blob: aed98ab143346792f20a8017b3710631061b387d [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
// Cadence XSPI flash controller driver
// Copyright (C) 2020-21 Cadence
#include <linux/acpi.h>
#include <linux/completion.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/bitfield.h>
#include <linux/limits.h>
#include <linux/log2.h>
#include <linux/bitrev.h>
#define CDNS_XSPI_MAGIC_NUM_VALUE 0x6522
#define CDNS_XSPI_MAX_BANKS 8
#define CDNS_XSPI_NAME "cadence-xspi"
/*
* Note: below are additional auxiliary registers to
* configure XSPI controller pin-strap settings
*/
/* PHY DQ timing register */
#define CDNS_XSPI_CCP_PHY_DQ_TIMING 0x0000
/* PHY DQS timing register */
#define CDNS_XSPI_CCP_PHY_DQS_TIMING 0x0004
/* PHY gate loopback control register */
#define CDNS_XSPI_CCP_PHY_GATE_LPBCK_CTRL 0x0008
/* PHY DLL slave control register */
#define CDNS_XSPI_CCP_PHY_DLL_SLAVE_CTRL 0x0010
/* DLL PHY control register */
#define CDNS_XSPI_DLL_PHY_CTRL 0x1034
/* Command registers */
#define CDNS_XSPI_CMD_REG_0 0x0000
#define CDNS_XSPI_CMD_REG_1 0x0004
#define CDNS_XSPI_CMD_REG_2 0x0008
#define CDNS_XSPI_CMD_REG_3 0x000C
#define CDNS_XSPI_CMD_REG_4 0x0010
#define CDNS_XSPI_CMD_REG_5 0x0014
/* Command status registers */
#define CDNS_XSPI_CMD_STATUS_REG 0x0044
/* Controller status register */
#define CDNS_XSPI_CTRL_STATUS_REG 0x0100
#define CDNS_XSPI_INIT_COMPLETED BIT(16)
#define CDNS_XSPI_INIT_LEGACY BIT(9)
#define CDNS_XSPI_INIT_FAIL BIT(8)
#define CDNS_XSPI_CTRL_BUSY BIT(7)
/* Controller interrupt status register */
#define CDNS_XSPI_INTR_STATUS_REG 0x0110
#define CDNS_XSPI_STIG_DONE BIT(23)
#define CDNS_XSPI_SDMA_ERROR BIT(22)
#define CDNS_XSPI_SDMA_TRIGGER BIT(21)
#define CDNS_XSPI_CMD_IGNRD_EN BIT(20)
#define CDNS_XSPI_DDMA_TERR_EN BIT(18)
#define CDNS_XSPI_CDMA_TREE_EN BIT(17)
#define CDNS_XSPI_CTRL_IDLE_EN BIT(16)
#define CDNS_XSPI_TRD_COMP_INTR_STATUS 0x0120
#define CDNS_XSPI_TRD_ERR_INTR_STATUS 0x0130
#define CDNS_XSPI_TRD_ERR_INTR_EN 0x0134
/* Controller interrupt enable register */
#define CDNS_XSPI_INTR_ENABLE_REG 0x0114
#define CDNS_XSPI_INTR_EN BIT(31)
#define CDNS_XSPI_STIG_DONE_EN BIT(23)
#define CDNS_XSPI_SDMA_ERROR_EN BIT(22)
#define CDNS_XSPI_SDMA_TRIGGER_EN BIT(21)
#define CDNS_XSPI_INTR_MASK (CDNS_XSPI_INTR_EN | \
CDNS_XSPI_STIG_DONE_EN | \
CDNS_XSPI_SDMA_ERROR_EN | \
CDNS_XSPI_SDMA_TRIGGER_EN)
/* Controller config register */
#define CDNS_XSPI_CTRL_CONFIG_REG 0x0230
#define CDNS_XSPI_CTRL_WORK_MODE GENMASK(6, 5)
#define CDNS_XSPI_WORK_MODE_DIRECT 0
#define CDNS_XSPI_WORK_MODE_STIG 1
#define CDNS_XSPI_WORK_MODE_ACMD 3
/* SDMA trigger transaction registers */
#define CDNS_XSPI_SDMA_SIZE_REG 0x0240
#define CDNS_XSPI_SDMA_TRD_INFO_REG 0x0244
#define CDNS_XSPI_SDMA_DIR BIT(8)
/* Controller features register */
#define CDNS_XSPI_CTRL_FEATURES_REG 0x0F04
#define CDNS_XSPI_NUM_BANKS GENMASK(25, 24)
#define CDNS_XSPI_DMA_DATA_WIDTH BIT(21)
#define CDNS_XSPI_NUM_THREADS GENMASK(3, 0)
/* Controller version register */
#define CDNS_XSPI_CTRL_VERSION_REG 0x0F00
#define CDNS_XSPI_MAGIC_NUM GENMASK(31, 16)
#define CDNS_XSPI_CTRL_REV GENMASK(7, 0)
/* STIG Profile 1.0 instruction fields (split into registers) */
#define CDNS_XSPI_CMD_INSTR_TYPE GENMASK(6, 0)
#define CDNS_XSPI_CMD_P1_R1_ADDR0 GENMASK(31, 24)
#define CDNS_XSPI_CMD_P1_R2_ADDR1 GENMASK(7, 0)
#define CDNS_XSPI_CMD_P1_R2_ADDR2 GENMASK(15, 8)
#define CDNS_XSPI_CMD_P1_R2_ADDR3 GENMASK(23, 16)
#define CDNS_XSPI_CMD_P1_R2_ADDR4 GENMASK(31, 24)
#define CDNS_XSPI_CMD_P1_R3_ADDR5 GENMASK(7, 0)
#define CDNS_XSPI_CMD_P1_R3_CMD GENMASK(23, 16)
#define CDNS_XSPI_CMD_P1_R3_NUM_ADDR_BYTES GENMASK(30, 28)
#define CDNS_XSPI_CMD_P1_R4_ADDR_IOS GENMASK(1, 0)
#define CDNS_XSPI_CMD_P1_R4_CMD_IOS GENMASK(9, 8)
#define CDNS_XSPI_CMD_P1_R4_BANK GENMASK(14, 12)
/* STIG data sequence instruction fields (split into registers) */
#define CDNS_XSPI_CMD_DSEQ_R2_DCNT_L GENMASK(31, 16)
#define CDNS_XSPI_CMD_DSEQ_R3_DCNT_H GENMASK(15, 0)
#define CDNS_XSPI_CMD_DSEQ_R3_NUM_OF_DUMMY GENMASK(25, 20)
#define CDNS_XSPI_CMD_DSEQ_R4_BANK GENMASK(14, 12)
#define CDNS_XSPI_CMD_DSEQ_R4_DATA_IOS GENMASK(9, 8)
#define CDNS_XSPI_CMD_DSEQ_R4_DIR BIT(4)
/* STIG command status fields */
#define CDNS_XSPI_CMD_STATUS_COMPLETED BIT(15)
#define CDNS_XSPI_CMD_STATUS_FAILED BIT(14)
#define CDNS_XSPI_CMD_STATUS_DQS_ERROR BIT(3)
#define CDNS_XSPI_CMD_STATUS_CRC_ERROR BIT(2)
#define CDNS_XSPI_CMD_STATUS_BUS_ERROR BIT(1)
#define CDNS_XSPI_CMD_STATUS_INV_SEQ_ERROR BIT(0)
#define CDNS_XSPI_STIG_DONE_FLAG BIT(0)
#define CDNS_XSPI_TRD_STATUS 0x0104
#define MODE_NO_OF_BYTES GENMASK(25, 24)
#define MODEBYTES_COUNT 1
/* Helper macros for filling command registers */
#define CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_1(op, data_phase) ( \
FIELD_PREP(CDNS_XSPI_CMD_INSTR_TYPE, (data_phase) ? \
CDNS_XSPI_STIG_INSTR_TYPE_1 : CDNS_XSPI_STIG_INSTR_TYPE_0) | \
FIELD_PREP(CDNS_XSPI_CMD_P1_R1_ADDR0, (op)->addr.val & 0xff))
#define CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_2(op) ( \
FIELD_PREP(CDNS_XSPI_CMD_P1_R2_ADDR1, ((op)->addr.val >> 8) & 0xFF) | \
FIELD_PREP(CDNS_XSPI_CMD_P1_R2_ADDR2, ((op)->addr.val >> 16) & 0xFF) | \
FIELD_PREP(CDNS_XSPI_CMD_P1_R2_ADDR3, ((op)->addr.val >> 24) & 0xFF) | \
FIELD_PREP(CDNS_XSPI_CMD_P1_R2_ADDR4, ((op)->addr.val >> 32) & 0xFF))
#define CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_3(op, modebytes) ( \
FIELD_PREP(CDNS_XSPI_CMD_P1_R3_ADDR5, ((op)->addr.val >> 40) & 0xFF) | \
FIELD_PREP(CDNS_XSPI_CMD_P1_R3_CMD, (op)->cmd.opcode) | \
FIELD_PREP(MODE_NO_OF_BYTES, modebytes) | \
FIELD_PREP(CDNS_XSPI_CMD_P1_R3_NUM_ADDR_BYTES, (op)->addr.nbytes))
#define CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_4(op, chipsel) ( \
FIELD_PREP(CDNS_XSPI_CMD_P1_R4_ADDR_IOS, ilog2((op)->addr.buswidth)) | \
FIELD_PREP(CDNS_XSPI_CMD_P1_R4_CMD_IOS, ilog2((op)->cmd.buswidth)) | \
FIELD_PREP(CDNS_XSPI_CMD_P1_R4_BANK, chipsel))
#define CDNS_XSPI_CMD_FLD_DSEQ_CMD_1(op) \
FIELD_PREP(CDNS_XSPI_CMD_INSTR_TYPE, CDNS_XSPI_STIG_INSTR_TYPE_DATA_SEQ)
#define CDNS_XSPI_CMD_FLD_DSEQ_CMD_2(op) \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R2_DCNT_L, (op)->data.nbytes & 0xFFFF)
#define CDNS_XSPI_CMD_FLD_DSEQ_CMD_3(op, dummybytes) ( \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R3_DCNT_H, \
((op)->data.nbytes >> 16) & 0xffff) | \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R3_NUM_OF_DUMMY, \
(op)->dummy.buswidth != 0 ? \
(((dummybytes) * 8) / (op)->dummy.buswidth) : \
0))
#define CDNS_XSPI_CMD_FLD_DSEQ_CMD_4(op, chipsel) ( \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R4_BANK, chipsel) | \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R4_DATA_IOS, \
ilog2((op)->data.buswidth)) | \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R4_DIR, \
((op)->data.dir == SPI_MEM_DATA_IN) ? \
CDNS_XSPI_STIG_CMD_DIR_READ : CDNS_XSPI_STIG_CMD_DIR_WRITE))
/* Helper macros for GENERIC and GENERIC-DSEQ instruction type */
#define CMD_REG_LEN (6*4)
#define INSTRUCTION_TYPE_GENERIC 96
#define CDNS_XSPI_CMD_FLD_P1_GENERIC_CMD (\
FIELD_PREP(CDNS_XSPI_CMD_INSTR_TYPE, INSTRUCTION_TYPE_GENERIC))
#define GENERIC_NUM_OF_BYTES GENMASK(27, 24)
#define CDNS_XSPI_CMD_FLD_P3_GENERIC_CMD(len) (\
FIELD_PREP(GENERIC_NUM_OF_BYTES, len))
#define GENERIC_BANK_NUM GENMASK(14, 12)
#define GENERIC_GLUE_CMD BIT(28)
#define CDNS_XSPI_CMD_FLD_P4_GENERIC_CMD(cs, glue) (\
FIELD_PREP(GENERIC_BANK_NUM, cs) | FIELD_PREP(GENERIC_GLUE_CMD, glue))
#define CDNS_XSPI_CMD_FLD_GENERIC_DSEQ_CMD_1 (\
FIELD_PREP(CDNS_XSPI_CMD_INSTR_TYPE, CDNS_XSPI_STIG_INSTR_TYPE_DATA_SEQ))
#define CDNS_XSPI_CMD_FLD_GENERIC_DSEQ_CMD_2(nbytes) (\
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R2_DCNT_L, nbytes & 0xffff))
#define CDNS_XSPI_CMD_FLD_GENERIC_DSEQ_CMD_3(nbytes) ( \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R3_DCNT_H, (nbytes >> 16) & 0xffff))
#define CDNS_XSPI_CMD_FLD_GENERIC_DSEQ_CMD_4(dir, chipsel) ( \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R4_BANK, chipsel) | \
FIELD_PREP(CDNS_XSPI_CMD_DSEQ_R4_DIR, dir))
/* Marvell PHY default values */
#define MARVELL_REGS_DLL_PHY_CTRL 0x00000707
#define MARVELL_CTB_RFILE_PHY_CTRL 0x00004000
#define MARVELL_RFILE_PHY_TSEL 0x00000000
#define MARVELL_RFILE_PHY_DQ_TIMING 0x00000101
#define MARVELL_RFILE_PHY_DQS_TIMING 0x00700404
#define MARVELL_RFILE_PHY_GATE_LPBK_CTRL 0x00200030
#define MARVELL_RFILE_PHY_DLL_MASTER_CTRL 0x00800000
#define MARVELL_RFILE_PHY_DLL_SLAVE_CTRL 0x0000ff01
/* PHY config registers */
#define CDNS_XSPI_RF_MINICTRL_REGS_DLL_PHY_CTRL 0x1034
#define CDNS_XSPI_PHY_CTB_RFILE_PHY_CTRL 0x0080
#define CDNS_XSPI_PHY_CTB_RFILE_PHY_TSEL 0x0084
#define CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_DQ_TIMING 0x0000
#define CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_DQS_TIMING 0x0004
#define CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_GATE_LPBK_CTRL 0x0008
#define CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_DLL_MASTER_CTRL 0x000c
#define CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_DLL_SLAVE_CTRL 0x0010
#define CDNS_XSPI_DATASLICE_RFILE_PHY_DLL_OBS_REG_0 0x001c
#define CDNS_XSPI_DLL_RST_N BIT(24)
#define CDNS_XSPI_DLL_LOCK BIT(0)
/* Marvell overlay registers - clock */
#define MRVL_XSPI_CLK_CTRL_AUX_REG 0x2020
#define MRVL_XSPI_CLK_ENABLE BIT(0)
#define MRVL_XSPI_CLK_DIV GENMASK(4, 1)
#define MRVL_XSPI_IRQ_ENABLE BIT(6)
#define MRVL_XSPI_CLOCK_IO_HZ 800000000
#define MRVL_XSPI_CLOCK_DIVIDED(div) ((MRVL_XSPI_CLOCK_IO_HZ) / (div))
#define MRVL_DEFAULT_CLK 25000000
/* Marvell overlay registers - xfer */
#define MRVL_XFER_FUNC_CTRL 0x210
#define MRVL_XFER_FUNC_CTRL_READ_DATA(i) (0x000 + 8 * (i))
#define MRVL_XFER_SOFT_RESET BIT(11)
#define MRVL_XFER_CS_N_HOLD GENMASK(9, 6)
#define MRVL_XFER_RECEIVE_ENABLE BIT(4)
#define MRVL_XFER_FUNC_ENABLE BIT(3)
#define MRVL_XFER_CLK_CAPTURE_POL BIT(2)
#define MRVL_XFER_CLK_DRIVE_POL BIT(1)
#define MRVL_XFER_FUNC_START BIT(0)
#define MRVL_XFER_QWORD_COUNT 32
#define MRVL_XFER_QWORD_BYTECOUNT 8
#define MRVL_XSPI_POLL_TIMEOUT_US 1000
#define MRVL_XSPI_POLL_DELAY_US 10
/* Macros for calculating data bits in generic command
* Up to 10 bytes can be fit into cmd_registers
* least significant is placed in cmd_reg[1]
* Other bits are inserted after it in cmd_reg[1,2,3] register
*/
#define GENERIC_CMD_DATA_REG_3_COUNT(len) (len >= 10 ? 2 : len - 8)
#define GENERIC_CMD_DATA_REG_2_COUNT(len) (len >= 7 ? 3 : len - 4)
#define GENERIC_CMD_DATA_REG_1_COUNT(len) (len >= 3 ? 2 : len - 1)
#define GENERIC_CMD_DATA_3_OFFSET(position) (8*(position))
#define GENERIC_CMD_DATA_2_OFFSET(position) (8*(position))
#define GENERIC_CMD_DATA_1_OFFSET(position) (8 + 8*(position))
#define GENERIC_CMD_DATA_INSERT(data, pos) ((data) << (pos))
#define GENERIC_CMD_REG_3_NEEDED(len) (len > 7)
#define GENERIC_CMD_REG_2_NEEDED(len) (len > 3)
enum cdns_xspi_stig_instr_type {
CDNS_XSPI_STIG_INSTR_TYPE_0,
CDNS_XSPI_STIG_INSTR_TYPE_1,
CDNS_XSPI_STIG_INSTR_TYPE_DATA_SEQ = 127,
};
enum cdns_xspi_sdma_dir {
CDNS_XSPI_SDMA_DIR_READ,
CDNS_XSPI_SDMA_DIR_WRITE,
};
enum cdns_xspi_stig_cmd_dir {
CDNS_XSPI_STIG_CMD_DIR_READ,
CDNS_XSPI_STIG_CMD_DIR_WRITE,
};
struct cdns_xspi_driver_data {
bool mrvl_hw_overlay;
u32 dll_phy_ctrl;
u32 ctb_rfile_phy_ctrl;
u32 rfile_phy_tsel;
u32 rfile_phy_dq_timing;
u32 rfile_phy_dqs_timing;
u32 rfile_phy_gate_lpbk_ctrl;
u32 rfile_phy_dll_master_ctrl;
u32 rfile_phy_dll_slave_ctrl;
};
static struct cdns_xspi_driver_data marvell_driver_data = {
.mrvl_hw_overlay = true,
.dll_phy_ctrl = MARVELL_REGS_DLL_PHY_CTRL,
.ctb_rfile_phy_ctrl = MARVELL_CTB_RFILE_PHY_CTRL,
.rfile_phy_tsel = MARVELL_RFILE_PHY_TSEL,
.rfile_phy_dq_timing = MARVELL_RFILE_PHY_DQ_TIMING,
.rfile_phy_dqs_timing = MARVELL_RFILE_PHY_DQS_TIMING,
.rfile_phy_gate_lpbk_ctrl = MARVELL_RFILE_PHY_GATE_LPBK_CTRL,
.rfile_phy_dll_master_ctrl = MARVELL_RFILE_PHY_DLL_MASTER_CTRL,
.rfile_phy_dll_slave_ctrl = MARVELL_RFILE_PHY_DLL_SLAVE_CTRL,
};
static struct cdns_xspi_driver_data cdns_driver_data = {
.mrvl_hw_overlay = false,
};
static const int cdns_mrvl_xspi_clk_div_list[] = {
4, //0x0 = Divide by 4. SPI clock is 200 MHz.
6, //0x1 = Divide by 6. SPI clock is 133.33 MHz.
8, //0x2 = Divide by 8. SPI clock is 100 MHz.
10, //0x3 = Divide by 10. SPI clock is 80 MHz.
12, //0x4 = Divide by 12. SPI clock is 66.666 MHz.
16, //0x5 = Divide by 16. SPI clock is 50 MHz.
18, //0x6 = Divide by 18. SPI clock is 44.44 MHz.
20, //0x7 = Divide by 20. SPI clock is 40 MHz.
24, //0x8 = Divide by 24. SPI clock is 33.33 MHz.
32, //0x9 = Divide by 32. SPI clock is 25 MHz.
40, //0xA = Divide by 40. SPI clock is 20 MHz.
50, //0xB = Divide by 50. SPI clock is 16 MHz.
64, //0xC = Divide by 64. SPI clock is 12.5 MHz.
128 //0xD = Divide by 128. SPI clock is 6.25 MHz.
};
struct cdns_xspi_dev {
struct platform_device *pdev;
struct device *dev;
void __iomem *iobase;
void __iomem *auxbase;
void __iomem *sdmabase;
void __iomem *xferbase;
int irq;
int cur_cs;
unsigned int sdmasize;
struct completion cmd_complete;
struct completion auto_cmd_complete;
struct completion sdma_complete;
bool sdma_error;
void *in_buffer;
const void *out_buffer;
u8 hw_num_banks;
const struct cdns_xspi_driver_data *driver_data;
void (*sdma_handler)(struct cdns_xspi_dev *cdns_xspi);
void (*set_interrupts_handler)(struct cdns_xspi_dev *cdns_xspi, bool enabled);
bool xfer_in_progress;
int current_xfer_qword;
};
static void cdns_xspi_reset_dll(struct cdns_xspi_dev *cdns_xspi)
{
u32 dll_cntrl = readl(cdns_xspi->iobase +
CDNS_XSPI_RF_MINICTRL_REGS_DLL_PHY_CTRL);
/* Reset DLL */
dll_cntrl |= CDNS_XSPI_DLL_RST_N;
writel(dll_cntrl, cdns_xspi->iobase +
CDNS_XSPI_RF_MINICTRL_REGS_DLL_PHY_CTRL);
}
static bool cdns_xspi_is_dll_locked(struct cdns_xspi_dev *cdns_xspi)
{
u32 dll_lock;
return !readl_relaxed_poll_timeout(cdns_xspi->iobase +
CDNS_XSPI_INTR_STATUS_REG,
dll_lock, ((dll_lock & CDNS_XSPI_DLL_LOCK) == 1), 10, 10000);
}
/* Static configuration of PHY */
static bool cdns_xspi_configure_phy(struct cdns_xspi_dev *cdns_xspi)
{
writel(cdns_xspi->driver_data->dll_phy_ctrl,
cdns_xspi->iobase + CDNS_XSPI_RF_MINICTRL_REGS_DLL_PHY_CTRL);
writel(cdns_xspi->driver_data->ctb_rfile_phy_ctrl,
cdns_xspi->auxbase + CDNS_XSPI_PHY_CTB_RFILE_PHY_CTRL);
writel(cdns_xspi->driver_data->rfile_phy_tsel,
cdns_xspi->auxbase + CDNS_XSPI_PHY_CTB_RFILE_PHY_TSEL);
writel(cdns_xspi->driver_data->rfile_phy_dq_timing,
cdns_xspi->auxbase + CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_DQ_TIMING);
writel(cdns_xspi->driver_data->rfile_phy_dqs_timing,
cdns_xspi->auxbase + CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_DQS_TIMING);
writel(cdns_xspi->driver_data->rfile_phy_gate_lpbk_ctrl,
cdns_xspi->auxbase + CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_GATE_LPBK_CTRL);
writel(cdns_xspi->driver_data->rfile_phy_dll_master_ctrl,
cdns_xspi->auxbase + CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_DLL_MASTER_CTRL);
writel(cdns_xspi->driver_data->rfile_phy_dll_slave_ctrl,
cdns_xspi->auxbase + CDNS_XSPI_PHY_DATASLICE_RFILE_PHY_DLL_SLAVE_CTRL);
cdns_xspi_reset_dll(cdns_xspi);
return cdns_xspi_is_dll_locked(cdns_xspi);
}
static bool cdns_mrvl_xspi_setup_clock(struct cdns_xspi_dev *cdns_xspi,
int requested_clk)
{
int i = 0;
int clk_val;
u32 clk_reg;
bool update_clk = false;
while (i < ARRAY_SIZE(cdns_mrvl_xspi_clk_div_list)) {
clk_val = MRVL_XSPI_CLOCK_DIVIDED(
cdns_mrvl_xspi_clk_div_list[i]);
if (clk_val <= requested_clk)
break;
i++;
}
dev_dbg(cdns_xspi->dev, "Found clk div: %d, clk val: %d\n",
cdns_mrvl_xspi_clk_div_list[i],
MRVL_XSPI_CLOCK_DIVIDED(
cdns_mrvl_xspi_clk_div_list[i]));
clk_reg = readl(cdns_xspi->auxbase + MRVL_XSPI_CLK_CTRL_AUX_REG);
if (FIELD_GET(MRVL_XSPI_CLK_DIV, clk_reg) != i) {
clk_reg &= ~MRVL_XSPI_CLK_ENABLE;
writel(clk_reg,
cdns_xspi->auxbase + MRVL_XSPI_CLK_CTRL_AUX_REG);
clk_reg = FIELD_PREP(MRVL_XSPI_CLK_DIV, i);
clk_reg &= ~MRVL_XSPI_CLK_DIV;
clk_reg |= FIELD_PREP(MRVL_XSPI_CLK_DIV, i);
clk_reg |= MRVL_XSPI_CLK_ENABLE;
clk_reg |= MRVL_XSPI_IRQ_ENABLE;
update_clk = true;
}
if (update_clk)
writel(clk_reg,
cdns_xspi->auxbase + MRVL_XSPI_CLK_CTRL_AUX_REG);
return update_clk;
}
static int cdns_xspi_wait_for_controller_idle(struct cdns_xspi_dev *cdns_xspi)
{
u32 ctrl_stat;
return readl_relaxed_poll_timeout(cdns_xspi->iobase +
CDNS_XSPI_CTRL_STATUS_REG,
ctrl_stat,
((ctrl_stat &
CDNS_XSPI_CTRL_BUSY) == 0),
100, 1000);
}
static void cdns_xspi_trigger_command(struct cdns_xspi_dev *cdns_xspi,
u32 cmd_regs[6])
{
writel(cmd_regs[5], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_5);
writel(cmd_regs[4], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_4);
writel(cmd_regs[3], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_3);
writel(cmd_regs[2], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_2);
writel(cmd_regs[1], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_1);
writel(cmd_regs[0], cdns_xspi->iobase + CDNS_XSPI_CMD_REG_0);
}
static int cdns_xspi_check_command_status(struct cdns_xspi_dev *cdns_xspi)
{
int ret = 0;
u32 cmd_status = readl(cdns_xspi->iobase + CDNS_XSPI_CMD_STATUS_REG);
if (cmd_status & CDNS_XSPI_CMD_STATUS_COMPLETED) {
if ((cmd_status & CDNS_XSPI_CMD_STATUS_FAILED) != 0) {
if (cmd_status & CDNS_XSPI_CMD_STATUS_DQS_ERROR) {
dev_err(cdns_xspi->dev,
"Incorrect DQS pulses detected\n");
ret = -EPROTO;
}
if (cmd_status & CDNS_XSPI_CMD_STATUS_CRC_ERROR) {
dev_err(cdns_xspi->dev,
"CRC error received\n");
ret = -EPROTO;
}
if (cmd_status & CDNS_XSPI_CMD_STATUS_BUS_ERROR) {
dev_err(cdns_xspi->dev,
"Error resp on system DMA interface\n");
ret = -EPROTO;
}
if (cmd_status & CDNS_XSPI_CMD_STATUS_INV_SEQ_ERROR) {
dev_err(cdns_xspi->dev,
"Invalid command sequence detected\n");
ret = -EPROTO;
}
}
} else {
dev_err(cdns_xspi->dev, "Fatal err - command not completed\n");
ret = -EPROTO;
}
return ret;
}
static void cdns_xspi_set_interrupts(struct cdns_xspi_dev *cdns_xspi,
bool enabled)
{
u32 intr_enable;
intr_enable = readl(cdns_xspi->iobase + CDNS_XSPI_INTR_ENABLE_REG);
if (enabled)
intr_enable |= CDNS_XSPI_INTR_MASK;
else
intr_enable &= ~CDNS_XSPI_INTR_MASK;
writel(intr_enable, cdns_xspi->iobase + CDNS_XSPI_INTR_ENABLE_REG);
}
static void marvell_xspi_set_interrupts(struct cdns_xspi_dev *cdns_xspi,
bool enabled)
{
u32 intr_enable;
u32 irq_status;
irq_status = readl(cdns_xspi->iobase + CDNS_XSPI_INTR_STATUS_REG);
writel(irq_status, cdns_xspi->iobase + CDNS_XSPI_INTR_STATUS_REG);
intr_enable = readl(cdns_xspi->iobase + CDNS_XSPI_INTR_ENABLE_REG);
if (enabled)
intr_enable |= CDNS_XSPI_INTR_MASK;
else
intr_enable &= ~CDNS_XSPI_INTR_MASK;
writel(intr_enable, cdns_xspi->iobase + CDNS_XSPI_INTR_ENABLE_REG);
}
static int cdns_xspi_controller_init(struct cdns_xspi_dev *cdns_xspi)
{
u32 ctrl_ver;
u32 ctrl_features;
u16 hw_magic_num;
ctrl_ver = readl(cdns_xspi->iobase + CDNS_XSPI_CTRL_VERSION_REG);
hw_magic_num = FIELD_GET(CDNS_XSPI_MAGIC_NUM, ctrl_ver);
if (hw_magic_num != CDNS_XSPI_MAGIC_NUM_VALUE) {
dev_err(cdns_xspi->dev,
"Incorrect XSPI magic number: %x, expected: %x\n",
hw_magic_num, CDNS_XSPI_MAGIC_NUM_VALUE);
return -EIO;
}
ctrl_features = readl(cdns_xspi->iobase + CDNS_XSPI_CTRL_FEATURES_REG);
cdns_xspi->hw_num_banks = FIELD_GET(CDNS_XSPI_NUM_BANKS, ctrl_features);
cdns_xspi->set_interrupts_handler(cdns_xspi, false);
return 0;
}
static void cdns_xspi_sdma_handle(struct cdns_xspi_dev *cdns_xspi)
{
u32 sdma_size, sdma_trd_info;
u8 sdma_dir;
sdma_size = readl(cdns_xspi->iobase + CDNS_XSPI_SDMA_SIZE_REG);
sdma_trd_info = readl(cdns_xspi->iobase + CDNS_XSPI_SDMA_TRD_INFO_REG);
sdma_dir = FIELD_GET(CDNS_XSPI_SDMA_DIR, sdma_trd_info);
switch (sdma_dir) {
case CDNS_XSPI_SDMA_DIR_READ:
ioread8_rep(cdns_xspi->sdmabase,
cdns_xspi->in_buffer, sdma_size);
break;
case CDNS_XSPI_SDMA_DIR_WRITE:
iowrite8_rep(cdns_xspi->sdmabase,
cdns_xspi->out_buffer, sdma_size);
break;
}
}
static void m_ioreadq(void __iomem *addr, void *buf, int len)
{
if (IS_ALIGNED((long)buf, 8) && len >= 8) {
u64 full_ops = len / 8;
u64 *buffer = buf;
len -= full_ops * 8;
buf += full_ops * 8;
do {
u64 b = readq(addr);
*buffer++ = b;
} while (--full_ops);
}
while (len) {
u64 tmp_buf;
tmp_buf = readq(addr);
memcpy(buf, &tmp_buf, min(len, 8));
len = len > 8 ? len - 8 : 0;
buf += 8;
}
}
static void m_iowriteq(void __iomem *addr, const void *buf, int len)
{
if (IS_ALIGNED((long)buf, 8) && len >= 8) {
u64 full_ops = len / 8;
const u64 *buffer = buf;
len -= full_ops * 8;
buf += full_ops * 8;
do {
writeq(*buffer++, addr);
} while (--full_ops);
}
while (len) {
u64 tmp_buf;
memcpy(&tmp_buf, buf, min(len, 8));
writeq(tmp_buf, addr);
len = len > 8 ? len - 8 : 0;
buf += 8;
}
}
static void marvell_xspi_sdma_handle(struct cdns_xspi_dev *cdns_xspi)
{
u32 sdma_size, sdma_trd_info;
u8 sdma_dir;
sdma_size = readl(cdns_xspi->iobase + CDNS_XSPI_SDMA_SIZE_REG);
sdma_trd_info = readl(cdns_xspi->iobase + CDNS_XSPI_SDMA_TRD_INFO_REG);
sdma_dir = FIELD_GET(CDNS_XSPI_SDMA_DIR, sdma_trd_info);
switch (sdma_dir) {
case CDNS_XSPI_SDMA_DIR_READ:
m_ioreadq(cdns_xspi->sdmabase,
cdns_xspi->in_buffer, sdma_size);
break;
case CDNS_XSPI_SDMA_DIR_WRITE:
m_iowriteq(cdns_xspi->sdmabase,
cdns_xspi->out_buffer, sdma_size);
break;
}
}
static int cdns_xspi_send_stig_command(struct cdns_xspi_dev *cdns_xspi,
const struct spi_mem_op *op,
bool data_phase)
{
u32 cmd_regs[6];
u32 cmd_status;
int ret;
int dummybytes = op->dummy.nbytes;
ret = cdns_xspi_wait_for_controller_idle(cdns_xspi);
if (ret < 0)
return -EIO;
writel(FIELD_PREP(CDNS_XSPI_CTRL_WORK_MODE, CDNS_XSPI_WORK_MODE_STIG),
cdns_xspi->iobase + CDNS_XSPI_CTRL_CONFIG_REG);
cdns_xspi->set_interrupts_handler(cdns_xspi, true);
cdns_xspi->sdma_error = false;
memset(cmd_regs, 0, sizeof(cmd_regs));
cmd_regs[1] = CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_1(op, data_phase);
cmd_regs[2] = CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_2(op);
if (dummybytes != 0) {
cmd_regs[3] = CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_3(op, 1);
dummybytes--;
} else {
cmd_regs[3] = CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_3(op, 0);
}
cmd_regs[4] = CDNS_XSPI_CMD_FLD_P1_INSTR_CMD_4(op,
cdns_xspi->cur_cs);
cdns_xspi_trigger_command(cdns_xspi, cmd_regs);
if (data_phase) {
cmd_regs[0] = CDNS_XSPI_STIG_DONE_FLAG;
cmd_regs[1] = CDNS_XSPI_CMD_FLD_DSEQ_CMD_1(op);
cmd_regs[2] = CDNS_XSPI_CMD_FLD_DSEQ_CMD_2(op);
cmd_regs[3] = CDNS_XSPI_CMD_FLD_DSEQ_CMD_3(op, dummybytes);
cmd_regs[4] = CDNS_XSPI_CMD_FLD_DSEQ_CMD_4(op,
cdns_xspi->cur_cs);
cdns_xspi->in_buffer = op->data.buf.in;
cdns_xspi->out_buffer = op->data.buf.out;
cdns_xspi_trigger_command(cdns_xspi, cmd_regs);
wait_for_completion(&cdns_xspi->sdma_complete);
if (cdns_xspi->sdma_error) {
cdns_xspi->set_interrupts_handler(cdns_xspi, false);
return -EIO;
}
cdns_xspi->sdma_handler(cdns_xspi);
}
wait_for_completion(&cdns_xspi->cmd_complete);
cdns_xspi->set_interrupts_handler(cdns_xspi, false);
cmd_status = cdns_xspi_check_command_status(cdns_xspi);
if (cmd_status)
return -EPROTO;
return 0;
}
static int cdns_xspi_mem_op(struct cdns_xspi_dev *cdns_xspi,
struct spi_mem *mem,
const struct spi_mem_op *op)
{
enum spi_mem_data_dir dir = op->data.dir;
if (cdns_xspi->cur_cs != spi_get_chipselect(mem->spi, 0))
cdns_xspi->cur_cs = spi_get_chipselect(mem->spi, 0);
return cdns_xspi_send_stig_command(cdns_xspi, op,
(dir != SPI_MEM_NO_DATA));
}
static int cdns_xspi_mem_op_execute(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct cdns_xspi_dev *cdns_xspi =
spi_controller_get_devdata(mem->spi->controller);
int ret = 0;
ret = cdns_xspi_mem_op(cdns_xspi, mem, op);
return ret;
}
static int marvell_xspi_mem_op_execute(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct cdns_xspi_dev *cdns_xspi =
spi_controller_get_devdata(mem->spi->controller);
int ret = 0;
cdns_mrvl_xspi_setup_clock(cdns_xspi, mem->spi->max_speed_hz);
ret = cdns_xspi_mem_op(cdns_xspi, mem, op);
return ret;
}
#ifdef CONFIG_ACPI
static bool cdns_xspi_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct spi_device *spi = mem->spi;
const union acpi_object *obj;
struct acpi_device *adev;
adev = ACPI_COMPANION(&spi->dev);
if (!acpi_dev_get_property(adev, "spi-tx-bus-width", ACPI_TYPE_INTEGER,
&obj)) {
switch (obj->integer.value) {
case 1:
break;
case 2:
spi->mode |= SPI_TX_DUAL;
break;
case 4:
spi->mode |= SPI_TX_QUAD;
break;
case 8:
spi->mode |= SPI_TX_OCTAL;
break;
default:
dev_warn(&spi->dev,
"spi-tx-bus-width %lld not supported\n",
obj->integer.value);
break;
}
}
if (!acpi_dev_get_property(adev, "spi-rx-bus-width", ACPI_TYPE_INTEGER,
&obj)) {
switch (obj->integer.value) {
case 1:
break;
case 2:
spi->mode |= SPI_RX_DUAL;
break;
case 4:
spi->mode |= SPI_RX_QUAD;
break;
case 8:
spi->mode |= SPI_RX_OCTAL;
break;
default:
dev_warn(&spi->dev,
"spi-rx-bus-width %lld not supported\n",
obj->integer.value);
break;
}
}
if (!spi_mem_default_supports_op(mem, op))
return false;
return true;
}
#endif
static int cdns_xspi_adjust_mem_op_size(struct spi_mem *mem, struct spi_mem_op *op)
{
struct cdns_xspi_dev *cdns_xspi =
spi_controller_get_devdata(mem->spi->controller);
op->data.nbytes = clamp_val(op->data.nbytes, 0, cdns_xspi->sdmasize);
return 0;
}
static const struct spi_controller_mem_ops cadence_xspi_mem_ops = {
#ifdef CONFIG_ACPI
.supports_op = cdns_xspi_supports_op,
#endif
.exec_op = cdns_xspi_mem_op_execute,
.adjust_op_size = cdns_xspi_adjust_mem_op_size,
};
static const struct spi_controller_mem_ops marvell_xspi_mem_ops = {
#ifdef CONFIG_ACPI
.supports_op = cdns_xspi_supports_op,
#endif
.exec_op = marvell_xspi_mem_op_execute,
.adjust_op_size = cdns_xspi_adjust_mem_op_size,
};
static irqreturn_t cdns_xspi_irq_handler(int this_irq, void *dev)
{
struct cdns_xspi_dev *cdns_xspi = dev;
u32 irq_status;
irqreturn_t result = IRQ_NONE;
irq_status = readl(cdns_xspi->iobase + CDNS_XSPI_INTR_STATUS_REG);
writel(irq_status, cdns_xspi->iobase + CDNS_XSPI_INTR_STATUS_REG);
if (irq_status &
(CDNS_XSPI_SDMA_ERROR | CDNS_XSPI_SDMA_TRIGGER |
CDNS_XSPI_STIG_DONE)) {
if (irq_status & CDNS_XSPI_SDMA_ERROR) {
dev_err(cdns_xspi->dev,
"Slave DMA transaction error\n");
cdns_xspi->sdma_error = true;
complete(&cdns_xspi->sdma_complete);
}
if (irq_status & CDNS_XSPI_SDMA_TRIGGER)
complete(&cdns_xspi->sdma_complete);
if (irq_status & CDNS_XSPI_STIG_DONE)
complete(&cdns_xspi->cmd_complete);
result = IRQ_HANDLED;
}
irq_status = readl(cdns_xspi->iobase + CDNS_XSPI_TRD_COMP_INTR_STATUS);
if (irq_status) {
writel(irq_status,
cdns_xspi->iobase + CDNS_XSPI_TRD_COMP_INTR_STATUS);
complete(&cdns_xspi->auto_cmd_complete);
result = IRQ_HANDLED;
}
return result;
}
static int cdns_xspi_of_get_plat_data(struct platform_device *pdev)
{
struct fwnode_handle *fwnode_child;
unsigned int cs;
device_for_each_child_node(&pdev->dev, fwnode_child) {
if (!fwnode_device_is_available(fwnode_child))
continue;
if (fwnode_property_read_u32(fwnode_child, "reg", &cs)) {
dev_err(&pdev->dev, "Couldn't get memory chip select\n");
fwnode_handle_put(fwnode_child);
return -ENXIO;
} else if (cs >= CDNS_XSPI_MAX_BANKS) {
dev_err(&pdev->dev, "reg (cs) parameter value too large\n");
fwnode_handle_put(fwnode_child);
return -ENXIO;
}
}
return 0;
}
static void cdns_xspi_print_phy_config(struct cdns_xspi_dev *cdns_xspi)
{
struct device *dev = cdns_xspi->dev;
dev_info(dev, "PHY configuration\n");
dev_info(dev, " * xspi_dll_phy_ctrl: %08x\n",
readl(cdns_xspi->iobase + CDNS_XSPI_DLL_PHY_CTRL));
dev_info(dev, " * phy_dq_timing: %08x\n",
readl(cdns_xspi->auxbase + CDNS_XSPI_CCP_PHY_DQ_TIMING));
dev_info(dev, " * phy_dqs_timing: %08x\n",
readl(cdns_xspi->auxbase + CDNS_XSPI_CCP_PHY_DQS_TIMING));
dev_info(dev, " * phy_gate_loopback_ctrl: %08x\n",
readl(cdns_xspi->auxbase + CDNS_XSPI_CCP_PHY_GATE_LPBCK_CTRL));
dev_info(dev, " * phy_dll_slave_ctrl: %08x\n",
readl(cdns_xspi->auxbase + CDNS_XSPI_CCP_PHY_DLL_SLAVE_CTRL));
}
static int cdns_xspi_prepare_generic(int cs, const void *dout, int len, int glue, u32 *cmd_regs)
{
u8 *data = (u8 *)dout;
int i;
int data_counter = 0;
memset(cmd_regs, 0x00, CMD_REG_LEN);
if (GENERIC_CMD_REG_3_NEEDED(len)) {
for (i = GENERIC_CMD_DATA_REG_3_COUNT(len); i >= 0 ; i--)
cmd_regs[3] |= GENERIC_CMD_DATA_INSERT(data[data_counter++],
GENERIC_CMD_DATA_3_OFFSET(i));
}
if (GENERIC_CMD_REG_2_NEEDED(len)) {
for (i = GENERIC_CMD_DATA_REG_2_COUNT(len); i >= 0; i--)
cmd_regs[2] |= GENERIC_CMD_DATA_INSERT(data[data_counter++],
GENERIC_CMD_DATA_2_OFFSET(i));
}
for (i = GENERIC_CMD_DATA_REG_1_COUNT(len); i >= 0 ; i--)
cmd_regs[1] |= GENERIC_CMD_DATA_INSERT(data[data_counter++],
GENERIC_CMD_DATA_1_OFFSET(i));
cmd_regs[1] |= CDNS_XSPI_CMD_FLD_P1_GENERIC_CMD;
cmd_regs[3] |= CDNS_XSPI_CMD_FLD_P3_GENERIC_CMD(len);
cmd_regs[4] |= CDNS_XSPI_CMD_FLD_P4_GENERIC_CMD(cs, glue);
return 0;
}
static void marvell_xspi_read_single_qword(struct cdns_xspi_dev *cdns_xspi, u8 **buffer)
{
u64 d = readq(cdns_xspi->xferbase +
MRVL_XFER_FUNC_CTRL_READ_DATA(cdns_xspi->current_xfer_qword));
u8 *ptr = (u8 *)&d;
int k;
for (k = 0; k < 8; k++) {
u8 val = bitrev8((ptr[k]));
**buffer = val;
*buffer = *buffer + 1;
}
cdns_xspi->current_xfer_qword++;
cdns_xspi->current_xfer_qword %= MRVL_XFER_QWORD_COUNT;
}
static void cdns_xspi_finish_read(struct cdns_xspi_dev *cdns_xspi, u8 **buffer, u32 data_count)
{
u64 d = readq(cdns_xspi->xferbase +
MRVL_XFER_FUNC_CTRL_READ_DATA(cdns_xspi->current_xfer_qword));
u8 *ptr = (u8 *)&d;
int k;
for (k = 0; k < data_count % MRVL_XFER_QWORD_BYTECOUNT; k++) {
u8 val = bitrev8((ptr[k]));
**buffer = val;
*buffer = *buffer + 1;
}
cdns_xspi->current_xfer_qword++;
cdns_xspi->current_xfer_qword %= MRVL_XFER_QWORD_COUNT;
}
static int cdns_xspi_prepare_transfer(int cs, int dir, int len, u32 *cmd_regs)
{
memset(cmd_regs, 0x00, CMD_REG_LEN);
cmd_regs[1] |= CDNS_XSPI_CMD_FLD_GENERIC_DSEQ_CMD_1;
cmd_regs[2] |= CDNS_XSPI_CMD_FLD_GENERIC_DSEQ_CMD_2(len);
cmd_regs[4] |= CDNS_XSPI_CMD_FLD_GENERIC_DSEQ_CMD_4(dir, cs);
return 0;
}
static bool cdns_xspi_is_stig_ready(struct cdns_xspi_dev *cdns_xspi, bool sleep)
{
u32 ctrl_stat;
return !readl_relaxed_poll_timeout
(cdns_xspi->iobase + CDNS_XSPI_CTRL_STATUS_REG,
ctrl_stat,
((ctrl_stat & BIT(3)) == 0),
sleep ? MRVL_XSPI_POLL_DELAY_US : 0,
sleep ? MRVL_XSPI_POLL_TIMEOUT_US : 0);
}
static bool cdns_xspi_is_sdma_ready(struct cdns_xspi_dev *cdns_xspi, bool sleep)
{
u32 ctrl_stat;
return !readl_relaxed_poll_timeout
(cdns_xspi->iobase + CDNS_XSPI_INTR_STATUS_REG,
ctrl_stat,
(ctrl_stat & CDNS_XSPI_SDMA_TRIGGER),
sleep ? MRVL_XSPI_POLL_DELAY_US : 0,
sleep ? MRVL_XSPI_POLL_TIMEOUT_US : 0);
}
static int cdns_xspi_transfer_one_message_b0(struct spi_controller *controller,
struct spi_message *m)
{
struct cdns_xspi_dev *cdns_xspi = spi_controller_get_devdata(controller);
struct spi_device *spi = m->spi;
struct spi_transfer *t = NULL;
const unsigned int max_len = MRVL_XFER_QWORD_BYTECOUNT * MRVL_XFER_QWORD_COUNT;
int current_transfer_len;
int cs = spi_get_chipselect(spi, 0);
int cs_change = 0;
/* Enable xfer state machine */
if (!cdns_xspi->xfer_in_progress) {
u32 xfer_control = readl(cdns_xspi->xferbase + MRVL_XFER_FUNC_CTRL);
cdns_xspi->current_xfer_qword = 0;
cdns_xspi->xfer_in_progress = true;
xfer_control |= (MRVL_XFER_RECEIVE_ENABLE |
MRVL_XFER_CLK_CAPTURE_POL |
MRVL_XFER_FUNC_START |
MRVL_XFER_SOFT_RESET |
FIELD_PREP(MRVL_XFER_CS_N_HOLD, (1 << cs)));
xfer_control &= ~(MRVL_XFER_FUNC_ENABLE | MRVL_XFER_CLK_DRIVE_POL);
writel(xfer_control, cdns_xspi->xferbase + MRVL_XFER_FUNC_CTRL);
}
list_for_each_entry(t, &m->transfers, transfer_list) {
u8 *txd = (u8 *) t->tx_buf;
u8 *rxd = (u8 *) t->rx_buf;
u8 data[10];
u32 cmd_regs[6];
if (!txd)
txd = data;
cdns_xspi->in_buffer = txd + 1;
cdns_xspi->out_buffer = txd + 1;
while (t->len) {
current_transfer_len = min(max_len, t->len);
if (current_transfer_len < 10) {
cdns_xspi_prepare_generic(cs, txd, current_transfer_len,
false, cmd_regs);
cdns_xspi_trigger_command(cdns_xspi, cmd_regs);
if (!cdns_xspi_is_stig_ready(cdns_xspi, true))
return -EIO;
} else {
cdns_xspi_prepare_generic(cs, txd, 1, true, cmd_regs);
cdns_xspi_trigger_command(cdns_xspi, cmd_regs);
cdns_xspi_prepare_transfer(cs, 1, current_transfer_len - 1,
cmd_regs);
cdns_xspi_trigger_command(cdns_xspi, cmd_regs);
if (!cdns_xspi_is_sdma_ready(cdns_xspi, true))
return -EIO;
cdns_xspi->sdma_handler(cdns_xspi);
if (!cdns_xspi_is_stig_ready(cdns_xspi, true))
return -EIO;
cdns_xspi->in_buffer += current_transfer_len;
cdns_xspi->out_buffer += current_transfer_len;
}
if (rxd) {
int j;
for (j = 0; j < current_transfer_len / 8; j++)
marvell_xspi_read_single_qword(cdns_xspi, &rxd);
cdns_xspi_finish_read(cdns_xspi, &rxd, current_transfer_len);
} else {
cdns_xspi->current_xfer_qword += current_transfer_len /
MRVL_XFER_QWORD_BYTECOUNT;
if (current_transfer_len % MRVL_XFER_QWORD_BYTECOUNT)
cdns_xspi->current_xfer_qword++;
cdns_xspi->current_xfer_qword %= MRVL_XFER_QWORD_COUNT;
}
cs_change = t->cs_change;
t->len -= current_transfer_len;
}
spi_transfer_delay_exec(t);
}
if (!cs_change) {
u32 xfer_control = readl(cdns_xspi->xferbase + MRVL_XFER_FUNC_CTRL);
xfer_control &= ~(MRVL_XFER_RECEIVE_ENABLE |
MRVL_XFER_SOFT_RESET);
writel(xfer_control, cdns_xspi->xferbase + MRVL_XFER_FUNC_CTRL);
cdns_xspi->xfer_in_progress = false;
}
m->status = 0;
spi_finalize_current_message(controller);
return 0;
}
static int cdns_xspi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct spi_controller *host = NULL;
struct cdns_xspi_dev *cdns_xspi = NULL;
struct resource *res;
int ret;
host = devm_spi_alloc_host(dev, sizeof(*cdns_xspi));
if (!host)
return -ENOMEM;
host->mode_bits = SPI_3WIRE | SPI_TX_DUAL | SPI_TX_QUAD |
SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_OCTAL | SPI_RX_OCTAL |
SPI_MODE_0 | SPI_MODE_3;
cdns_xspi = spi_controller_get_devdata(host);
cdns_xspi->driver_data = of_device_get_match_data(dev);
if (!cdns_xspi->driver_data) {
cdns_xspi->driver_data = acpi_device_get_match_data(dev);
if (!cdns_xspi->driver_data)
return -ENODEV;
}
if (cdns_xspi->driver_data->mrvl_hw_overlay) {
host->mem_ops = &marvell_xspi_mem_ops;
host->transfer_one_message = cdns_xspi_transfer_one_message_b0;
cdns_xspi->sdma_handler = &marvell_xspi_sdma_handle;
cdns_xspi->set_interrupts_handler = &marvell_xspi_set_interrupts;
} else {
host->mem_ops = &cadence_xspi_mem_ops;
cdns_xspi->sdma_handler = &cdns_xspi_sdma_handle;
cdns_xspi->set_interrupts_handler = &cdns_xspi_set_interrupts;
}
host->dev.of_node = pdev->dev.of_node;
host->bus_num = -1;
platform_set_drvdata(pdev, host);
cdns_xspi->pdev = pdev;
cdns_xspi->dev = &pdev->dev;
cdns_xspi->cur_cs = 0;
init_completion(&cdns_xspi->cmd_complete);
init_completion(&cdns_xspi->auto_cmd_complete);
init_completion(&cdns_xspi->sdma_complete);
ret = cdns_xspi_of_get_plat_data(pdev);
if (ret)
return -ENODEV;
cdns_xspi->iobase = devm_platform_ioremap_resource_byname(pdev, "io");
if (IS_ERR(cdns_xspi->iobase)) {
cdns_xspi->iobase = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(cdns_xspi->iobase)) {
dev_err(dev, "Failed to remap controller base address\n");
return PTR_ERR(cdns_xspi->iobase);
}
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sdma");
cdns_xspi->sdmabase = devm_ioremap_resource(dev, res);
if (IS_ERR(cdns_xspi->sdmabase)) {
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
cdns_xspi->sdmabase = devm_ioremap_resource(dev, res);
if (IS_ERR(cdns_xspi->sdmabase))
return PTR_ERR(cdns_xspi->sdmabase);
}
cdns_xspi->sdmasize = resource_size(res);
cdns_xspi->auxbase = devm_platform_ioremap_resource_byname(pdev, "aux");
if (IS_ERR(cdns_xspi->auxbase)) {
cdns_xspi->auxbase = devm_platform_ioremap_resource(pdev, 2);
if (IS_ERR(cdns_xspi->auxbase)) {
dev_err(dev, "Failed to remap AUX address\n");
return PTR_ERR(cdns_xspi->auxbase);
}
}
if (cdns_xspi->driver_data->mrvl_hw_overlay) {
cdns_xspi->xferbase = devm_platform_ioremap_resource_byname(pdev, "xfer");
if (IS_ERR(cdns_xspi->xferbase)) {
cdns_xspi->xferbase = devm_platform_ioremap_resource(pdev, 3);
if (IS_ERR(cdns_xspi->xferbase)) {
dev_info(dev, "XFER register base not found, set it\n");
// For compatibility with older firmware
cdns_xspi->xferbase = cdns_xspi->iobase + 0x8000;
}
}
}
cdns_xspi->irq = platform_get_irq(pdev, 0);
if (cdns_xspi->irq < 0)
return -ENXIO;
ret = devm_request_irq(dev, cdns_xspi->irq, cdns_xspi_irq_handler,
IRQF_SHARED, pdev->name, cdns_xspi);
if (ret) {
dev_err(dev, "Failed to request IRQ: %d\n", cdns_xspi->irq);
return ret;
}
if (cdns_xspi->driver_data->mrvl_hw_overlay) {
cdns_mrvl_xspi_setup_clock(cdns_xspi, MRVL_DEFAULT_CLK);
cdns_xspi_configure_phy(cdns_xspi);
}
cdns_xspi_print_phy_config(cdns_xspi);
ret = cdns_xspi_controller_init(cdns_xspi);
if (ret) {
dev_err(dev, "Failed to initialize controller\n");
return ret;
}
host->num_chipselect = 1 << cdns_xspi->hw_num_banks;
ret = devm_spi_register_controller(dev, host);
if (ret) {
dev_err(dev, "Failed to register SPI host\n");
return ret;
}
dev_info(dev, "Successfully registered SPI host\n");
return 0;
}
static const struct of_device_id cdns_xspi_of_match[] = {
{
.compatible = "cdns,xspi-nor",
.data = &cdns_driver_data,
},
{
.compatible = "marvell,cn10-xspi-nor",
.data = &marvell_driver_data,
},
{ /* end of table */}
};
MODULE_DEVICE_TABLE(of, cdns_xspi_of_match);
static struct platform_driver cdns_xspi_platform_driver = {
.probe = cdns_xspi_probe,
.driver = {
.name = CDNS_XSPI_NAME,
.of_match_table = cdns_xspi_of_match,
},
};
module_platform_driver(cdns_xspi_platform_driver);
MODULE_DESCRIPTION("Cadence XSPI Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:" CDNS_XSPI_NAME);
MODULE_AUTHOR("Konrad Kociolek <konrad@cadence.com>");
MODULE_AUTHOR("Jayshri Pawar <jpawar@cadence.com>");
MODULE_AUTHOR("Parshuram Thombare <pthombar@cadence.com>");