REGION is sizeof(struct epf_ntb_ctrl) and size of SCRATCHPAD REGION |
| * is obtained from "spad-count" configfs entry. |
| * |
| * The size of both config region and scratchpad region has to be aligned, |
| * since the scratchpad region will also be mapped as PEER SCRATCHPAD of |
| * other host using a separate BAR. |
| */ |
| static int epf_ntb_config_spad_bar_alloc(struct epf_ntb *ntb, |
| enum pci_epc_interface_type type) |
| { |
| const struct pci_epc_features *peer_epc_features, *epc_features; |
| struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; |
| size_t msix_table_size, pba_size, align; |
| enum pci_barno peer_barno, barno; |
| struct epf_ntb_ctrl *ctrl; |
| u32 spad_size, ctrl_size; |
| u64 size, peer_size; |
| struct pci_epf *epf; |
| struct device *dev; |
| bool msix_capable; |
| u32 spad_count; |
| void *base; |
| |
| epf = ntb->epf; |
| dev = &epf->dev; |
| ntb_epc = ntb->epc[type]; |
| |
| epc_features = ntb_epc->epc_features; |
| barno = ntb_epc->epf_ntb_bar[BAR_CONFIG]; |
| size = epc_features->bar[barno].fixed_size; |
| align = epc_features->align; |
| |
| peer_ntb_epc = ntb->epc[!type]; |
| peer_epc_features = peer_ntb_epc->epc_features; |
| peer_barno = ntb_epc->epf_ntb_bar[BAR_PEER_SPAD]; |
| peer_size = peer_epc_features->bar[peer_barno].fixed_size; |
| |
| /* Check if epc_features is populated incorrectly */ |
| if ((!IS_ALIGNED(size, align))) |
| return -EINVAL; |
| |
| spad_count = ntb->spad_count; |
| |
| ctrl_size = sizeof(struct epf_ntb_ctrl); |
| spad_size = spad_count * 4; |
| |
| msix_capable = epc_features->msix_capable; |
| if (msix_capable) { |
| msix_table_size = PCI_MSIX_ENTRY_SIZE * ntb->db_count; |
| ctrl_size = ALIGN(ctrl_size, 8); |
| ntb_epc->msix_table_offset = ctrl_size; |
| ntb_epc->msix_bar = barno; |
| /* Align to QWORD or 8 Bytes */ |
| pba_size = ALIGN(DIV_ROUND_UP(ntb->db_count, 8), 8); |
| ctrl_size = ctrl_size + msix_table_size + pba_size; |
| } |
| |
| if (!align) { |
| ctrl_size = roundup_pow_of_two(ctrl_size); |
| spad_size = roundup_pow_of_two(spad_size); |
| } else { |
| ctrl_size = ALIGN(ctrl_size, align); |
| spad_size = ALIGN(spad_size, align); |
| } |
| |
| if (peer_size) { |
| if (peer_size < spad_size) |
| spad_count = peer_size / 4; |
| spad_size = peer_size; |
| } |
| |
| /* |
| * In order to make sure SPAD offset is aligned to its size, |
| * expand control region size to the size of SPAD if SPAD size |
| * is greater than control region size. |
| */ |
| if (spad_size > ctrl_size) |
| ctrl_size = spad_size; |
| |
| if (!size) |
| size = ctrl_size + spad_size; |
| else if (size < ctrl_size + spad_size) |
| return -EINVAL; |
| |
| base = pci_epf_alloc_space(epf, size, barno, epc_features, type); |
| if (!base) { |
| dev_err(dev, "%s intf: Config/Status/SPAD alloc region fail\n", |
| pci_epc_interface_string(type)); |
| return -ENOMEM; |
| } |
| |
| ntb_epc->reg = base; |
| |
| ctrl = ntb_epc->reg; |
| ctrl->spad_offset = ctrl_size; |
| ctrl->spad_count = spad_count; |
| ctrl->num_mws = ntb->num_mws; |
| ctrl->db_entry_size = align ? align : 4; |
| ntb_epc->spad_size = spad_size; |
| |
| return 0; |
| } |
| |
| /** |
| * epf_ntb_config_spad_bar_alloc_interface() - Allocate memory for config + |
| * scratchpad region for each of PRIMARY and SECONDARY interface |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * |
| * Wrapper for epf_ntb_config_spad_bar_alloc() which allocates memory for |
| * config + scratchpad region for a specific interface |
| */ |
| static int epf_ntb_config_spad_bar_alloc_interface(struct epf_ntb *ntb) |
| { |
| enum pci_epc_interface_type type; |
| struct device *dev; |
| int ret; |
| |
| dev = &ntb->epf->dev; |
| |
| for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { |
| ret = epf_ntb_config_spad_bar_alloc(ntb, type); |
| if (ret) { |
| dev_err(dev, "%s intf: Config/SPAD BAR alloc failed\n", |
| pci_epc_interface_string(type)); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * epf_ntb_free_peer_mem() - Free memory allocated in peers outbound address |
| * space |
| * @ntb_epc: EPC associated with one of the HOST which holds peers outbound |
| * address regions |
| * |
| * +-----------------+ +---->+----------------+-----------+-----------------+ |
| * | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 | |
| * +-----------------+ | +----------------+ +-----------------+ |
| * | BAR1 | | | Doorbell 2 +---------+ | | |
| * +-----------------+----+ +----------------+ | | | |
| * | BAR2 | | Doorbell 3 +-------+ | +-----------------+ |
| * +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 | |
| * | BAR3 | | | Doorbell 4 +-----+ | +-----------------+ |
| * +-----------------+ | |----------------+ | | | | |
| * | BAR4 | | | | | | +-----------------+ |
| * +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3|| |
| * | BAR5 | | | | | | +-----------------+ |
| * +-----------------+ +---->-----------------+ | | | | |
| * EP CONTROLLER 1 | | | | +-----------------+ |
| * | | | +---->+ MSI|X ADDRESS 4 | |
| * +----------------+ | +-----------------+ |
| * (A) EP CONTROLLER 2 | | | |
| * (OB SPACE) | | | |
| * +-------> MW1 | |
| * | | |
| * | | |
| * (B) +-----------------+ |
| * | | |
| * | | |
| * | | |
| * | | |
| * | | |
| * +-----------------+ |
| * PCI Address Space |
| * (Managed by HOST2) |
| * |
| * Free memory allocated in EP CONTROLLER 2 (OB SPACE) in the above diagram. |
| * It'll free Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3, |
| * MW4). |
| */ |
| static void epf_ntb_free_peer_mem(struct epf_ntb_epc *ntb_epc) |
| { |
| struct pci_epf_bar *epf_bar; |
| void __iomem *mw_addr; |
| phys_addr_t phys_addr; |
| enum epf_ntb_bar bar; |
| enum pci_barno barno; |
| struct pci_epc *epc; |
| size_t size; |
| |
| epc = ntb_epc->epc; |
| |
| for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) { |
| barno = ntb_epc->epf_ntb_bar[bar]; |
| mw_addr = ntb_epc->mw_addr[barno]; |
| epf_bar = &ntb_epc->epf_bar[barno]; |
| phys_addr = epf_bar->phys_addr; |
| size = epf_bar->size; |
| if (mw_addr) { |
| pci_epc_mem_free_addr(epc, phys_addr, mw_addr, size); |
| ntb_epc->mw_addr[barno] = NULL; |
| } |
| } |
| } |
| |
| /** |
| * epf_ntb_db_mw_bar_clear() - Clear doorbell and memory BAR |
| * @ntb_epc: EPC associated with one of the HOST which holds peer's outbound |
| * address |
| * |
| * +-----------------+ +---->+----------------+-----------+-----------------+ |
| * | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 | |
| * +-----------------+ | +----------------+ +-----------------+ |
| * | BAR1 | | | Doorbell 2 +---------+ | | |
| * +-----------------+----+ +----------------+ | | | |
| * | BAR2 | | Doorbell 3 +-------+ | +-----------------+ |
| * +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 | |
| * | BAR3 | | | Doorbell 4 +-----+ | +-----------------+ |
| * +-----------------+ | |----------------+ | | | | |
| * | BAR4 | | | | | | +-----------------+ |
| * +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3|| |
| * | BAR5 | | | | | | +-----------------+ |
| * +-----------------+ +---->-----------------+ | | | | |
| * EP CONTROLLER 1 | | | | +-----------------+ |
| * | | | +---->+ MSI|X ADDRESS 4 | |
| * +----------------+ | +-----------------+ |
| * (A) EP CONTROLLER 2 | | | |
| * (OB SPACE) | | | |
| * +-------> MW1 | |
| * | | |
| * | | |
| * (B) +-----------------+ |
| * | | |
| * | | |
| * | | |
| * | | |
| * | | |
| * +-----------------+ |
| * PCI Address Space |
| * (Managed by HOST2) |
| * |
| * Clear doorbell and memory BARs (remove inbound ATU configuration). In the above |
| * diagram it clears BAR2 TO BAR5 of EP CONTROLLER 1 (Doorbell BAR, MW1 BAR, MW2 |
| * BAR, MW3 BAR and MW4 BAR). |
| */ |
| static void epf_ntb_db_mw_bar_clear(struct epf_ntb_epc *ntb_epc) |
| { |
| struct pci_epf_bar *epf_bar; |
| enum epf_ntb_bar bar; |
| enum pci_barno barno; |
| u8 func_no, vfunc_no; |
| struct pci_epc *epc; |
| |
| epc = ntb_epc->epc; |
| |
| func_no = ntb_epc->func_no; |
| vfunc_no = ntb_epc->vfunc_no; |
| |
| for (bar = BAR_DB_MW1; bar < BAR_MW4; bar++) { |
| barno = ntb_epc->epf_ntb_bar[bar]; |
| epf_bar = &ntb_epc->epf_bar[barno]; |
| pci_epc_clear_bar(epc, func_no, vfunc_no, epf_bar); |
| } |
| } |
| |
| /** |
| * epf_ntb_db_mw_bar_cleanup() - Clear doorbell/memory BAR and free memory |
| * allocated in peers outbound address space |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @type: PRIMARY interface or SECONDARY interface |
| * |
| * Wrapper for epf_ntb_db_mw_bar_clear() to clear HOST1's BAR and |
| * epf_ntb_free_peer_mem() which frees up HOST2 outbound memory. |
| */ |
| static void epf_ntb_db_mw_bar_cleanup(struct epf_ntb *ntb, |
| enum pci_epc_interface_type type) |
| { |
| struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; |
| |
| ntb_epc = ntb->epc[type]; |
| peer_ntb_epc = ntb->epc[!type]; |
| |
| epf_ntb_db_mw_bar_clear(ntb_epc); |
| epf_ntb_free_peer_mem(peer_ntb_epc); |
| } |
| |
| /** |
| * epf_ntb_configure_interrupt() - Configure MSI/MSI-X capability |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @type: PRIMARY interface or SECONDARY interface |
| * |
| * Configure MSI/MSI-X capability for each interface with number of |
| * interrupts equal to "db_count" configfs entry. |
| */ |
| static int epf_ntb_configure_interrupt(struct epf_ntb *ntb, |
| enum pci_epc_interface_type type) |
| { |
| const struct pci_epc_features *epc_features; |
| bool msix_capable, msi_capable; |
| struct epf_ntb_epc *ntb_epc; |
| u8 func_no, vfunc_no; |
| struct pci_epc *epc; |
| struct device *dev; |
| u32 db_count; |
| int ret; |
| |
| ntb_epc = ntb->epc[type]; |
| dev = &ntb->epf->dev; |
| |
| epc_features = ntb_epc->epc_features; |
| msix_capable = epc_features->msix_capable; |
| msi_capable = epc_features->msi_capable; |
| |
| if (!(msix_capable || msi_capable)) { |
| dev_err(dev, "MSI or MSI-X is required for doorbell\n"); |
| return -EINVAL; |
| } |
| |
| func_no = ntb_epc->func_no; |
| vfunc_no = ntb_epc->vfunc_no; |
| |
| db_count = ntb->db_count; |
| if (db_count > MAX_DB_COUNT) { |
| dev_err(dev, "DB count cannot be more than %d\n", MAX_DB_COUNT); |
| return -EINVAL; |
| } |
| |
| ntb->db_count = db_count; |
| epc = ntb_epc->epc; |
| |
| if (msi_capable) { |
| ret = pci_epc_set_msi(epc, func_no, vfunc_no, db_count); |
| if (ret) { |
| dev_err(dev, "%s intf: MSI configuration failed\n", |
| pci_epc_interface_string(type)); |
| return ret; |
| } |
| } |
| |
| if (msix_capable) { |
| ret = pci_epc_set_msix(epc, func_no, vfunc_no, db_count, |
| ntb_epc->msix_bar, |
| ntb_epc->msix_table_offset); |
| if (ret) { |
| dev_err(dev, "MSI configuration failed\n"); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * epf_ntb_alloc_peer_mem() - Allocate memory in peer's outbound address space |
| * @dev: The PCI device. |
| * @ntb_epc: EPC associated with one of the HOST whose BAR holds peer's outbound |
| * address |
| * @bar: BAR of @ntb_epc in for which memory has to be allocated (could be |
| * BAR_DB_MW1, BAR_MW2, BAR_MW3, BAR_MW4) |
| * @peer_ntb_epc: EPC associated with HOST whose outbound address space is |
| * used by @ntb_epc |
| * @size: Size of the address region that has to be allocated in peers OB SPACE |
| * |
| * |
| * +-----------------+ +---->+----------------+-----------+-----------------+ |
| * | BAR0 | | | Doorbell 1 +-----------> MSI|X ADDRESS 1 | |
| * +-----------------+ | +----------------+ +-----------------+ |
| * | BAR1 | | | Doorbell 2 +---------+ | | |
| * +-----------------+----+ +----------------+ | | | |
| * | BAR2 | | Doorbell 3 +-------+ | +-----------------+ |
| * +-----------------+----+ +----------------+ | +-> MSI|X ADDRESS 2 | |
| * | BAR3 | | | Doorbell 4 +-----+ | +-----------------+ |
| * +-----------------+ | |----------------+ | | | | |
| * | BAR4 | | | | | | +-----------------+ |
| * +-----------------+ | | MW1 +---+ | +-->+ MSI|X ADDRESS 3|| |
| * | BAR5 | | | | | | +-----------------+ |
| * +-----------------+ +---->-----------------+ | | | | |
| * EP CONTROLLER 1 | | | | +-----------------+ |
| * | | | +---->+ MSI|X ADDRESS 4 | |
| * +----------------+ | +-----------------+ |
| * (A) EP CONTROLLER 2 | | | |
| * (OB SPACE) | | | |
| * +-------> MW1 | |
| * | | |
| * | | |
| * (B) +-----------------+ |
| * | | |
| * | | |
| * | | |
| * | | |
| * | | |
| * +-----------------+ |
| * PCI Address Space |
| * (Managed by HOST2) |
| * |
| * Allocate memory in OB space of EP CONTROLLER 2 in the above diagram. Allocate |
| * for Doorbell 1, Doorbell 2, Doorbell 3, Doorbell 4, MW1 (and MW2, MW3, MW4). |
| */ |
| static int epf_ntb_alloc_peer_mem(struct device *dev, |
| struct epf_ntb_epc *ntb_epc, |
| enum epf_ntb_bar bar, |
| struct epf_ntb_epc *peer_ntb_epc, |
| size_t size) |
| { |
| const struct pci_epc_features *epc_features; |
| struct pci_epf_bar *epf_bar; |
| struct pci_epc *peer_epc; |
| phys_addr_t phys_addr; |
| void __iomem *mw_addr; |
| enum pci_barno barno; |
| size_t align; |
| |
| epc_features = ntb_epc->epc_features; |
| align = epc_features->align; |
| |
| if (size < 128) |
| size = 128; |
| |
| if (align) |
| size = ALIGN(size, align); |
| else |
| size = roundup_pow_of_two(size); |
| |
| peer_epc = peer_ntb_epc->epc; |
| mw_addr = pci_epc_mem_alloc_addr(peer_epc, &phys_addr, size); |
| if (!mw_addr) { |
| dev_err(dev, "%s intf: Failed to allocate OB address\n", |
| pci_epc_interface_string(peer_ntb_epc->type)); |
| return -ENOMEM; |
| } |
| |
| barno = ntb_epc->epf_ntb_bar[bar]; |
| epf_bar = &ntb_epc->epf_bar[barno]; |
| ntb_epc->mw_addr[barno] = mw_addr; |
| |
| epf_bar->phys_addr = phys_addr; |
| epf_bar->size = size; |
| epf_bar->barno = barno; |
| epf_bar->flags = PCI_BASE_ADDRESS_MEM_TYPE_32; |
| |
| return 0; |
| } |
| |
| /** |
| * epf_ntb_db_mw_bar_init() - Configure Doorbell and Memory window BARs |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @type: PRIMARY interface or SECONDARY interface |
| * |
| * Wrapper for epf_ntb_alloc_peer_mem() and pci_epc_set_bar() that allocates |
| * memory in OB address space of HOST2 and configures BAR of HOST1 |
| */ |
| static int epf_ntb_db_mw_bar_init(struct epf_ntb *ntb, |
| enum pci_epc_interface_type type) |
| { |
| const struct pci_epc_features *epc_features; |
| struct epf_ntb_epc *peer_ntb_epc, *ntb_epc; |
| struct pci_epf_bar *epf_bar; |
| struct epf_ntb_ctrl *ctrl; |
| u32 num_mws, db_count; |
| enum epf_ntb_bar bar; |
| enum pci_barno barno; |
| u8 func_no, vfunc_no; |
| struct pci_epc *epc; |
| struct device *dev; |
| size_t align; |
| int ret, i; |
| u64 size; |
| |
| ntb_epc = ntb->epc[type]; |
| peer_ntb_epc = ntb->epc[!type]; |
| |
| dev = &ntb->epf->dev; |
| epc_features = ntb_epc->epc_features; |
| align = epc_features->align; |
| func_no = ntb_epc->func_no; |
| vfunc_no = ntb_epc->vfunc_no; |
| epc = ntb_epc->epc; |
| num_mws = ntb->num_mws; |
| db_count = ntb->db_count; |
| |
| for (bar = BAR_DB_MW1, i = 0; i < num_mws; bar++, i++) { |
| if (bar == BAR_DB_MW1) { |
| align = align ? align : 4; |
| size = db_count * align; |
| size = ALIGN(size, ntb->mws_size[i]); |
| ctrl = ntb_epc->reg; |
| ctrl->mw1_offset = size; |
| size += ntb->mws_size[i]; |
| } else { |
| size = ntb->mws_size[i]; |
| } |
| |
| ret = epf_ntb_alloc_peer_mem(dev, ntb_epc, bar, |
| peer_ntb_epc, size); |
| if (ret) { |
| dev_err(dev, "%s intf: DoorBell mem alloc failed\n", |
| pci_epc_interface_string(type)); |
| goto err_alloc_peer_mem; |
| } |
| |
| barno = ntb_epc->epf_ntb_bar[bar]; |
| epf_bar = &ntb_epc->epf_bar[barno]; |
| |
| ret = pci_epc_set_bar(epc, func_no, vfunc_no, epf_bar); |
| if (ret) { |
| dev_err(dev, "%s intf: DoorBell BAR set failed\n", |
| pci_epc_interface_string(type)); |
| goto err_alloc_peer_mem; |
| } |
| } |
| |
| return 0; |
| |
| err_alloc_peer_mem: |
| epf_ntb_db_mw_bar_cleanup(ntb, type); |
| |
| return ret; |
| } |
| |
| /** |
| * epf_ntb_epc_destroy_interface() - Cleanup NTB EPC interface |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @type: PRIMARY interface or SECONDARY interface |
| * |
| * Unbind NTB function device from EPC and relinquish reference to pci_epc |
| * for each of the interface. |
| */ |
| static void epf_ntb_epc_destroy_interface(struct epf_ntb *ntb, |
| enum pci_epc_interface_type type) |
| { |
| struct epf_ntb_epc *ntb_epc; |
| struct pci_epc *epc; |
| struct pci_epf *epf; |
| |
| if (type < 0) |
| return; |
| |
| epf = ntb->epf; |
| ntb_epc = ntb->epc[type]; |
| if (!ntb_epc) |
| return; |
| epc = ntb_epc->epc; |
| pci_epc_remove_epf(epc, epf, type); |
| pci_epc_put(epc); |
| } |
| |
| /** |
| * epf_ntb_epc_destroy() - Cleanup NTB EPC interface |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * |
| * Wrapper for epf_ntb_epc_destroy_interface() to cleanup all the NTB interfaces |
| */ |
| static void epf_ntb_epc_destroy(struct epf_ntb *ntb) |
| { |
| enum pci_epc_interface_type type; |
| |
| for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) |
| epf_ntb_epc_destroy_interface(ntb, type); |
| } |
| |
| /** |
| * epf_ntb_epc_create_interface() - Create and initialize NTB EPC interface |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @epc: struct pci_epc to which a particular NTB interface should be associated |
| * @type: PRIMARY interface or SECONDARY interface |
| * |
| * Allocate memory for NTB EPC interface and initialize it. |
| */ |
| static int epf_ntb_epc_create_interface(struct epf_ntb *ntb, |
| struct pci_epc *epc, |
| enum pci_epc_interface_type type) |
| { |
| const struct pci_epc_features *epc_features; |
| struct pci_epf_bar *epf_bar; |
| struct epf_ntb_epc *ntb_epc; |
| u8 func_no, vfunc_no; |
| struct pci_epf *epf; |
| struct device *dev; |
| |
| dev = &ntb->epf->dev; |
| |
| ntb_epc = devm_kzalloc(dev, sizeof(*ntb_epc), GFP_KERNEL); |
| if (!ntb_epc) |
| return -ENOMEM; |
| |
| epf = ntb->epf; |
| vfunc_no = epf->vfunc_no; |
| if (type == PRIMARY_INTERFACE) { |
| func_no = epf->func_no; |
| epf_bar = epf->bar; |
| } else { |
| func_no = epf->sec_epc_func_no; |
| epf_bar = epf->sec_epc_bar; |
| } |
| |
| ntb_epc->linkup = false; |
| ntb_epc->epc = epc; |
| ntb_epc->func_no = func_no; |
| ntb_epc->vfunc_no = vfunc_no; |
| ntb_epc->type = type; |
| ntb_epc->epf_bar = epf_bar; |
| ntb_epc->epf_ntb = ntb; |
| |
| epc_features = pci_epc_get_features(epc, func_no, vfunc_no); |
| if (!epc_features) |
| return -EINVAL; |
| ntb_epc->epc_features = epc_features; |
| |
| ntb->epc[type] = ntb_epc; |
| |
| return 0; |
| } |
| |
| /** |
| * epf_ntb_epc_create() - Create and initialize NTB EPC interface |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * |
| * Get a reference to EPC device and bind NTB function device to that EPC |
| * for each of the interface. It is also a wrapper to |
| * epf_ntb_epc_create_interface() to allocate memory for NTB EPC interface |
| * and initialize it |
| */ |
| static int epf_ntb_epc_create(struct epf_ntb *ntb) |
| { |
| struct pci_epf *epf; |
| struct device *dev; |
| int ret; |
| |
| epf = ntb->epf; |
| dev = &epf->dev; |
| |
| ret = epf_ntb_epc_create_interface(ntb, epf->epc, PRIMARY_INTERFACE); |
| if (ret) { |
| dev_err(dev, "PRIMARY intf: Fail to create NTB EPC\n"); |
| return ret; |
| } |
| |
| ret = epf_ntb_epc_create_interface(ntb, epf->sec_epc, |
| SECONDARY_INTERFACE); |
| if (ret) { |
| dev_err(dev, "SECONDARY intf: Fail to create NTB EPC\n"); |
| goto err_epc_create; |
| } |
| |
| return 0; |
| |
| err_epc_create: |
| epf_ntb_epc_destroy_interface(ntb, PRIMARY_INTERFACE); |
| |
| return ret; |
| } |
| |
| /** |
| * epf_ntb_init_epc_bar_interface() - Identify BARs to be used for each of |
| * the NTB constructs (scratchpad region, doorbell, memorywindow) |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @type: PRIMARY interface or SECONDARY interface |
| * |
| * Identify the free BARs to be used for each of BAR_CONFIG, BAR_PEER_SPAD, |
| * BAR_DB_MW1, BAR_MW2, BAR_MW3 and BAR_MW4. |
| */ |
| static int epf_ntb_init_epc_bar_interface(struct epf_ntb *ntb, |
| enum pci_epc_interface_type type) |
| { |
| const struct pci_epc_features *epc_features; |
| struct epf_ntb_epc *ntb_epc; |
| enum pci_barno barno; |
| enum epf_ntb_bar bar; |
| struct device *dev; |
| u32 num_mws; |
| int i; |
| |
| barno = BAR_0; |
| ntb_epc = ntb->epc[type]; |
| num_mws = ntb->num_mws; |
| dev = &ntb->epf->dev; |
| epc_features = ntb_epc->epc_features; |
| |
| /* These are required BARs which are mandatory for NTB functionality */ |
| for (bar = BAR_CONFIG; bar <= BAR_DB_MW1; bar++, barno++) { |
| barno = pci_epc_get_next_free_bar(epc_features, barno); |
| if (barno < 0) { |
| dev_err(dev, "%s intf: Fail to get NTB function BAR\n", |
| pci_epc_interface_string(type)); |
| return barno; |
| } |
| ntb_epc->epf_ntb_bar[bar] = barno; |
| } |
| |
| /* These are optional BARs which don't impact NTB functionality */ |
| for (bar = BAR_MW2, i = 1; i < num_mws; bar++, barno++, i++) { |
| barno = pci_epc_get_next_free_bar(epc_features, barno); |
| if (barno < 0) { |
| ntb->num_mws = i; |
| dev_dbg(dev, "BAR not available for > MW%d\n", i + 1); |
| } |
| ntb_epc->epf_ntb_bar[bar] = barno; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * epf_ntb_init_epc_bar() - Identify BARs to be used for each of the NTB |
| * constructs (scratchpad region, doorbell, memorywindow) |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * |
| * Wrapper to epf_ntb_init_epc_bar_interface() to identify the free BARs |
| * to be used for each of BAR_CONFIG, BAR_PEER_SPAD, BAR_DB_MW1, BAR_MW2, |
| * BAR_MW3 and BAR_MW4 for all the interfaces. |
| */ |
| static int epf_ntb_init_epc_bar(struct epf_ntb *ntb) |
| { |
| enum pci_epc_interface_type type; |
| struct device *dev; |
| int ret; |
| |
| dev = &ntb->epf->dev; |
| for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { |
| ret = epf_ntb_init_epc_bar_interface(ntb, type); |
| if (ret) { |
| dev_err(dev, "Fail to init EPC bar for %s interface\n", |
| pci_epc_interface_string(type)); |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * epf_ntb_epc_init_interface() - Initialize NTB interface |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @type: PRIMARY interface or SECONDARY interface |
| * |
| * Wrapper to initialize a particular EPC interface and start the workqueue |
| * to check for commands from host. This function will write to the |
| * EP controller HW for configuring it. |
| */ |
| static int epf_ntb_epc_init_interface(struct epf_ntb *ntb, |
| enum pci_epc_interface_type type) |
| { |
| struct epf_ntb_epc *ntb_epc; |
| u8 func_no, vfunc_no; |
| struct pci_epc *epc; |
| struct pci_epf *epf; |
| struct device *dev; |
| int ret; |
| |
| ntb_epc = ntb->epc[type]; |
| epf = ntb->epf; |
| dev = &epf->dev; |
| epc = ntb_epc->epc; |
| func_no = ntb_epc->func_no; |
| vfunc_no = ntb_epc->vfunc_no; |
| |
| ret = epf_ntb_config_sspad_bar_set(ntb->epc[type]); |
| if (ret) { |
| dev_err(dev, "%s intf: Config/self SPAD BAR init failed\n", |
| pci_epc_interface_string(type)); |
| return ret; |
| } |
| |
| ret = epf_ntb_peer_spad_bar_set(ntb, type); |
| if (ret) { |
| dev_err(dev, "%s intf: Peer SPAD BAR init failed\n", |
| pci_epc_interface_string(type)); |
| goto err_peer_spad_bar_init; |
| } |
| |
| ret = epf_ntb_configure_interrupt(ntb, type); |
| if (ret) { |
| dev_err(dev, "%s intf: Interrupt configuration failed\n", |
| pci_epc_interface_string(type)); |
| goto err_peer_spad_bar_init; |
| } |
| |
| ret = epf_ntb_db_mw_bar_init(ntb, type); |
| if (ret) { |
| dev_err(dev, "%s intf: DB/MW BAR init failed\n", |
| pci_epc_interface_string(type)); |
| goto err_db_mw_bar_init; |
| } |
| |
| if (vfunc_no <= 1) { |
| ret = pci_epc_write_header(epc, func_no, vfunc_no, epf->header); |
| if (ret) { |
| dev_err(dev, "%s intf: Configuration header write failed\n", |
| pci_epc_interface_string(type)); |
| goto err_write_header; |
| } |
| } |
| |
| INIT_DELAYED_WORK(&ntb->epc[type]->cmd_handler, epf_ntb_cmd_handler); |
| queue_work(kpcintb_workqueue, &ntb->epc[type]->cmd_handler.work); |
| |
| return 0; |
| |
| err_write_header: |
| epf_ntb_db_mw_bar_cleanup(ntb, type); |
| |
| err_db_mw_bar_init: |
| epf_ntb_peer_spad_bar_clear(ntb->epc[type]); |
| |
| err_peer_spad_bar_init: |
| epf_ntb_config_sspad_bar_clear(ntb->epc[type]); |
| |
| return ret; |
| } |
| |
| /** |
| * epf_ntb_epc_cleanup_interface() - Cleanup NTB interface |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * @type: PRIMARY interface or SECONDARY interface |
| * |
| * Wrapper to cleanup a particular NTB interface. |
| */ |
| static void epf_ntb_epc_cleanup_interface(struct epf_ntb *ntb, |
| enum pci_epc_interface_type type) |
| { |
| struct epf_ntb_epc *ntb_epc; |
| |
| if (type < 0) |
| return; |
| |
| ntb_epc = ntb->epc[type]; |
| cancel_delayed_work(&ntb_epc->cmd_handler); |
| epf_ntb_db_mw_bar_cleanup(ntb, type); |
| epf_ntb_peer_spad_bar_clear(ntb_epc); |
| epf_ntb_config_sspad_bar_clear(ntb_epc); |
| } |
| |
| /** |
| * epf_ntb_epc_cleanup() - Cleanup all NTB interfaces |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * |
| * Wrapper to cleanup all NTB interfaces. |
| */ |
| static void epf_ntb_epc_cleanup(struct epf_ntb *ntb) |
| { |
| enum pci_epc_interface_type type; |
| |
| for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) |
| epf_ntb_epc_cleanup_interface(ntb, type); |
| } |
| |
| /** |
| * epf_ntb_epc_init() - Initialize all NTB interfaces |
| * @ntb: NTB device that facilitates communication between HOST1 and HOST2 |
| * |
| * Wrapper to initialize all NTB interface and start the workqueue |
| * to check for commands from host. |
| */ |
| static int epf_ntb_epc_init(struct epf_ntb *ntb) |
| { |
| enum pci_epc_interface_type type; |
| struct device *dev; |
| int ret; |
| |
| dev = &ntb->epf->dev; |
| |
| for (type = PRIMARY_INTERFACE; type <= SECONDARY_INTERFACE; type++) { |
| ret = epf_ntb_epc_init_interface(ntb, type); |
| if (ret) { |
| dev_err(dev, "%s intf: Failed to initialize\n", |
| pci_epc_interface_string(type)); |
| goto err_init_type; |
| } |
| } |
| |
| return 0; |
| |
| err_init_type: |
| epf_ntb_epc_cleanup_interface(ntb, type - 1); |
| |
| return ret; |
| } |
| |
| /** |
| * epf_ntb_bind() - Initialize endpoint controller to provide NTB functionality |
| * @epf: NTB endpoint function device |
| * |
| * Initialize both the endpoint controllers associated with NTB function device. |
| * Invoked when a primary interface or secondary interface is bound to EPC |
| * device. This function will succeed only when EPC is bound to both the |
| * interfaces. |
| */ |
| static int epf_ntb_bind(struct pci_epf *epf) |
| { |
| struct epf_ntb *ntb = epf_get_drvdata(epf); |
| struct device *dev = &epf->dev; |
| int ret; |
| |
| if (!epf->epc) { |
| dev_dbg(dev, "PRIMARY EPC interface not yet bound\n"); |
| return 0; |
| } |
| |
| if (!epf->sec_epc) { |
| dev_dbg(dev, "SECONDARY EPC interface not yet bound\n"); |
| return 0; |
| } |
| |
| ret = epf_ntb_epc_create(ntb); |
| if (ret) { |
| dev_err(dev, "Failed to create NTB EPC\n"); |
| return ret; |
| } |
| |
| ret = epf_ntb_init_epc_bar(ntb); |
| if (ret) { |
| dev_err(dev, "Failed to create NTB EPC\n"); |
| goto err_bar_init; |
| } |
| |
| ret = epf_ntb_config_spad_bar_alloc_interface(ntb); |
| if (ret) { |
| dev_err(dev, "Failed to allocate BAR memory\n"); |
| goto err_bar_alloc; |
| } |
| |
| ret = epf_ntb_epc_init(ntb); |
| if (ret) { |
| dev_err(dev, "Failed to initialize EPC\n"); |
| goto err_bar_alloc; |
| } |
| |
| epf_set_drvdata(epf, ntb); |
| |
| return 0; |
| |
| err_bar_alloc: |
| epf_ntb_config_spad_bar_free(ntb); |
| |
| err_bar_init: |
| epf_ntb_epc_destroy(ntb); |
| |
| return ret; |
| } |
| |
| /** |
| * epf_ntb_unbind() - Cleanup the initialization from epf_ntb_bind() |
| * @epf: NTB endpoint function device |
| * |
| * Cleanup the initialization from epf_ntb_bind() |
| */ |
| static void epf_ntb_unbind(struct pci_epf *epf) |
| { |
| struct epf_ntb *ntb = epf_get_drvdata(epf); |
| |
| epf_ntb_epc_cleanup(ntb); |
| epf_ntb_config_spad_bar_free(ntb); |
| epf_ntb_epc_destroy(ntb); |
| } |
| |
| #define EPF_NTB_R(_name) \ |
| static ssize_t epf_ntb_##_name##_show(struct config_item *item, \ |
| char *page) \ |
| { \ |
| struct config_group *group = to_config_group(item); \ |
| struct epf_ntb *ntb = to_epf_ntb(group); \ |
| \ |
| return sysfs_emit(page, "%d\n", ntb->_name); \ |
| } |
| |
| #define EPF_NTB_W(_name) \ |
| static ssize_t epf_ntb_##_name##_store(struct config_item *item, \ |
| const char *page, size_t len) \ |
| { \ |
| struct config_group *group = to_config_group(item); \ |
| struct epf_ntb *ntb = to_epf_ntb(group); \ |
| u32 val; \ |
| \ |
| if (kstrtou32(page, 0, &val) < 0) \ |
| return -EINVAL; \ |
| \ |
| ntb->_name = val; \ |
| \ |
| return len; \ |
| } |
| |
| #define EPF_NTB_MW_R(_name) \ |
| static ssize_t epf_ntb_##_name##_show(struct config_item *item, \ |
| char *page) \ |
| { \ |
| struct config_group *group = to_config_group(item); \ |
| struct epf_ntb *ntb = to_epf_ntb(group); \ |
| int win_no; \ |
| \ |
| sscanf(#_name, "mw%d", &win_no); \ |
| \ |
| return sysfs_emit(page, "%lld\n", ntb->mws_size[win_no - 1]); \ |
| } |
| |
| #define EPF_NTB_MW_W(_name) \ |
| static ssize_t epf_ntb_##_name##_store(struct config_item *item, \ |
| const char *page, size_t len) \ |
| { \ |
| struct config_group *group = to_config_group(item); \ |
| struct epf_ntb *ntb = to_epf_ntb(group); \ |
| struct device *dev = &ntb->epf->dev; \ |
| int win_no; \ |
| u64 val; \ |
| \ |
| if (kstrtou64(page, 0, &val) < 0) \ |
| return -EINVAL; \ |
| \ |
| if (sscanf(#_name, "mw%d", &win_no) != 1) \ |
| return -EINVAL; \ |
| \ |
| if (ntb->num_mws < win_no) { \ |
| dev_err(dev, "Invalid num_nws: %d value\n", ntb->num_mws); \ |
| return -EINVAL; \ |
| } \ |
| \ |
| ntb->mws_size[win_no - 1] = val; \ |
| \ |
| return len; \ |
| } |
| |
| static ssize_t epf_ntb_num_mws_store(struct config_item *item, |
| const char *page, size_t len) |
| { |
| struct config_group *group = to_config_group(item); |
| struct epf_ntb *ntb = to_epf_ntb(group); |
| u32 val; |
| |
| if (kstrtou32(page, 0, &val) < 0) |
| return -EINVAL; |
| |
| if (val > MAX_MW) |
| return -EINVAL; |
| |
| ntb->num_mws = val; |
| |
| return len; |
| } |
| |
| EPF_NTB_R(spad_count) |
| EPF_NTB_W(spad_count) |
| EPF_NTB_R(db_count) |
| EPF_NTB_W(db_count) |
| EPF_NTB_R(num_mws) |
| EPF_NTB_MW_R(mw1) |
| EPF_NTB_MW_W(mw1) |
| EPF_NTB_MW_R(mw2) |
| EPF_NTB_MW_W(mw2) |
| EPF_NTB_MW_R(mw3) |
| EPF_NTB_MW_W(mw3) |
| EPF_NTB_MW_R(mw4) |
| EPF_NTB_MW_W(mw4) |
| |
| CONFIGFS_ATTR(epf_ntb_, spad_count); |
| CONFIGFS_ATTR(epf_ntb_, db_count); |
| CONFIGFS_ATTR(epf_ntb_, num_mws); |
| CONFIGFS_ATTR(epf_ntb_, mw1); |
| CONFIGFS_ATTR(epf_ntb_, mw2); |
| CONFIGFS_ATTR(epf_ntb_, mw3); |
| CONFIGFS_ATTR(epf_ntb_, mw4); |
| |
| static struct configfs_attribute *epf_ntb_attrs[] = { |
| &epf_ntb_attr_spad_count, |
| &epf_ntb_attr_db_count, |
| &epf_ntb_attr_num_mws, |
| &epf_ntb_attr_mw1, |
| &epf_ntb_attr_mw2, |
| &epf_ntb_attr_mw3, |
| &epf_ntb_attr_mw4, |
| NULL, |
| }; |
| |
| static const struct config_item_type ntb_group_type = { |
| .ct_attrs = epf_ntb_attrs, |
| .ct_owner = THIS_MODULE, |
| }; |
| |
| /** |
| * epf_ntb_add_cfs() - Add configfs directory specific to NTB |
| * @epf: NTB endpoint function device |
| * @group: A pointer to the config_group structure referencing a group of |
| * config_items of a specific type that belong to a specific sub-system. |
| * |
| * Add configfs directory specific to NTB. This directory will hold |
| * NTB specific properties like db_count, spad_count, num_mws etc., |
| */ |
| static struct config_group *epf_ntb_add_cfs(struct pci_epf *epf, |
| struct config_group *group) |
| { |
| struct epf_ntb *ntb = epf_get_drvdata(epf); |
| struct config_group *ntb_group = &ntb->group; |
| struct device *dev = &epf->dev; |
| |
| config_group_init_type_name(ntb_group, dev_name(dev), &ntb_group_type); |
| |
| return ntb_group; |
| } |
| |
| /** |
| * epf_ntb_probe() - Probe NTB function driver |
| * @epf: NTB endpoint function device |
| * @id: NTB endpoint function device ID |
| * |
| * Probe NTB function driver when endpoint function bus detects a NTB |
| * endpoint function. |
| */ |
| static int epf_ntb_probe(struct pci_epf *epf, |
| const struct pci_epf_device_id *id) |
| { |
| struct epf_ntb *ntb; |
| struct device *dev; |
| |
| dev = &epf->dev; |
| |
| ntb = devm_kzalloc(dev, sizeof(*ntb), GFP_KERNEL); |
| if (!ntb) |
| return -ENOMEM; |
| |
| epf->header = &epf_ntb_header; |
| ntb->epf = epf; |
| epf_set_drvdata(epf, ntb); |
| |
| return 0; |
| } |
| |
| static const struct pci_epf_ops epf_ntb_ops = { |
| .bind = epf_ntb_bind, |
| .unbind = epf_ntb_unbind, |
| .add_cfs = epf_ntb_add_cfs, |
| }; |
| |
| static const struct pci_epf_device_id epf_ntb_ids[] = { |
| { |
| .name = "pci_epf_ntb", |
| }, |
| {}, |
| }; |
| |
| static struct pci_epf_driver epf_ntb_driver = { |
| .driver.name = "pci_epf_ntb", |
| .probe = epf_ntb_probe, |
| .id_table = epf_ntb_ids, |
| .ops = &epf_ntb_ops, |
| .owner = THIS_MODULE, |
| }; |
| |
| static int __init epf_ntb_init(void) |
| { |
| int ret; |
| |
| kpcintb_workqueue = alloc_workqueue("kpcintb", WQ_MEM_RECLAIM | |
| WQ_HIGHPRI, 0); |
| ret = pci_epf_register_driver(&epf_ntb_driver); |
| if (ret) { |
| destroy_workqueue(kpcintb_workqueue); |
| pr_err("Failed to register pci epf ntb driver --> %d\n", ret); |
| return ret; |
| } |
| |
| return 0; |
| } |
| module_init(epf_ntb_init); |
| |
| static void __exit epf_ntb_exit(void) |
| { |
| pci_epf_unregister_driver(&epf_ntb_driver); |
| destroy_workqueue(kpcintb_workqueue); |
| } |
| module_exit(epf_ntb_exit); |
| |
| MODULE_DESCRIPTION("PCI EPF NTB DRIVER"); |
| MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); |
| MODULE_LICENSE("GPL v2"); |