| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * OMAP2 McSPI controller driver |
| * |
| * Copyright (C) 2005, 2006 Nokia Corporation |
| * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and |
| * Juha Yrjola <juha.yrjola@nokia.com> |
| */ |
| |
| #include <linux/kernel.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/device.h> |
| #include <linux/delay.h> |
| #include <linux/dma-mapping.h> |
| #include <linux/dmaengine.h> |
| #include <linux/pinctrl/consumer.h> |
| #include <linux/platform_device.h> |
| #include <linux/err.h> |
| #include <linux/clk.h> |
| #include <linux/io.h> |
| #include <linux/slab.h> |
| #include <linux/pm_runtime.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/gcd.h> |
| |
| #include <linux/spi/spi.h> |
| |
| #include "internals.h" |
| |
| #include <linux/platform_data/spi-omap2-mcspi.h> |
| |
| #define OMAP2_MCSPI_MAX_FREQ 48000000 |
| #define OMAP2_MCSPI_MAX_DIVIDER 4096 |
| #define OMAP2_MCSPI_MAX_FIFODEPTH 64 |
| #define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF |
| #define SPI_AUTOSUSPEND_TIMEOUT 2000 |
| |
| #define OMAP2_MCSPI_REVISION 0x00 |
| #define OMAP2_MCSPI_SYSSTATUS 0x14 |
| #define OMAP2_MCSPI_IRQSTATUS 0x18 |
| #define OMAP2_MCSPI_IRQENABLE 0x1c |
| #define OMAP2_MCSPI_WAKEUPENABLE 0x20 |
| #define OMAP2_MCSPI_SYST 0x24 |
| #define OMAP2_MCSPI_MODULCTRL 0x28 |
| #define OMAP2_MCSPI_XFERLEVEL 0x7c |
| |
| /* per-channel banks, 0x14 bytes each, first is: */ |
| #define OMAP2_MCSPI_CHCONF0 0x2c |
| #define OMAP2_MCSPI_CHSTAT0 0x30 |
| #define OMAP2_MCSPI_CHCTRL0 0x34 |
| #define OMAP2_MCSPI_TX0 0x38 |
| #define OMAP2_MCSPI_RX0 0x3c |
| |
| /* per-register bitmasks: */ |
| #define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17) |
| |
| #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0) |
| #define OMAP2_MCSPI_MODULCTRL_MS BIT(2) |
| #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3) |
| |
| #define OMAP2_MCSPI_CHCONF_PHA BIT(0) |
| #define OMAP2_MCSPI_CHCONF_POL BIT(1) |
| #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2) |
| #define OMAP2_MCSPI_CHCONF_EPOL BIT(6) |
| #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7) |
| #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12) |
| #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13) |
| #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12) |
| #define OMAP2_MCSPI_CHCONF_DMAW BIT(14) |
| #define OMAP2_MCSPI_CHCONF_DMAR BIT(15) |
| #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16) |
| #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17) |
| #define OMAP2_MCSPI_CHCONF_IS BIT(18) |
| #define OMAP2_MCSPI_CHCONF_TURBO BIT(19) |
| #define OMAP2_MCSPI_CHCONF_FORCE BIT(20) |
| #define OMAP2_MCSPI_CHCONF_FFET BIT(27) |
| #define OMAP2_MCSPI_CHCONF_FFER BIT(28) |
| #define OMAP2_MCSPI_CHCONF_CLKG BIT(29) |
| |
| #define OMAP2_MCSPI_CHSTAT_RXS BIT(0) |
| #define OMAP2_MCSPI_CHSTAT_TXS BIT(1) |
| #define OMAP2_MCSPI_CHSTAT_EOT BIT(2) |
| #define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3) |
| |
| #define OMAP2_MCSPI_CHCTRL_EN BIT(0) |
| #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8) |
| |
| #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0) |
| |
| /* We have 2 DMA channels per CS, one for RX and one for TX */ |
| struct omap2_mcspi_dma { |
| struct dma_chan *dma_tx; |
| struct dma_chan *dma_rx; |
| |
| struct completion dma_tx_completion; |
| struct completion dma_rx_completion; |
| |
| char dma_rx_ch_name[14]; |
| char dma_tx_ch_name[14]; |
| }; |
| |
| /* use PIO for small transfers, avoiding DMA setup/teardown overhead and |
| * cache operations; better heuristics consider wordsize and bitrate. |
| */ |
| #define DMA_MIN_BYTES 160 |
| |
| |
| /* |
| * Used for context save and restore, structure members to be updated whenever |
| * corresponding registers are modified. |
| */ |
| struct omap2_mcspi_regs { |
| u32 modulctrl; |
| u32 wakeupenable; |
| struct list_head cs; |
| }; |
| |
| struct omap2_mcspi { |
| struct completion txdone; |
| struct spi_controller *ctlr; |
| /* Virtual base address of the controller */ |
| void __iomem *base; |
| unsigned long phys; |
| /* SPI1 has 4 channels, while SPI2 has 2 */ |
| struct omap2_mcspi_dma *dma_channels; |
| struct device *dev; |
| struct omap2_mcspi_regs ctx; |
| struct clk *ref_clk; |
| int fifo_depth; |
| bool target_aborted; |
| unsigned int pin_dir:1; |
| size_t max_xfer_len; |
| u32 ref_clk_hz; |
| bool use_multi_mode; |
| }; |
| |
| struct omap2_mcspi_cs { |
| void __iomem *base; |
| unsigned long phys; |
| int word_len; |
| u16 mode; |
| struct list_head node; |
| /* Context save and restore shadow register */ |
| u32 chconf0, chctrl0; |
| }; |
| |
| static inline void mcspi_write_reg(struct spi_controller *ctlr, |
| int idx, u32 val) |
| { |
| struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); |
| |
| writel_relaxed(val, mcspi->base + idx); |
| } |
| |
| static inline u32 mcspi_read_reg(struct spi_controller *ctlr, int idx) |
| { |
| struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); |
| |
| return readl_relaxed(mcspi->base + idx); |
| } |
| |
| static inline void mcspi_write_cs_reg(const struct spi_device *spi, |
| int idx, u32 val) |
| { |
| struct omap2_mcspi_cs *cs = spi->controller_state; |
| |
| writel_relaxed(val, cs->base + idx); |
| } |
| |
| static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx) |
| { |
| struct omap2_mcspi_cs *cs = spi->controller_state; |
| |
| return readl_relaxed(cs->base + idx); |
| } |
| |
| static inline u32 mcspi_cached_chconf0(const struct spi_device *spi) |
| { |
| struct omap2_mcspi_cs *cs = spi->controller_state; |
| |
| return cs->chconf0; |
| } |
| |
| static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val) |
| { |
| struct omap2_mcspi_cs *cs = spi->controller_state; |
| |
| cs->chconf0 = val; |
| mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val); |
| mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); |
| } |
| |
| static inline int mcspi_bytes_per_word(int word_len) |
| { |
| if (word_len <= 8) |
| return 1; |
| else if (word_len <= 16) |
| return 2; |
| else /* word_len <= 32 */ |
| return 4; |
| } |
| |
| static void omap2_mcspi_set_dma_req(const struct spi_device *spi, |
| int is_read, int enable) |
| { |
| u32 l, rw; |
| |
| l = mcspi_cached_chconf0(spi); |
| |
| if (is_read) /* 1 is read, 0 write */ |
| rw = OMAP2_MCSPI_CHCONF_DMAR; |
| else |
| rw = OMAP2_MCSPI_CHCONF_DMAW; |
| |
| if (enable) |
| l |= rw; |
| else |
| l &= ~rw; |
| |
| mcspi_write_chconf0(spi, l); |
| } |
| |
| static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable) |
| { |
| struct omap2_mcspi_cs *cs = spi->controller_state; |
| u32 l; |
| |
| l = cs->chctrl0; |
| if (enable) |
| l |= OMAP2_MCSPI_CHCTRL_EN; |
| else |
| l &= ~OMAP2_MCSPI_CHCTRL_EN; |
| cs->chctrl0 = l; |
| mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0); |
| /* Flash post-writes */ |
| mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0); |
| } |
| |
| static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable) |
| { |
| struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller); |
| u32 l; |
| |
| /* The controller handles the inverted chip selects |
| * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert |
| * the inversion from the core spi_set_cs function. |
| */ |
| if (spi->mode & SPI_CS_HIGH) |
| enable = !enable; |
| |
| if (spi->controller_state) { |
| int err = pm_runtime_resume_and_get(mcspi->dev); |
| if (err < 0) { |
| dev_err(mcspi->dev, "failed to get sync: %d\n", err); |
| return; |
| } |
| |
| l = mcspi_cached_chconf0(spi); |
| |
| /* Only enable chip select manually if single mode is used */ |
| if (mcspi->use_multi_mode) { |
| l &= ~OMAP2_MCSPI_CHCONF_FORCE; |
| } else { |
| if (enable) |
| l &= ~OMAP2_MCSPI_CHCONF_FORCE; |
| else |
| l |= OMAP2_MCSPI_CHCONF_FORCE; |
| } |
| |
| mcspi_write_chconf0(spi, l); |
| |
| pm_runtime_mark_last_busy(mcspi->dev); |
| pm_runtime_put_autosuspend(mcspi->dev); |
| } |
| } |
| |
| static void omap2_mcspi_set_mode(struct spi_controller *ctlr) |
| { |
| struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); |
| struct omap2_mcspi_regs *ctx = &mcspi->ctx; |
| u32 l; |
| |
| /* |
| * Choose host or target mode |
| */ |
| l = mcspi_read_reg(ctlr, OMAP2_MCSPI_MODULCTRL); |
| l &= ~(OMAP2_MCSPI_MODULCTRL_STEST); |
| if (spi_controller_is_target(ctlr)) { |
| l |= (OMAP2_MCSPI_MODULCTRL_MS); |
| } else { |
| l &= ~(OMAP2_MCSPI_MODULCTRL_MS); |
| |
| /* Enable single mode if needed */ |
| if (mcspi->use_multi_mode) |
| l &= ~OMAP2_MCSPI_MODULCTRL_SINGLE; |
| else |
| l |= OMAP2_MCSPI_MODULCTRL_SINGLE; |
| } |
| mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, l); |
| |
| ctx->modulctrl = l; |
| } |
| |
| static void omap2_mcspi_set_fifo(const struct spi_device *spi, |
| struct spi_transfer *t, int enable) |
| { |
| struct spi_controller *ctlr = spi->controller; |
| struct omap2_mcspi_cs *cs = spi->controller_state; |
| struct omap2_mcspi *mcspi; |
| unsigned int wcnt; |
| int max_fifo_depth, bytes_per_word; |
| u32 chconf, xferlevel; |
| |
| mcspi = spi_controller_get_devdata(ctlr); |
| |
| chconf = mcspi_cached_chconf0(spi); |
| if (enable) { |
| bytes_per_word = mcspi_bytes_per_word(cs->word_len); |
| if (t->len % bytes_per_word != 0) |
| goto disable_fifo; |
| |
| if (t->rx_buf != NULL && t->tx_buf != NULL) |
| max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2; |
| else |
| max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH; |
| |
| wcnt = t->len / bytes_per_word; |
| if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT) |
| goto disable_fifo; |
| |
| xferlevel = wcnt << 16; |
| if (t->rx_buf != NULL) { |
| chconf |= OMAP2_MCSPI_CHCONF_FFER; |
| xferlevel |= (bytes_per_word - 1) << 8; |
| } |
| |
| if (t->tx_buf != NULL) { |
| chconf |= OMAP2_MCSPI_CHCONF_FFET; |
| xferlevel |= bytes_per_word - 1; |
| } |
| |
| mcspi_write_reg(ctlr, OMAP2_MCSPI_XFERLEVEL, xferlevel); |
| mcspi_write_chconf0(spi, chconf); |
| mcspi->fifo_depth = max_fifo_depth; |
| |
| return; |
| } |
| |
| disable_fifo: |
| if (t->rx_buf != NULL) |
| chconf &= ~OMAP2_MCSPI_CHCONF_FFER; |
| |
| if (t->tx_buf != NULL) |
| chconf &= ~OMAP2_MCSPI_CHCONF_FFET; |
| |
| mcspi_write_chconf0(spi, chconf); |
| mcspi->fifo_depth = 0; |
| } |
| |
| static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit) |
| { |
| unsigned long timeout; |
| |
| timeout = jiffies + msecs_to_jiffies(1000); |
| while (!(readl_relaxed(reg) & bit)) { |
| if (time_after(jiffies, timeout)) { |
| if (!(readl_relaxed(reg) & bit)) |
| return -ETIMEDOUT; |
| else |
| return 0; |
| } |
| cpu_relax(); |
| } |
| return 0; |
| } |
| |
| static int mcspi_wait_for_completion(struct omap2_mcspi *mcspi, |
| struct completion *x) |
| { |
| if (spi_controller_is_target(mcspi->ctlr)) { |
| if (wait_for_completion_interruptible(x) || |
| mcspi->target_aborted) |
| return -EINTR; |
| } else { |
| wait_for_completion(x); |
| } |
| |
| return 0; |
| } |
| |
| static void omap2_mcspi_rx_callback(void *data) |
| { |
| struct spi_device *spi = data; |
| struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller); |
| struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)]; |
| |
| /* We must disable the DMA RX request */ |
| omap2_mcspi_set_dma_req(spi, 1, 0); |
| |
| complete(&mcspi_dma->dma_rx_completion); |
| } |
| |
| static void omap2_mcspi_tx_callback(void *data) |
| { |
| struct spi_device *spi = data; |
| struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller); |
| struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)]; |
| |
| /* We must disable the DMA TX request */ |
| omap2_mcspi_set_dma_req(spi, 0, 0); |
| |
| complete(&mcspi_dma->dma_tx_completion); |
| } |
| |
| static void omap2_mcspi_tx_dma(struct spi_device *spi, |
| struct spi_transfer *xfer, |
| struct dma_slave_config cfg) |
| { |
| struct omap2_mcspi *mcspi; |
| struct omap2_mcspi_dma *mcspi_dma; |
| struct dma_async_tx_descriptor *tx; |
| |
| mcspi = spi_controller_get_devdata(spi->controller); |
| mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)]; |
| |
| dmaengine_slave_config(mcspi_dma->dma_tx, &cfg); |
| |
| tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl, |
| xfer->tx_sg.nents, |
| DMA_MEM_TO_DEV, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (tx) { |
| tx->callback = omap2_mcspi_tx_callback; |
| tx->callback_param = spi; |
| dmaengine_submit(tx); |
| } else { |
| /* FIXME: fall back to PIO? */ |
| } |
| dma_async_issue_pending(mcspi_dma->dma_tx); |
| omap2_mcspi_set_dma_req(spi, 0, 1); |
| } |
| |
| static unsigned |
| omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer, |
| struct dma_slave_config cfg, |
| unsigned es) |
| { |
| struct omap2_mcspi *mcspi; |
| struct omap2_mcspi_dma *mcspi_dma; |
| unsigned int count, transfer_reduction = 0; |
| struct scatterlist *sg_out[2]; |
| int nb_sizes = 0, out_mapped_nents[2], ret, x; |
| size_t sizes[2]; |
| u32 l; |
| int elements = 0; |
| int word_len, element_count; |
| struct omap2_mcspi_cs *cs = spi->controller_state; |
| void __iomem *chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0; |
| struct dma_async_tx_descriptor *tx; |
| |
| mcspi = spi_controller_get_devdata(spi->controller); |
| mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)]; |
| count = xfer->len; |
| |
| /* |
| * In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM |
| * it mentions reducing DMA transfer length by one element in host |
| * normal mode. |
| */ |
| if (mcspi->fifo_depth == 0) |
| transfer_reduction = es; |
| |
| word_len = cs->word_len; |
| l = mcspi_cached_chconf0(spi); |
| |
| if (word_len <= 8) |
| element_count = count; |
| else if (word_len <= 16) |
| element_count = count >> 1; |
| else /* word_len <= 32 */ |
| element_count = count >> 2; |
| |
| |
| dmaengine_slave_config(mcspi_dma->dma_rx, &cfg); |
| |
| /* |
| * Reduce DMA transfer length by one more if McSPI is |
| * configured in turbo mode. |
| */ |
| if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0) |
| transfer_reduction += es; |
| |
| if (transfer_reduction) { |
| /* Split sgl into two. The second sgl won't be used. */ |
| sizes[0] = count - transfer_reduction; |
| sizes[1] = transfer_reduction; |
| nb_sizes = 2; |
| } else { |
| /* |
| * Don't bother splitting the sgl. This essentially |
| * clones the original sgl. |
| */ |
| sizes[0] = count; |
| nb_sizes = 1; |
| } |
| |
| ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 0, nb_sizes, |
| sizes, sg_out, out_mapped_nents, GFP_KERNEL); |
| |
| if (ret < 0) { |
| dev_err(&spi->dev, "sg_split failed\n"); |
| return 0; |
| } |
| |
| tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, sg_out[0], |
| out_mapped_nents[0], DMA_DEV_TO_MEM, |
| DMA_PREP_INTERRUPT | DMA_CTRL_ACK); |
| if (tx) { |
| tx->callback = omap2_mcspi_rx_callback; |
| tx->callback_param = spi; |
| dmaengine_submit(tx); |
| } else { |
| /* FIXME: fall back to PIO? */ |
| } |
| |
| dma_async_issue_pending(mcspi_dma->dma_rx); |
| omap2_mcspi_set_dma_req(spi, 1, 1); |
| |
| ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_rx_completion); |
| if (ret || mcspi->target_aborted) { |
| dmaengine_terminate_sync(mcspi_dma->dma_rx); |
| omap2_mcspi_set_dma_req(spi, 1, 0); |
| return 0; |
| } |
| |
| for (x = 0; x < nb_sizes; x++) |
| kfree(sg_out[x]); |
| |
| if (mcspi->fifo_depth > 0) |
| return count; |
| |
| /* |
| * Due to the DMA transfer length reduction the missing bytes must |
| * be read manually to receive all of the expected data. |
| */ |
| omap2_mcspi_set_enable(spi, 0); |
| |
| elements = element_count - 1; |
| |
| if (l & OMAP2_MCSPI_CHCONF_TURBO) { |
| elements--; |
| |
| if (!mcspi_wait_for_reg_bit(chstat_reg, |
| OMAP2_MCSPI_CHSTAT_RXS)) { |
| u32 w; |
| |
| w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0); |
| if (word_len <= 8) |
| ((u8 *)xfer->rx_buf)[elements++] = w; |
| else if (word_len <= 16) |
| ((u16 *)xfer->rx_buf)[elements++] = w; |
| else /* word_len <= 32 */ |
| ((u32 *)xfer->rx_buf)[elements++] = w; |
| } else { |
| int bytes_per_word = mcspi_bytes_per_word(word_len); |
| dev_err(&spi->dev, "DMA RX penultimate word empty\n"); |
| count -= (bytes_per_word << 1); |
| omap2_mcspi_set_enable(spi, 1); |
| return count; |
| } |
| } |
| if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) { |
| u32 w; |
| |
| w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0); |
| if (word_len <= 8) |
| ((u8 *)xfer->rx_buf)[elements] = w; |
| else if (word_len <= 16) |
| ((u16 *)xfer->rx_buf)[elements] = w; |
| else /* word_len <= 32 */ |
| ((u32 *)xfer->rx_buf)[elements] = w; |
| } else { |
| dev_err(&spi->dev, "DMA RX last word empty\n"); |
| count -= mcspi_bytes_per_word(word_len); |
| } |
| omap2_mcspi_set_enable(spi, 1); |
| return count; |
| } |
| |
| static unsigned |
| omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer) |
| { |
| struct omap2_mcspi *mcspi; |
| struct omap2_mcspi_cs *cs = spi->controller_state; |
| struct omap2_mcspi_dma *mcspi_dma; |
| unsigned int count; |
| u8 *rx; |
| const u8 *tx; |
| struct dma_slave_config cfg; |
| enum dma_slave_buswidth width; |
| unsigned es; |
| void __iomem *chstat_reg; |
| void __iomem *irqstat_reg; |
| int wait_res; |
| |
| mcspi = spi_controller_get_devdata(spi->controller); |
| mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)]; |
| |
| if (cs->word_len <= 8) { |
| width = DMA_SLAVE_BUSWIDTH_1_BYTE; |
| es = 1; |
| } else if (cs->word_len <= 16) { |
| width = DMA_SLAVE_BUSWIDTH_2_BYTES; |
| es = 2; |
| } else { |
| width = DMA_SLAVE_BUSWIDTH_4_BYTES; |
| es = 4; |
| } |
| |
| count = xfer->len; |
| |
| memset(&cfg, 0, sizeof(cfg)); |
| cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0; |
| cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0; |
| cfg.src_addr_width = width; |
| cfg.dst_addr_width = width; |
| cfg.src_maxburst = 1; |
| cfg.dst_maxburst = 1; |
| |
| rx = xfer->rx_buf; |
| tx = xfer->tx_buf; |
| |
| mcspi->target_aborted = false; |
| reinit_completion(&mcspi_dma->dma_tx_completion); |
| reinit_completion(&mcspi_dma->dma_rx_completion); |
| reinit_completion(&mcspi->txdone); |
| if (tx) { |
| /* Enable EOW IRQ to know end of tx in target mode */ |
| if (spi_controller_is_target(spi->controller)) |
| mcspi_write_reg(spi->controller, |
| OMAP2_MCSPI_IRQENABLE, |
| OMAP2_MCSPI_IRQSTATUS_EOW); |
| omap2_mcspi_tx_dma(spi, xfer, cfg); |
| } |
| |
| if (rx != NULL) |
| count = omap2_mcspi_rx_dma(spi, xfer, cfg, es); |
| |
| if (tx != NULL) { |
| int ret; |
| |
| ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_tx_completion); |
| if (ret || mcspi->target_aborted) { |
| dmaengine_terminate_sync(mcspi_dma->dma_tx); |
| omap2_mcspi_set_dma_req(spi, 0, 0); |
| return 0; |
| } |
| |
| if (spi_controller_is_target(mcspi->ctlr)) { |
| ret = mcspi_wait_for_completion(mcspi, &mcspi->txdone); |
| if (ret || mcspi->target_aborted) |
| return 0; |
| } |
| |
| if (mcspi->fifo_depth > 0) { |
| irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS; |
| |
| if (mcspi_wait_for_reg_bit(irqstat_reg, |
| OMAP2_MCSPI_IRQSTATUS_EOW) < 0) |
| dev_err(&spi->dev, "EOW timed out\n"); |
| |
| mcspi_write_reg(mcspi->ctlr, OMAP2_MCSPI_IRQSTATUS, |
| OMAP2_MCSPI_IRQSTATUS_EOW); |
| } |
| |
| /* for TX_ONLY mode, be sure all words have shifted out */ |
| if (rx == NULL) { |
| chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0; |
| if (mcspi->fifo_depth > 0) { |
| wait_res = mcspi_wait_for_reg_bit(chstat_reg, |
| OMAP2_MCSPI_CHSTAT_TXFFE); |
| if (wait_res < 0) |
| dev_err(&spi->dev, "TXFFE timed out\n"); |
| } else { |
| wait_res = mcspi_wait_for_reg_bit(chstat_reg, |
| OMAP2_MCSPI_CHSTAT_TXS); |
| if (wait_res < 0) |
| dev_err(&spi->dev, "TXS timed out\n"); |
| } |
| if (wait_res >= 0 && |
| (mcspi_wait_for_reg_bit(chstat_reg, |
| OMAP2_MCSPI_CHSTAT_EOT) < 0)) |
| dev_err(&spi->dev, "EOT timed out\n"); |
| } |
| } |
| return count; |
| } |
| |
| static unsigned |
| omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer) |
| { |
| struct omap2_mcspi_cs *cs = spi->controller_state; |
| unsigned int count, c; |
| u32 l; |
| void __iomem *base = cs->base; |
| void __iomem *tx_reg; |
| void __iomem *rx_reg; |
| void __iomem *chstat_reg; |
| int word_len; |
| |
| count = xfer->len; |
| c = count; |
| word_len = cs->word_len; |
| |
| l = mcspi_cached_chconf0(spi); |
| |
| /* We store the pre-calculated register addresses on stack to speed |
| * up the transfer loop. */ |
| tx_reg = base + OMAP2_MCSPI_TX0; |
| rx_reg = base + OMAP2_MCSPI_RX0; |
| chstat_reg = base + OMAP2_MCSPI_CHSTAT0; |
| |
| if (c < (word_len>>3)) |
| return 0; |
| |
| if (word_len <= 8) { |
| u8 *rx; |
| const u8 *tx; |
| |
| rx = xfer->rx_buf; |
| tx = xfer->tx_buf; |
| |
| do { |
| c -= 1; |
| if (tx != NULL) { |
| if (mcspi_wait_for_reg_bit(chstat_reg, |
| OMAP2_MCSPI_CHSTAT_TXS) < 0) { |
| dev_err(&spi->dev, "TXS timed out\n"); |
| goto out; |
| } |
| dev_vdbg(&spi->dev, "write-%d %02x\n", |
| word_len, *tx); |
| writel_relaxed(*tx++, tx_reg); |
| } |
| if (rx != NULL) { |
| if (mcspi_wait_for_reg_bit(chstat_reg, |
| OMAP2_MCSPI_CHSTAT_RXS) < 0) { |
| dev_err(&spi->dev, "RXS timed out\n"); |
| goto out; |
| } |
| |
| if (c == 1 && tx == NULL && |
| (l & OMAP2_MCSPI_CHCONF_TURBO)) { |
| omap2_mcspi_set_enable(spi, 0); |
| *rx++ = readl_relaxed(rx_reg); |
| dev_vdbg(&spi->dev, "read-%d %02x\n", |
| word_len, *(rx - 1)); |
| if (mcspi_wait_for_reg_bit(chstat_reg, |
| OMAP2_MCSPI_CHSTAT_RXS) < 0) { |
| dev_err(&spi->dev, |
| "RXS timed out\n"); |
| goto out; |
| } |
| c = 0; |
| } else if (c == 0 && tx == NULL) { |
| omap2_mcspi_set_enable(spi, 0); |
| } |
| |
| *rx++ = readl_relaxed(rx_reg); |
| dev_vdbg(&spi->dev, "read-%d %02x\n", |
| word_len, *(rx - 1)); |
| } |
| /* Add word delay between each word */ |
| spi_delay_exec(&xfer->word_delay, xfer); |
| } while (c); |
| } else if (word_len <= 16) { |
| u16 *rx; |
| const u16 *tx; |
| |
| rx = xfer->rx_buf; |
| tx = xfer->tx_buf; |
| do { |
| c -= 2; |
| if (tx != NULL) { |
| if (mcspi_wait_for_reg_bit(chstat_reg, |
| OMAP2_MCSPI_CHSTAT_TXS) < 0) { |
| dev_err(&spi->dev, "TXS timed out\n"); |
| goto out; |
| } |
| dev_vdbg(&spi->dev, "write-%d %04x\n", |
| word_len, *tx); |
| writel_relaxed(*tx++, tx_reg); |
| } |
| if (rx != NULL) { |
| if (mcspi_wait_for_reg_bit(chstat_reg, |
| OMAP2_MCSPI_CHSTAT_RXS) < 0) { |
| dev_err(&spi->dev, "RXS timed out\n"); |
| goto out; |
| } |
| |
| if (c == 2 && tx == NULL && |
| (l & OMAP2_MCSPI_CHCONF_TURBO)) { |
| omap2_mcspi_set_enable(spi, 0); |
| *rx++ = readl_relaxed(rx_reg); |
| dev_vdbg(&spi->dev, "read-%d %04x\n", |
| word_len, *(rx - 1)); |
| if (mcspi_wait_for_reg_bit(chstat_reg, |
| OMAP2_MCSPI_CHSTAT_RXS) < 0) { |
| dev_err(&spi->dev, |
| "RXS timed out\n"); |
| goto out; |
| } |
| c = 0; |
| } else if (c == 0 && tx == NULL) { |
| omap2_mcspi_set_enable(spi, 0); |
| } |
| |
| *rx++ = readl_relaxed(rx_reg); |
| dev_vdbg(&spi->dev, "read-%d %04x\n", |
| word_len, *(rx - 1)); |
| } |
| /* Add word delay between each word */ |
| spi_delay_exec(&xfer->word_delay, xfer); |
| } while (c >= 2); |
| } else if (word_len <= 32) { |
| u32 *rx; |
| const u32 *tx; |
| |
| rx = xfer->rx_buf; |
| tx = xfer->tx_buf; |
| do { |
| c -= 4; |
| if (tx != NULL) { |
| if (mcspi_wait_for_reg_bit(chstat_reg, |
| OMAP2_MCSPI_CHSTAT_TXS) < 0) { |
| dev_err(&spi->dev, "TXS timed out\n"); |
| goto out; |
| } |
| dev_vdbg(&spi->dev, "write-%d %08x\n", |
| word_len, *tx); |
| writel_relaxed(*tx++, tx_reg); |
| } |
| if (rx != NULL) { |
| if (mcspi_wait_for_reg_bit(chstat_reg, |
| OMAP2_MCSPI_CHSTAT_RXS) < 0) { |
| dev_err(&spi->dev, "RXS timed out\n"); |
| goto out; |
| } |
| |
| if (c == 4 && tx == NULL && |
| (l & OMAP2_MCSPI_CHCONF_TURBO)) { |
| omap2_mcspi_set_enable(spi, 0); |
| *rx++ = readl_relaxed(rx_reg); |
| dev_vdbg(&spi->dev, "read-%d %08x\n", |
| word_len, *(rx - 1)); |
| if (mcspi_wait_for_reg_bit(chstat_reg, |
| OMAP2_MCSPI_CHSTAT_RXS) < 0) { |
| dev_err(&spi->dev, |
| "RXS timed out\n"); |
| goto out; |
| } |
| c = 0; |
| } else if (c == 0 && tx == NULL) { |
| omap2_mcspi_set_enable(spi, 0); |
| } |
| |
| *rx++ = readl_relaxed(rx_reg); |
| dev_vdbg(&spi->dev, "read-%d %08x\n", |
| word_len, *(rx - 1)); |
| } |
| /* Add word delay between each word */ |
| spi_delay_exec(&xfer->word_delay, xfer); |
| } while (c >= 4); |
| } |
| |
| /* for TX_ONLY mode, be sure all words have shifted out */ |
| if (xfer->rx_buf == NULL) { |
| if (mcspi_wait_for_reg_bit(chstat_reg, |
| OMAP2_MCSPI_CHSTAT_TXS) < 0) { |
| dev_err(&spi->dev, "TXS timed out\n"); |
| } else if (mcspi_wait_for_reg_bit(chstat_reg, |
| OMAP2_MCSPI_CHSTAT_EOT) < 0) |
| dev_err(&spi->dev, "EOT timed out\n"); |
| |
| /* disable chan to purge rx datas received in TX_ONLY transfer, |
| * otherwise these rx datas will affect the direct following |
| * RX_ONLY transfer. |
| */ |
| omap2_mcspi_set_enable(spi, 0); |
| } |
| out: |
| omap2_mcspi_set_enable(spi, 1); |
| return count - c; |
| } |
| |
| static u32 omap2_mcspi_calc_divisor(u32 speed_hz, u32 ref_clk_hz) |
| { |
| u32 div; |
| |
| for (div = 0; div < 15; div++) |
| if (speed_hz >= (ref_clk_hz >> div)) |
| return div; |
| |
| return 15; |
| } |
| |
| /* called only when no transfer is active to this device */ |
| static int omap2_mcspi_setup_transfer(struct spi_device *spi, |
| struct spi_transfer *t) |
| { |
| struct omap2_mcspi_cs *cs = spi->controller_state; |
| struct omap2_mcspi *mcspi; |
| u32 ref_clk_hz, l = 0, clkd = 0, div, extclk = 0, clkg = 0; |
| u8 word_len = spi->bits_per_word; |
| u32 speed_hz = spi->max_speed_hz; |
| |
| mcspi = spi_controller_get_devdata(spi->controller); |
| |
| if (t != NULL && t->bits_per_word) |
| word_len = t->bits_per_word; |
| |
| cs->word_len = word_len; |
| |
| if (t && t->speed_hz) |
| speed_hz = t->speed_hz; |
| |
| ref_clk_hz = mcspi->ref_clk_hz; |
| speed_hz = min_t(u32, speed_hz, ref_clk_hz); |
| if (speed_hz < (ref_clk_hz / OMAP2_MCSPI_MAX_DIVIDER)) { |
| clkd = omap2_mcspi_calc_divisor(speed_hz, ref_clk_hz); |
| speed_hz = ref_clk_hz >> clkd; |
| clkg = 0; |
| } else { |
| div = (ref_clk_hz + speed_hz - 1) / speed_hz; |
| speed_hz = ref_clk_hz / div; |
| clkd = (div - 1) & 0xf; |
| extclk = (div - 1) >> 4; |
| clkg = OMAP2_MCSPI_CHCONF_CLKG; |
| } |
| |
| l = mcspi_cached_chconf0(spi); |
| |
| /* standard 4-wire host mode: SCK, MOSI/out, MISO/in, nCS |
| * REVISIT: this controller could support SPI_3WIRE mode. |
| */ |
| if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) { |
| l &= ~OMAP2_MCSPI_CHCONF_IS; |
| l &= ~OMAP2_MCSPI_CHCONF_DPE1; |
| l |= OMAP2_MCSPI_CHCONF_DPE0; |
| } else { |
| l |= OMAP2_MCSPI_CHCONF_IS; |
| l |= OMAP2_MCSPI_CHCONF_DPE1; |
| l &= ~OMAP2_MCSPI_CHCONF_DPE0; |
| } |
| |
| /* wordlength */ |
| l &= ~OMAP2_MCSPI_CHCONF_WL_MASK; |
| l |= (word_len - 1) << 7; |
| |
| /* set chipselect polarity; manage with FORCE */ |
| if (!(spi->mode & SPI_CS_HIGH)) |
| l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */ |
| else |
| l &= ~OMAP2_MCSPI_CHCONF_EPOL; |
| |
| /* set clock divisor */ |
| l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK; |
| l |= clkd << 2; |
| |
| /* set clock granularity */ |
| l &= ~OMAP2_MCSPI_CHCONF_CLKG; |
| l |= clkg; |
| if (clkg) { |
| cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK; |
| cs->chctrl0 |= extclk << 8; |
| mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0); |
| } |
| |
| /* set SPI mode 0..3 */ |
| if (spi->mode & SPI_CPOL) |
| l |= OMAP2_MCSPI_CHCONF_POL; |
| else |
| l &= ~OMAP2_MCSPI_CHCONF_POL; |
| if (spi->mode & SPI_CPHA) |
| l |= OMAP2_MCSPI_CHCONF_PHA; |
| else |
| l &= ~OMAP2_MCSPI_CHCONF_PHA; |
| |
| mcspi_write_chconf0(spi, l); |
| |
| cs->mode = spi->mode; |
| |
| dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n", |
| speed_hz, |
| (spi->mode & SPI_CPHA) ? "trailing" : "leading", |
| (spi->mode & SPI_CPOL) ? "inverted" : "normal"); |
| |
| return 0; |
| } |
| |
| /* |
| * Note that we currently allow DMA only if we get a channel |
| * for both rx and tx. Otherwise we'll do PIO for both rx and tx. |
| */ |
| static int omap2_mcspi_request_dma(struct omap2_mcspi *mcspi, |
| struct omap2_mcspi_dma *mcspi_dma) |
| { |
| int ret = 0; |
| |
| mcspi_dma->dma_rx = dma_request_chan(mcspi->dev, |
| mcspi_dma->dma_rx_ch_name); |
| if (IS_ERR(mcspi_dma->dma_rx)) { |
| ret = PTR_ERR(mcspi_dma->dma_rx); |
| mcspi_dma->dma_rx = NULL; |
| goto no_dma; |
| } |
| |
| mcspi_dma->dma_tx = dma_request_chan(mcspi->dev, |
| mcspi_dma->dma_tx_ch_name); |
| if (IS_ERR(mcspi_dma->dma_tx)) { |
| ret = PTR_ERR(mcspi_dma->dma_tx); |
| mcspi_dma->dma_tx = NULL; |
| dma_release_channel(mcspi_dma->dma_rx); |
| mcspi_dma->dma_rx = NULL; |
| } |
| |
| init_completion(&mcspi_dma->dma_rx_completion); |
| init_completion(&mcspi_dma->dma_tx_completion); |
| |
| no_dma: |
| return ret; |
| } |
| |
| static void omap2_mcspi_release_dma(struct spi_controller *ctlr) |
| { |
| struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); |
| struct omap2_mcspi_dma *mcspi_dma; |
| int i; |
| |
| for (i = 0; i < ctlr->num_chipselect; i++) { |
| mcspi_dma = &mcspi->dma_channels[i]; |
| |
| if (mcspi_dma->dma_rx) { |
| dma_release_channel(mcspi_dma->dma_rx); |
| mcspi_dma->dma_rx = NULL; |
| } |
| if (mcspi_dma->dma_tx) { |
| dma_release_channel(mcspi_dma->dma_tx); |
| mcspi_dma->dma_tx = NULL; |
| } |
| } |
| } |
| |
| static void omap2_mcspi_cleanup(struct spi_device *spi) |
| { |
| struct omap2_mcspi_cs *cs; |
| |
| if (spi->controller_state) { |
| /* Unlink controller state from context save list */ |
| cs = spi->controller_state; |
| list_del(&cs->node); |
| |
| kfree(cs); |
| } |
| } |
| |
| static int omap2_mcspi_setup(struct spi_device *spi) |
| { |
| bool initial_setup = false; |
| int ret; |
| struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller); |
| struct omap2_mcspi_regs *ctx = &mcspi->ctx; |
| struct omap2_mcspi_cs *cs = spi->controller_state; |
| |
| if (!cs) { |
| cs = kzalloc(sizeof(*cs), GFP_KERNEL); |
| if (!cs) |
| return -ENOMEM; |
| cs->base = mcspi->base + spi_get_chipselect(spi, 0) * 0x14; |
| cs->phys = mcspi->phys + spi_get_chipselect(spi, 0) * 0x14; |
| cs->mode = 0; |
| cs->chconf0 = 0; |
| cs->chctrl0 = 0; |
| spi->controller_state = cs; |
| /* Link this to context save list */ |
| list_add_tail(&cs->node, &ctx->cs); |
| initial_setup = true; |
| } |
| |
| ret = pm_runtime_resume_and_get(mcspi->dev); |
| if (ret < 0) { |
| if (initial_setup) |
| omap2_mcspi_cleanup(spi); |
| |
| return ret; |
| } |
| |
| ret = omap2_mcspi_setup_transfer(spi, NULL); |
| if (ret && initial_setup) |
| omap2_mcspi_cleanup(spi); |
| |
| pm_runtime_mark_last_busy(mcspi->dev); |
| pm_runtime_put_autosuspend(mcspi->dev); |
| |
| return ret; |
| } |
| |
| static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data) |
| { |
| struct omap2_mcspi *mcspi = data; |
| u32 irqstat; |
| |
| irqstat = mcspi_read_reg(mcspi->ctlr, OMAP2_MCSPI_IRQSTATUS); |
| if (!irqstat) |
| return IRQ_NONE; |
| |
| /* Disable IRQ and wakeup target xfer task */ |
| mcspi_write_reg(mcspi->ctlr, OMAP2_MCSPI_IRQENABLE, 0); |
| if (irqstat & OMAP2_MCSPI_IRQSTATUS_EOW) |
| complete(&mcspi->txdone); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int omap2_mcspi_target_abort(struct spi_controller *ctlr) |
| { |
| struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); |
| struct omap2_mcspi_dma *mcspi_dma = mcspi->dma_channels; |
| |
| mcspi->target_aborted = true; |
| complete(&mcspi_dma->dma_rx_completion); |
| complete(&mcspi_dma->dma_tx_completion); |
| complete(&mcspi->txdone); |
| |
| return 0; |
| } |
| |
| static int omap2_mcspi_transfer_one(struct spi_controller *ctlr, |
| struct spi_device *spi, |
| struct spi_transfer *t) |
| { |
| |
| /* We only enable one channel at a time -- the one whose message is |
| * -- although this controller would gladly |
| * arbitrate among multiple channels. This corresponds to "single |
| * channel" host mode. As a side effect, we need to manage the |
| * chipselect with the FORCE bit ... CS != channel enable. |
| */ |
| |
| struct omap2_mcspi *mcspi; |
| struct omap2_mcspi_dma *mcspi_dma; |
| struct omap2_mcspi_cs *cs; |
| struct omap2_mcspi_device_config *cd; |
| int par_override = 0; |
| int status = 0; |
| u32 chconf; |
| |
| mcspi = spi_controller_get_devdata(ctlr); |
| mcspi_dma = mcspi->dma_channels + spi_get_chipselect(spi, 0); |
| cs = spi->controller_state; |
| cd = spi->controller_data; |
| |
| /* |
| * The target driver could have changed spi->mode in which case |
| * it will be different from cs->mode (the current hardware setup). |
| * If so, set par_override (even though its not a parity issue) so |
| * omap2_mcspi_setup_transfer will be called to configure the hardware |
| * with the correct mode on the first iteration of the loop below. |
| */ |
| if (spi->mode != cs->mode) |
| par_override = 1; |
| |
| omap2_mcspi_set_enable(spi, 0); |
| |
| if (spi_get_csgpiod(spi, 0)) |
| omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH); |
| |
| if (par_override || |
| (t->speed_hz != spi->max_speed_hz) || |
| (t->bits_per_word != spi->bits_per_word)) { |
| par_override = 1; |
| status = omap2_mcspi_setup_transfer(spi, t); |
| if (status < 0) |
| goto out; |
| if (t->speed_hz == spi->max_speed_hz && |
| t->bits_per_word == spi->bits_per_word) |
| par_override = 0; |
| } |
| |
| chconf = mcspi_cached_chconf0(spi); |
| chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK; |
| chconf &= ~OMAP2_MCSPI_CHCONF_TURBO; |
| |
| if (t->tx_buf == NULL) |
| chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY; |
| else if (t->rx_buf == NULL) |
| chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY; |
| |
| if (cd && cd->turbo_mode && t->tx_buf == NULL) { |
| /* Turbo mode is for more than one word */ |
| if (t->len > ((cs->word_len + 7) >> 3)) |
| chconf |= OMAP2_MCSPI_CHCONF_TURBO; |
| } |
| |
| mcspi_write_chconf0(spi, chconf); |
| |
| if (t->len) { |
| unsigned count; |
| |
| if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) && |
| spi_xfer_is_dma_mapped(ctlr, spi, t)) |
| omap2_mcspi_set_fifo(spi, t, 1); |
| |
| omap2_mcspi_set_enable(spi, 1); |
| |
| /* RX_ONLY mode needs dummy data in TX reg */ |
| if (t->tx_buf == NULL) |
| writel_relaxed(0, cs->base |
| + OMAP2_MCSPI_TX0); |
| |
| if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) && |
| spi_xfer_is_dma_mapped(ctlr, spi, t)) |
| count = omap2_mcspi_txrx_dma(spi, t); |
| else |
| count = omap2_mcspi_txrx_pio(spi, t); |
| |
| if (count != t->len) { |
| status = -EIO; |
| goto out; |
| } |
| } |
| |
| omap2_mcspi_set_enable(spi, 0); |
| |
| if (mcspi->fifo_depth > 0) |
| omap2_mcspi_set_fifo(spi, t, 0); |
| |
| out: |
| /* Restore defaults if they were overriden */ |
| if (par_override) { |
| par_override = 0; |
| status = omap2_mcspi_setup_transfer(spi, NULL); |
| } |
| |
| omap2_mcspi_set_enable(spi, 0); |
| |
| if (spi_get_csgpiod(spi, 0)) |
| omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH)); |
| |
| if (mcspi->fifo_depth > 0 && t) |
| omap2_mcspi_set_fifo(spi, t, 0); |
| |
| return status; |
| } |
| |
| static int omap2_mcspi_prepare_message(struct spi_controller *ctlr, |
| struct spi_message *msg) |
| { |
| struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); |
| struct omap2_mcspi_regs *ctx = &mcspi->ctx; |
| struct omap2_mcspi_cs *cs; |
| struct spi_transfer *tr; |
| u8 bits_per_word; |
| |
| /* |
| * The conditions are strict, it is mandatory to check each transfer of the list to see if |
| * multi-mode is applicable. |
| */ |
| mcspi->use_multi_mode = true; |
| list_for_each_entry(tr, &msg->transfers, transfer_list) { |
| if (!tr->bits_per_word) |
| bits_per_word = msg->spi->bits_per_word; |
| else |
| bits_per_word = tr->bits_per_word; |
| |
| /* |
| * Check if this transfer contains only one word; |
| */ |
| if (bits_per_word < 8 && tr->len == 1) { |
| /* multi-mode is applicable, only one word (1..7 bits) */ |
| } else if (bits_per_word >= 8 && tr->len == bits_per_word / 8) { |
| /* multi-mode is applicable, only one word (8..32 bits) */ |
| } else { |
| /* multi-mode is not applicable: more than one word in the transfer */ |
| mcspi->use_multi_mode = false; |
| } |
| |
| /* Check if transfer asks to change the CS status after the transfer */ |
| if (!tr->cs_change) |
| mcspi->use_multi_mode = false; |
| |
| /* |
| * If at least one message is not compatible, switch back to single mode |
| * |
| * The bits_per_word of certain transfer can be different, but it will have no |
| * impact on the signal itself. |
| */ |
| if (!mcspi->use_multi_mode) |
| break; |
| } |
| |
| omap2_mcspi_set_mode(ctlr); |
| |
| /* In single mode only a single channel can have the FORCE bit enabled |
| * in its chconf0 register. |
| * Scan all channels and disable them except the current one. |
| * A FORCE can remain from a last transfer having cs_change enabled |
| * |
| * In multi mode all FORCE bits must be disabled. |
| */ |
| list_for_each_entry(cs, &ctx->cs, node) { |
| if (msg->spi->controller_state == cs && !mcspi->use_multi_mode) { |
| continue; |
| } |
| |
| if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) { |
| cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE; |
| writel_relaxed(cs->chconf0, |
| cs->base + OMAP2_MCSPI_CHCONF0); |
| readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static bool omap2_mcspi_can_dma(struct spi_controller *ctlr, |
| struct spi_device *spi, |
| struct spi_transfer *xfer) |
| { |
| struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller); |
| struct omap2_mcspi_dma *mcspi_dma = |
| &mcspi->dma_channels[spi_get_chipselect(spi, 0)]; |
| |
| if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) |
| return false; |
| |
| if (spi_controller_is_target(ctlr)) |
| return true; |
| |
| ctlr->dma_rx = mcspi_dma->dma_rx; |
| ctlr->dma_tx = mcspi_dma->dma_tx; |
| |
| return (xfer->len >= DMA_MIN_BYTES); |
| } |
| |
| static size_t omap2_mcspi_max_xfer_size(struct spi_device *spi) |
| { |
| struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller); |
| struct omap2_mcspi_dma *mcspi_dma = |
| &mcspi->dma_channels[spi_get_chipselect(spi, 0)]; |
| |
| if (mcspi->max_xfer_len && mcspi_dma->dma_rx) |
| return mcspi->max_xfer_len; |
| |
| return SIZE_MAX; |
| } |
| |
| static int omap2_mcspi_controller_setup(struct omap2_mcspi *mcspi) |
| { |
| struct spi_controller *ctlr = mcspi->ctlr; |
| struct omap2_mcspi_regs *ctx = &mcspi->ctx; |
| int ret = 0; |
| |
| ret = pm_runtime_resume_and_get(mcspi->dev); |
| if (ret < 0) |
| return ret; |
| |
| mcspi_write_reg(ctlr, OMAP2_MCSPI_WAKEUPENABLE, |
| OMAP2_MCSPI_WAKEUPENABLE_WKEN); |
| ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN; |
| |
| omap2_mcspi_set_mode(ctlr); |
| pm_runtime_mark_last_busy(mcspi->dev); |
| pm_runtime_put_autosuspend(mcspi->dev); |
| return 0; |
| } |
| |
| static int omap_mcspi_runtime_suspend(struct device *dev) |
| { |
| int error; |
| |
| error = pinctrl_pm_select_idle_state(dev); |
| if (error) |
| dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error); |
| |
| return 0; |
| } |
| |
| /* |
| * When SPI wake up from off-mode, CS is in activate state. If it was in |
| * inactive state when driver was suspend, then force it to inactive state at |
| * wake up. |
| */ |
| static int omap_mcspi_runtime_resume(struct device *dev) |
| { |
| struct spi_controller *ctlr = dev_get_drvdata(dev); |
| struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); |
| struct omap2_mcspi_regs *ctx = &mcspi->ctx; |
| struct omap2_mcspi_cs *cs; |
| int error; |
| |
| error = pinctrl_pm_select_default_state(dev); |
| if (error) |
| dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error); |
| |
| /* McSPI: context restore */ |
| mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl); |
| mcspi_write_reg(ctlr, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable); |
| |
| list_for_each_entry(cs, &ctx->cs, node) { |
| /* |
| * We need to toggle CS state for OMAP take this |
| * change in account. |
| */ |
| if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) { |
| cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE; |
| writel_relaxed(cs->chconf0, |
| cs->base + OMAP2_MCSPI_CHCONF0); |
| cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE; |
| writel_relaxed(cs->chconf0, |
| cs->base + OMAP2_MCSPI_CHCONF0); |
| } else { |
| writel_relaxed(cs->chconf0, |
| cs->base + OMAP2_MCSPI_CHCONF0); |
| } |
| } |
| |
| return 0; |
| } |
| |
| static struct omap2_mcspi_platform_config omap2_pdata = { |
| .regs_offset = 0, |
| }; |
| |
| static struct omap2_mcspi_platform_config omap4_pdata = { |
| .regs_offset = OMAP4_MCSPI_REG_OFFSET, |
| }; |
| |
| static struct omap2_mcspi_platform_config am654_pdata = { |
| .regs_offset = OMAP4_MCSPI_REG_OFFSET, |
| .max_xfer_len = SZ_4K - 1, |
| }; |
| |
| static const struct of_device_id omap_mcspi_of_match[] = { |
| { |
| .compatible = "ti,omap2-mcspi", |
| .data = &omap2_pdata, |
| }, |
| { |
| .compatible = "ti,omap4-mcspi", |
| .data = &omap4_pdata, |
| }, |
| { |
| .compatible = "ti,am654-mcspi", |
| .data = &am654_pdata, |
| }, |
| { }, |
| }; |
| MODULE_DEVICE_TABLE(of, omap_mcspi_of_match); |
| |
| static int omap2_mcspi_probe(struct platform_device *pdev) |
| { |
| struct spi_controller *ctlr; |
| const struct omap2_mcspi_platform_config *pdata; |
| struct omap2_mcspi *mcspi; |
| struct resource *r; |
| int status = 0, i; |
| u32 regs_offset = 0; |
| struct device_node *node = pdev->dev.of_node; |
| const struct of_device_id *match; |
| |
| if (of_property_read_bool(node, "spi-slave")) |
| ctlr = spi_alloc_target(&pdev->dev, sizeof(*mcspi)); |
| else |
| ctlr = spi_alloc_host(&pdev->dev, sizeof(*mcspi)); |
| if (!ctlr) |
| return -ENOMEM; |
| |
| /* the spi->mode bits understood by this driver: */ |
| ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; |
| ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); |
| ctlr->setup = omap2_mcspi_setup; |
| ctlr->auto_runtime_pm = true; |
| ctlr->prepare_message = omap2_mcspi_prepare_message; |
| ctlr->can_dma = omap2_mcspi_can_dma; |
| ctlr->transfer_one = omap2_mcspi_transfer_one; |
| ctlr->set_cs = omap2_mcspi_set_cs; |
| ctlr->cleanup = omap2_mcspi_cleanup; |
| ctlr->target_abort = omap2_mcspi_target_abort; |
| ctlr->dev.of_node = node; |
| ctlr->use_gpio_descriptors = true; |
| |
| platform_set_drvdata(pdev, ctlr); |
| |
| mcspi = spi_controller_get_devdata(ctlr); |
| mcspi->ctlr = ctlr; |
| |
| match = of_match_device(omap_mcspi_of_match, &pdev->dev); |
| if (match) { |
| u32 num_cs = 1; /* default number of chipselect */ |
| pdata = match->data; |
| |
| of_property_read_u32(node, "ti,spi-num-cs", &num_cs); |
| ctlr->num_chipselect = num_cs; |
| if (of_property_read_bool(node, "ti,pindir-d0-out-d1-in")) |
| mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN; |
| } else { |
| pdata = dev_get_platdata(&pdev->dev); |
| ctlr->num_chipselect = pdata->num_cs; |
| mcspi->pin_dir = pdata->pin_dir; |
| } |
| regs_offset = pdata->regs_offset; |
| if (pdata->max_xfer_len) { |
| mcspi->max_xfer_len = pdata->max_xfer_len; |
| ctlr->max_transfer_size = omap2_mcspi_max_xfer_size; |
| } |
| |
| mcspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r); |
| if (IS_ERR(mcspi->base)) { |
| status = PTR_ERR(mcspi->base); |
| goto free_ctlr; |
| } |
| mcspi->phys = r->start + regs_offset; |
| mcspi->base += regs_offset; |
| |
| mcspi->dev = &pdev->dev; |
| |
| INIT_LIST_HEAD(&mcspi->ctx.cs); |
| |
| mcspi->dma_channels = devm_kcalloc(&pdev->dev, ctlr->num_chipselect, |
| sizeof(struct omap2_mcspi_dma), |
| GFP_KERNEL); |
| if (mcspi->dma_channels == NULL) { |
| status = -ENOMEM; |
| goto free_ctlr; |
| } |
| |
| for (i = 0; i < ctlr->num_chipselect; i++) { |
| sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i); |
| sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i); |
| |
| status = omap2_mcspi_request_dma(mcspi, |
| &mcspi->dma_channels[i]); |
| if (status == -EPROBE_DEFER) |
| goto free_ctlr; |
| } |
| |
| status = platform_get_irq(pdev, 0); |
| if (status < 0) |
| goto free_ctlr; |
| init_completion(&mcspi->txdone); |
| status = devm_request_irq(&pdev->dev, status, |
| omap2_mcspi_irq_handler, 0, pdev->name, |
| mcspi); |
| if (status) { |
| dev_err(&pdev->dev, "Cannot request IRQ"); |
| goto free_ctlr; |
| } |
| |
| mcspi->ref_clk = devm_clk_get_optional_enabled(&pdev->dev, NULL); |
| if (mcspi->ref_clk) |
| mcspi->ref_clk_hz = clk_get_rate(mcspi->ref_clk); |
| else |
| mcspi->ref_clk_hz = OMAP2_MCSPI_MAX_FREQ; |
| ctlr->max_speed_hz = mcspi->ref_clk_hz; |
| ctlr->min_speed_hz = mcspi->ref_clk_hz >> 15; |
| |
| pm_runtime_use_autosuspend(&pdev->dev); |
| pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT); |
| pm_runtime_enable(&pdev->dev); |
| |
| status = omap2_mcspi_controller_setup(mcspi); |
| if (status < 0) |
| goto disable_pm; |
| |
| status = devm_spi_register_controller(&pdev->dev, ctlr); |
| if (status < 0) |
| goto disable_pm; |
| |
| return status; |
| |
| disable_pm: |
| pm_runtime_dont_use_autosuspend(&pdev->dev); |
| pm_runtime_put_sync(&pdev->dev); |
| pm_runtime_disable(&pdev->dev); |
| free_ctlr: |
| omap2_mcspi_release_dma(ctlr); |
| spi_controller_put(ctlr); |
| return status; |
| } |
| |
| static void omap2_mcspi_remove(struct platform_device *pdev) |
| { |
| struct spi_controller *ctlr = platform_get_drvdata(pdev); |
| struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); |
| |
| omap2_mcspi_release_dma(ctlr); |
| |
| pm_runtime_dont_use_autosuspend(mcspi->dev); |
| pm_runtime_put_sync(mcspi->dev); |
| pm_runtime_disable(&pdev->dev); |
| } |
| |
| /* work with hotplug and coldplug */ |
| MODULE_ALIAS("platform:omap2_mcspi"); |
| |
| static int __maybe_unused omap2_mcspi_suspend(struct device *dev) |
| { |
| struct spi_controller *ctlr = dev_get_drvdata(dev); |
| struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); |
| int error; |
| |
| error = pinctrl_pm_select_sleep_state(dev); |
| if (error) |
| dev_warn(mcspi->dev, "%s: failed to set pins: %i\n", |
| __func__, error); |
| |
| error = spi_controller_suspend(ctlr); |
| if (error) |
| dev_warn(mcspi->dev, "%s: controller suspend failed: %i\n", |
| __func__, error); |
| |
| return pm_runtime_force_suspend(dev); |
| } |
| |
| static int __maybe_unused omap2_mcspi_resume(struct device *dev) |
| { |
| struct spi_controller *ctlr = dev_get_drvdata(dev); |
| struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); |
| int error; |
| |
| error = spi_controller_resume(ctlr); |
| if (error) |
| dev_warn(mcspi->dev, "%s: controller resume failed: %i\n", |
| __func__, error); |
| |
| return pm_runtime_force_resume(dev); |
| } |
| |
| static const struct dev_pm_ops omap2_mcspi_pm_ops = { |
| SET_SYSTEM_SLEEP_PM_OPS(omap2_mcspi_suspend, |
| omap2_mcspi_resume) |
| .runtime_suspend = omap_mcspi_runtime_suspend, |
| .runtime_resume = omap_mcspi_runtime_resume, |
| }; |
| |
| static struct platform_driver omap2_mcspi_driver = { |
| .driver = { |
| .name = "omap2_mcspi", |
| .pm = &omap2_mcspi_pm_ops, |
| .of_match_table = omap_mcspi_of_match, |
| }, |
| .probe = omap2_mcspi_probe, |
| .remove_new = omap2_mcspi_remove, |
| }; |
| |
| module_platform_driver(omap2_mcspi_driver); |
| MODULE_DESCRIPTION("OMAP2 McSPI controller driver"); |
| MODULE_LICENSE("GPL"); |