blob: 416da961992866c169c957f41c46588a19783f65 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/* Copyright(c) 1999 - 2006 Intel Corporation. */
#include "e1000.h"
#include <net/ip6_checksum.h>
#include <linux/io.h>
#include <linux/prefetch.h>
#include <linux/bitops.h>
#include <linux/if_vlan.h>
char e1000_driver_name[] = "e1000";
static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
#define DRV_VERSION "7.3.21-k8-NAPI"
const char e1000_driver_version[] = DRV_VERSION;
static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
/* e1000_pci_tbl - PCI Device ID Table
*
* Last entry must be all 0s
*
* Macro expands to...
* {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
*/
static const struct pci_device_id e1000_pci_tbl[] = {
INTEL_E1000_ETHERNET_DEVICE(0x1000),
INTEL_E1000_ETHERNET_DEVICE(0x1001),
INTEL_E1000_ETHERNET_DEVICE(0x1004),
INTEL_E1000_ETHERNET_DEVICE(0x1008),
INTEL_E1000_ETHERNET_DEVICE(0x1009),
INTEL_E1000_ETHERNET_DEVICE(0x100C),
INTEL_E1000_ETHERNET_DEVICE(0x100D),
INTEL_E1000_ETHERNET_DEVICE(0x100E),
INTEL_E1000_ETHERNET_DEVICE(0x100F),
INTEL_E1000_ETHERNET_DEVICE(0x1010),
INTEL_E1000_ETHERNET_DEVICE(0x1011),
INTEL_E1000_ETHERNET_DEVICE(0x1012),
INTEL_E1000_ETHERNET_DEVICE(0x1013),
INTEL_E1000_ETHERNET_DEVICE(0x1014),
INTEL_E1000_ETHERNET_DEVICE(0x1015),
INTEL_E1000_ETHERNET_DEVICE(0x1016),
INTEL_E1000_ETHERNET_DEVICE(0x1017),
INTEL_E1000_ETHERNET_DEVICE(0x1018),
INTEL_E1000_ETHERNET_DEVICE(0x1019),
INTEL_E1000_ETHERNET_DEVICE(0x101A),
INTEL_E1000_ETHERNET_DEVICE(0x101D),
INTEL_E1000_ETHERNET_DEVICE(0x101E),
INTEL_E1000_ETHERNET_DEVICE(0x1026),
INTEL_E1000_ETHERNET_DEVICE(0x1027),
INTEL_E1000_ETHERNET_DEVICE(0x1028),
INTEL_E1000_ETHERNET_DEVICE(0x1075),
INTEL_E1000_ETHERNET_DEVICE(0x1076),
INTEL_E1000_ETHERNET_DEVICE(0x1077),
INTEL_E1000_ETHERNET_DEVICE(0x1078),
INTEL_E1000_ETHERNET_DEVICE(0x1079),
INTEL_E1000_ETHERNET_DEVICE(0x107A),
INTEL_E1000_ETHERNET_DEVICE(0x107B),
INTEL_E1000_ETHERNET_DEVICE(0x107C),
INTEL_E1000_ETHERNET_DEVICE(0x108A),
INTEL_E1000_ETHERNET_DEVICE(0x1099),
INTEL_E1000_ETHERNET_DEVICE(0x10B5),
INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
/* required last entry */
{0,}
};
MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
int e1000_up(struct e1000_adapter *adapter);
void e1000_down(struct e1000_adapter *adapter);
void e1000_reinit_locked(struct e1000_adapter *adapter);
void e1000_reset(struct e1000_adapter *adapter);
int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
struct e1000_tx_ring *txdr);
static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
struct e1000_rx_ring *rxdr);
static void e1000_free_tx_resources(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring);
static void e1000_free_rx_resources(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring);
void e1000_update_stats(struct e1000_adapter *adapter);
static int e1000_init_module(void);
static void e1000_exit_module(void);
static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
static void e1000_remove(struct pci_dev *pdev);
static int e1000_alloc_queues(struct e1000_adapter *adapter);
static int e1000_sw_init(struct e1000_adapter *adapter);
int e1000_open(struct net_device *netdev);
int e1000_close(struct net_device *netdev);
static void e1000_configure_tx(struct e1000_adapter *adapter);
static void e1000_configure_rx(struct e1000_adapter *adapter);
static void e1000_setup_rctl(struct e1000_adapter *adapter);
static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring);
static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring);
static void e1000_set_rx_mode(struct net_device *netdev);
static void e1000_update_phy_info_task(struct work_struct *work);
static void e1000_watchdog(struct work_struct *work);
static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
struct net_device *netdev);
static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
static int e1000_set_mac(struct net_device *netdev, void *p);
static irqreturn_t e1000_intr(int irq, void *data);
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring);
static int e1000_clean(struct napi_struct *napi, int budget);
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int *work_done, int work_to_do);
static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int *work_done, int work_to_do);
static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int cleaned_count)
{
}
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int cleaned_count);
static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int cleaned_count);
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
int cmd);
static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
static void e1000_tx_timeout(struct net_device *dev);
static void e1000_reset_task(struct work_struct *work);
static void e1000_smartspeed(struct e1000_adapter *adapter);
static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
struct sk_buff *skb);
static bool e1000_vlan_used(struct e1000_adapter *adapter);
static void e1000_vlan_mode(struct net_device *netdev,
netdev_features_t features);
static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
bool filter_on);
static int e1000_vlan_rx_add_vid(struct net_device *netdev,
__be16 proto, u16 vid);
static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
__be16 proto, u16 vid);
static void e1000_restore_vlan(struct e1000_adapter *adapter);
#ifdef CONFIG_PM
static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
static int e1000_resume(struct pci_dev *pdev);
#endif
static void e1000_shutdown(struct pci_dev *pdev);
#ifdef CONFIG_NET_POLL_CONTROLLER
/* for netdump / net console */
static void e1000_netpoll (struct net_device *netdev);
#endif
#define COPYBREAK_DEFAULT 256
static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
module_param(copybreak, uint, 0644);
MODULE_PARM_DESC(copybreak,
"Maximum size of packet that is copied to a new buffer on receive");
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state);
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
static void e1000_io_resume(struct pci_dev *pdev);
static const struct pci_error_handlers e1000_err_handler = {
.error_detected = e1000_io_error_detected,
.slot_reset = e1000_io_slot_reset,
.resume = e1000_io_resume,
};
static struct pci_driver e1000_driver = {
.name = e1000_driver_name,
.id_table = e1000_pci_tbl,
.probe = e1000_probe,
.remove = e1000_remove,
#ifdef CONFIG_PM
/* Power Management Hooks */
.suspend = e1000_suspend,
.resume = e1000_resume,
#endif
.shutdown = e1000_shutdown,
.err_handler = &e1000_err_handler
};
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
MODULE_LICENSE("GPL v2");
MODULE_VERSION(DRV_VERSION);
#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
static int debug = -1;
module_param(debug, int, 0);
MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
/**
* e1000_get_hw_dev - return device
* used by hardware layer to print debugging information
*
**/
struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
{
struct e1000_adapter *adapter = hw->back;
return adapter->netdev;
}
/**
* e1000_init_module - Driver Registration Routine
*
* e1000_init_module is the first routine called when the driver is
* loaded. All it does is register with the PCI subsystem.
**/
static int __init e1000_init_module(void)
{
int ret;
pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
pr_info("%s\n", e1000_copyright);
ret = pci_register_driver(&e1000_driver);
if (copybreak != COPYBREAK_DEFAULT) {
if (copybreak == 0)
pr_info("copybreak disabled\n");
else
pr_info("copybreak enabled for "
"packets <= %u bytes\n", copybreak);
}
return ret;
}
module_init(e1000_init_module);
/**
* e1000_exit_module - Driver Exit Cleanup Routine
*
* e1000_exit_module is called just before the driver is removed
* from memory.
**/
static void __exit e1000_exit_module(void)
{
pci_unregister_driver(&e1000_driver);
}
module_exit(e1000_exit_module);
static int e1000_request_irq(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
irq_handler_t handler = e1000_intr;
int irq_flags = IRQF_SHARED;
int err;
err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
netdev);
if (err) {
e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
}
return err;
}
static void e1000_free_irq(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
free_irq(adapter->pdev->irq, netdev);
}
/**
* e1000_irq_disable - Mask off interrupt generation on the NIC
* @adapter: board private structure
**/
static void e1000_irq_disable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
ew32(IMC, ~0);
E1000_WRITE_FLUSH();
synchronize_irq(adapter->pdev->irq);
}
/**
* e1000_irq_enable - Enable default interrupt generation settings
* @adapter: board private structure
**/
static void e1000_irq_enable(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
ew32(IMS, IMS_ENABLE_MASK);
E1000_WRITE_FLUSH();
}
static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u16 vid = hw->mng_cookie.vlan_id;
u16 old_vid = adapter->mng_vlan_id;
if (!e1000_vlan_used(adapter))
return;
if (!test_bit(vid, adapter->active_vlans)) {
if (hw->mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
adapter->mng_vlan_id = vid;
} else {
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
}
if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
(vid != old_vid) &&
!test_bit(old_vid, adapter->active_vlans))
e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
old_vid);
} else {
adapter->mng_vlan_id = vid;
}
}
static void e1000_init_manageability(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
if (adapter->en_mng_pt) {
u32 manc = er32(MANC);
/* disable hardware interception of ARP */
manc &= ~(E1000_MANC_ARP_EN);
ew32(MANC, manc);
}
}
static void e1000_release_manageability(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
if (adapter->en_mng_pt) {
u32 manc = er32(MANC);
/* re-enable hardware interception of ARP */
manc |= E1000_MANC_ARP_EN;
ew32(MANC, manc);
}
}
/**
* e1000_configure - configure the hardware for RX and TX
* @adapter = private board structure
**/
static void e1000_configure(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
int i;
e1000_set_rx_mode(netdev);
e1000_restore_vlan(adapter);
e1000_init_manageability(adapter);
e1000_configure_tx(adapter);
e1000_setup_rctl(adapter);
e1000_configure_rx(adapter);
/* call E1000_DESC_UNUSED which always leaves
* at least 1 descriptor unused to make sure
* next_to_use != next_to_clean
*/
for (i = 0; i < adapter->num_rx_queues; i++) {
struct e1000_rx_ring *ring = &adapter->rx_ring[i];
adapter->alloc_rx_buf(adapter, ring,
E1000_DESC_UNUSED(ring));
}
}
int e1000_up(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
/* hardware has been reset, we need to reload some things */
e1000_configure(adapter);
clear_bit(__E1000_DOWN, &adapter->flags);
napi_enable(&adapter->napi);
e1000_irq_enable(adapter);
netif_wake_queue(adapter->netdev);
/* fire a link change interrupt to start the watchdog */
ew32(ICS, E1000_ICS_LSC);
return 0;
}
/**
* e1000_power_up_phy - restore link in case the phy was powered down
* @adapter: address of board private structure
*
* The phy may be powered down to save power and turn off link when the
* driver is unloaded and wake on lan is not enabled (among others)
* *** this routine MUST be followed by a call to e1000_reset ***
**/
void e1000_power_up_phy(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 mii_reg = 0;
/* Just clear the power down bit to wake the phy back up */
if (hw->media_type == e1000_media_type_copper) {
/* according to the manual, the phy will retain its
* settings across a power-down/up cycle
*/
e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
mii_reg &= ~MII_CR_POWER_DOWN;
e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
}
}
static void e1000_power_down_phy(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
/* Power down the PHY so no link is implied when interface is down *
* The PHY cannot be powered down if any of the following is true *
* (a) WoL is enabled
* (b) AMT is active
* (c) SoL/IDER session is active
*/
if (!adapter->wol && hw->mac_type >= e1000_82540 &&
hw->media_type == e1000_media_type_copper) {
u16 mii_reg = 0;
switch (hw->mac_type) {
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_ce4100:
case e1000_82546_rev_3:
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
if (er32(MANC) & E1000_MANC_SMBUS_EN)
goto out;
break;
default:
goto out;
}
e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
mii_reg |= MII_CR_POWER_DOWN;
e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
msleep(1);
}
out:
return;
}
static void e1000_down_and_stop(struct e1000_adapter *adapter)
{
set_bit(__E1000_DOWN, &adapter->flags);
cancel_delayed_work_sync(&adapter->watchdog_task);
/*
* Since the watchdog task can reschedule other tasks, we should cancel
* it first, otherwise we can run into the situation when a work is
* still running after the adapter has been turned down.
*/
cancel_delayed_work_sync(&adapter->phy_info_task);
cancel_delayed_work_sync(&adapter->fifo_stall_task);
/* Only kill reset task if adapter is not resetting */
if (!test_bit(__E1000_RESETTING, &adapter->flags))
cancel_work_sync(&adapter->reset_task);
}
void e1000_down(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u32 rctl, tctl;
/* disable receives in the hardware */
rctl = er32(RCTL);
ew32(RCTL, rctl & ~E1000_RCTL_EN);
/* flush and sleep below */
netif_tx_disable(netdev);
/* disable transmits in the hardware */
tctl = er32(TCTL);
tctl &= ~E1000_TCTL_EN;
ew32(TCTL, tctl);
/* flush both disables and wait for them to finish */
E1000_WRITE_FLUSH();
msleep(10);
/* Set the carrier off after transmits have been disabled in the
* hardware, to avoid race conditions with e1000_watchdog() (which
* may be running concurrently to us, checking for the carrier
* bit to decide whether it should enable transmits again). Such
* a race condition would result into transmission being disabled
* in the hardware until the next IFF_DOWN+IFF_UP cycle.
*/
netif_carrier_off(netdev);
napi_disable(&adapter->napi);
e1000_irq_disable(adapter);
/* Setting DOWN must be after irq_disable to prevent
* a screaming interrupt. Setting DOWN also prevents
* tasks from rescheduling.
*/
e1000_down_and_stop(adapter);
adapter->link_speed = 0;
adapter->link_duplex = 0;
e1000_reset(adapter);
e1000_clean_all_tx_rings(adapter);
e1000_clean_all_rx_rings(adapter);
}
void e1000_reinit_locked(struct e1000_adapter *adapter)
{
WARN_ON(in_interrupt());
while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
msleep(1);
e1000_down(adapter);
e1000_up(adapter);
clear_bit(__E1000_RESETTING, &adapter->flags);
}
void e1000_reset(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 pba = 0, tx_space, min_tx_space, min_rx_space;
bool legacy_pba_adjust = false;
u16 hwm;
/* Repartition Pba for greater than 9k mtu
* To take effect CTRL.RST is required.
*/
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
case e1000_82544:
case e1000_82540:
case e1000_82541:
case e1000_82541_rev_2:
legacy_pba_adjust = true;
pba = E1000_PBA_48K;
break;
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_ce4100:
case e1000_82546_rev_3:
pba = E1000_PBA_48K;
break;
case e1000_82547:
case e1000_82547_rev_2:
legacy_pba_adjust = true;
pba = E1000_PBA_30K;
break;
case e1000_undefined:
case e1000_num_macs:
break;
}
if (legacy_pba_adjust) {
if (hw->max_frame_size > E1000_RXBUFFER_8192)
pba -= 8; /* allocate more FIFO for Tx */
if (hw->mac_type == e1000_82547) {
adapter->tx_fifo_head = 0;
adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
adapter->tx_fifo_size =
(E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
atomic_set(&adapter->tx_fifo_stall, 0);
}
} else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
/* adjust PBA for jumbo frames */
ew32(PBA, pba);
/* To maintain wire speed transmits, the Tx FIFO should be
* large enough to accommodate two full transmit packets,
* rounded up to the next 1KB and expressed in KB. Likewise,
* the Rx FIFO should be large enough to accommodate at least
* one full receive packet and is similarly rounded up and
* expressed in KB.
*/
pba = er32(PBA);
/* upper 16 bits has Tx packet buffer allocation size in KB */
tx_space = pba >> 16;
/* lower 16 bits has Rx packet buffer allocation size in KB */
pba &= 0xffff;
/* the Tx fifo also stores 16 bytes of information about the Tx
* but don't include ethernet FCS because hardware appends it
*/
min_tx_space = (hw->max_frame_size +
sizeof(struct e1000_tx_desc) -
ETH_FCS_LEN) * 2;
min_tx_space = ALIGN(min_tx_space, 1024);
min_tx_space >>= 10;
/* software strips receive CRC, so leave room for it */
min_rx_space = hw->max_frame_size;
min_rx_space = ALIGN(min_rx_space, 1024);
min_rx_space >>= 10;
/* If current Tx allocation is less than the min Tx FIFO size,
* and the min Tx FIFO size is less than the current Rx FIFO
* allocation, take space away from current Rx allocation
*/
if (tx_space < min_tx_space &&
((min_tx_space - tx_space) < pba)) {
pba = pba - (min_tx_space - tx_space);
/* PCI/PCIx hardware has PBA alignment constraints */
switch (hw->mac_type) {
case e1000_82545 ... e1000_82546_rev_3:
pba &= ~(E1000_PBA_8K - 1);
break;
default:
break;
}
/* if short on Rx space, Rx wins and must trump Tx
* adjustment or use Early Receive if available
*/
if (pba < min_rx_space)
pba = min_rx_space;
}
}
ew32(PBA, pba);
/* flow control settings:
* The high water mark must be low enough to fit one full frame
* (or the size used for early receive) above it in the Rx FIFO.
* Set it to the lower of:
* - 90% of the Rx FIFO size, and
* - the full Rx FIFO size minus the early receive size (for parts
* with ERT support assuming ERT set to E1000_ERT_2048), or
* - the full Rx FIFO size minus one full frame
*/
hwm = min(((pba << 10) * 9 / 10),
((pba << 10) - hw->max_frame_size));
hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
hw->fc_low_water = hw->fc_high_water - 8;
hw->fc_pause_time = E1000_FC_PAUSE_TIME;
hw->fc_send_xon = 1;
hw->fc = hw->original_fc;
/* Allow time for pending master requests to run */
e1000_reset_hw(hw);
if (hw->mac_type >= e1000_82544)
ew32(WUC, 0);
if (e1000_init_hw(hw))
e_dev_err("Hardware Error\n");
e1000_update_mng_vlan(adapter);
/* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
if (hw->mac_type >= e1000_82544 &&
hw->autoneg == 1 &&
hw->autoneg_advertised == ADVERTISE_1000_FULL) {
u32 ctrl = er32(CTRL);
/* clear phy power management bit if we are in gig only mode,
* which if enabled will attempt negotiation to 100Mb, which
* can cause a loss of link at power off or driver unload
*/
ctrl &= ~E1000_CTRL_SWDPIN3;
ew32(CTRL, ctrl);
}
/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
e1000_reset_adaptive(hw);
e1000_phy_get_info(hw, &adapter->phy_info);
e1000_release_manageability(adapter);
}
/* Dump the eeprom for users having checksum issues */
static void e1000_dump_eeprom(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct ethtool_eeprom eeprom;
const struct ethtool_ops *ops = netdev->ethtool_ops;
u8 *data;
int i;
u16 csum_old, csum_new = 0;
eeprom.len = ops->get_eeprom_len(netdev);
eeprom.offset = 0;
data = kmalloc(eeprom.len, GFP_KERNEL);
if (!data)
return;
ops->get_eeprom(netdev, &eeprom, data);
csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
(data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
csum_new += data[i] + (data[i + 1] << 8);
csum_new = EEPROM_SUM - csum_new;
pr_err("/*********************/\n");
pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
pr_err("Calculated : 0x%04x\n", csum_new);
pr_err("Offset Values\n");
pr_err("======== ======\n");
print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
pr_err("Include this output when contacting your support provider.\n");
pr_err("This is not a software error! Something bad happened to\n");
pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
pr_err("result in further problems, possibly loss of data,\n");
pr_err("corruption or system hangs!\n");
pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
pr_err("which is invalid and requires you to set the proper MAC\n");
pr_err("address manually before continuing to enable this network\n");
pr_err("device. Please inspect the EEPROM dump and report the\n");
pr_err("issue to your hardware vendor or Intel Customer Support.\n");
pr_err("/*********************/\n");
kfree(data);
}
/**
* e1000_is_need_ioport - determine if an adapter needs ioport resources or not
* @pdev: PCI device information struct
*
* Return true if an adapter needs ioport resources
**/
static int e1000_is_need_ioport(struct pci_dev *pdev)
{
switch (pdev->device) {
case E1000_DEV_ID_82540EM:
case E1000_DEV_ID_82540EM_LOM:
case E1000_DEV_ID_82540EP:
case E1000_DEV_ID_82540EP_LOM:
case E1000_DEV_ID_82540EP_LP:
case E1000_DEV_ID_82541EI:
case E1000_DEV_ID_82541EI_MOBILE:
case E1000_DEV_ID_82541ER:
case E1000_DEV_ID_82541ER_LOM:
case E1000_DEV_ID_82541GI:
case E1000_DEV_ID_82541GI_LF:
case E1000_DEV_ID_82541GI_MOBILE:
case E1000_DEV_ID_82544EI_COPPER:
case E1000_DEV_ID_82544EI_FIBER:
case E1000_DEV_ID_82544GC_COPPER:
case E1000_DEV_ID_82544GC_LOM:
case E1000_DEV_ID_82545EM_COPPER:
case E1000_DEV_ID_82545EM_FIBER:
case E1000_DEV_ID_82546EB_COPPER:
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546EB_QUAD_COPPER:
return true;
default:
return false;
}
}
static netdev_features_t e1000_fix_features(struct net_device *netdev,
netdev_features_t features)
{
/* Since there is no support for separate Rx/Tx vlan accel
* enable/disable make sure Tx flag is always in same state as Rx.
*/
if (features & NETIF_F_HW_VLAN_CTAG_RX)
features |= NETIF_F_HW_VLAN_CTAG_TX;
else
features &= ~NETIF_F_HW_VLAN_CTAG_TX;
return features;
}
static int e1000_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
netdev_features_t changed = features ^ netdev->features;
if (changed & NETIF_F_HW_VLAN_CTAG_RX)
e1000_vlan_mode(netdev, features);
if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
return 0;
netdev->features = features;
adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
if (netif_running(netdev))
e1000_reinit_locked(adapter);
else
e1000_reset(adapter);
return 1;
}
static const struct net_device_ops e1000_netdev_ops = {
.ndo_open = e1000_open,
.ndo_stop = e1000_close,
.ndo_start_xmit = e1000_xmit_frame,
.ndo_set_rx_mode = e1000_set_rx_mode,
.ndo_set_mac_address = e1000_set_mac,
.ndo_tx_timeout = e1000_tx_timeout,
.ndo_change_mtu = e1000_change_mtu,
.ndo_do_ioctl = e1000_ioctl,
.ndo_validate_addr = eth_validate_addr,
.ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = e1000_netpoll,
#endif
.ndo_fix_features = e1000_fix_features,
.ndo_set_features = e1000_set_features,
};
/**
* e1000_init_hw_struct - initialize members of hw struct
* @adapter: board private struct
* @hw: structure used by e1000_hw.c
*
* Factors out initialization of the e1000_hw struct to its own function
* that can be called very early at init (just after struct allocation).
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
* Returns negative error codes if MAC type setup fails.
*/
static int e1000_init_hw_struct(struct e1000_adapter *adapter,
struct e1000_hw *hw)
{
struct pci_dev *pdev = adapter->pdev;
/* PCI config space info */
hw->vendor_id = pdev->vendor;
hw->device_id = pdev->device;
hw->subsystem_vendor_id = pdev->subsystem_vendor;
hw->subsystem_id = pdev->subsystem_device;
hw->revision_id = pdev->revision;
pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
hw->max_frame_size = adapter->netdev->mtu +
ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
/* identify the MAC */
if (e1000_set_mac_type(hw)) {
e_err(probe, "Unknown MAC Type\n");
return -EIO;
}
switch (hw->mac_type) {
default:
break;
case e1000_82541:
case e1000_82547:
case e1000_82541_rev_2:
case e1000_82547_rev_2:
hw->phy_init_script = 1;
break;
}
e1000_set_media_type(hw);
e1000_get_bus_info(hw);
hw->wait_autoneg_complete = false;
hw->tbi_compatibility_en = true;
hw->adaptive_ifs = true;
/* Copper options */
if (hw->media_type == e1000_media_type_copper) {
hw->mdix = AUTO_ALL_MODES;
hw->disable_polarity_correction = false;
hw->master_slave = E1000_MASTER_SLAVE;
}
return 0;
}
/**
* e1000_probe - Device Initialization Routine
* @pdev: PCI device information struct
* @ent: entry in e1000_pci_tbl
*
* Returns 0 on success, negative on failure
*
* e1000_probe initializes an adapter identified by a pci_dev structure.
* The OS initialization, configuring of the adapter private structure,
* and a hardware reset occur.
**/
static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
{
struct net_device *netdev;
struct e1000_adapter *adapter = NULL;
struct e1000_hw *hw;
static int cards_found;
static int global_quad_port_a; /* global ksp3 port a indication */
int i, err, pci_using_dac;
u16 eeprom_data = 0;
u16 tmp = 0;
u16 eeprom_apme_mask = E1000_EEPROM_APME;
int bars, need_ioport;
bool disable_dev = false;
/* do not allocate ioport bars when not needed */
need_ioport = e1000_is_need_ioport(pdev);
if (need_ioport) {
bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
err = pci_enable_device(pdev);
} else {
bars = pci_select_bars(pdev, IORESOURCE_MEM);
err = pci_enable_device_mem(pdev);
}
if (err)
return err;
err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
if (err)
goto err_pci_reg;
pci_set_master(pdev);
err = pci_save_state(pdev);
if (err)
goto err_alloc_etherdev;
err = -ENOMEM;
netdev = alloc_etherdev(sizeof(struct e1000_adapter));
if (!netdev)
goto err_alloc_etherdev;
SET_NETDEV_DEV(netdev, &pdev->dev);
pci_set_drvdata(pdev, netdev);
adapter = netdev_priv(netdev);
adapter->netdev = netdev;
adapter->pdev = pdev;
adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
adapter->bars = bars;
adapter->need_ioport = need_ioport;
hw = &adapter->hw;
hw->back = adapter;
err = -EIO;
hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
if (!hw->hw_addr)
goto err_ioremap;
if (adapter->need_ioport) {
for (i = BAR_1; i <= BAR_5; i++) {
if (pci_resource_len(pdev, i) == 0)
continue;
if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
hw->io_base = pci_resource_start(pdev, i);
break;
}
}
}
/* make ready for any if (hw->...) below */
err = e1000_init_hw_struct(adapter, hw);
if (err)
goto err_sw_init;
/* there is a workaround being applied below that limits
* 64-bit DMA addresses to 64-bit hardware. There are some
* 32-bit adapters that Tx hang when given 64-bit DMA addresses
*/
pci_using_dac = 0;
if ((hw->bus_type == e1000_bus_type_pcix) &&
!dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
pci_using_dac = 1;
} else {
err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (err) {
pr_err("No usable DMA config, aborting\n");
goto err_dma;
}
}
netdev->netdev_ops = &e1000_netdev_ops;
e1000_set_ethtool_ops(netdev);
netdev->watchdog_timeo = 5 * HZ;
netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
adapter->bd_number = cards_found;
/* setup the private structure */
err = e1000_sw_init(adapter);
if (err)
goto err_sw_init;
err = -EIO;
if (hw->mac_type == e1000_ce4100) {
hw->ce4100_gbe_mdio_base_virt =
ioremap(pci_resource_start(pdev, BAR_1),
pci_resource_len(pdev, BAR_1));
if (!hw->ce4100_gbe_mdio_base_virt)
goto err_mdio_ioremap;
}
if (hw->mac_type >= e1000_82543) {
netdev->hw_features = NETIF_F_SG |
NETIF_F_HW_CSUM |
NETIF_F_HW_VLAN_CTAG_RX;
netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
NETIF_F_HW_VLAN_CTAG_FILTER;
}
if ((hw->mac_type >= e1000_82544) &&
(hw->mac_type != e1000_82547))
netdev->hw_features |= NETIF_F_TSO;
netdev->priv_flags |= IFF_SUPP_NOFCS;
netdev->features |= netdev->hw_features;
netdev->hw_features |= (NETIF_F_RXCSUM |
NETIF_F_RXALL |
NETIF_F_RXFCS);
if (pci_using_dac) {
netdev->features |= NETIF_F_HIGHDMA;
netdev->vlan_features |= NETIF_F_HIGHDMA;
}
netdev->vlan_features |= (NETIF_F_TSO |
NETIF_F_HW_CSUM |
NETIF_F_SG);
/* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
netdev->priv_flags |= IFF_UNICAST_FLT;
/* MTU range: 46 - 16110 */
netdev->min_mtu = ETH_ZLEN - ETH_HLEN;
netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN);
adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
/* initialize eeprom parameters */
if (e1000_init_eeprom_params(hw)) {
e_err(probe, "EEPROM initialization failed\n");
goto err_eeprom;
}
/* before reading the EEPROM, reset the controller to
* put the device in a known good starting state
*/
e1000_reset_hw(hw);
/* make sure the EEPROM is good */
if (e1000_validate_eeprom_checksum(hw) < 0) {
e_err(probe, "The EEPROM Checksum Is Not Valid\n");
e1000_dump_eeprom(adapter);
/* set MAC address to all zeroes to invalidate and temporary
* disable this device for the user. This blocks regular
* traffic while still permitting ethtool ioctls from reaching
* the hardware as well as allowing the user to run the
* interface after manually setting a hw addr using
* `ip set address`
*/
memset(hw->mac_addr, 0, netdev->addr_len);
} else {
/* copy the MAC address out of the EEPROM */
if (e1000_read_mac_addr(hw))
e_err(probe, "EEPROM Read Error\n");
}
/* don't block initialization here due to bad MAC address */
memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
if (!is_valid_ether_addr(netdev->dev_addr))
e_err(probe, "Invalid MAC Address\n");
INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
INIT_DELAYED_WORK(&adapter->fifo_stall_task,
e1000_82547_tx_fifo_stall_task);
INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
INIT_WORK(&adapter->reset_task, e1000_reset_task);
e1000_check_options(adapter);
/* Initial Wake on LAN setting
* If APM wake is enabled in the EEPROM,
* enable the ACPI Magic Packet filter
*/
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
break;
case e1000_82544:
e1000_read_eeprom(hw,
EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
eeprom_apme_mask = E1000_EEPROM_82544_APM;
break;
case e1000_82546:
case e1000_82546_rev_3:
if (er32(STATUS) & E1000_STATUS_FUNC_1) {
e1000_read_eeprom(hw,
EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
break;
}
/* Fall Through */
default:
e1000_read_eeprom(hw,
EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
break;
}
if (eeprom_data & eeprom_apme_mask)
adapter->eeprom_wol |= E1000_WUFC_MAG;
/* now that we have the eeprom settings, apply the special cases
* where the eeprom may be wrong or the board simply won't support
* wake on lan on a particular port
*/
switch (pdev->device) {
case E1000_DEV_ID_82546GB_PCIE:
adapter->eeprom_wol = 0;
break;
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546GB_FIBER:
/* Wake events only supported on port A for dual fiber
* regardless of eeprom setting
*/
if (er32(STATUS) & E1000_STATUS_FUNC_1)
adapter->eeprom_wol = 0;
break;
case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
/* if quad port adapter, disable WoL on all but port A */
if (global_quad_port_a != 0)
adapter->eeprom_wol = 0;
else
adapter->quad_port_a = true;
/* Reset for multiple quad port adapters */
if (++global_quad_port_a == 4)
global_quad_port_a = 0;
break;
}
/* initialize the wol settings based on the eeprom settings */
adapter->wol = adapter->eeprom_wol;
device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
/* Auto detect PHY address */
if (hw->mac_type == e1000_ce4100) {
for (i = 0; i < 32; i++) {
hw->phy_addr = i;
e1000_read_phy_reg(hw, PHY_ID2, &tmp);
if (tmp != 0 && tmp != 0xFF)
break;
}
if (i >= 32)
goto err_eeprom;
}
/* reset the hardware with the new settings */
e1000_reset(adapter);
strcpy(netdev->name, "eth%d");
err = register_netdev(netdev);
if (err)
goto err_register;
e1000_vlan_filter_on_off(adapter, false);
/* print bus type/speed/width info */
e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
((hw->bus_speed == e1000_bus_speed_133) ? 133 :
(hw->bus_speed == e1000_bus_speed_120) ? 120 :
(hw->bus_speed == e1000_bus_speed_100) ? 100 :
(hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
netdev->dev_addr);
/* carrier off reporting is important to ethtool even BEFORE open */
netif_carrier_off(netdev);
e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
cards_found++;
return 0;
err_register:
err_eeprom:
e1000_phy_hw_reset(hw);
if (hw->flash_address)
iounmap(hw->flash_address);
kfree(adapter->tx_ring);
kfree(adapter->rx_ring);
err_dma:
err_sw_init:
err_mdio_ioremap:
iounmap(hw->ce4100_gbe_mdio_base_virt);
iounmap(hw->hw_addr);
err_ioremap:
disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
free_netdev(netdev);
err_alloc_etherdev:
pci_release_selected_regions(pdev, bars);
err_pci_reg:
if (!adapter || disable_dev)
pci_disable_device(pdev);
return err;
}
/**
* e1000_remove - Device Removal Routine
* @pdev: PCI device information struct
*
* e1000_remove is called by the PCI subsystem to alert the driver
* that it should release a PCI device. That could be caused by a
* Hot-Plug event, or because the driver is going to be removed from
* memory.
**/
static void e1000_remove(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
bool disable_dev;
e1000_down_and_stop(adapter);
e1000_release_manageability(adapter);
unregister_netdev(netdev);
e1000_phy_hw_reset(hw);
kfree(adapter->tx_ring);
kfree(adapter->rx_ring);
if (hw->mac_type == e1000_ce4100)
iounmap(hw->ce4100_gbe_mdio_base_virt);
iounmap(hw->hw_addr);
if (hw->flash_address)
iounmap(hw->flash_address);
pci_release_selected_regions(pdev, adapter->bars);
disable_dev = !test_and_set_bit(__E1000_DISABLED, &adapter->flags);
free_netdev(netdev);
if (disable_dev)
pci_disable_device(pdev);
}
/**
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
* @adapter: board private structure to initialize
*
* e1000_sw_init initializes the Adapter private data structure.
* e1000_init_hw_struct MUST be called before this function
**/
static int e1000_sw_init(struct e1000_adapter *adapter)
{
adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
adapter->num_tx_queues = 1;
adapter->num_rx_queues = 1;
if (e1000_alloc_queues(adapter)) {
e_err(probe, "Unable to allocate memory for queues\n");
return -ENOMEM;
}
/* Explicitly disable IRQ since the NIC can be in any state. */
e1000_irq_disable(adapter);
spin_lock_init(&adapter->stats_lock);
set_bit(__E1000_DOWN, &adapter->flags);
return 0;
}
/**
* e1000_alloc_queues - Allocate memory for all rings
* @adapter: board private structure to initialize
*
* We allocate one ring per queue at run-time since we don't know the
* number of queues at compile-time.
**/
static int e1000_alloc_queues(struct e1000_adapter *adapter)
{
adapter->tx_ring = kcalloc(adapter->num_tx_queues,
sizeof(struct e1000_tx_ring), GFP_KERNEL);
if (!adapter->tx_ring)
return -ENOMEM;
adapter->rx_ring = kcalloc(adapter->num_rx_queues,
sizeof(struct e1000_rx_ring), GFP_KERNEL);
if (!adapter->rx_ring) {
kfree(adapter->tx_ring);
return -ENOMEM;
}
return E1000_SUCCESS;
}
/**
* e1000_open - Called when a network interface is made active
* @netdev: network interface device structure
*
* Returns 0 on success, negative value on failure
*
* The open entry point is called when a network interface is made
* active by the system (IFF_UP). At this point all resources needed
* for transmit and receive operations are allocated, the interrupt
* handler is registered with the OS, the watchdog task is started,
* and the stack is notified that the interface is ready.
**/
int e1000_open(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int err;
/* disallow open during test */
if (test_bit(__E1000_TESTING, &adapter->flags))
return -EBUSY;
netif_carrier_off(netdev);
/* allocate transmit descriptors */
err = e1000_setup_all_tx_resources(adapter);
if (err)
goto err_setup_tx;
/* allocate receive descriptors */
err = e1000_setup_all_rx_resources(adapter);
if (err)
goto err_setup_rx;
e1000_power_up_phy(adapter);
adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
if ((hw->mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
e1000_update_mng_vlan(adapter);
}
/* before we allocate an interrupt, we must be ready to handle it.
* Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
* as soon as we call pci_request_irq, so we have to setup our
* clean_rx handler before we do so.
*/
e1000_configure(adapter);
err = e1000_request_irq(adapter);
if (err)
goto err_req_irq;
/* From here on the code is the same as e1000_up() */
clear_bit(__E1000_DOWN, &adapter->flags);
napi_enable(&adapter->napi);
e1000_irq_enable(adapter);
netif_start_queue(netdev);
/* fire a link status change interrupt to start the watchdog */
ew32(ICS, E1000_ICS_LSC);
return E1000_SUCCESS;
err_req_irq:
e1000_power_down_phy(adapter);
e1000_free_all_rx_resources(adapter);
err_setup_rx:
e1000_free_all_tx_resources(adapter);
err_setup_tx:
e1000_reset(adapter);
return err;
}
/**
* e1000_close - Disables a network interface
* @netdev: network interface device structure
*
* Returns 0, this is not allowed to fail
*
* The close entry point is called when an interface is de-activated
* by the OS. The hardware is still under the drivers control, but
* needs to be disabled. A global MAC reset is issued to stop the
* hardware, and all transmit and receive resources are freed.
**/
int e1000_close(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int count = E1000_CHECK_RESET_COUNT;
while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
usleep_range(10000, 20000);
WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
e1000_down(adapter);
e1000_power_down_phy(adapter);
e1000_free_irq(adapter);
e1000_free_all_tx_resources(adapter);
e1000_free_all_rx_resources(adapter);
/* kill manageability vlan ID if supported, but not if a vlan with
* the same ID is registered on the host OS (let 8021q kill it)
*/
if ((hw->mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
!test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
adapter->mng_vlan_id);
}
return 0;
}
/**
* e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
* @adapter: address of board private structure
* @start: address of beginning of memory
* @len: length of memory
**/
static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
unsigned long len)
{
struct e1000_hw *hw = &adapter->hw;
unsigned long begin = (unsigned long)start;
unsigned long end = begin + len;
/* First rev 82545 and 82546 need to not allow any memory
* write location to cross 64k boundary due to errata 23
*/
if (hw->mac_type == e1000_82545 ||
hw->mac_type == e1000_ce4100 ||
hw->mac_type == e1000_82546) {
return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
}
return true;
}
/**
* e1000_setup_tx_resources - allocate Tx resources (Descriptors)
* @adapter: board private structure
* @txdr: tx descriptor ring (for a specific queue) to setup
*
* Return 0 on success, negative on failure
**/
static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
struct e1000_tx_ring *txdr)
{
struct pci_dev *pdev = adapter->pdev;
int size;
size = sizeof(struct e1000_tx_buffer) * txdr->count;
txdr->buffer_info = vzalloc(size);
if (!txdr->buffer_info)
return -ENOMEM;
/* round up to nearest 4K */
txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
txdr->size = ALIGN(txdr->size, 4096);
txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
GFP_KERNEL);
if (!txdr->desc) {
setup_tx_desc_die:
vfree(txdr->buffer_info);
return -ENOMEM;
}
/* Fix for errata 23, can't cross 64kB boundary */
if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
void *olddesc = txdr->desc;
dma_addr_t olddma = txdr->dma;
e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
txdr->size, txdr->desc);
/* Try again, without freeing the previous */
txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
&txdr->dma, GFP_KERNEL);
/* Failed allocation, critical failure */
if (!txdr->desc) {
dma_free_coherent(&pdev->dev, txdr->size, olddesc,
olddma);
goto setup_tx_desc_die;
}
if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
/* give up */
dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
txdr->dma);
dma_free_coherent(&pdev->dev, txdr->size, olddesc,
olddma);
e_err(probe, "Unable to allocate aligned memory "
"for the transmit descriptor ring\n");
vfree(txdr->buffer_info);
return -ENOMEM;
} else {
/* Free old allocation, new allocation was successful */
dma_free_coherent(&pdev->dev, txdr->size, olddesc,
olddma);
}
}
memset(txdr->desc, 0, txdr->size);
txdr->next_to_use = 0;
txdr->next_to_clean = 0;
return 0;
}
/**
* e1000_setup_all_tx_resources - wrapper to allocate Tx resources
* (Descriptors) for all queues
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
{
int i, err = 0;
for (i = 0; i < adapter->num_tx_queues; i++) {
err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
if (err) {
e_err(probe, "Allocation for Tx Queue %u failed\n", i);
for (i-- ; i >= 0; i--)
e1000_free_tx_resources(adapter,
&adapter->tx_ring[i]);
break;
}
}
return err;
}
/**
* e1000_configure_tx - Configure 8254x Transmit Unit after Reset
* @adapter: board private structure
*
* Configure the Tx unit of the MAC after a reset.
**/
static void e1000_configure_tx(struct e1000_adapter *adapter)
{
u64 tdba;
struct e1000_hw *hw = &adapter->hw;
u32 tdlen, tctl, tipg;
u32 ipgr1, ipgr2;
/* Setup the HW Tx Head and Tail descriptor pointers */
switch (adapter->num_tx_queues) {
case 1:
default:
tdba = adapter->tx_ring[0].dma;
tdlen = adapter->tx_ring[0].count *
sizeof(struct e1000_tx_desc);
ew32(TDLEN, tdlen);
ew32(TDBAH, (tdba >> 32));
ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
ew32(TDT, 0);
ew32(TDH, 0);
adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
E1000_TDH : E1000_82542_TDH);
adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
E1000_TDT : E1000_82542_TDT);
break;
}
/* Set the default values for the Tx Inter Packet Gap timer */
if ((hw->media_type == e1000_media_type_fiber ||
hw->media_type == e1000_media_type_internal_serdes))
tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
else
tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
tipg = DEFAULT_82542_TIPG_IPGT;
ipgr1 = DEFAULT_82542_TIPG_IPGR1;
ipgr2 = DEFAULT_82542_TIPG_IPGR2;
break;
default:
ipgr1 = DEFAULT_82543_TIPG_IPGR1;
ipgr2 = DEFAULT_82543_TIPG_IPGR2;
break;
}
tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
ew32(TIPG, tipg);
/* Set the Tx Interrupt Delay register */
ew32(TIDV, adapter->tx_int_delay);
if (hw->mac_type >= e1000_82540)
ew32(TADV, adapter->tx_abs_int_delay);
/* Program the Transmit Control Register */
tctl = er32(TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
e1000_config_collision_dist(hw);
/* Setup Transmit Descriptor Settings for eop descriptor */
adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
/* only set IDE if we are delaying interrupts using the timers */
if (adapter->tx_int_delay)
adapter->txd_cmd |= E1000_TXD_CMD_IDE;
if (hw->mac_type < e1000_82543)
adapter->txd_cmd |= E1000_TXD_CMD_RPS;
else
adapter->txd_cmd |= E1000_TXD_CMD_RS;
/* Cache if we're 82544 running in PCI-X because we'll
* need this to apply a workaround later in the send path.
*/
if (hw->mac_type == e1000_82544 &&
hw->bus_type == e1000_bus_type_pcix)
adapter->pcix_82544 = true;
ew32(TCTL, tctl);
}
/**
* e1000_setup_rx_resources - allocate Rx resources (Descriptors)
* @adapter: board private structure
* @rxdr: rx descriptor ring (for a specific queue) to setup
*
* Returns 0 on success, negative on failure
**/
static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
struct e1000_rx_ring *rxdr)
{
struct pci_dev *pdev = adapter->pdev;
int size, desc_len;
size = sizeof(struct e1000_rx_buffer) * rxdr->count;
rxdr->buffer_info = vzalloc(size);
if (!rxdr->buffer_info)
return -ENOMEM;
desc_len = sizeof(struct e1000_rx_desc);
/* Round up to nearest 4K */
rxdr->size = rxdr->count * desc_len;
rxdr->size = ALIGN(rxdr->size, 4096);
rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
GFP_KERNEL);
if (!rxdr->desc) {
setup_rx_desc_die:
vfree(rxdr->buffer_info);
return -ENOMEM;
}
/* Fix for errata 23, can't cross 64kB boundary */
if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
void *olddesc = rxdr->desc;
dma_addr_t olddma = rxdr->dma;
e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
rxdr->size, rxdr->desc);
/* Try again, without freeing the previous */
rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
&rxdr->dma, GFP_KERNEL);
/* Failed allocation, critical failure */
if (!rxdr->desc) {
dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
olddma);
goto setup_rx_desc_die;
}
if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
/* give up */
dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
rxdr->dma);
dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
olddma);
e_err(probe, "Unable to allocate aligned memory for "
"the Rx descriptor ring\n");
goto setup_rx_desc_die;
} else {
/* Free old allocation, new allocation was successful */
dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
olddma);
}
}
memset(rxdr->desc, 0, rxdr->size);
rxdr->next_to_clean = 0;
rxdr->next_to_use = 0;
rxdr->rx_skb_top = NULL;
return 0;
}
/**
* e1000_setup_all_rx_resources - wrapper to allocate Rx resources
* (Descriptors) for all queues
* @adapter: board private structure
*
* Return 0 on success, negative on failure
**/
int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
{
int i, err = 0;
for (i = 0; i < adapter->num_rx_queues; i++) {
err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
if (err) {
e_err(probe, "Allocation for Rx Queue %u failed\n", i);
for (i-- ; i >= 0; i--)
e1000_free_rx_resources(adapter,
&adapter->rx_ring[i]);
break;
}
}
return err;
}
/**
* e1000_setup_rctl - configure the receive control registers
* @adapter: Board private structure
**/
static void e1000_setup_rctl(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
rctl = er32(RCTL);
rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
E1000_RCTL_RDMTS_HALF |
(hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
if (hw->tbi_compatibility_on == 1)
rctl |= E1000_RCTL_SBP;
else
rctl &= ~E1000_RCTL_SBP;
if (adapter->netdev->mtu <= ETH_DATA_LEN)
rctl &= ~E1000_RCTL_LPE;
else
rctl |= E1000_RCTL_LPE;
/* Setup buffer sizes */
rctl &= ~E1000_RCTL_SZ_4096;
rctl |= E1000_RCTL_BSEX;
switch (adapter->rx_buffer_len) {
case E1000_RXBUFFER_2048:
default:
rctl |= E1000_RCTL_SZ_2048;
rctl &= ~E1000_RCTL_BSEX;
break;
case E1000_RXBUFFER_4096:
rctl |= E1000_RCTL_SZ_4096;
break;
case E1000_RXBUFFER_8192:
rctl |= E1000_RCTL_SZ_8192;
break;
case E1000_RXBUFFER_16384:
rctl |= E1000_RCTL_SZ_16384;
break;
}
/* This is useful for sniffing bad packets. */
if (adapter->netdev->features & NETIF_F_RXALL) {
/* UPE and MPE will be handled by normal PROMISC logic
* in e1000e_set_rx_mode
*/
rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
E1000_RCTL_BAM | /* RX All Bcast Pkts */
E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
E1000_RCTL_DPF | /* Allow filtered pause */
E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
* and that breaks VLANs.
*/
}
ew32(RCTL, rctl);
}
/**
* e1000_configure_rx - Configure 8254x Receive Unit after Reset
* @adapter: board private structure
*
* Configure the Rx unit of the MAC after a reset.
**/
static void e1000_configure_rx(struct e1000_adapter *adapter)
{
u64 rdba;
struct e1000_hw *hw = &adapter->hw;
u32 rdlen, rctl, rxcsum;
if (adapter->netdev->mtu > ETH_DATA_LEN) {
rdlen = adapter->rx_ring[0].count *
sizeof(struct e1000_rx_desc);
adapter->clean_rx = e1000_clean_jumbo_rx_irq;
adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
} else {
rdlen = adapter->rx_ring[0].count *
sizeof(struct e1000_rx_desc);
adapter->clean_rx = e1000_clean_rx_irq;
adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
}
/* disable receives while setting up the descriptors */
rctl = er32(RCTL);
ew32(RCTL, rctl & ~E1000_RCTL_EN);
/* set the Receive Delay Timer Register */
ew32(RDTR, adapter->rx_int_delay);
if (hw->mac_type >= e1000_82540) {
ew32(RADV, adapter->rx_abs_int_delay);
if (adapter->itr_setting != 0)
ew32(ITR, 1000000000 / (adapter->itr * 256));
}
/* Setup the HW Rx Head and Tail Descriptor Pointers and
* the Base and Length of the Rx Descriptor Ring
*/
switch (adapter->num_rx_queues) {
case 1:
default:
rdba = adapter->rx_ring[0].dma;
ew32(RDLEN, rdlen);
ew32(RDBAH, (rdba >> 32));
ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
ew32(RDT, 0);
ew32(RDH, 0);
adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
E1000_RDH : E1000_82542_RDH);
adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
E1000_RDT : E1000_82542_RDT);
break;
}
/* Enable 82543 Receive Checksum Offload for TCP and UDP */
if (hw->mac_type >= e1000_82543) {
rxcsum = er32(RXCSUM);
if (adapter->rx_csum)
rxcsum |= E1000_RXCSUM_TUOFL;
else
/* don't need to clear IPPCSE as it defaults to 0 */
rxcsum &= ~E1000_RXCSUM_TUOFL;
ew32(RXCSUM, rxcsum);
}
/* Enable Receives */
ew32(RCTL, rctl | E1000_RCTL_EN);
}
/**
* e1000_free_tx_resources - Free Tx Resources per Queue
* @adapter: board private structure
* @tx_ring: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
**/
static void e1000_free_tx_resources(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring)
{
struct pci_dev *pdev = adapter->pdev;
e1000_clean_tx_ring(adapter, tx_ring);
vfree(tx_ring->buffer_info);
tx_ring->buffer_info = NULL;
dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
tx_ring->dma);
tx_ring->desc = NULL;
}
/**
* e1000_free_all_tx_resources - Free Tx Resources for All Queues
* @adapter: board private structure
*
* Free all transmit software resources
**/
void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
}
static void
e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
struct e1000_tx_buffer *buffer_info)
{
if (buffer_info->dma) {
if (buffer_info->mapped_as_page)
dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
buffer_info->length, DMA_TO_DEVICE);
else
dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
buffer_info->length,
DMA_TO_DEVICE);
buffer_info->dma = 0;
}
if (buffer_info->skb) {
dev_kfree_skb_any(buffer_info->skb);
buffer_info->skb = NULL;
}
buffer_info->time_stamp = 0;
/* buffer_info must be completely set up in the transmit path */
}
/**
* e1000_clean_tx_ring - Free Tx Buffers
* @adapter: board private structure
* @tx_ring: ring to be cleaned
**/
static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_tx_buffer *buffer_info;
unsigned long size;
unsigned int i;
/* Free all the Tx ring sk_buffs */
for (i = 0; i < tx_ring->count; i++) {
buffer_info = &tx_ring->buffer_info[i];
e1000_unmap_and_free_tx_resource(adapter, buffer_info);
}
netdev_reset_queue(adapter->netdev);
size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
memset(tx_ring->buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(tx_ring->desc, 0, tx_ring->size);
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
tx_ring->last_tx_tso = false;
writel(0, hw->hw_addr + tx_ring->tdh);
writel(0, hw->hw_addr + tx_ring->tdt);
}
/**
* e1000_clean_all_tx_rings - Free Tx Buffers for all queues
* @adapter: board private structure
**/
static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_tx_queues; i++)
e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
}
/**
* e1000_free_rx_resources - Free Rx Resources
* @adapter: board private structure
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
**/
static void e1000_free_rx_resources(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring)
{
struct pci_dev *pdev = adapter->pdev;
e1000_clean_rx_ring(adapter, rx_ring);
vfree(rx_ring->buffer_info);
rx_ring->buffer_info = NULL;
dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
rx_ring->dma);
rx_ring->desc = NULL;
}
/**
* e1000_free_all_rx_resources - Free Rx Resources for All Queues
* @adapter: board private structure
*
* Free all receive software resources
**/
void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
}
#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
static unsigned int e1000_frag_len(const struct e1000_adapter *a)
{
return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
}
static void *e1000_alloc_frag(const struct e1000_adapter *a)
{
unsigned int len = e1000_frag_len(a);
u8 *data = netdev_alloc_frag(len);
if (likely(data))
data += E1000_HEADROOM;
return data;
}
/**
* e1000_clean_rx_ring - Free Rx Buffers per Queue
* @adapter: board private structure
* @rx_ring: ring to free buffers from
**/
static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring)
{
struct e1000_hw *hw = &adapter->hw;
struct e1000_rx_buffer *buffer_info;
struct pci_dev *pdev = adapter->pdev;
unsigned long size;
unsigned int i;
/* Free all the Rx netfrags */
for (i = 0; i < rx_ring->count; i++) {
buffer_info = &rx_ring->buffer_info[i];
if (adapter->clean_rx == e1000_clean_rx_irq) {
if (buffer_info->dma)
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_buffer_len,
DMA_FROM_DEVICE);
if (buffer_info->rxbuf.data) {
skb_free_frag(buffer_info->rxbuf.data);
buffer_info->rxbuf.data = NULL;
}
} else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
if (buffer_info->dma)
dma_unmap_page(&pdev->dev, buffer_info->dma,
adapter->rx_buffer_len,
DMA_FROM_DEVICE);
if (buffer_info->rxbuf.page) {
put_page(buffer_info->rxbuf.page);
buffer_info->rxbuf.page = NULL;
}
}
buffer_info->dma = 0;
}
/* there also may be some cached data from a chained receive */
napi_free_frags(&adapter->napi);
rx_ring->rx_skb_top = NULL;
size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
memset(rx_ring->buffer_info, 0, size);
/* Zero out the descriptor ring */
memset(rx_ring->desc, 0, rx_ring->size);
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
writel(0, hw->hw_addr + rx_ring->rdh);
writel(0, hw->hw_addr + rx_ring->rdt);
}
/**
* e1000_clean_all_rx_rings - Free Rx Buffers for all queues
* @adapter: board private structure
**/
static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
{
int i;
for (i = 0; i < adapter->num_rx_queues; i++)
e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
}
/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
* and memory write and invalidate disabled for certain operations
*/
static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u32 rctl;
e1000_pci_clear_mwi(hw);
rctl = er32(RCTL);
rctl |= E1000_RCTL_RST;
ew32(RCTL, rctl);
E1000_WRITE_FLUSH();
mdelay(5);
if (netif_running(netdev))
e1000_clean_all_rx_rings(adapter);
}
static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u32 rctl;
rctl = er32(RCTL);
rctl &= ~E1000_RCTL_RST;
ew32(RCTL, rctl);
E1000_WRITE_FLUSH();
mdelay(5);
if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
e1000_pci_set_mwi(hw);
if (netif_running(netdev)) {
/* No need to loop, because 82542 supports only 1 queue */
struct e1000_rx_ring *ring = &adapter->rx_ring[0];
e1000_configure_rx(adapter);
adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
}
}
/**
* e1000_set_mac - Change the Ethernet Address of the NIC
* @netdev: network interface device structure
* @p: pointer to an address structure
*
* Returns 0 on success, negative on failure
**/
static int e1000_set_mac(struct net_device *netdev, void *p)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
/* 82542 2.0 needs to be in reset to write receive address registers */
if (hw->mac_type == e1000_82542_rev2_0)
e1000_enter_82542_rst(adapter);
memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
e1000_rar_set(hw, hw->mac_addr, 0);
if (hw->mac_type == e1000_82542_rev2_0)
e1000_leave_82542_rst(adapter);
return 0;
}
/**
* e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
* @netdev: network interface device structure
*
* The set_rx_mode entry point is called whenever the unicast or multicast
* address lists or the network interface flags are updated. This routine is
* responsible for configuring the hardware for proper unicast, multicast,
* promiscuous mode, and all-multi behavior.
**/
static void e1000_set_rx_mode(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct netdev_hw_addr *ha;
bool use_uc = false;
u32 rctl;
u32 hash_value;
int i, rar_entries = E1000_RAR_ENTRIES;
int mta_reg_count = E1000_NUM_MTA_REGISTERS;
u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
if (!mcarray)
return;
/* Check for Promiscuous and All Multicast modes */
rctl = er32(RCTL);
if (netdev->flags & IFF_PROMISC) {
rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
rctl &= ~E1000_RCTL_VFE;
} else {
if (netdev->flags & IFF_ALLMULTI)
rctl |= E1000_RCTL_MPE;
else
rctl &= ~E1000_RCTL_MPE;
/* Enable VLAN filter if there is a VLAN */
if (e1000_vlan_used(adapter))
rctl |= E1000_RCTL_VFE;
}
if (netdev_uc_count(netdev) > rar_entries - 1) {
rctl |= E1000_RCTL_UPE;
} else if (!(netdev->flags & IFF_PROMISC)) {
rctl &= ~E1000_RCTL_UPE;
use_uc = true;
}
ew32(RCTL, rctl);
/* 82542 2.0 needs to be in reset to write receive address registers */
if (hw->mac_type == e1000_82542_rev2_0)
e1000_enter_82542_rst(adapter);
/* load the first 14 addresses into the exact filters 1-14. Unicast
* addresses take precedence to avoid disabling unicast filtering
* when possible.
*
* RAR 0 is used for the station MAC address
* if there are not 14 addresses, go ahead and clear the filters
*/
i = 1;
if (use_uc)
netdev_for_each_uc_addr(ha, netdev) {
if (i == rar_entries)
break;
e1000_rar_set(hw, ha->addr, i++);
}
netdev_for_each_mc_addr(ha, netdev) {
if (i == rar_entries) {
/* load any remaining addresses into the hash table */
u32 hash_reg, hash_bit, mta;
hash_value = e1000_hash_mc_addr(hw, ha->addr);
hash_reg = (hash_value >> 5) & 0x7F;
hash_bit = hash_value & 0x1F;
mta = (1 << hash_bit);
mcarray[hash_reg] |= mta;
} else {
e1000_rar_set(hw, ha->addr, i++);
}
}
for (; i < rar_entries; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
E1000_WRITE_FLUSH();
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
E1000_WRITE_FLUSH();
}
/* write the hash table completely, write from bottom to avoid
* both stupid write combining chipsets, and flushing each write
*/
for (i = mta_reg_count - 1; i >= 0 ; i--) {
/* If we are on an 82544 has an errata where writing odd
* offsets overwrites the previous even offset, but writing
* backwards over the range solves the issue by always
* writing the odd offset first
*/
E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
}
E1000_WRITE_FLUSH();
if (hw->mac_type == e1000_82542_rev2_0)
e1000_leave_82542_rst(adapter);
kfree(mcarray);
}
/**
* e1000_update_phy_info_task - get phy info
* @work: work struct contained inside adapter struct
*
* Need to wait a few seconds after link up to get diagnostic information from
* the phy
*/
static void e1000_update_phy_info_task(struct work_struct *work)
{
struct e1000_adapter *adapter = container_of(work,
struct e1000_adapter,
phy_info_task.work);
e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
}
/**
* e1000_82547_tx_fifo_stall_task - task to complete work
* @work: work struct contained inside adapter struct
**/
static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
{
struct e1000_adapter *adapter = container_of(work,
struct e1000_adapter,
fifo_stall_task.work);
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
u32 tctl;
if (atomic_read(&adapter->tx_fifo_stall)) {
if ((er32(TDT) == er32(TDH)) &&
(er32(TDFT) == er32(TDFH)) &&
(er32(TDFTS) == er32(TDFHS))) {
tctl = er32(TCTL);
ew32(TCTL, tctl & ~E1000_TCTL_EN);
ew32(TDFT, adapter->tx_head_addr);
ew32(TDFH, adapter->tx_head_addr);
ew32(TDFTS, adapter->tx_head_addr);
ew32(TDFHS, adapter->tx_head_addr);
ew32(TCTL, tctl);
E1000_WRITE_FLUSH();
adapter->tx_fifo_head = 0;
atomic_set(&adapter->tx_fifo_stall, 0);
netif_wake_queue(netdev);
} else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
schedule_delayed_work(&adapter->fifo_stall_task, 1);
}
}
}
bool e1000_has_link(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
bool link_active = false;
/* get_link_status is set on LSC (link status) interrupt or rx
* sequence error interrupt (except on intel ce4100).
* get_link_status will stay false until the
* e1000_check_for_link establishes link for copper adapters
* ONLY
*/
switch (hw->media_type) {
case e1000_media_type_copper:
if (hw->mac_type == e1000_ce4100)
hw->get_link_status = 1;
if (hw->get_link_status) {
e1000_check_for_link(hw);
link_active = !hw->get_link_status;
} else {
link_active = true;
}
break;
case e1000_media_type_fiber:
e1000_check_for_link(hw);
link_active = !!(er32(STATUS) & E1000_STATUS_LU);
break;
case e1000_media_type_internal_serdes:
e1000_check_for_link(hw);
link_active = hw->serdes_has_link;
break;
default:
break;
}
return link_active;
}
/**
* e1000_watchdog - work function
* @work: work struct contained inside adapter struct
**/
static void e1000_watchdog(struct work_struct *work)
{
struct e1000_adapter *adapter = container_of(work,
struct e1000_adapter,
watchdog_task.work);
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
struct e1000_tx_ring *txdr = adapter->tx_ring;
u32 link, tctl;
link = e1000_has_link(adapter);
if ((netif_carrier_ok(netdev)) && link)
goto link_up;
if (link) {
if (!netif_carrier_ok(netdev)) {
u32 ctrl;
/* update snapshot of PHY registers on LSC */
e1000_get_speed_and_duplex(hw,
&adapter->link_speed,
&adapter->link_duplex);
ctrl = er32(CTRL);
pr_info("%s NIC Link is Up %d Mbps %s, "
"Flow Control: %s\n",
netdev->name,
adapter->link_speed,
adapter->link_duplex == FULL_DUPLEX ?
"Full Duplex" : "Half Duplex",
((ctrl & E1000_CTRL_TFCE) && (ctrl &
E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
E1000_CTRL_RFCE) ? "RX" : ((ctrl &
E1000_CTRL_TFCE) ? "TX" : "None")));
/* adjust timeout factor according to speed/duplex */
adapter->tx_timeout_factor = 1;
switch (adapter->link_speed) {
case SPEED_10:
adapter->tx_timeout_factor = 16;
break;
case SPEED_100:
/* maybe add some timeout factor ? */
break;
}
/* enable transmits in the hardware */
tctl = er32(TCTL);
tctl |= E1000_TCTL_EN;
ew32(TCTL, tctl);
netif_carrier_on(netdev);
if (!test_bit(__E1000_DOWN, &adapter->flags))
schedule_delayed_work(&adapter->phy_info_task,
2 * HZ);
adapter->smartspeed = 0;
}
} else {
if (netif_carrier_ok(netdev)) {
adapter->link_speed = 0;
adapter->link_duplex = 0;
pr_info("%s NIC Link is Down\n",
netdev->name);
netif_carrier_off(netdev);
if (!test_bit(__E1000_DOWN, &adapter->flags))
schedule_delayed_work(&adapter->phy_info_task,
2 * HZ);
}
e1000_smartspeed(adapter);
}
link_up:
e1000_update_stats(adapter);
hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
adapter->tpt_old = adapter->stats.tpt;
hw->collision_delta = adapter->stats.colc - adapter->colc_old;
adapter->colc_old = adapter->stats.colc;
adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
adapter->gorcl_old = adapter->stats.gorcl;
adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
adapter->gotcl_old = adapter->stats.gotcl;
e1000_update_adaptive(hw);
if (!netif_carrier_ok(netdev)) {
if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
/* We've lost link, so the controller stops DMA,
* but we've got queued Tx work that's never going
* to get done, so reset controller to flush Tx.
* (Do the reset outside of interrupt context).
*/
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
/* exit immediately since reset is imminent */
return;
}
}
/* Simple mode for Interrupt Throttle Rate (ITR) */
if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
/* Symmetric Tx/Rx gets a reduced ITR=2000;
* Total asymmetrical Tx or Rx gets ITR=8000;
* everyone else is between 2000-8000.
*/
u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
u32 dif = (adapter->gotcl > adapter->gorcl ?
adapter->gotcl - adapter->gorcl :
adapter->gorcl - adapter->gotcl) / 10000;
u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
ew32(ITR, 1000000000 / (itr * 256));
}
/* Cause software interrupt to ensure rx ring is cleaned */
ew32(ICS, E1000_ICS_RXDMT0);
/* Force detection of hung controller every watchdog period */
adapter->detect_tx_hung = true;
/* Reschedule the task */
if (!test_bit(__E1000_DOWN, &adapter->flags))
schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
}
enum latency_range {
lowest_latency = 0,
low_latency = 1,
bulk_latency = 2,
latency_invalid = 255
};
/**
* e1000_update_itr - update the dynamic ITR value based on statistics
* @adapter: pointer to adapter
* @itr_setting: current adapter->itr
* @packets: the number of packets during this measurement interval
* @bytes: the number of bytes during this measurement interval
*
* Stores a new ITR value based on packets and byte
* counts during the last interrupt. The advantage of per interrupt
* computation is faster updates and more accurate ITR for the current
* traffic pattern. Constants in this function were computed
* based on theoretical maximum wire speed and thresholds were set based
* on testing data as well as attempting to minimize response time
* while increasing bulk throughput.
* this functionality is controlled by the InterruptThrottleRate module
* parameter (see e1000_param.c)
**/
static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
u16 itr_setting, int packets, int bytes)
{
unsigned int retval = itr_setting;
struct e1000_hw *hw = &adapter->hw;
if (unlikely(hw->mac_type < e1000_82540))
goto update_itr_done;
if (packets == 0)
goto update_itr_done;
switch (itr_setting) {
case lowest_latency:
/* jumbo frames get bulk treatment*/
if (bytes/packets > 8000)
retval = bulk_latency;
else if ((packets < 5) && (bytes > 512))
retval = low_latency;
break;
case low_latency: /* 50 usec aka 20000 ints/s */
if (bytes > 10000) {
/* jumbo frames need bulk latency setting */
if (bytes/packets > 8000)
retval = bulk_latency;
else if ((packets < 10) || ((bytes/packets) > 1200))
retval = bulk_latency;
else if ((packets > 35))
retval = lowest_latency;
} else if (bytes/packets > 2000)
retval = bulk_latency;
else if (packets <= 2 && bytes < 512)
retval = lowest_latency;
break;
case bulk_latency: /* 250 usec aka 4000 ints/s */
if (bytes > 25000) {
if (packets > 35)
retval = low_latency;
} else if (bytes < 6000) {
retval = low_latency;
}
break;
}
update_itr_done:
return retval;
}
static void e1000_set_itr(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 current_itr;
u32 new_itr = adapter->itr;
if (unlikely(hw->mac_type < e1000_82540))
return;
/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
if (unlikely(adapter->link_speed != SPEED_1000)) {
current_itr = 0;
new_itr = 4000;
goto set_itr_now;
}
adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
adapter->total_tx_packets,
adapter->total_tx_bytes);
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
adapter->tx_itr = low_latency;
adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
adapter->total_rx_packets,
adapter->total_rx_bytes);
/* conservative mode (itr 3) eliminates the lowest_latency setting */
if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
adapter->rx_itr = low_latency;
current_itr = max(adapter->rx_itr, adapter->tx_itr);
switch (current_itr) {
/* counts and packets in update_itr are dependent on these numbers */
case lowest_latency:
new_itr = 70000;
break;
case low_latency:
new_itr = 20000; /* aka hwitr = ~200 */
break;
case bulk_latency:
new_itr = 4000;
break;
default:
break;
}
set_itr_now:
if (new_itr != adapter->itr) {
/* this attempts to bias the interrupt rate towards Bulk
* by adding intermediate steps when interrupt rate is
* increasing
*/
new_itr = new_itr > adapter->itr ?
min(adapter->itr + (new_itr >> 2), new_itr) :
new_itr;
adapter->itr = new_itr;
ew32(ITR, 1000000000 / (new_itr * 256));
}
}
#define E1000_TX_FLAGS_CSUM 0x00000001
#define E1000_TX_FLAGS_VLAN 0x00000002
#define E1000_TX_FLAGS_TSO 0x00000004
#define E1000_TX_FLAGS_IPV4 0x00000008
#define E1000_TX_FLAGS_NO_FCS 0x00000010
#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
#define E1000_TX_FLAGS_VLAN_SHIFT 16
static int e1000_tso(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
__be16 protocol)
{
struct e1000_context_desc *context_desc;
struct e1000_tx_buffer *buffer_info;
unsigned int i;
u32 cmd_length = 0;
u16 ipcse = 0, tucse, mss;
u8 ipcss, ipcso, tucss, tucso, hdr_len;
if (skb_is_gso(skb)) {
int err;
err = skb_cow_head(skb, 0);
if (err < 0)
return err;
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
mss = skb_shinfo(skb)->gso_size;
if (protocol == htons(ETH_P_IP)) {
struct iphdr *iph = ip_hdr(skb);
iph->tot_len = 0;
iph->check = 0;
tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
iph->daddr, 0,
IPPROTO_TCP,
0);
cmd_length = E1000_TXD_CMD_IP;
ipcse = skb_transport_offset(skb) - 1;
} else if (skb_is_gso_v6(skb)) {
ipv6_hdr(skb)->payload_len = 0;
tcp_hdr(skb)->check =
~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
&ipv6_hdr(skb)->daddr,
0, IPPROTO_TCP, 0);
ipcse = 0;
}
ipcss = skb_network_offset(skb);
ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
tucss = skb_transport_offset(skb);
tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
tucse = 0;
cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
i = tx_ring->next_to_use;
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
buffer_info = &tx_ring->buffer_info[i];
context_desc->lower_setup.ip_fields.ipcss = ipcss;
context_desc->lower_setup.ip_fields.ipcso = ipcso;
context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
context_desc->upper_setup.tcp_fields.tucss = tucss;
context_desc->upper_setup.tcp_fields.tucso = tucso;
context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
context_desc->cmd_and_length = cpu_to_le32(cmd_length);
buffer_info->time_stamp = jiffies;
buffer_info->next_to_watch = i;
if (++i == tx_ring->count)
i = 0;
tx_ring->next_to_use = i;
return true;
}
return false;
}
static bool e1000_tx_csum(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
__be16 protocol)
{
struct e1000_context_desc *context_desc;
struct e1000_tx_buffer *buffer_info;
unsigned int i;
u8 css;
u32 cmd_len = E1000_TXD_CMD_DEXT;
if (skb->ip_summed != CHECKSUM_PARTIAL)
return false;
switch (protocol) {
case cpu_to_be16(ETH_P_IP):
if (ip_hdr(skb)->protocol == IPPROTO_TCP)
cmd_len |= E1000_TXD_CMD_TCP;
break;
case cpu_to_be16(ETH_P_IPV6):
/* XXX not handling all IPV6 headers */
if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
cmd_len |= E1000_TXD_CMD_TCP;
break;
default:
if (unlikely(net_ratelimit()))
e_warn(drv, "checksum_partial proto=%x!\n",
skb->protocol);
break;
}
css = skb_checksum_start_offset(skb);
i = tx_ring->next_to_use;
buffer_info = &tx_ring->buffer_info[i];
context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
context_desc->lower_setup.ip_config = 0;
context_desc->upper_setup.tcp_fields.tucss = css;
context_desc->upper_setup.tcp_fields.tucso =
css + skb->csum_offset;
context_desc->upper_setup.tcp_fields.tucse = 0;
context_desc->tcp_seg_setup.data = 0;
context_desc->cmd_and_length = cpu_to_le32(cmd_len);
buffer_info->time_stamp = jiffies;
buffer_info->next_to_watch = i;
if (unlikely(++i == tx_ring->count))
i = 0;
tx_ring->next_to_use = i;
return true;
}
#define E1000_MAX_TXD_PWR 12
#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
static int e1000_tx_map(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring,
struct sk_buff *skb, unsigned int first,
unsigned int max_per_txd, unsigned int nr_frags,
unsigned int mss)
{
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
struct e1000_tx_buffer *buffer_info;
unsigned int len = skb_headlen(skb);
unsigned int offset = 0, size, count = 0, i;
unsigned int f, bytecount, segs;
i = tx_ring->next_to_use;
while (len) {
buffer_info = &tx_ring->buffer_info[i];
size = min(len, max_per_txd);
/* Workaround for Controller erratum --
* descriptor for non-tso packet in a linear SKB that follows a
* tso gets written back prematurely before the data is fully
* DMA'd to the controller
*/
if (!skb->data_len && tx_ring->last_tx_tso &&
!skb_is_gso(skb)) {
tx_ring->last_tx_tso = false;
size -= 4;
}
/* Workaround for premature desc write-backs
* in TSO mode. Append 4-byte sentinel desc
*/
if (unlikely(mss && !nr_frags && size == len && size > 8))
size -= 4;
/* work-around for errata 10 and it applies
* to all controllers in PCI-X mode
* The fix is to make sure that the first descriptor of a
* packet is smaller than 2048 - 16 - 16 (or 2016) bytes
*/
if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
(size > 2015) && count == 0))
size = 2015;
/* Workaround for potential 82544 hang in PCI-X. Avoid
* terminating buffers within evenly-aligned dwords.
*/
if (unlikely(adapter->pcix_82544 &&
!((unsigned long)(skb->data + offset + size - 1) & 4) &&
size > 4))
size -= 4;
buffer_info->length = size;
/* set time_stamp *before* dma to help avoid a possible race */
buffer_info->time_stamp = jiffies;
buffer_info->mapped_as_page = false;
buffer_info->dma = dma_map_single(&pdev->dev,
skb->data + offset,
size, DMA_TO_DEVICE);
if (dma_mapping_error(&pdev->dev, buffer_info->dma))
goto dma_error;
buffer_info->next_to_watch = i;
len -= size;
offset += size;
count++;
if (len) {
i++;
if (unlikely(i == tx_ring->count))
i = 0;
}
}
for (f = 0; f < nr_frags; f++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
len = skb_frag_size(frag);
offset = 0;
while (len) {
unsigned long bufend;
i++;
if (unlikely(i == tx_ring->count))
i = 0;
buffer_info = &tx_ring->buffer_info[i];
size = min(len, max_per_txd);
/* Workaround for premature desc write-backs
* in TSO mode. Append 4-byte sentinel desc
*/
if (unlikely(mss && f == (nr_frags-1) &&
size == len && size > 8))
size -= 4;
/* Workaround for potential 82544 hang in PCI-X.
* Avoid terminating buffers within evenly-aligned
* dwords.
*/
bufend = (unsigned long)
page_to_phys(skb_frag_page(frag));
bufend += offset + size - 1;
if (unlikely(adapter->pcix_82544 &&
!(bufend & 4) &&
size > 4))
size -= 4;
buffer_info->length = size;
buffer_info->time_stamp = jiffies;
buffer_info->mapped_as_page = true;
buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
offset, size, DMA_TO_DEVICE);
if (dma_mapping_error(&pdev->dev, buffer_info->dma))
goto dma_error;
buffer_info->next_to_watch = i;
len -= size;
offset += size;
count++;
}
}
segs = skb_shinfo(skb)->gso_segs ?: 1;
/* multiply data chunks by size of headers */
bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
tx_ring->buffer_info[i].skb = skb;
tx_ring->buffer_info[i].segs = segs;
tx_ring->buffer_info[i].bytecount = bytecount;
tx_ring->buffer_info[first].next_to_watch = i;
return count;
dma_error:
dev_err(&pdev->dev, "TX DMA map failed\n");
buffer_info->dma = 0;
if (count)
count--;
while (count--) {
if (i == 0)
i += tx_ring->count;
i--;
buffer_info = &tx_ring->buffer_info[i];
e1000_unmap_and_free_tx_resource(adapter, buffer_info);
}
return 0;
}
static void e1000_tx_queue(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring, int tx_flags,
int count)
{
struct e1000_tx_desc *tx_desc = NULL;
struct e1000_tx_buffer *buffer_info;
u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
unsigned int i;
if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
E1000_TXD_CMD_TSE;
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
txd_upper |= E1000_TXD_POPTS_IXSM << 8;
}
if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
txd_upper |= E1000_TXD_POPTS_TXSM << 8;
}
if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
txd_lower |= E1000_TXD_CMD_VLE;
txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
}
if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
txd_lower &= ~(E1000_TXD_CMD_IFCS);
i = tx_ring->next_to_use;
while (count--) {
buffer_info = &tx_ring->buffer_info[i];
tx_desc = E1000_TX_DESC(*tx_ring, i);
tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
tx_desc->lower.data =
cpu_to_le32(txd_lower | buffer_info->length);
tx_desc->upper.data = cpu_to_le32(txd_upper);
if (unlikely(++i == tx_ring->count))
i = 0;
}
tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
dma_wmb();
tx_ring->next_to_use = i;
}
/* 82547 workaround to avoid controller hang in half-duplex environment.
* The workaround is to avoid queuing a large packet that would span
* the internal Tx FIFO ring boundary by notifying the stack to resend
* the packet at a later time. This gives the Tx FIFO an opportunity to
* flush all packets. When that occurs, we reset the Tx FIFO pointers
* to the beginning of the Tx FIFO.
*/
#define E1000_FIFO_HDR 0x10
#define E1000_82547_PAD_LEN 0x3E0
static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
struct sk_buff *skb)
{
u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
if (adapter->link_duplex != HALF_DUPLEX)
goto no_fifo_stall_required;
if (atomic_read(&adapter->tx_fifo_stall))
return 1;
if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
atomic_set(&adapter->tx_fifo_stall, 1);
return 1;
}
no_fifo_stall_required:
adapter->tx_fifo_head += skb_fifo_len;
if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
adapter->tx_fifo_head -= adapter->tx_fifo_size;
return 0;
}
static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_tx_ring *tx_ring = adapter->tx_ring;
netif_stop_queue(netdev);
/* Herbert's original patch had:
* smp_mb__after_netif_stop_queue();
* but since that doesn't exist yet, just open code it.
*/
smp_mb();
/* We need to check again in a case another CPU has just
* made room available.
*/
if (likely(E1000_DESC_UNUSED(tx_ring) < size))
return -EBUSY;
/* A reprieve! */
netif_start_queue(netdev);
++adapter->restart_queue;
return 0;
}
static int e1000_maybe_stop_tx(struct net_device *netdev,
struct e1000_tx_ring *tx_ring, int size)
{
if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
return 0;
return __e1000_maybe_stop_tx(netdev, size);
}
#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct e1000_tx_ring *tx_ring;
unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
unsigned int tx_flags = 0;
unsigned int len = skb_headlen(skb);
unsigned int nr_frags;
unsigned int mss;
int count = 0;
int tso;
unsigned int f;
__be16 protocol = vlan_get_protocol(skb);
/* This goes back to the question of how to logically map a Tx queue
* to a flow. Right now, performance is impacted slightly negatively
* if using multiple Tx queues. If the stack breaks away from a
* single qdisc implementation, we can look at this again.
*/
tx_ring = adapter->tx_ring;
/* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
* packets may get corrupted during padding by HW.
* To WA this issue, pad all small packets manually.
*/
if (eth_skb_pad(skb))
return NETDEV_TX_OK;
mss = skb_shinfo(skb)->gso_size;
/* The controller does a simple calculation to
* make sure there is enough room in the FIFO before
* initiating the DMA for each buffer. The calc is:
* 4 = ceil(buffer len/mss). To make sure we don't
* overrun the FIFO, adjust the max buffer len if mss
* drops.
*/
if (mss) {
u8 hdr_len;
max_per_txd = min(mss << 2, max_per_txd);
max_txd_pwr = fls(max_per_txd) - 1;
hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
if (skb->data_len && hdr_len == len) {
switch (hw->mac_type) {
unsigned int pull_size;
case e1000_82544:
/* Make sure we have room to chop off 4 bytes,
* and that the end alignment will work out to
* this hardware's requirements
* NOTE: this is a TSO only workaround
* if end byte alignment not correct move us
* into the next dword
*/
if ((unsigned long)(skb_tail_pointer(skb) - 1)
& 4)
break;
/* fall through */
pull_size = min((unsigned int)4, skb->data_len);
if (!__pskb_pull_tail(skb, pull_size)) {
e_err(drv, "__pskb_pull_tail "
"failed.\n");
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
len = skb_headlen(skb);
break;
default:
/* do nothing */
break;
}
}
}
/* reserve a descriptor for the offload context */
if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
count++;
count++;
/* Controller Erratum workaround */
if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
count++;
count += TXD_USE_COUNT(len, max_txd_pwr);
if (adapter->pcix_82544)
count++;
/* work-around for errata 10 and it applies to all controllers
* in PCI-X mode, so add one more descriptor to the count
*/
if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
(len > 2015)))
count++;
nr_frags = skb_shinfo(skb)->nr_frags;
for (f = 0; f < nr_frags; f++)
count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
max_txd_pwr);
if (adapter->pcix_82544)
count += nr_frags;
/* need: count + 2 desc gap to keep tail from touching
* head, otherwise try next time
*/
if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
return NETDEV_TX_BUSY;
if (unlikely((hw->mac_type == e1000_82547) &&
(e1000_82547_fifo_workaround(adapter, skb)))) {
netif_stop_queue(netdev);
if (!test_bit(__E1000_DOWN, &adapter->flags))
schedule_delayed_work(&adapter->fifo_stall_task, 1);
return NETDEV_TX_BUSY;
}
if (skb_vlan_tag_present(skb)) {
tx_flags |= E1000_TX_FLAGS_VLAN;
tx_flags |= (skb_vlan_tag_get(skb) <<
E1000_TX_FLAGS_VLAN_SHIFT);
}
first = tx_ring->next_to_use;
tso = e1000_tso(adapter, tx_ring, skb, protocol);
if (tso < 0) {
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}
if (likely(tso)) {
if (likely(hw->mac_type != e1000_82544))
tx_ring->last_tx_tso = true;
tx_flags |= E1000_TX_FLAGS_TSO;
} else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
tx_flags |= E1000_TX_FLAGS_CSUM;
if (protocol == htons(ETH_P_IP))
tx_flags |= E1000_TX_FLAGS_IPV4;
if (unlikely(skb->no_fcs))
tx_flags |= E1000_TX_FLAGS_NO_FCS;
count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
nr_frags, mss);
if (count) {
/* The descriptors needed is higher than other Intel drivers
* due to a number of workarounds. The breakdown is below:
* Data descriptors: MAX_SKB_FRAGS + 1
* Context Descriptor: 1
* Keep head from touching tail: 2
* Workarounds: 3
*/
int desc_needed = MAX_SKB_FRAGS + 7;
netdev_sent_queue(netdev, skb->len);
skb_tx_timestamp(skb);
e1000_tx_queue(adapter, tx_ring, tx_flags, count);
/* 82544 potentially requires twice as many data descriptors
* in order to guarantee buffers don't end on evenly-aligned
* dwords
*/
if (adapter->pcix_82544)
desc_needed += MAX_SKB_FRAGS + 1;
/* Make sure there is space in the ring for the next send. */
e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
if (!netdev_xmit_more() ||
netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
}
} else {
dev_kfree_skb_any(skb);
tx_ring->buffer_info[first].time_stamp = 0;
tx_ring->next_to_use = first;
}
return NETDEV_TX_OK;
}
#define NUM_REGS 38 /* 1 based count */
static void e1000_regdump(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u32 regs[NUM_REGS];
u32 *regs_buff = regs;
int i = 0;
static const char * const reg_name[] = {
"CTRL", "STATUS",
"RCTL", "RDLEN", "RDH", "RDT", "RDTR",
"TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
"TIDV", "TXDCTL", "TADV", "TARC0",
"TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
"TXDCTL1", "TARC1",
"CTRL_EXT", "ERT", "RDBAL", "RDBAH",
"TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
"RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
};
regs_buff[0] = er32(CTRL);
regs_buff[1] = er32(STATUS);
regs_buff[2] = er32(RCTL);
regs_buff[3] = er32(RDLEN);
regs_buff[4] = er32(RDH);
regs_buff[5] = er32(RDT);
regs_buff[6] = er32(RDTR);
regs_buff[7] = er32(TCTL);
regs_buff[8] = er32(TDBAL);
regs_buff[9] = er32(TDBAH);
regs_buff[10] = er32(TDLEN);
regs_buff[11] = er32(TDH);
regs_buff[12] = er32(TDT);
regs_buff[13] = er32(TIDV);
regs_buff[14] = er32(TXDCTL);
regs_buff[15] = er32(TADV);
regs_buff[16] = er32(TARC0);
regs_buff[17] = er32(TDBAL1);
regs_buff[18] = er32(TDBAH1);
regs_buff[19] = er32(TDLEN1);
regs_buff[20] = er32(TDH1);
regs_buff[21] = er32(TDT1);
regs_buff[22] = er32(TXDCTL1);
regs_buff[23] = er32(TARC1);
regs_buff[24] = er32(CTRL_EXT);
regs_buff[25] = er32(ERT);
regs_buff[26] = er32(RDBAL0);
regs_buff[27] = er32(RDBAH0);
regs_buff[28] = er32(TDFH);
regs_buff[29] = er32(TDFT);
regs_buff[30] = er32(TDFHS);
regs_buff[31] = er32(TDFTS);
regs_buff[32] = er32(TDFPC);
regs_buff[33] = er32(RDFH);
regs_buff[34] = er32(RDFT);
regs_buff[35] = er32(RDFHS);
regs_buff[36] = er32(RDFTS);
regs_buff[37] = er32(RDFPC);
pr_info("Register dump\n");
for (i = 0; i < NUM_REGS; i++)
pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
}
/*
* e1000_dump: Print registers, tx ring and rx ring
*/
static void e1000_dump(struct e1000_adapter *adapter)
{
/* this code doesn't handle multiple rings */
struct e1000_tx_ring *tx_ring = adapter->tx_ring;
struct e1000_rx_ring *rx_ring = adapter->rx_ring;
int i;
if (!netif_msg_hw(adapter))
return;
/* Print Registers */
e1000_regdump(adapter);
/* transmit dump */
pr_info("TX Desc ring0 dump\n");
/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
*
* Legacy Transmit Descriptor
* +--------------------------------------------------------------+
* 0 | Buffer Address [63:0] (Reserved on Write Back) |
* +--------------------------------------------------------------+
* 8 | Special | CSS | Status | CMD | CSO | Length |
* +--------------------------------------------------------------+
* 63 48 47 36 35 32 31 24 23 16 15 0
*
* Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
* 63 48 47 40 39 32 31 16 15 8 7 0
* +----------------------------------------------------------------+
* 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
* +----------------------------------------------------------------+
* 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
* +----------------------------------------------------------------+
* 63 48 47 40 39 36 35 32 31 24 23 20 19 0
*
* Extended Data Descriptor (DTYP=0x1)
* +----------------------------------------------------------------+
* 0 | Buffer Address [63:0] |
* +----------------------------------------------------------------+
* 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
* +----------------------------------------------------------------+
* 63 48 47 40 39 36 35 32 31 24 23 20 19 0
*/
pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
if (!netif_msg_tx_done(adapter))
goto rx_ring_summary;
for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
struct my_u { __le64 a; __le64 b; };
struct my_u *u = (struct my_u *)tx_desc;
const char *type;
if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
type = "NTC/U";
else if (i == tx_ring->next_to_use)
type = "NTU";
else if (i == tx_ring->next_to_clean)
type = "NTC";
else
type = "";
pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
le64_to_cpu(u->a), le64_to_cpu(u->b),
(u64)buffer_info->dma, buffer_info->length,
buffer_info->next_to_watch,
(u64)buffer_info->time_stamp, buffer_info->skb, type);
}
rx_ring_summary:
/* receive dump */
pr_info("\nRX Desc ring dump\n");
/* Legacy Receive Descriptor Format
*
* +-----------------------------------------------------+
* | Buffer Address [63:0] |
* +-----------------------------------------------------+
* | VLAN Tag | Errors | Status 0 | Packet csum | Length |
* +-----------------------------------------------------+
* 63 48 47 40 39 32 31 16 15 0
*/
pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
if (!netif_msg_rx_status(adapter))
goto exit;
for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
struct my_u { __le64 a; __le64 b; };
struct my_u *u = (struct my_u *)rx_desc;
const char *type;
if (i == rx_ring->next_to_use)
type = "NTU";
else if (i == rx_ring->next_to_clean)
type = "NTC";
else
type = "";
pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
i, le64_to_cpu(u->a), le64_to_cpu(u->b),
(u64)buffer_info->dma, buffer_info->rxbuf.data, type);
} /* for */
/* dump the descriptor caches */
/* rx */
pr_info("Rx descriptor cache in 64bit format\n");
for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
pr_info("R%04X: %08X|%08X %08X|%08X\n",
i,
readl(adapter->hw.hw_addr + i+4),
readl(adapter->hw.hw_addr + i),
readl(adapter->hw.hw_addr + i+12),
readl(adapter->hw.hw_addr + i+8));
}
/* tx */
pr_info("Tx descriptor cache in 64bit format\n");
for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
pr_info("T%04X: %08X|%08X %08X|%08X\n",
i,
readl(adapter->hw.hw_addr + i+4),
readl(adapter->hw.hw_addr + i),
readl(adapter->hw.hw_addr + i+12),
readl(adapter->hw.hw_addr + i+8));
}
exit:
return;
}
/**
* e1000_tx_timeout - Respond to a Tx Hang
* @netdev: network interface device structure
**/
static void e1000_tx_timeout(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
/* Do the reset outside of interrupt context */
adapter->tx_timeout_count++;
schedule_work(&adapter->reset_task);
}
static void e1000_reset_task(struct work_struct *work)
{
struct e1000_adapter *adapter =
container_of(work, struct e1000_adapter, reset_task);
e_err(drv, "Reset adapter\n");
e1000_reinit_locked(adapter);
}
/**
* e1000_change_mtu - Change the Maximum Transfer Unit
* @netdev: network interface device structure
* @new_mtu: new value for maximum frame size
*
* Returns 0 on success, negative on failure
**/
static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
/* Adapter-specific max frame size limits. */
switch (hw->mac_type) {
case e1000_undefined ... e1000_82542_rev2_1:
if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
e_err(probe, "Jumbo Frames not supported.\n");
return -EINVAL;
}
break;
default:
/* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
break;
}
while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
msleep(1);
/* e1000_down has a dependency on max_frame_size */
hw->max_frame_size = max_frame;
if (netif_running(netdev)) {
/* prevent buffers from being reallocated */
adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
e1000_down(adapter);
}
/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
* means we reserve 2 more, this pushes us to allocate from the next
* larger slab size.
* i.e. RXBUFFER_2048 --> size-4096 slab
* however with the new *_jumbo_rx* routines, jumbo receives will use
* fragmented skbs
*/
if (max_frame <= E1000_RXBUFFER_2048)
adapter->rx_buffer_len = E1000_RXBUFFER_2048;
else
#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
adapter->rx_buffer_len = E1000_RXBUFFER_16384;
#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
adapter->rx_buffer_len = PAGE_SIZE;
#endif
/* adjust allocation if LPE protects us, and we aren't using SBP */
if (!hw->tbi_compatibility_on &&
((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
(max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
netdev_dbg(netdev, "changing MTU from %d to %d\n",
netdev->mtu, new_mtu);
netdev->mtu = new_mtu;
if (netif_running(netdev))
e1000_up(adapter);
else
e1000_reset(adapter);
clear_bit(__E1000_RESETTING, &adapter->flags);
return 0;
}
/**
* e1000_update_stats - Update the board statistics counters
* @adapter: board private structure
**/
void e1000_update_stats(struct e1000_adapter *adapter)
{
struct net_device *netdev = adapter->netdev;
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
unsigned long flags;
u16 phy_tmp;
#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
/* Prevent stats update while adapter is being reset, or if the pci
* connection is down.
*/
if (adapter->link_speed == 0)
return;
if (pci_channel_offline(pdev))
return;
spin_lock_irqsave(&adapter->stats_lock, flags);
/* these counters are modified from e1000_tbi_adjust_stats,
* called from the interrupt context, so they must only
* be written while holding adapter->stats_lock
*/
adapter->stats.crcerrs += er32(CRCERRS);
adapter->stats.gprc += er32(GPRC);
adapter->stats.gorcl += er32(GORCL);
adapter->stats.gorch += er32(GORCH);
adapter->stats.bprc += er32(BPRC);
adapter->stats.mprc += er32(MPRC);
adapter->stats.roc += er32(ROC);
adapter->stats.prc64 += er32(PRC64);
adapter->stats.prc127 += er32(PRC127);
adapter->stats.prc255 += er32(PRC255);
adapter->stats.prc511 += er32(PRC511);
adapter->stats.prc1023 += er32(PRC1023);
adapter->stats.prc1522 += er32(PRC1522);
adapter->stats.symerrs += er32(SYMERRS);
adapter->stats.mpc += er32(MPC);
adapter->stats.scc += er32(SCC);
adapter->stats.ecol += er32(ECOL);
adapter->stats.mcc += er32(MCC);
adapter->stats.latecol += er32(LATECOL);
adapter->stats.dc += er32(DC);
adapter->stats.sec += er32(SEC);
adapter->stats.rlec += er32(RLEC);
adapter->stats.xonrxc += er32(XONRXC);
adapter->stats.xontxc += er32(XONTXC);
adapter->stats.xoffrxc += er32(XOFFRXC);
adapter->stats.xofftxc += er32(XOFFTXC);
adapter->stats.fcruc += er32(FCRUC);
adapter->stats.gptc += er32(GPTC);
adapter->stats.gotcl += er32(GOTCL);
adapter->stats.gotch += er32(GOTCH);
adapter->stats.rnbc += er32(RNBC);
adapter->stats.ruc += er32(RUC);
adapter->stats.rfc += er32(RFC);
adapter->stats.rjc += er32(RJC);
adapter->stats.torl += er32(TORL);
adapter->stats.torh += er32(TORH);
adapter->stats.totl += er32(TOTL);
adapter->stats.toth += er32(TOTH);
adapter->stats.tpr += er32(TPR);
adapter->stats.ptc64 += er32(PTC64);
adapter->stats.ptc127 += er32(PTC127);
adapter->stats.ptc255 += er32(PTC255);
adapter->stats.ptc511 += er32(PTC511);
adapter->stats.ptc1023 += er32(PTC1023);
adapter->stats.ptc1522 += er32(PTC1522);
adapter->stats.mptc += er32(MPTC);
adapter->stats.bptc += er32(BPTC);
/* used for adaptive IFS */
hw->tx_packet_delta = er32(TPT);
adapter->stats.tpt += hw->tx_packet_delta;
hw->collision_delta = er32(COLC);
adapter->stats.colc += hw->collision_delta;
if (hw->mac_type >= e1000_82543) {
adapter->stats.algnerrc += er32(ALGNERRC);
adapter->stats.rxerrc += er32(RXERRC);
adapter->stats.tncrs += er32(TNCRS);
adapter->stats.cexterr += er32(CEXTERR);
adapter->stats.tsctc += er32(TSCTC);
adapter->stats.tsctfc += er32(TSCTFC);
}
/* Fill out the OS statistics structure */
netdev->stats.multicast = adapter->stats.mprc;
netdev->stats.collisions = adapter->stats.colc;
/* Rx Errors */
/* RLEC on some newer hardware can be incorrect so build
* our own version based on RUC and ROC
*/
netdev->stats.rx_errors = adapter->stats.rxerrc +
adapter->stats.crcerrs + adapter->stats.algnerrc +
adapter->stats.ruc + adapter->stats.roc +
adapter->stats.cexterr;
adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
netdev->stats.rx_length_errors = adapter->stats.rlerrc;
netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
netdev->stats.rx_missed_errors = adapter->stats.mpc;
/* Tx Errors */
adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
netdev->stats.tx_errors = adapter->stats.txerrc;
netdev->stats.tx_aborted_errors = adapter->stats.ecol;
netdev->stats.tx_window_errors = adapter->stats.latecol;
netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
if (hw->bad_tx_carr_stats_fd &&
adapter->link_duplex == FULL_DUPLEX) {
netdev->stats.tx_carrier_errors = 0;
adapter->stats.tncrs = 0;
}
/* Tx Dropped needs to be maintained elsewhere */
/* Phy Stats */
if (hw->media_type == e1000_media_type_copper) {
if ((adapter->link_speed == SPEED_1000) &&
(!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
adapter->phy_stats.idle_errors += phy_tmp;
}
if ((hw->mac_type <= e1000_82546) &&
(hw->phy_type == e1000_phy_m88) &&
!e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
adapter->phy_stats.receive_errors += phy_tmp;
}
/* Management Stats */
if (hw->has_smbus) {
adapter->stats.mgptc += er32(MGTPTC);
adapter->stats.mgprc += er32(MGTPRC);
adapter->stats.mgpdc += er32(MGTPDC);
}
spin_unlock_irqrestore(&adapter->stats_lock, flags);
}
/**
* e1000_intr - Interrupt Handler
* @irq: interrupt number
* @data: pointer to a network interface device structure
**/
static irqreturn_t e1000_intr(int irq, void *data)
{
struct net_device *netdev = data;
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 icr = er32(ICR);
if (unlikely((!icr)))
return IRQ_NONE; /* Not our interrupt */
/* we might have caused the interrupt, but the above
* read cleared it, and just in case the driver is
* down there is nothing to do so return handled
*/
if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
return IRQ_HANDLED;
if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
hw->get_link_status = 1;
/* guard against interrupt when we're going down */
if (!test_bit(__E1000_DOWN, &adapter->flags))
schedule_delayed_work(&adapter->watchdog_task, 1);
}
/* disable interrupts, without the synchronize_irq bit */
ew32(IMC, ~0);
E1000_WRITE_FLUSH();
if (likely(napi_schedule_prep(&adapter->napi))) {
adapter->total_tx_bytes = 0;
adapter->total_tx_packets = 0;
adapter->total_rx_bytes = 0;
adapter->total_rx_packets = 0;
__napi_schedule(&adapter->napi);
} else {
/* this really should not happen! if it does it is basically a
* bug, but not a hard error, so enable ints and continue
*/
if (!test_bit(__E1000_DOWN, &adapter->flags))
e1000_irq_enable(adapter);
}
return IRQ_HANDLED;
}
/**
* e1000_clean - NAPI Rx polling callback
* @adapter: board private structure
**/
static int e1000_clean(struct napi_struct *napi, int budget)
{
struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
napi);
int tx_clean_complete = 0, work_done = 0;
tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
if (!tx_clean_complete || work_done == budget)
return budget;
/* Exit the polling mode, but don't re-enable interrupts if stack might
* poll us due to busy-polling
*/
if (likely(napi_complete_done(napi, work_done))) {
if (likely(adapter->itr_setting & 3))
e1000_set_itr(adapter);
if (!test_bit(__E1000_DOWN, &adapter->flags))
e1000_irq_enable(adapter);
}
return work_done;
}
/**
* e1000_clean_tx_irq - Reclaim resources after transmit completes
* @adapter: board private structure
**/
static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
struct e1000_tx_ring *tx_ring)
{
struct e1000_hw *hw = &adapter->hw;
struct net_device *netdev = adapter->netdev;
struct e1000_tx_desc *tx_desc, *eop_desc;
struct e1000_tx_buffer *buffer_info;
unsigned int i, eop;
unsigned int count = 0;
unsigned int total_tx_bytes = 0, total_tx_packets = 0;
unsigned int bytes_compl = 0, pkts_compl = 0;
i = tx_ring->next_to_clean;
eop = tx_ring->buffer_info[i].next_to_watch;
eop_desc = E1000_TX_DESC(*tx_ring, eop);
while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
(count < tx_ring->count)) {
bool cleaned = false;
dma_rmb(); /* read buffer_info after eop_desc */
for ( ; !cleaned; count++) {
tx_desc = E1000_TX_DESC(*tx_ring, i);
buffer_info = &tx_ring->buffer_info[i];
cleaned = (i == eop);
if (cleaned) {
total_tx_packets += buffer_info->segs;
total_tx_bytes += buffer_info->bytecount;
if (buffer_info->skb) {
bytes_compl += buffer_info->skb->len;
pkts_compl++;
}
}
e1000_unmap_and_free_tx_resource(adapter, buffer_info);
tx_desc->upper.data = 0;
if (unlikely(++i == tx_ring->count))
i = 0;
}
eop = tx_ring->buffer_info[i].next_to_watch;
eop_desc = E1000_TX_DESC(*tx_ring, eop);
}
/* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
* which will reuse the cleaned buffers.
*/
smp_store_release(&tx_ring->next_to_clean, i);
netdev_completed_queue(netdev, pkts_compl, bytes_compl);
#define TX_WAKE_THRESHOLD 32
if (unlikely(count && netif_carrier_ok(netdev) &&
E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
/* Make sure that anybody stopping the queue after this
* sees the new next_to_clean.
*/
smp_mb();
if (netif_queue_stopped(netdev) &&
!(test_bit(__E1000_DOWN, &adapter->flags))) {
netif_wake_queue(netdev);
++adapter->restart_queue;
}
}
if (adapter->detect_tx_hung) {
/* Detect a transmit hang in hardware, this serializes the
* check with the clearing of time_stamp and movement of i
*/
adapter->detect_tx_hung = false;
if (tx_ring->buffer_info[eop].time_stamp &&
time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
(adapter->tx_timeout_factor * HZ)) &&
!(er32(STATUS) & E1000_STATUS_TXOFF)) {
/* detected Tx unit hang */
e_err(drv, "Detected Tx Unit Hang\n"
" Tx Queue <%lu>\n"
" TDH <%x>\n"
" TDT <%x>\n"
" next_to_use <%x>\n"
" next_to_clean <%x>\n"
"buffer_info[next_to_clean]\n"
" time_stamp <%lx>\n"
" next_to_watch <%x>\n"
" jiffies <%lx>\n"
" next_to_watch.status <%x>\n",
(unsigned long)(tx_ring - adapter->tx_ring),
readl(hw->hw_addr + tx_ring->tdh),
readl(hw->hw_addr + tx_ring->tdt),
tx_ring->next_to_use,
tx_ring->next_to_clean,
tx_ring->buffer_info[eop].time_stamp,
eop,
jiffies,
eop_desc->upper.fields.status);
e1000_dump(adapter);
netif_stop_queue(netdev);
}
}
adapter->total_tx_bytes += total_tx_bytes;
adapter->total_tx_packets += total_tx_packets;
netdev->stats.tx_bytes += total_tx_bytes;
netdev->stats.tx_packets += total_tx_packets;
return count < tx_ring->count;
}
/**
* e1000_rx_checksum - Receive Checksum Offload for 82543
* @adapter: board private structure
* @status_err: receive descriptor status and error fields
* @csum: receive descriptor csum field
* @sk_buff: socket buffer with received data
**/
static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
u32 csum, struct sk_buff *skb)
{
struct e1000_hw *hw = &adapter->hw;
u16 status = (u16)status_err;
u8 errors = (u8)(status_err >> 24);
skb_checksum_none_assert(skb);
/* 82543 or newer only */
if (unlikely(hw->mac_type < e1000_82543))
return;
/* Ignore Checksum bit is set */
if (unlikely(status & E1000_RXD_STAT_IXSM))
return;
/* TCP/UDP checksum error bit is set */
if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
/* let the stack verify checksum errors */
adapter->hw_csum_err++;
return;
}
/* TCP/UDP Checksum has not been calculated */
if (!(status & E1000_RXD_STAT_TCPCS))
return;
/* It must be a TCP or UDP packet with a valid checksum */
if (likely(status & E1000_RXD_STAT_TCPCS)) {
/* TCP checksum is good */
skb->ip_summed = CHECKSUM_UNNECESSARY;
}
adapter->hw_csum_good++;
}
/**
* e1000_consume_page - helper function for jumbo Rx path
**/
static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
u16 length)
{
bi->rxbuf.page = NULL;
skb->len += length;
skb->data_len += length;
skb->truesize += PAGE_SIZE;
}
/**
* e1000_receive_skb - helper function to handle rx indications
* @adapter: board private structure
* @status: descriptor status field as written by hardware
* @vlan: descriptor vlan field as written by hardware (no le/be conversion)
* @skb: pointer to sk_buff to be indicated to stack
*/
static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
__le16 vlan, struct sk_buff *skb)
{
skb->protocol = eth_type_trans(skb, adapter->netdev);
if (status & E1000_RXD_STAT_VP) {
u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
}
napi_gro_receive(&adapter->napi, skb);
}
/**
* e1000_tbi_adjust_stats
* @hw: Struct containing variables accessed by shared code
* @frame_len: The length of the frame in question
* @mac_addr: The Ethernet destination address of the frame in question
*
* Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
*/
static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
struct e1000_hw_stats *stats,
u32 frame_len, const u8 *mac_addr)
{
u64 carry_bit;
/* First adjust the frame length. */
frame_len--;
/* We need to adjust the statistics counters, since the hardware
* counters overcount this packet as a CRC error and undercount
* the packet as a good packet
*/
/* This packet should not be counted as a CRC error. */
stats->crcerrs--;
/* This packet does count as a Good Packet Received. */
stats->gprc++;
/* Adjust the Good Octets received counters */
carry_bit = 0x80000000 & stats->gorcl;
stats->gorcl += frame_len;
/* If the high bit of Gorcl (the low 32 bits of the Good Octets
* Received Count) was one before the addition,
* AND it is zero after, then we lost the carry out,
* need to add one to Gorch (Good Octets Received Count High).
* This could be simplified if all environments supported
* 64-bit integers.
*/
if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
stats->gorch++;
/* Is this a broadcast or multicast? Check broadcast first,
* since the test for a multicast frame will test positive on
* a broadcast frame.
*/
if (is_broadcast_ether_addr(mac_addr))
stats->bprc++;
else if (is_multicast_ether_addr(mac_addr))
stats->mprc++;
if (frame_len == hw->max_frame_size) {
/* In this case, the hardware has overcounted the number of
* oversize frames.
*/
if (stats->roc > 0)
stats->roc--;
}
/* Adjust the bin counters when the extra byte put the frame in the
* wrong bin. Remember that the frame_len was adjusted above.
*/
if (frame_len == 64) {
stats->prc64++;
stats->prc127--;
} else if (frame_len == 127) {
stats->prc127++;
stats->prc255--;
} else if (frame_len == 255) {
stats->prc255++;
stats->prc511--;
} else if (frame_len == 511) {
stats->prc511++;
stats->prc1023--;
} else if (frame_len == 1023) {
stats->prc1023++;
stats->prc1522--;
} else if (frame_len == 1522) {
stats->prc1522++;
}
}
static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
u8 status, u8 errors,
u32 length, const u8 *data)
{
struct e1000_hw *hw = &adapter->hw;
u8 last_byte = *(data + length - 1);
if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
unsigned long irq_flags;
spin_lock_irqsave(&adapter->stats_lock, irq_flags);
e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
return true;
}
return false;
}
static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
unsigned int bufsz)
{
struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
if (unlikely(!skb))
adapter->alloc_rx_buff_failed++;
return skb;
}
/**
* e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
* @adapter: board private structure
* @rx_ring: ring to clean
* @work_done: amount of napi work completed this call
* @work_to_do: max amount of work allowed for this call to do
*
* the return value indicates whether actual cleaning was done, there
* is no guarantee that everything was cleaned
*/
static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int *work_done, int work_to_do)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_rx_desc *rx_desc, *next_rxd;
struct e1000_rx_buffer *buffer_info, *next_buffer;
u32 length;
unsigned int i;
int cleaned_count = 0;
bool cleaned = false;
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
i = rx_ring->next_to_clean;
rx_desc = E1000_RX_DESC(*rx_ring, i);
buffer_info = &rx_ring->buffer_info[i];
while (rx_desc->status & E1000_RXD_STAT_DD) {
struct sk_buff *skb;
u8 status;
if (*work_done >= work_to_do)
break;
(*work_done)++;
dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
status = rx_desc->status;
if (++i == rx_ring->count)
i = 0;
next_rxd = E1000_RX_DESC(*rx_ring, i);
prefetch(next_rxd);
next_buffer = &rx_ring->buffer_info[i];
cleaned = true;
cleaned_count++;
dma_unmap_page(&pdev->dev, buffer_info->dma,
adapter->rx_buffer_len, DMA_FROM_DEVICE);
buffer_info->dma = 0;
length = le16_to_cpu(rx_desc->length);
/* errors is only valid for DD + EOP descriptors */
if (unlikely((status & E1000_RXD_STAT_EOP) &&
(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
u8 *mapped = page_address(buffer_info->rxbuf.page);
if (e1000_tbi_should_accept(adapter, status,
rx_desc->errors,
length, mapped)) {
length--;
} else if (netdev->features & NETIF_F_RXALL) {
goto process_skb;
} else {
/* an error means any chain goes out the window
* too
*/
dev_kfree_skb(rx_ring->rx_skb_top);
rx_ring->rx_skb_top = NULL;
goto next_desc;
}
}
#define rxtop rx_ring->rx_skb_top
process_skb:
if (!(status & E1000_RXD_STAT_EOP)) {
/* this descriptor is only the beginning (or middle) */
if (!rxtop) {
/* this is the beginning of a chain */
rxtop = napi_get_frags(&adapter->napi);
if (!rxtop)
break;
skb_fill_page_desc(rxtop, 0,
buffer_info->rxbuf.page,
0, length);
} else {
/* this is the middle of a chain */
skb_fill_page_desc(rxtop,
skb_shinfo(rxtop)->nr_frags,
buffer_info->rxbuf.page, 0, length);
}
e1000_consume_page(buffer_info, rxtop, length);
goto next_desc;
} else {
if (rxtop) {
/* end of the chain */
skb_fill_page_desc(rxtop,
skb_shinfo(rxtop)->nr_frags,
buffer_info->rxbuf.page, 0, length);
skb = rxtop;
rxtop = NULL;
e1000_consume_page(buffer_info, skb, length);
} else {
struct page *p;
/* no chain, got EOP, this buf is the packet
* copybreak to save the put_page/alloc_page
*/
p = buffer_info->rxbuf.page;
if (length <= copybreak) {
u8 *vaddr;
if (likely(!(netdev->features & NETIF_F_RXFCS)))
length -= 4;
skb = e1000_alloc_rx_skb(adapter,
length);
if (!skb)
break;
vaddr = kmap_atomic(p);
memcpy(skb_tail_pointer(skb), vaddr,
length);
kunmap_atomic(vaddr);
/* re-use the page, so don't erase
* buffer_info->rxbuf.page
*/
skb_put(skb, length);
e1000_rx_checksum(adapter,
status | rx_desc->errors << 24,
le16_to_cpu(rx_desc->csum), skb);
total_rx_bytes += skb->len;
total_rx_packets++;
e1000_receive_skb(adapter, status,
rx_desc->special, skb);
goto next_desc;
} else {
skb = napi_get_frags(&adapter->napi);
if (!skb) {
adapter->alloc_rx_buff_failed++;
break;
}
skb_fill_page_desc(skb, 0, p, 0,
length);
e1000_consume_page(buffer_info, skb,
length);
}
}
}
/* Receive Checksum Offload XXX recompute due to CRC strip? */
e1000_rx_checksum(adapter,
(u32)(status) |
((u32)(rx_desc->errors) << 24),
le16_to_cpu(rx_desc->csum), skb);
total_rx_bytes += (skb->len - 4); /* don't count FCS */
if (likely(!(netdev->features & NETIF_F_RXFCS)))
pskb_trim(skb, skb->len - 4);
total_rx_packets++;
if (status & E1000_RXD_STAT_VP) {
__le16 vlan = rx_desc->special;
u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
}
napi_gro_frags(&adapter->napi);
next_desc:
rx_desc->status = 0;
/* return some buffers to hardware, one at a time is too slow */
if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
cleaned_count = 0;
}
/* use prefetched values */
rx_desc = next_rxd;
buffer_info = next_buffer;
}
rx_ring->next_to_clean = i;
cleaned_count = E1000_DESC_UNUSED(rx_ring);
if (cleaned_count)
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
adapter->total_rx_packets += total_rx_packets;
adapter->total_rx_bytes += total_rx_bytes;
netdev->stats.rx_bytes += total_rx_bytes;
netdev->stats.rx_packets += total_rx_packets;
return cleaned;
}
/* this should improve performance for small packets with large amounts
* of reassembly being done in the stack
*/
static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
struct e1000_rx_buffer *buffer_info,
u32 length, const void *data)
{
struct sk_buff *skb;
if (length > copybreak)
return NULL;
skb = e1000_alloc_rx_skb(adapter, length);
if (!skb)
return NULL;
dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
length, DMA_FROM_DEVICE);
skb_put_data(skb, data, length);
return skb;
}
/**
* e1000_clean_rx_irq - Send received data up the network stack; legacy
* @adapter: board private structure
* @rx_ring: ring to clean
* @work_done: amount of napi work completed this call
* @work_to_do: max amount of work allowed for this call to do
*/
static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int *work_done, int work_to_do)
{
struct net_device *netdev = adapter->netdev;
struct pci_dev *pdev = adapter->pdev;
struct e1000_rx_desc *rx_desc, *next_rxd;
struct e1000_rx_buffer *buffer_info, *next_buffer;
u32 length;
unsigned int i;
int cleaned_count = 0;
bool cleaned = false;
unsigned int total_rx_bytes = 0, total_rx_packets = 0;
i = rx_ring->next_to_clean;
rx_desc = E1000_RX_DESC(*rx_ring, i);
buffer_info = &rx_ring->buffer_info[i];
while (rx_desc->status & E1000_RXD_STAT_DD) {
struct sk_buff *skb;
u8 *data;
u8 status;
if (*work_done >= work_to_do)
break;
(*work_done)++;
dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
status = rx_desc->status;
length = le16_to_cpu(rx_desc->length);
data = buffer_info->rxbuf.data;
prefetch(data);
skb = e1000_copybreak(adapter, buffer_info, length, data);
if (!skb) {
unsigned int frag_len = e1000_frag_len(adapter);
skb = build_skb(data - E1000_HEADROOM, frag_len);
if (!skb) {
adapter->alloc_rx_buff_failed++;
break;
}
skb_reserve(skb, E1000_HEADROOM);
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_buffer_len,
DMA_FROM_DEVICE);
buffer_info->dma = 0;
buffer_info->rxbuf.data = NULL;
}
if (++i == rx_ring->count)
i = 0;
next_rxd = E1000_RX_DESC(*rx_ring, i);
prefetch(next_rxd);
next_buffer = &rx_ring->buffer_info[i];
cleaned = true;
cleaned_count++;
/* !EOP means multiple descriptors were used to store a single
* packet, if thats the case we need to toss it. In fact, we
* to toss every packet with the EOP bit clear and the next
* frame that _does_ have the EOP bit set, as it is by
* definition only a frame fragment
*/
if (unlikely(!(status & E1000_RXD_STAT_EOP)))
adapter->discarding = true;
if (adapter->discarding) {
/* All receives must fit into a single buffer */
netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
dev_kfree_skb(skb);
if (status & E1000_RXD_STAT_EOP)
adapter->discarding = false;
goto next_desc;
}
if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
if (e1000_tbi_should_accept(adapter, status,
rx_desc->errors,
length, data)) {
length--;
} else if (netdev->features & NETIF_F_RXALL) {
goto process_skb;
} else {
dev_kfree_skb(skb);
goto next_desc;
}
}
process_skb:
total_rx_bytes += (length - 4); /* don't count FCS */
total_rx_packets++;
if (likely(!(netdev->features & NETIF_F_RXFCS)))
/* adjust length to remove Ethernet CRC, this must be
* done after the TBI_ACCEPT workaround above
*/
length -= 4;
if (buffer_info->rxbuf.data == NULL)
skb_put(skb, length);
else /* copybreak skb */
skb_trim(skb, length);
/* Receive Checksum Offload */
e1000_rx_checksum(adapter,
(u32)(status) |
((u32)(rx_desc->errors) << 24),
le16_to_cpu(rx_desc->csum), skb);
e1000_receive_skb(adapter, status, rx_desc->special, skb);
next_desc:
rx_desc->status = 0;
/* return some buffers to hardware, one at a time is too slow */
if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
cleaned_count = 0;
}
/* use prefetched values */
rx_desc = next_rxd;
buffer_info = next_buffer;
}
rx_ring->next_to_clean = i;
cleaned_count = E1000_DESC_UNUSED(rx_ring);
if (cleaned_count)
adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
adapter->total_rx_packets += total_rx_packets;
adapter->total_rx_bytes += total_rx_bytes;
netdev->stats.rx_bytes += total_rx_bytes;
netdev->stats.rx_packets += total_rx_packets;
return cleaned;
}
/**
* e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
* @adapter: address of board private structure
* @rx_ring: pointer to receive ring structure
* @cleaned_count: number of buffers to allocate this pass
**/
static void
e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring, int cleaned_count)
{
struct pci_dev *pdev = adapter->pdev;
struct e1000_rx_desc *rx_desc;
struct e1000_rx_buffer *buffer_info;
unsigned int i;
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
while (cleaned_count--) {
/* allocate a new page if necessary */
if (!buffer_info->rxbuf.page) {
buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
if (unlikely(!buffer_info->rxbuf.page)) {
adapter->alloc_rx_buff_failed++;
break;
}
}
if (!buffer_info->dma) {
buffer_info->dma = dma_map_page(&pdev->dev,
buffer_info->rxbuf.page, 0,
adapter->rx_buffer_len,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
put_page(buffer_info->rxbuf.page);
buffer_info->rxbuf.page = NULL;
buffer_info->dma = 0;
adapter->alloc_rx_buff_failed++;
break;
}
}
rx_desc = E1000_RX_DESC(*rx_ring, i);
rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
if (unlikely(++i == rx_ring->count))
i = 0;
buffer_info = &rx_ring->buffer_info[i];
}
if (likely(rx_ring->next_to_use != i)) {
rx_ring->next_to_use = i;
if (unlikely(i-- == 0))
i = (rx_ring->count - 1);
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
dma_wmb();
writel(i, adapter->hw.hw_addr + rx_ring->rdt);
}
}
/**
* e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
* @adapter: address of board private structure
**/
static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
struct e1000_rx_ring *rx_ring,
int cleaned_count)
{
struct e1000_hw *hw = &adapter->hw;
struct pci_dev *pdev = adapter->pdev;
struct e1000_rx_desc *rx_desc;
struct e1000_rx_buffer *buffer_info;
unsigned int i;
unsigned int bufsz = adapter->rx_buffer_len;
i = rx_ring->next_to_use;
buffer_info = &rx_ring->buffer_info[i];
while (cleaned_count--) {
void *data;
if (buffer_info->rxbuf.data)
goto skip;
data = e1000_alloc_frag(adapter);
if (!data) {
/* Better luck next round */
adapter->alloc_rx_buff_failed++;
break;
}
/* Fix for errata 23, can't cross 64kB boundary */
if (!e1000_check_64k_bound(adapter, data, bufsz)) {
void *olddata = data;
e_err(rx_err, "skb align check failed: %u bytes at "
"%p\n", bufsz, data);
/* Try again, without freeing the previous */
data = e1000_alloc_frag(adapter);
/* Failed allocation, critical failure */
if (!data) {
skb_free_frag(olddata);
adapter->alloc_rx_buff_failed++;
break;
}
if (!e1000_check_64k_bound(adapter, data, bufsz)) {
/* give up */
skb_free_frag(data);
skb_free_frag(olddata);
adapter->alloc_rx_buff_failed++;
break;
}
/* Use new allocation */
skb_free_frag(olddata);
}
buffer_info->dma = dma_map_single(&pdev->dev,
data,
adapter->rx_buffer_len,
DMA_FROM_DEVICE);
if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
skb_free_frag(data);
buffer_info->dma = 0;
adapter->alloc_rx_buff_failed++;
break;
}
/* XXX if it was allocated cleanly it will never map to a
* boundary crossing
*/
/* Fix for errata 23, can't cross 64kB boundary */
if (!e1000_check_64k_bound(adapter,
(void *)(unsigned long)buffer_info->dma,
adapter->rx_buffer_len)) {
e_err(rx_err, "dma align check failed: %u bytes at "
"%p\n", adapter->rx_buffer_len,
(void *)(unsigned long)buffer_info->dma);
dma_unmap_single(&pdev->dev, buffer_info->dma,
adapter->rx_buffer_len,
DMA_FROM_DEVICE);
skb_free_frag(data);
buffer_info->rxbuf.data = NULL;
buffer_info->dma = 0;
adapter->alloc_rx_buff_failed++;
break;
}
buffer_info->rxbuf.data = data;
skip:
rx_desc = E1000_RX_DESC(*rx_ring, i);
rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
if (unlikely(++i == rx_ring->count))
i = 0;
buffer_info = &rx_ring->buffer_info[i];
}
if (likely(rx_ring->next_to_use != i)) {
rx_ring->next_to_use = i;
if (unlikely(i-- == 0))
i = (rx_ring->count - 1);
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
dma_wmb();
writel(i, hw->hw_addr + rx_ring->rdt);
}
}
/**
* e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
* @adapter:
**/
static void e1000_smartspeed(struct e1000_adapter *adapter)
{
struct e1000_hw *hw = &adapter->hw;
u16 phy_status;
u16 phy_ctrl;
if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
!(hw->autoneg_advertised & ADVERTISE_1000_FULL))
return;
if (adapter->smartspeed == 0) {
/* If Master/Slave config fault is asserted twice,
* we assume back-to-back
*/
e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
return;
e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
return;
e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
if (phy_ctrl & CR_1000T_MS_ENABLE) {
phy_ctrl &= ~CR_1000T_MS_ENABLE;
e1000_write_phy_reg(hw, PHY_1000T_CTRL,
phy_ctrl);
adapter->smartspeed++;
if (!e1000_phy_setup_autoneg(hw) &&
!e1000_read_phy_reg(hw, PHY_CTRL,
&phy_ctrl)) {
phy_ctrl |= (MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG);
e1000_write_phy_reg(hw, PHY_CTRL,
phy_ctrl);
}
}
return;
} else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
/* If still no link, perhaps using 2/3 pair cable */
e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
phy_ctrl |= CR_1000T_MS_ENABLE;
e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
if (!e1000_phy_setup_autoneg(hw) &&
!e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
phy_ctrl |= (MII_CR_AUTO_NEG_EN |
MII_CR_RESTART_AUTO_NEG);
e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
}
}
/* Restart process after E1000_SMARTSPEED_MAX iterations */
if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
adapter->smartspeed = 0;
}
/**
* e1000_ioctl -
* @netdev:
* @ifreq:
* @cmd:
**/
static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
{
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
return e1000_mii_ioctl(netdev, ifr, cmd);
default:
return -EOPNOTSUPP;
}
}
/**
* e1000_mii_ioctl -
* @netdev:
* @ifreq:
* @cmd:
**/
static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
int cmd)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
struct mii_ioctl_data *data = if_mii(ifr);
int retval;
u16 mii_reg;
unsigned long flags;
if (hw->media_type != e1000_media_type_copper)
return -EOPNOTSUPP;
switch (cmd) {
case SIOCGMIIPHY:
data->phy_id = hw->phy_addr;
break;
case SIOCGMIIREG:
spin_lock_irqsave(&adapter->stats_lock, flags);
if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
&data->val_out)) {
spin_unlock_irqrestore(&adapter->stats_lock, flags);
return -EIO;
}
spin_unlock_irqrestore(&adapter->stats_lock, flags);
break;
case SIOCSMIIREG:
if (data->reg_num & ~(0x1F))
return -EFAULT;
mii_reg = data->val_in;
spin_lock_irqsave(&adapter->stats_lock, flags);
if (e1000_write_phy_reg(hw, data->reg_num,
mii_reg)) {
spin_unlock_irqrestore(&adapter->stats_lock, flags);
return -EIO;
}
spin_unlock_irqrestore(&adapter->stats_lock, flags);
if (hw->media_type == e1000_media_type_copper) {
switch (data->reg_num) {
case PHY_CTRL:
if (mii_reg & MII_CR_POWER_DOWN)
break;
if (mii_reg & MII_CR_AUTO_NEG_EN) {
hw->autoneg = 1;
hw->autoneg_advertised = 0x2F;
} else {
u32 speed;
if (mii_reg & 0x40)
speed = SPEED_1000;
else if (mii_reg & 0x2000)
speed = SPEED_100;
else
speed = SPEED_10;
retval = e1000_set_spd_dplx(
adapter, speed,
((mii_reg & 0x100)
? DUPLEX_FULL :
DUPLEX_HALF));
if (retval)
return retval;
}
if (netif_running(adapter->netdev))
e1000_reinit_locked(adapter);
else
e1000_reset(adapter);
break;
case M88E1000_PHY_SPEC_CTRL:
case M88E1000_EXT_PHY_SPEC_CTRL:
if (e1000_phy_reset(hw))
return -EIO;
break;
}
} else {
switch (data->reg_num) {
case PHY_CTRL:
if (mii_reg & MII_CR_POWER_DOWN)
break;
if (netif_running(adapter->netdev))
e1000_reinit_locked(adapter);
else
e1000_reset(adapter);
break;
}
}
break;
default:
return -EOPNOTSUPP;
}
return E1000_SUCCESS;
}
void e1000_pci_set_mwi(struct e1000_hw *hw)
{
struct e1000_adapter *adapter = hw->back;
int ret_val = pci_set_mwi(adapter->pdev);
if (ret_val)
e_err(probe, "Error in setting MWI\n");
}
void e1000_pci_clear_mwi(struct e1000_hw *hw)
{
struct e1000_adapter *adapter = hw->back;
pci_clear_mwi(adapter->pdev);
}
int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
{
struct e1000_adapter *adapter = hw->back;
return pcix_get_mmrbc(adapter->pdev);
}
void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
{
struct e1000_adapter *adapter = hw->back;
pcix_set_mmrbc(adapter->pdev, mmrbc);
}
void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
{
outl(value, port);
}
static bool e1000_vlan_used(struct e1000_adapter *adapter)
{
u16 vid;
for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
return true;
return false;
}
static void __e1000_vlan_mode(struct e1000_adapter *adapter,
netdev_features_t features)
{
struct e1000_hw *hw = &adapter->hw;
u32 ctrl;
ctrl = er32(CTRL);
if (features & NETIF_F_HW_VLAN_CTAG_RX) {
/* enable VLAN tag insert/strip */
ctrl |= E1000_CTRL_VME;
} else {
/* disable VLAN tag insert/strip */
ctrl &= ~E1000_CTRL_VME;
}
ew32(CTRL, ctrl);
}
static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
bool filter_on)
{
struct e1000_hw *hw = &adapter->hw;
u32 rctl;
if (!test_bit(__E1000_DOWN, &adapter->flags))
e1000_irq_disable(adapter);
__e1000_vlan_mode(adapter, adapter->netdev->features);
if (filter_on) {
/* enable VLAN receive filtering */
rctl = er32(RCTL);
rctl &= ~E1000_RCTL_CFIEN;
if (!(adapter->netdev->flags & IFF_PROMISC))
rctl |= E1000_RCTL_VFE;
ew32(RCTL, rctl);
e1000_update_mng_vlan(adapter);
} else {
/* disable VLAN receive filtering */
rctl = er32(RCTL);
rctl &= ~E1000_RCTL_VFE;
ew32(RCTL, rctl);
}
if (!test_bit(__E1000_DOWN, &adapter->flags))
e1000_irq_enable(adapter);
}
static void e1000_vlan_mode(struct net_device *netdev,
netdev_features_t features)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (!test_bit(__E1000_DOWN, &adapter->flags))
e1000_irq_disable(adapter);
__e1000_vlan_mode(adapter, features);
if (!test_bit(__E1000_DOWN, &adapter->flags))
e1000_irq_enable(adapter);
}
static int e1000_vlan_rx_add_vid(struct net_device *netdev,
__be16 proto, u16 vid)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 vfta, index;
if ((hw->mng_cookie.status &
E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
(vid == adapter->mng_vlan_id))
return 0;
if (!e1000_vlan_used(adapter))
e1000_vlan_filter_on_off(adapter, true);
/* add VID to filter table */
index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
vfta |= (1 << (vid & 0x1F));
e1000_write_vfta(hw, index, vfta);
set_bit(vid, adapter->active_vlans);
return 0;
}
static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
__be16 proto, u16 vid)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 vfta, index;
if (!test_bit(__E1000_DOWN, &adapter->flags))
e1000_irq_disable(adapter);
if (!test_bit(__E1000_DOWN, &adapter->flags))
e1000_irq_enable(adapter);
/* remove VID from filter table */
index = (vid >> 5) & 0x7F;
vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
vfta &= ~(1 << (vid & 0x1F));
e1000_write_vfta(hw, index, vfta);
clear_bit(vid, adapter->active_vlans);
if (!e1000_vlan_used(adapter))
e1000_vlan_filter_on_off(adapter, false);
return 0;
}
static void e1000_restore_vlan(struct e1000_adapter *adapter)
{
u16 vid;
if (!e1000_vlan_used(adapter))
return;
e1000_vlan_filter_on_off(adapter, true);
for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
}
int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
{
struct e1000_hw *hw = &adapter->hw;
hw->autoneg = 0;
/* Make sure dplx is at most 1 bit and lsb of speed is not set
* for the switch() below to work
*/
if ((spd & 1) || (dplx & ~1))
goto err_inval;
/* Fiber NICs only allow 1000 gbps Full duplex */
if ((hw->media_type == e1000_media_type_fiber) &&
spd != SPEED_1000 &&
dplx != DUPLEX_FULL)
goto err_inval;
switch (spd + dplx) {
case SPEED_10 + DUPLEX_HALF:
hw->forced_speed_duplex = e1000_10_half;
break;
case SPEED_10 + DUPLEX_FULL:
hw->forced_speed_duplex = e1000_10_full;
break;
case SPEED_100 + DUPLEX_HALF:
hw->forced_speed_duplex = e1000_100_half;
break;
case SPEED_100 + DUPLEX_FULL:
hw->forced_speed_duplex = e1000_100_full;
break;
case SPEED_1000 + DUPLEX_FULL:
hw->autoneg = 1;
hw->autoneg_advertised = ADVERTISE_1000_FULL;
break;
case SPEED_1000 + DUPLEX_HALF: /* not supported */
default:
goto err_inval;
}
/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
hw->mdix = AUTO_ALL_MODES;
return 0;
err_inval:
e_err(probe, "Unsupported Speed/Duplex configuration\n");
return -EINVAL;
}
static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 ctrl, ctrl_ext, rctl, status;
u32 wufc = adapter->wol;
#ifdef CONFIG_PM
int retval = 0;
#endif
netif_device_detach(netdev);
if (netif_running(netdev)) {
int count = E1000_CHECK_RESET_COUNT;
while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
usleep_range(10000, 20000);
WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
e1000_down(adapter);
}
#ifdef CONFIG_PM
retval = pci_save_state(pdev);
if (retval)
return retval;
#endif
status = er32(STATUS);
if (status & E1000_STATUS_LU)
wufc &= ~E1000_WUFC_LNKC;
if (wufc) {
e1000_setup_rctl(adapter);
e1000_set_rx_mode(netdev);
rctl = er32(RCTL);
/* turn on all-multi mode if wake on multicast is enabled */
if (wufc & E1000_WUFC_MC)
rctl |= E1000_RCTL_MPE;
/* enable receives in the hardware */
ew32(RCTL, rctl | E1000_RCTL_EN);
if (hw->mac_type >= e1000_82540) {
ctrl = er32(CTRL);
/* advertise wake from D3Cold */
#define E1000_CTRL_ADVD3WUC 0x00100000
/* phy power management enable */
#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
ctrl |= E1000_CTRL_ADVD3WUC |
E1000_CTRL_EN_PHY_PWR_MGMT;
ew32(CTRL, ctrl);
}
if (hw->media_type == e1000_media_type_fiber ||
hw->media_type == e1000_media_type_internal_serdes) {
/* keep the laser running in D3 */
ctrl_ext = er32(CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
ew32(CTRL_EXT, ctrl_ext);
}
ew32(WUC, E1000_WUC_PME_EN);
ew32(WUFC, wufc);
} else {
ew32(WUC, 0);
ew32(WUFC, 0);
}
e1000_release_manageability(adapter);
*enable_wake = !!wufc;
/* make sure adapter isn't asleep if manageability is enabled */
if (adapter->en_mng_pt)
*enable_wake = true;
if (netif_running(netdev))
e1000_free_irq(adapter);
if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
pci_disable_device(pdev);
return 0;
}
#ifdef CONFIG_PM
static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
{
int retval;
bool wake;
retval = __e1000_shutdown(pdev, &wake);
if (retval)
return retval;
if (wake) {
pci_prepare_to_sleep(pdev);
} else {
pci_wake_from_d3(pdev, false);
pci_set_power_state(pdev, PCI_D3hot);
}
return 0;
}
static int e1000_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
u32 err;
pci_set_power_state(pdev, PCI_D0);
pci_restore_state(pdev);
pci_save_state(pdev);
if (adapter->need_ioport)
err = pci_enable_device(pdev);
else
err = pci_enable_device_mem(pdev);
if (err) {
pr_err("Cannot enable PCI device from suspend\n");
return err;
}
/* flush memory to make sure state is correct */
smp_mb__before_atomic();
clear_bit(__E1000_DISABLED, &adapter->flags);
pci_set_master(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
if (netif_running(netdev)) {
err = e1000_request_irq(adapter);
if (err)
return err;
}
e1000_power_up_phy(adapter);
e1000_reset(adapter);
ew32(WUS, ~0);
e1000_init_manageability(adapter);
if (netif_running(netdev))
e1000_up(adapter);
netif_device_attach(netdev);
return 0;
}
#endif
static void e1000_shutdown(struct pci_dev *pdev)
{
bool wake;
__e1000_shutdown(pdev, &wake);
if (system_state == SYSTEM_POWER_OFF) {
pci_wake_from_d3(pdev, wake);
pci_set_power_state(pdev, PCI_D3hot);
}
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/* Polling 'interrupt' - used by things like netconsole to send skbs
* without having to re-enable interrupts. It's not called while
* the interrupt routine is executing.
*/
static void e1000_netpoll(struct net_device *netdev)
{
struct e1000_adapter *adapter = netdev_priv(netdev);
if (disable_hardirq(adapter->pdev->irq))
e1000_intr(adapter->pdev->irq, netdev);
enable_irq(adapter->pdev->irq);
}
#endif
/**
* e1000_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
netif_device_detach(netdev);
if (state == pci_channel_io_perm_failure)
return PCI_ERS_RESULT_DISCONNECT;
if (netif_running(netdev))
e1000_down(adapter);
if (!test_and_set_bit(__E1000_DISABLED, &adapter->flags))
pci_disable_device(pdev);
/* Request a slot slot reset. */
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* e1000_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot. Implementation
* resembles the first-half of the e1000_resume routine.
*/
static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
struct e1000_hw *hw = &adapter->hw;
int err;
if (adapter->need_ioport)
err = pci_enable_device(pdev);
else
err = pci_enable_device_mem(pdev);
if (err) {
pr_err("Cannot re-enable PCI device after reset.\n");
return PCI_ERS_RESULT_DISCONNECT;
}
/* flush memory to make sure state is correct */
smp_mb__before_atomic();
clear_bit(__E1000_DISABLED, &adapter->flags);
pci_set_master(pdev);
pci_enable_wake(pdev, PCI_D3hot, 0);
pci_enable_wake(pdev, PCI_D3cold, 0);
e1000_reset(adapter);
ew32(WUS, ~0);
return PCI_ERS_RESULT_RECOVERED;
}
/**
* e1000_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells us that
* its OK to resume normal operation. Implementation resembles the
* second-half of the e1000_resume routine.
*/
static void e1000_io_resume(struct pci_dev *pdev)
{
struct net_device *netdev = pci_get_drvdata(pdev);
struct e1000_adapter *adapter = netdev_priv(netdev);
e1000_init_manageability(adapter);
if (netif_running(netdev)) {
if (e1000_up(adapter)) {
pr_info("can't bring device back up after reset\n");
return;
}
}
netif_device_attach(netdev);
}
/* e1000_main.c */