blob: cb8d087762dbd00ef05b10d1a75e3be56a711bd3 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (c) 2017 Hisilicon Limited.
*/
#include "hisi_sas.h"
#define DRV_NAME "hisi_sas_v3_hw"
/* global registers need init */
#define DLVRY_QUEUE_ENABLE 0x0
#define IOST_BASE_ADDR_LO 0x8
#define IOST_BASE_ADDR_HI 0xc
#define ITCT_BASE_ADDR_LO 0x10
#define ITCT_BASE_ADDR_HI 0x14
#define IO_BROKEN_MSG_ADDR_LO 0x18
#define IO_BROKEN_MSG_ADDR_HI 0x1c
#define PHY_CONTEXT 0x20
#define PHY_STATE 0x24
#define PHY_PORT_NUM_MA 0x28
#define PHY_CONN_RATE 0x30
#define ITCT_CLR 0x44
#define ITCT_CLR_EN_OFF 16
#define ITCT_CLR_EN_MSK (0x1 << ITCT_CLR_EN_OFF)
#define ITCT_DEV_OFF 0
#define ITCT_DEV_MSK (0x7ff << ITCT_DEV_OFF)
#define SAS_AXI_USER3 0x50
#define IO_SATA_BROKEN_MSG_ADDR_LO 0x58
#define IO_SATA_BROKEN_MSG_ADDR_HI 0x5c
#define SATA_INITI_D2H_STORE_ADDR_LO 0x60
#define SATA_INITI_D2H_STORE_ADDR_HI 0x64
#define CFG_MAX_TAG 0x68
#define HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL 0x84
#define HGC_SAS_TXFAIL_RETRY_CTRL 0x88
#define HGC_GET_ITV_TIME 0x90
#define DEVICE_MSG_WORK_MODE 0x94
#define OPENA_WT_CONTI_TIME 0x9c
#define I_T_NEXUS_LOSS_TIME 0xa0
#define MAX_CON_TIME_LIMIT_TIME 0xa4
#define BUS_INACTIVE_LIMIT_TIME 0xa8
#define REJECT_TO_OPEN_LIMIT_TIME 0xac
#define CQ_INT_CONVERGE_EN 0xb0
#define CFG_AGING_TIME 0xbc
#define HGC_DFX_CFG2 0xc0
#define CFG_ABT_SET_QUERY_IPTT 0xd4
#define CFG_SET_ABORTED_IPTT_OFF 0
#define CFG_SET_ABORTED_IPTT_MSK (0xfff << CFG_SET_ABORTED_IPTT_OFF)
#define CFG_SET_ABORTED_EN_OFF 12
#define CFG_ABT_SET_IPTT_DONE 0xd8
#define CFG_ABT_SET_IPTT_DONE_OFF 0
#define HGC_IOMB_PROC1_STATUS 0x104
#define HGC_LM_DFX_STATUS2 0x128
#define HGC_LM_DFX_STATUS2_IOSTLIST_OFF 0
#define HGC_LM_DFX_STATUS2_IOSTLIST_MSK (0xfff << \
HGC_LM_DFX_STATUS2_IOSTLIST_OFF)
#define HGC_LM_DFX_STATUS2_ITCTLIST_OFF 12
#define HGC_LM_DFX_STATUS2_ITCTLIST_MSK (0x7ff << \
HGC_LM_DFX_STATUS2_ITCTLIST_OFF)
#define HGC_CQE_ECC_ADDR 0x13c
#define HGC_CQE_ECC_1B_ADDR_OFF 0
#define HGC_CQE_ECC_1B_ADDR_MSK (0x3f << HGC_CQE_ECC_1B_ADDR_OFF)
#define HGC_CQE_ECC_MB_ADDR_OFF 8
#define HGC_CQE_ECC_MB_ADDR_MSK (0x3f << HGC_CQE_ECC_MB_ADDR_OFF)
#define HGC_IOST_ECC_ADDR 0x140
#define HGC_IOST_ECC_1B_ADDR_OFF 0
#define HGC_IOST_ECC_1B_ADDR_MSK (0x3ff << HGC_IOST_ECC_1B_ADDR_OFF)
#define HGC_IOST_ECC_MB_ADDR_OFF 16
#define HGC_IOST_ECC_MB_ADDR_MSK (0x3ff << HGC_IOST_ECC_MB_ADDR_OFF)
#define HGC_DQE_ECC_ADDR 0x144
#define HGC_DQE_ECC_1B_ADDR_OFF 0
#define HGC_DQE_ECC_1B_ADDR_MSK (0xfff << HGC_DQE_ECC_1B_ADDR_OFF)
#define HGC_DQE_ECC_MB_ADDR_OFF 16
#define HGC_DQE_ECC_MB_ADDR_MSK (0xfff << HGC_DQE_ECC_MB_ADDR_OFF)
#define CHNL_INT_STATUS 0x148
#define TAB_DFX 0x14c
#define HGC_ITCT_ECC_ADDR 0x150
#define HGC_ITCT_ECC_1B_ADDR_OFF 0
#define HGC_ITCT_ECC_1B_ADDR_MSK (0x3ff << \
HGC_ITCT_ECC_1B_ADDR_OFF)
#define HGC_ITCT_ECC_MB_ADDR_OFF 16
#define HGC_ITCT_ECC_MB_ADDR_MSK (0x3ff << \
HGC_ITCT_ECC_MB_ADDR_OFF)
#define HGC_AXI_FIFO_ERR_INFO 0x154
#define AXI_ERR_INFO_OFF 0
#define AXI_ERR_INFO_MSK (0xff << AXI_ERR_INFO_OFF)
#define FIFO_ERR_INFO_OFF 8
#define FIFO_ERR_INFO_MSK (0xff << FIFO_ERR_INFO_OFF)
#define TAB_RD_TYPE 0x15c
#define INT_COAL_EN 0x19c
#define OQ_INT_COAL_TIME 0x1a0
#define OQ_INT_COAL_CNT 0x1a4
#define ENT_INT_COAL_TIME 0x1a8
#define ENT_INT_COAL_CNT 0x1ac
#define OQ_INT_SRC 0x1b0
#define OQ_INT_SRC_MSK 0x1b4
#define ENT_INT_SRC1 0x1b8
#define ENT_INT_SRC1_D2H_FIS_CH0_OFF 0
#define ENT_INT_SRC1_D2H_FIS_CH0_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH0_OFF)
#define ENT_INT_SRC1_D2H_FIS_CH1_OFF 8
#define ENT_INT_SRC1_D2H_FIS_CH1_MSK (0x1 << ENT_INT_SRC1_D2H_FIS_CH1_OFF)
#define ENT_INT_SRC2 0x1bc
#define ENT_INT_SRC3 0x1c0
#define ENT_INT_SRC3_WP_DEPTH_OFF 8
#define ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF 9
#define ENT_INT_SRC3_RP_DEPTH_OFF 10
#define ENT_INT_SRC3_AXI_OFF 11
#define ENT_INT_SRC3_FIFO_OFF 12
#define ENT_INT_SRC3_LM_OFF 14
#define ENT_INT_SRC3_ITC_INT_OFF 15
#define ENT_INT_SRC3_ITC_INT_MSK (0x1 << ENT_INT_SRC3_ITC_INT_OFF)
#define ENT_INT_SRC3_ABT_OFF 16
#define ENT_INT_SRC3_DQE_POISON_OFF 18
#define ENT_INT_SRC3_IOST_POISON_OFF 19
#define ENT_INT_SRC3_ITCT_POISON_OFF 20
#define ENT_INT_SRC3_ITCT_NCQ_POISON_OFF 21
#define ENT_INT_SRC_MSK1 0x1c4
#define ENT_INT_SRC_MSK2 0x1c8
#define ENT_INT_SRC_MSK3 0x1cc
#define ENT_INT_SRC_MSK3_ENT95_MSK_OFF 31
#define CHNL_PHYUPDOWN_INT_MSK 0x1d0
#define CHNL_ENT_INT_MSK 0x1d4
#define HGC_COM_INT_MSK 0x1d8
#define ENT_INT_SRC_MSK3_ENT95_MSK_MSK (0x1 << ENT_INT_SRC_MSK3_ENT95_MSK_OFF)
#define SAS_ECC_INTR 0x1e8
#define SAS_ECC_INTR_DQE_ECC_1B_OFF 0
#define SAS_ECC_INTR_DQE_ECC_MB_OFF 1
#define SAS_ECC_INTR_IOST_ECC_1B_OFF 2
#define SAS_ECC_INTR_IOST_ECC_MB_OFF 3
#define SAS_ECC_INTR_ITCT_ECC_1B_OFF 4
#define SAS_ECC_INTR_ITCT_ECC_MB_OFF 5
#define SAS_ECC_INTR_ITCTLIST_ECC_1B_OFF 6
#define SAS_ECC_INTR_ITCTLIST_ECC_MB_OFF 7
#define SAS_ECC_INTR_IOSTLIST_ECC_1B_OFF 8
#define SAS_ECC_INTR_IOSTLIST_ECC_MB_OFF 9
#define SAS_ECC_INTR_CQE_ECC_1B_OFF 10
#define SAS_ECC_INTR_CQE_ECC_MB_OFF 11
#define SAS_ECC_INTR_NCQ_MEM0_ECC_1B_OFF 12
#define SAS_ECC_INTR_NCQ_MEM0_ECC_MB_OFF 13
#define SAS_ECC_INTR_NCQ_MEM1_ECC_1B_OFF 14
#define SAS_ECC_INTR_NCQ_MEM1_ECC_MB_OFF 15
#define SAS_ECC_INTR_NCQ_MEM2_ECC_1B_OFF 16
#define SAS_ECC_INTR_NCQ_MEM2_ECC_MB_OFF 17
#define SAS_ECC_INTR_NCQ_MEM3_ECC_1B_OFF 18
#define SAS_ECC_INTR_NCQ_MEM3_ECC_MB_OFF 19
#define SAS_ECC_INTR_OOO_RAM_ECC_1B_OFF 20
#define SAS_ECC_INTR_OOO_RAM_ECC_MB_OFF 21
#define SAS_ECC_INTR_MSK 0x1ec
#define HGC_ERR_STAT_EN 0x238
#define CQE_SEND_CNT 0x248
#define DLVRY_Q_0_BASE_ADDR_LO 0x260
#define DLVRY_Q_0_BASE_ADDR_HI 0x264
#define DLVRY_Q_0_DEPTH 0x268
#define DLVRY_Q_0_WR_PTR 0x26c
#define DLVRY_Q_0_RD_PTR 0x270
#define HYPER_STREAM_ID_EN_CFG 0xc80
#define OQ0_INT_SRC_MSK 0xc90
#define COMPL_Q_0_BASE_ADDR_LO 0x4e0
#define COMPL_Q_0_BASE_ADDR_HI 0x4e4
#define COMPL_Q_0_DEPTH 0x4e8
#define COMPL_Q_0_WR_PTR 0x4ec
#define COMPL_Q_0_RD_PTR 0x4f0
#define HGC_RXM_DFX_STATUS14 0xae8
#define HGC_RXM_DFX_STATUS14_MEM0_OFF 0
#define HGC_RXM_DFX_STATUS14_MEM0_MSK (0x1ff << \
HGC_RXM_DFX_STATUS14_MEM0_OFF)
#define HGC_RXM_DFX_STATUS14_MEM1_OFF 9
#define HGC_RXM_DFX_STATUS14_MEM1_MSK (0x1ff << \
HGC_RXM_DFX_STATUS14_MEM1_OFF)
#define HGC_RXM_DFX_STATUS14_MEM2_OFF 18
#define HGC_RXM_DFX_STATUS14_MEM2_MSK (0x1ff << \
HGC_RXM_DFX_STATUS14_MEM2_OFF)
#define HGC_RXM_DFX_STATUS15 0xaec
#define HGC_RXM_DFX_STATUS15_MEM3_OFF 0
#define HGC_RXM_DFX_STATUS15_MEM3_MSK (0x1ff << \
HGC_RXM_DFX_STATUS15_MEM3_OFF)
#define AWQOS_AWCACHE_CFG 0xc84
#define ARQOS_ARCACHE_CFG 0xc88
#define HILINK_ERR_DFX 0xe04
#define SAS_GPIO_CFG_0 0x1000
#define SAS_GPIO_CFG_1 0x1004
#define SAS_GPIO_TX_0_1 0x1040
#define SAS_CFG_DRIVE_VLD 0x1070
/* phy registers requiring init */
#define PORT_BASE (0x2000)
#define PHY_CFG (PORT_BASE + 0x0)
#define HARD_PHY_LINKRATE (PORT_BASE + 0x4)
#define PHY_CFG_ENA_OFF 0
#define PHY_CFG_ENA_MSK (0x1 << PHY_CFG_ENA_OFF)
#define PHY_CFG_DC_OPT_OFF 2
#define PHY_CFG_DC_OPT_MSK (0x1 << PHY_CFG_DC_OPT_OFF)
#define PHY_CFG_PHY_RST_OFF 3
#define PHY_CFG_PHY_RST_MSK (0x1 << PHY_CFG_PHY_RST_OFF)
#define PROG_PHY_LINK_RATE (PORT_BASE + 0x8)
#define CFG_PROG_PHY_LINK_RATE_OFF 8
#define CFG_PROG_PHY_LINK_RATE_MSK (0xf << CFG_PROG_PHY_LINK_RATE_OFF)
#define PHY_CTRL (PORT_BASE + 0x14)
#define PHY_CTRL_RESET_OFF 0
#define PHY_CTRL_RESET_MSK (0x1 << PHY_CTRL_RESET_OFF)
#define CMD_HDR_PIR_OFF 8
#define CMD_HDR_PIR_MSK (0x1 << CMD_HDR_PIR_OFF)
#define SERDES_CFG (PORT_BASE + 0x1c)
#define CFG_ALOS_CHK_DISABLE_OFF 9
#define CFG_ALOS_CHK_DISABLE_MSK (0x1 << CFG_ALOS_CHK_DISABLE_OFF)
#define SAS_PHY_BIST_CTRL (PORT_BASE + 0x2c)
#define CFG_BIST_MODE_SEL_OFF 0
#define CFG_BIST_MODE_SEL_MSK (0xf << CFG_BIST_MODE_SEL_OFF)
#define CFG_LOOP_TEST_MODE_OFF 14
#define CFG_LOOP_TEST_MODE_MSK (0x3 << CFG_LOOP_TEST_MODE_OFF)
#define CFG_RX_BIST_EN_OFF 16
#define CFG_RX_BIST_EN_MSK (0x1 << CFG_RX_BIST_EN_OFF)
#define CFG_TX_BIST_EN_OFF 17
#define CFG_TX_BIST_EN_MSK (0x1 << CFG_TX_BIST_EN_OFF)
#define CFG_BIST_TEST_OFF 18
#define CFG_BIST_TEST_MSK (0x1 << CFG_BIST_TEST_OFF)
#define SAS_PHY_BIST_CODE (PORT_BASE + 0x30)
#define SAS_PHY_BIST_CODE1 (PORT_BASE + 0x34)
#define SAS_BIST_ERR_CNT (PORT_BASE + 0x38)
#define SL_CFG (PORT_BASE + 0x84)
#define AIP_LIMIT (PORT_BASE + 0x90)
#define SL_CONTROL (PORT_BASE + 0x94)
#define SL_CONTROL_NOTIFY_EN_OFF 0
#define SL_CONTROL_NOTIFY_EN_MSK (0x1 << SL_CONTROL_NOTIFY_EN_OFF)
#define SL_CTA_OFF 17
#define SL_CTA_MSK (0x1 << SL_CTA_OFF)
#define RX_PRIMS_STATUS (PORT_BASE + 0x98)
#define RX_BCAST_CHG_OFF 1
#define RX_BCAST_CHG_MSK (0x1 << RX_BCAST_CHG_OFF)
#define TX_ID_DWORD0 (PORT_BASE + 0x9c)
#define TX_ID_DWORD1 (PORT_BASE + 0xa0)
#define TX_ID_DWORD2 (PORT_BASE + 0xa4)
#define TX_ID_DWORD3 (PORT_BASE + 0xa8)
#define TX_ID_DWORD4 (PORT_BASE + 0xaC)
#define TX_ID_DWORD5 (PORT_BASE + 0xb0)
#define TX_ID_DWORD6 (PORT_BASE + 0xb4)
#define TXID_AUTO (PORT_BASE + 0xb8)
#define CT3_OFF 1
#define CT3_MSK (0x1 << CT3_OFF)
#define TX_HARDRST_OFF 2
#define TX_HARDRST_MSK (0x1 << TX_HARDRST_OFF)
#define RX_IDAF_DWORD0 (PORT_BASE + 0xc4)
#define RXOP_CHECK_CFG_H (PORT_BASE + 0xfc)
#define STP_LINK_TIMER (PORT_BASE + 0x120)
#define STP_LINK_TIMEOUT_STATE (PORT_BASE + 0x124)
#define CON_CFG_DRIVER (PORT_BASE + 0x130)
#define SAS_SSP_CON_TIMER_CFG (PORT_BASE + 0x134)
#define SAS_SMP_CON_TIMER_CFG (PORT_BASE + 0x138)
#define SAS_STP_CON_TIMER_CFG (PORT_BASE + 0x13c)
#define CHL_INT0 (PORT_BASE + 0x1b4)
#define CHL_INT0_HOTPLUG_TOUT_OFF 0
#define CHL_INT0_HOTPLUG_TOUT_MSK (0x1 << CHL_INT0_HOTPLUG_TOUT_OFF)
#define CHL_INT0_SL_RX_BCST_ACK_OFF 1
#define CHL_INT0_SL_RX_BCST_ACK_MSK (0x1 << CHL_INT0_SL_RX_BCST_ACK_OFF)
#define CHL_INT0_SL_PHY_ENABLE_OFF 2
#define CHL_INT0_SL_PHY_ENABLE_MSK (0x1 << CHL_INT0_SL_PHY_ENABLE_OFF)
#define CHL_INT0_NOT_RDY_OFF 4
#define CHL_INT0_NOT_RDY_MSK (0x1 << CHL_INT0_NOT_RDY_OFF)
#define CHL_INT0_PHY_RDY_OFF 5
#define CHL_INT0_PHY_RDY_MSK (0x1 << CHL_INT0_PHY_RDY_OFF)
#define CHL_INT1 (PORT_BASE + 0x1b8)
#define CHL_INT1_DMAC_TX_ECC_MB_ERR_OFF 15
#define CHL_INT1_DMAC_TX_ECC_1B_ERR_OFF 16
#define CHL_INT1_DMAC_RX_ECC_MB_ERR_OFF 17
#define CHL_INT1_DMAC_RX_ECC_1B_ERR_OFF 18
#define CHL_INT1_DMAC_TX_AXI_WR_ERR_OFF 19
#define CHL_INT1_DMAC_TX_AXI_RD_ERR_OFF 20
#define CHL_INT1_DMAC_RX_AXI_WR_ERR_OFF 21
#define CHL_INT1_DMAC_RX_AXI_RD_ERR_OFF 22
#define CHL_INT1_DMAC_TX_FIFO_ERR_OFF 23
#define CHL_INT1_DMAC_RX_FIFO_ERR_OFF 24
#define CHL_INT1_DMAC_TX_AXI_RUSER_ERR_OFF 26
#define CHL_INT1_DMAC_RX_AXI_RUSER_ERR_OFF 27
#define CHL_INT2 (PORT_BASE + 0x1bc)
#define CHL_INT2_SL_IDAF_TOUT_CONF_OFF 0
#define CHL_INT2_RX_DISP_ERR_OFF 28
#define CHL_INT2_RX_CODE_ERR_OFF 29
#define CHL_INT2_RX_INVLD_DW_OFF 30
#define CHL_INT2_STP_LINK_TIMEOUT_OFF 31
#define CHL_INT0_MSK (PORT_BASE + 0x1c0)
#define CHL_INT1_MSK (PORT_BASE + 0x1c4)
#define CHL_INT2_MSK (PORT_BASE + 0x1c8)
#define SAS_EC_INT_COAL_TIME (PORT_BASE + 0x1cc)
#define CHL_INT_COAL_EN (PORT_BASE + 0x1d0)
#define SAS_RX_TRAIN_TIMER (PORT_BASE + 0x2a4)
#define PHY_CTRL_RDY_MSK (PORT_BASE + 0x2b0)
#define PHYCTRL_NOT_RDY_MSK (PORT_BASE + 0x2b4)
#define PHYCTRL_DWS_RESET_MSK (PORT_BASE + 0x2b8)
#define PHYCTRL_PHY_ENA_MSK (PORT_BASE + 0x2bc)
#define SL_RX_BCAST_CHK_MSK (PORT_BASE + 0x2c0)
#define PHYCTRL_OOB_RESTART_MSK (PORT_BASE + 0x2c4)
#define DMA_TX_STATUS (PORT_BASE + 0x2d0)
#define DMA_TX_STATUS_BUSY_OFF 0
#define DMA_TX_STATUS_BUSY_MSK (0x1 << DMA_TX_STATUS_BUSY_OFF)
#define DMA_RX_STATUS (PORT_BASE + 0x2e8)
#define DMA_RX_STATUS_BUSY_OFF 0
#define DMA_RX_STATUS_BUSY_MSK (0x1 << DMA_RX_STATUS_BUSY_OFF)
#define COARSETUNE_TIME (PORT_BASE + 0x304)
#define ERR_CNT_DWS_LOST (PORT_BASE + 0x380)
#define ERR_CNT_RESET_PROB (PORT_BASE + 0x384)
#define ERR_CNT_INVLD_DW (PORT_BASE + 0x390)
#define ERR_CNT_CODE_ERR (PORT_BASE + 0x394)
#define ERR_CNT_DISP_ERR (PORT_BASE + 0x398)
#define DEFAULT_ITCT_HW 2048 /* reset value, not reprogrammed */
#if (HISI_SAS_MAX_DEVICES > DEFAULT_ITCT_HW)
#error Max ITCT exceeded
#endif
#define AXI_MASTER_CFG_BASE (0x5000)
#define AM_CTRL_GLOBAL (0x0)
#define AM_CTRL_SHUTDOWN_REQ_OFF 0
#define AM_CTRL_SHUTDOWN_REQ_MSK (0x1 << AM_CTRL_SHUTDOWN_REQ_OFF)
#define AM_CURR_TRANS_RETURN (0x150)
#define AM_CFG_MAX_TRANS (0x5010)
#define AM_CFG_SINGLE_PORT_MAX_TRANS (0x5014)
#define AXI_CFG (0x5100)
#define AM_ROB_ECC_ERR_ADDR (0x510c)
#define AM_ROB_ECC_ERR_ADDR_OFF 0
#define AM_ROB_ECC_ERR_ADDR_MSK 0xffffffff
/* RAS registers need init */
#define RAS_BASE (0x6000)
#define SAS_RAS_INTR0 (RAS_BASE)
#define SAS_RAS_INTR1 (RAS_BASE + 0x04)
#define SAS_RAS_INTR0_MASK (RAS_BASE + 0x08)
#define SAS_RAS_INTR1_MASK (RAS_BASE + 0x0c)
#define CFG_SAS_RAS_INTR_MASK (RAS_BASE + 0x1c)
#define SAS_RAS_INTR2 (RAS_BASE + 0x20)
#define SAS_RAS_INTR2_MASK (RAS_BASE + 0x24)
/* HW dma structures */
/* Delivery queue header */
/* dw0 */
#define CMD_HDR_ABORT_FLAG_OFF 0
#define CMD_HDR_ABORT_FLAG_MSK (0x3 << CMD_HDR_ABORT_FLAG_OFF)
#define CMD_HDR_ABORT_DEVICE_TYPE_OFF 2
#define CMD_HDR_ABORT_DEVICE_TYPE_MSK (0x1 << CMD_HDR_ABORT_DEVICE_TYPE_OFF)
#define CMD_HDR_RESP_REPORT_OFF 5
#define CMD_HDR_RESP_REPORT_MSK (0x1 << CMD_HDR_RESP_REPORT_OFF)
#define CMD_HDR_TLR_CTRL_OFF 6
#define CMD_HDR_TLR_CTRL_MSK (0x3 << CMD_HDR_TLR_CTRL_OFF)
#define CMD_HDR_PORT_OFF 18
#define CMD_HDR_PORT_MSK (0xf << CMD_HDR_PORT_OFF)
#define CMD_HDR_PRIORITY_OFF 27
#define CMD_HDR_PRIORITY_MSK (0x1 << CMD_HDR_PRIORITY_OFF)
#define CMD_HDR_CMD_OFF 29
#define CMD_HDR_CMD_MSK (0x7 << CMD_HDR_CMD_OFF)
/* dw1 */
#define CMD_HDR_UNCON_CMD_OFF 3
#define CMD_HDR_DIR_OFF 5
#define CMD_HDR_DIR_MSK (0x3 << CMD_HDR_DIR_OFF)
#define CMD_HDR_RESET_OFF 7
#define CMD_HDR_RESET_MSK (0x1 << CMD_HDR_RESET_OFF)
#define CMD_HDR_VDTL_OFF 10
#define CMD_HDR_VDTL_MSK (0x1 << CMD_HDR_VDTL_OFF)
#define CMD_HDR_FRAME_TYPE_OFF 11
#define CMD_HDR_FRAME_TYPE_MSK (0x1f << CMD_HDR_FRAME_TYPE_OFF)
#define CMD_HDR_DEV_ID_OFF 16
#define CMD_HDR_DEV_ID_MSK (0xffff << CMD_HDR_DEV_ID_OFF)
/* dw2 */
#define CMD_HDR_CFL_OFF 0
#define CMD_HDR_CFL_MSK (0x1ff << CMD_HDR_CFL_OFF)
#define CMD_HDR_NCQ_TAG_OFF 10
#define CMD_HDR_NCQ_TAG_MSK (0x1f << CMD_HDR_NCQ_TAG_OFF)
#define CMD_HDR_MRFL_OFF 15
#define CMD_HDR_MRFL_MSK (0x1ff << CMD_HDR_MRFL_OFF)
#define CMD_HDR_SG_MOD_OFF 24
#define CMD_HDR_SG_MOD_MSK (0x3 << CMD_HDR_SG_MOD_OFF)
/* dw3 */
#define CMD_HDR_IPTT_OFF 0
#define CMD_HDR_IPTT_MSK (0xffff << CMD_HDR_IPTT_OFF)
/* dw6 */
#define CMD_HDR_DIF_SGL_LEN_OFF 0
#define CMD_HDR_DIF_SGL_LEN_MSK (0xffff << CMD_HDR_DIF_SGL_LEN_OFF)
#define CMD_HDR_DATA_SGL_LEN_OFF 16
#define CMD_HDR_DATA_SGL_LEN_MSK (0xffff << CMD_HDR_DATA_SGL_LEN_OFF)
/* dw7 */
#define CMD_HDR_ADDR_MODE_SEL_OFF 15
#define CMD_HDR_ADDR_MODE_SEL_MSK (1 << CMD_HDR_ADDR_MODE_SEL_OFF)
#define CMD_HDR_ABORT_IPTT_OFF 16
#define CMD_HDR_ABORT_IPTT_MSK (0xffff << CMD_HDR_ABORT_IPTT_OFF)
/* Completion header */
/* dw0 */
#define CMPLT_HDR_CMPLT_OFF 0
#define CMPLT_HDR_CMPLT_MSK (0x3 << CMPLT_HDR_CMPLT_OFF)
#define CMPLT_HDR_ERROR_PHASE_OFF 2
#define CMPLT_HDR_ERROR_PHASE_MSK (0xff << CMPLT_HDR_ERROR_PHASE_OFF)
#define CMPLT_HDR_RSPNS_XFRD_OFF 10
#define CMPLT_HDR_RSPNS_XFRD_MSK (0x1 << CMPLT_HDR_RSPNS_XFRD_OFF)
#define CMPLT_HDR_ERX_OFF 12
#define CMPLT_HDR_ERX_MSK (0x1 << CMPLT_HDR_ERX_OFF)
#define CMPLT_HDR_ABORT_STAT_OFF 13
#define CMPLT_HDR_ABORT_STAT_MSK (0x7 << CMPLT_HDR_ABORT_STAT_OFF)
/* abort_stat */
#define STAT_IO_NOT_VALID 0x1
#define STAT_IO_NO_DEVICE 0x2
#define STAT_IO_COMPLETE 0x3
#define STAT_IO_ABORTED 0x4
/* dw1 */
#define CMPLT_HDR_IPTT_OFF 0
#define CMPLT_HDR_IPTT_MSK (0xffff << CMPLT_HDR_IPTT_OFF)
#define CMPLT_HDR_DEV_ID_OFF 16
#define CMPLT_HDR_DEV_ID_MSK (0xffff << CMPLT_HDR_DEV_ID_OFF)
/* dw3 */
#define CMPLT_HDR_IO_IN_TARGET_OFF 17
#define CMPLT_HDR_IO_IN_TARGET_MSK (0x1 << CMPLT_HDR_IO_IN_TARGET_OFF)
/* ITCT header */
/* qw0 */
#define ITCT_HDR_DEV_TYPE_OFF 0
#define ITCT_HDR_DEV_TYPE_MSK (0x3 << ITCT_HDR_DEV_TYPE_OFF)
#define ITCT_HDR_VALID_OFF 2
#define ITCT_HDR_VALID_MSK (0x1 << ITCT_HDR_VALID_OFF)
#define ITCT_HDR_MCR_OFF 5
#define ITCT_HDR_MCR_MSK (0xf << ITCT_HDR_MCR_OFF)
#define ITCT_HDR_VLN_OFF 9
#define ITCT_HDR_VLN_MSK (0xf << ITCT_HDR_VLN_OFF)
#define ITCT_HDR_SMP_TIMEOUT_OFF 16
#define ITCT_HDR_AWT_CONTINUE_OFF 25
#define ITCT_HDR_PORT_ID_OFF 28
#define ITCT_HDR_PORT_ID_MSK (0xf << ITCT_HDR_PORT_ID_OFF)
/* qw2 */
#define ITCT_HDR_INLT_OFF 0
#define ITCT_HDR_INLT_MSK (0xffffULL << ITCT_HDR_INLT_OFF)
#define ITCT_HDR_RTOLT_OFF 48
#define ITCT_HDR_RTOLT_MSK (0xffffULL << ITCT_HDR_RTOLT_OFF)
struct hisi_sas_protect_iu_v3_hw {
u32 dw0;
u32 lbrtcv;
u32 lbrtgv;
u32 dw3;
u32 dw4;
u32 dw5;
u32 rsv;
};
struct hisi_sas_complete_v3_hdr {
__le32 dw0;
__le32 dw1;
__le32 act;
__le32 dw3;
};
struct hisi_sas_err_record_v3 {
/* dw0 */
__le32 trans_tx_fail_type;
/* dw1 */
__le32 trans_rx_fail_type;
/* dw2 */
__le16 dma_tx_err_type;
__le16 sipc_rx_err_type;
/* dw3 */
__le32 dma_rx_err_type;
};
#define RX_DATA_LEN_UNDERFLOW_OFF 6
#define RX_DATA_LEN_UNDERFLOW_MSK (1 << RX_DATA_LEN_UNDERFLOW_OFF)
#define HISI_SAS_COMMAND_ENTRIES_V3_HW 4096
#define HISI_SAS_MSI_COUNT_V3_HW 32
#define DIR_NO_DATA 0
#define DIR_TO_INI 1
#define DIR_TO_DEVICE 2
#define DIR_RESERVED 3
#define FIS_CMD_IS_UNCONSTRAINED(fis) \
((fis.command == ATA_CMD_READ_LOG_EXT) || \
(fis.command == ATA_CMD_READ_LOG_DMA_EXT) || \
((fis.command == ATA_CMD_DEV_RESET) && \
((fis.control & ATA_SRST) != 0)))
#define T10_INSRT_EN_OFF 0
#define T10_INSRT_EN_MSK (1 << T10_INSRT_EN_OFF)
#define T10_RMV_EN_OFF 1
#define T10_RMV_EN_MSK (1 << T10_RMV_EN_OFF)
#define T10_RPLC_EN_OFF 2
#define T10_RPLC_EN_MSK (1 << T10_RPLC_EN_OFF)
#define T10_CHK_EN_OFF 3
#define T10_CHK_EN_MSK (1 << T10_CHK_EN_OFF)
#define INCR_LBRT_OFF 5
#define INCR_LBRT_MSK (1 << INCR_LBRT_OFF)
#define USR_DATA_BLOCK_SZ_OFF 20
#define USR_DATA_BLOCK_SZ_MSK (0x3 << USR_DATA_BLOCK_SZ_OFF)
#define T10_CHK_MSK_OFF 16
#define T10_CHK_REF_TAG_MSK (0xf0 << T10_CHK_MSK_OFF)
#define T10_CHK_APP_TAG_MSK (0xc << T10_CHK_MSK_OFF)
#define BASE_VECTORS_V3_HW 16
#define MIN_AFFINE_VECTORS_V3_HW (BASE_VECTORS_V3_HW + 1)
enum {
DSM_FUNC_ERR_HANDLE_MSI = 0,
};
static bool hisi_sas_intr_conv;
MODULE_PARM_DESC(intr_conv, "interrupt converge enable (0-1)");
/* permit overriding the host protection capabilities mask (EEDP/T10 PI) */
static int prot_mask;
module_param(prot_mask, int, 0);
MODULE_PARM_DESC(prot_mask, " host protection capabilities mask, def=0x0 ");
static bool auto_affine_msi_experimental;
module_param(auto_affine_msi_experimental, bool, 0444);
MODULE_PARM_DESC(auto_affine_msi_experimental, "Enable auto-affinity of MSI IRQs as experimental:\n"
"default is off");
static u32 hisi_sas_read32(struct hisi_hba *hisi_hba, u32 off)
{
void __iomem *regs = hisi_hba->regs + off;
return readl(regs);
}
static void hisi_sas_write32(struct hisi_hba *hisi_hba, u32 off, u32 val)
{
void __iomem *regs = hisi_hba->regs + off;
writel(val, regs);
}
static void hisi_sas_phy_write32(struct hisi_hba *hisi_hba, int phy_no,
u32 off, u32 val)
{
void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off;
writel(val, regs);
}
static u32 hisi_sas_phy_read32(struct hisi_hba *hisi_hba,
int phy_no, u32 off)
{
void __iomem *regs = hisi_hba->regs + (0x400 * phy_no) + off;
return readl(regs);
}
#define hisi_sas_read32_poll_timeout(off, val, cond, delay_us, \
timeout_us) \
({ \
void __iomem *regs = hisi_hba->regs + off; \
readl_poll_timeout(regs, val, cond, delay_us, timeout_us); \
})
#define hisi_sas_read32_poll_timeout_atomic(off, val, cond, delay_us, \
timeout_us) \
({ \
void __iomem *regs = hisi_hba->regs + off; \
readl_poll_timeout_atomic(regs, val, cond, delay_us, timeout_us);\
})
static void init_reg_v3_hw(struct hisi_hba *hisi_hba)
{
int i;
/* Global registers init */
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE,
(u32)((1ULL << hisi_hba->queue_count) - 1));
hisi_sas_write32(hisi_hba, SAS_AXI_USER3, 0);
hisi_sas_write32(hisi_hba, CFG_MAX_TAG, 0xfff0400);
hisi_sas_write32(hisi_hba, HGC_SAS_TXFAIL_RETRY_CTRL, 0x108);
hisi_sas_write32(hisi_hba, CFG_AGING_TIME, 0x1);
hisi_sas_write32(hisi_hba, INT_COAL_EN, 0x1);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_TIME, 0x1);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_CNT, 0x1);
hisi_sas_write32(hisi_hba, CQ_INT_CONVERGE_EN,
hisi_sas_intr_conv);
hisi_sas_write32(hisi_hba, OQ_INT_SRC, 0xffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC1, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC2, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC3, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0xfefefefe);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0xfefefefe);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0xffc220ff);
hisi_sas_write32(hisi_hba, CHNL_PHYUPDOWN_INT_MSK, 0x0);
hisi_sas_write32(hisi_hba, CHNL_ENT_INT_MSK, 0x0);
hisi_sas_write32(hisi_hba, HGC_COM_INT_MSK, 0x0);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0x155555);
hisi_sas_write32(hisi_hba, AWQOS_AWCACHE_CFG, 0xf0f0);
hisi_sas_write32(hisi_hba, ARQOS_ARCACHE_CFG, 0xf0f0);
for (i = 0; i < hisi_hba->queue_count; i++)
hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK+0x4*i, 0);
hisi_sas_write32(hisi_hba, HYPER_STREAM_ID_EN_CFG, 1);
for (i = 0; i < hisi_hba->n_phy; i++) {
struct hisi_sas_phy *phy = &hisi_hba->phy[i];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
u32 prog_phy_link_rate = 0x800;
if (!sas_phy->phy || (sas_phy->phy->maximum_linkrate <
SAS_LINK_RATE_1_5_GBPS)) {
prog_phy_link_rate = 0x855;
} else {
enum sas_linkrate max = sas_phy->phy->maximum_linkrate;
prog_phy_link_rate =
hisi_sas_get_prog_phy_linkrate_mask(max) |
0x800;
}
hisi_sas_phy_write32(hisi_hba, i, PROG_PHY_LINK_RATE,
prog_phy_link_rate);
hisi_sas_phy_write32(hisi_hba, i, SERDES_CFG, 0xffc00);
hisi_sas_phy_write32(hisi_hba, i, SAS_RX_TRAIN_TIMER, 0x13e80);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT0, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT1, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT2, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, RXOP_CHECK_CFG_H, 0x1000);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xf2057fff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0xffffbfe);
hisi_sas_phy_write32(hisi_hba, i, PHY_CTRL_RDY_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_NOT_RDY_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_DWS_RESET_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_PHY_ENA_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, SL_RX_BCAST_CHK_MSK, 0x0);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_OOB_RESTART_MSK, 0x1);
hisi_sas_phy_write32(hisi_hba, i, STP_LINK_TIMER, 0x7f7a120);
hisi_sas_phy_write32(hisi_hba, i, CON_CFG_DRIVER, 0x2a0a01);
hisi_sas_phy_write32(hisi_hba, i, SAS_SSP_CON_TIMER_CFG, 0x32);
hisi_sas_phy_write32(hisi_hba, i, SAS_EC_INT_COAL_TIME,
0x30f4240);
/* used for 12G negotiate */
hisi_sas_phy_write32(hisi_hba, i, COARSETUNE_TIME, 0x1e);
hisi_sas_phy_write32(hisi_hba, i, AIP_LIMIT, 0x2ffff);
}
for (i = 0; i < hisi_hba->queue_count; i++) {
/* Delivery queue */
hisi_sas_write32(hisi_hba,
DLVRY_Q_0_BASE_ADDR_HI + (i * 0x14),
upper_32_bits(hisi_hba->cmd_hdr_dma[i]));
hisi_sas_write32(hisi_hba, DLVRY_Q_0_BASE_ADDR_LO + (i * 0x14),
lower_32_bits(hisi_hba->cmd_hdr_dma[i]));
hisi_sas_write32(hisi_hba, DLVRY_Q_0_DEPTH + (i * 0x14),
HISI_SAS_QUEUE_SLOTS);
/* Completion queue */
hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_HI + (i * 0x14),
upper_32_bits(hisi_hba->complete_hdr_dma[i]));
hisi_sas_write32(hisi_hba, COMPL_Q_0_BASE_ADDR_LO + (i * 0x14),
lower_32_bits(hisi_hba->complete_hdr_dma[i]));
hisi_sas_write32(hisi_hba, COMPL_Q_0_DEPTH + (i * 0x14),
HISI_SAS_QUEUE_SLOTS);
}
/* itct */
hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_LO,
lower_32_bits(hisi_hba->itct_dma));
hisi_sas_write32(hisi_hba, ITCT_BASE_ADDR_HI,
upper_32_bits(hisi_hba->itct_dma));
/* iost */
hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_LO,
lower_32_bits(hisi_hba->iost_dma));
hisi_sas_write32(hisi_hba, IOST_BASE_ADDR_HI,
upper_32_bits(hisi_hba->iost_dma));
/* breakpoint */
hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_LO,
lower_32_bits(hisi_hba->breakpoint_dma));
hisi_sas_write32(hisi_hba, IO_BROKEN_MSG_ADDR_HI,
upper_32_bits(hisi_hba->breakpoint_dma));
/* SATA broken msg */
hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_LO,
lower_32_bits(hisi_hba->sata_breakpoint_dma));
hisi_sas_write32(hisi_hba, IO_SATA_BROKEN_MSG_ADDR_HI,
upper_32_bits(hisi_hba->sata_breakpoint_dma));
/* SATA initial fis */
hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_LO,
lower_32_bits(hisi_hba->initial_fis_dma));
hisi_sas_write32(hisi_hba, SATA_INITI_D2H_STORE_ADDR_HI,
upper_32_bits(hisi_hba->initial_fis_dma));
/* RAS registers init */
hisi_sas_write32(hisi_hba, SAS_RAS_INTR0_MASK, 0x0);
hisi_sas_write32(hisi_hba, SAS_RAS_INTR1_MASK, 0x0);
hisi_sas_write32(hisi_hba, SAS_RAS_INTR2_MASK, 0x0);
hisi_sas_write32(hisi_hba, CFG_SAS_RAS_INTR_MASK, 0x0);
/* LED registers init */
hisi_sas_write32(hisi_hba, SAS_CFG_DRIVE_VLD, 0x80000ff);
hisi_sas_write32(hisi_hba, SAS_GPIO_TX_0_1, 0x80808080);
hisi_sas_write32(hisi_hba, SAS_GPIO_TX_0_1 + 0x4, 0x80808080);
/* Configure blink generator rate A to 1Hz and B to 4Hz */
hisi_sas_write32(hisi_hba, SAS_GPIO_CFG_1, 0x121700);
hisi_sas_write32(hisi_hba, SAS_GPIO_CFG_0, 0x800000);
}
static void config_phy_opt_mode_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG);
cfg &= ~PHY_CFG_DC_OPT_MSK;
cfg |= 1 << PHY_CFG_DC_OPT_OFF;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
}
static void config_id_frame_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
struct sas_identify_frame identify_frame;
u32 *identify_buffer;
memset(&identify_frame, 0, sizeof(identify_frame));
identify_frame.dev_type = SAS_END_DEVICE;
identify_frame.frame_type = 0;
identify_frame._un1 = 1;
identify_frame.initiator_bits = SAS_PROTOCOL_ALL;
identify_frame.target_bits = SAS_PROTOCOL_NONE;
memcpy(&identify_frame._un4_11[0], hisi_hba->sas_addr, SAS_ADDR_SIZE);
memcpy(&identify_frame.sas_addr[0], hisi_hba->sas_addr, SAS_ADDR_SIZE);
identify_frame.phy_id = phy_no;
identify_buffer = (u32 *)(&identify_frame);
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD0,
__swab32(identify_buffer[0]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD1,
__swab32(identify_buffer[1]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD2,
__swab32(identify_buffer[2]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD3,
__swab32(identify_buffer[3]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD4,
__swab32(identify_buffer[4]));
hisi_sas_phy_write32(hisi_hba, phy_no, TX_ID_DWORD5,
__swab32(identify_buffer[5]));
}
static void setup_itct_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_device *sas_dev)
{
struct domain_device *device = sas_dev->sas_device;
struct device *dev = hisi_hba->dev;
u64 qw0, device_id = sas_dev->device_id;
struct hisi_sas_itct *itct = &hisi_hba->itct[device_id];
struct domain_device *parent_dev = device->parent;
struct asd_sas_port *sas_port = device->port;
struct hisi_sas_port *port = to_hisi_sas_port(sas_port);
u64 sas_addr;
memset(itct, 0, sizeof(*itct));
/* qw0 */
qw0 = 0;
switch (sas_dev->dev_type) {
case SAS_END_DEVICE:
case SAS_EDGE_EXPANDER_DEVICE:
case SAS_FANOUT_EXPANDER_DEVICE:
qw0 = HISI_SAS_DEV_TYPE_SSP << ITCT_HDR_DEV_TYPE_OFF;
break;
case SAS_SATA_DEV:
case SAS_SATA_PENDING:
if (parent_dev && dev_is_expander(parent_dev->dev_type))
qw0 = HISI_SAS_DEV_TYPE_STP << ITCT_HDR_DEV_TYPE_OFF;
else
qw0 = HISI_SAS_DEV_TYPE_SATA << ITCT_HDR_DEV_TYPE_OFF;
break;
default:
dev_warn(dev, "setup itct: unsupported dev type (%d)\n",
sas_dev->dev_type);
}
qw0 |= ((1 << ITCT_HDR_VALID_OFF) |
(device->linkrate << ITCT_HDR_MCR_OFF) |
(1 << ITCT_HDR_VLN_OFF) |
(0xfa << ITCT_HDR_SMP_TIMEOUT_OFF) |
(1 << ITCT_HDR_AWT_CONTINUE_OFF) |
(port->id << ITCT_HDR_PORT_ID_OFF));
itct->qw0 = cpu_to_le64(qw0);
/* qw1 */
memcpy(&sas_addr, device->sas_addr, SAS_ADDR_SIZE);
itct->sas_addr = cpu_to_le64(__swab64(sas_addr));
/* qw2 */
if (!dev_is_sata(device))
itct->qw2 = cpu_to_le64((5000ULL << ITCT_HDR_INLT_OFF) |
(0x1ULL << ITCT_HDR_RTOLT_OFF));
}
static void clear_itct_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_device *sas_dev)
{
DECLARE_COMPLETION_ONSTACK(completion);
u64 dev_id = sas_dev->device_id;
struct hisi_sas_itct *itct = &hisi_hba->itct[dev_id];
u32 reg_val = hisi_sas_read32(hisi_hba, ENT_INT_SRC3);
sas_dev->completion = &completion;
/* clear the itct interrupt state */
if (ENT_INT_SRC3_ITC_INT_MSK & reg_val)
hisi_sas_write32(hisi_hba, ENT_INT_SRC3,
ENT_INT_SRC3_ITC_INT_MSK);
/* clear the itct table */
reg_val = ITCT_CLR_EN_MSK | (dev_id & ITCT_DEV_MSK);
hisi_sas_write32(hisi_hba, ITCT_CLR, reg_val);
wait_for_completion(sas_dev->completion);
memset(itct, 0, sizeof(struct hisi_sas_itct));
}
static void dereg_device_v3_hw(struct hisi_hba *hisi_hba,
struct domain_device *device)
{
struct hisi_sas_slot *slot, *slot2;
struct hisi_sas_device *sas_dev = device->lldd_dev;
u32 cfg_abt_set_query_iptt;
cfg_abt_set_query_iptt = hisi_sas_read32(hisi_hba,
CFG_ABT_SET_QUERY_IPTT);
list_for_each_entry_safe(slot, slot2, &sas_dev->list, entry) {
cfg_abt_set_query_iptt &= ~CFG_SET_ABORTED_IPTT_MSK;
cfg_abt_set_query_iptt |= (1 << CFG_SET_ABORTED_EN_OFF) |
(slot->idx << CFG_SET_ABORTED_IPTT_OFF);
hisi_sas_write32(hisi_hba, CFG_ABT_SET_QUERY_IPTT,
cfg_abt_set_query_iptt);
}
cfg_abt_set_query_iptt &= ~(1 << CFG_SET_ABORTED_EN_OFF);
hisi_sas_write32(hisi_hba, CFG_ABT_SET_QUERY_IPTT,
cfg_abt_set_query_iptt);
hisi_sas_write32(hisi_hba, CFG_ABT_SET_IPTT_DONE,
1 << CFG_ABT_SET_IPTT_DONE_OFF);
}
static int reset_hw_v3_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
int ret;
u32 val;
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0);
/* Disable all of the PHYs */
hisi_sas_stop_phys(hisi_hba);
udelay(50);
/* Ensure axi bus idle */
ret = hisi_sas_read32_poll_timeout(AXI_CFG, val, !val,
20000, 1000000);
if (ret) {
dev_err(dev, "axi bus is not idle, ret = %d!\n", ret);
return -EIO;
}
if (ACPI_HANDLE(dev)) {
acpi_status s;
s = acpi_evaluate_object(ACPI_HANDLE(dev), "_RST", NULL, NULL);
if (ACPI_FAILURE(s)) {
dev_err(dev, "Reset failed\n");
return -EIO;
}
} else {
dev_err(dev, "no reset method!\n");
return -EINVAL;
}
return 0;
}
static int hw_init_v3_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
union acpi_object *obj;
guid_t guid;
int rc;
rc = reset_hw_v3_hw(hisi_hba);
if (rc) {
dev_err(dev, "hisi_sas_reset_hw failed, rc=%d", rc);
return rc;
}
msleep(100);
init_reg_v3_hw(hisi_hba);
if (guid_parse("D5918B4B-37AE-4E10-A99F-E5E8A6EF4C1F", &guid)) {
dev_err(dev, "Parse GUID failed\n");
return -EINVAL;
}
/* Switch over to MSI handling , from PCI AER default */
obj = acpi_evaluate_dsm(ACPI_HANDLE(dev), &guid, 0,
DSM_FUNC_ERR_HANDLE_MSI, NULL);
if (!obj)
dev_warn(dev, "Switch over to MSI handling failed\n");
else
ACPI_FREE(obj);
return 0;
}
static void enable_phy_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG);
cfg |= PHY_CFG_ENA_MSK;
cfg &= ~PHY_CFG_PHY_RST_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
}
static void disable_phy_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 cfg = hisi_sas_phy_read32(hisi_hba, phy_no, PHY_CFG);
u32 irq_msk = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT2_MSK);
static const u32 msk = BIT(CHL_INT2_RX_DISP_ERR_OFF) |
BIT(CHL_INT2_RX_CODE_ERR_OFF) |
BIT(CHL_INT2_RX_INVLD_DW_OFF);
u32 state;
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT2_MSK, msk | irq_msk);
cfg &= ~PHY_CFG_ENA_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
mdelay(50);
state = hisi_sas_read32(hisi_hba, PHY_STATE);
if (state & BIT(phy_no)) {
cfg |= PHY_CFG_PHY_RST_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, PHY_CFG, cfg);
}
udelay(1);
hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_INVLD_DW);
hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_DISP_ERR);
hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_CODE_ERR);
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT2, msk);
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT2_MSK, irq_msk);
}
static void start_phy_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
config_id_frame_v3_hw(hisi_hba, phy_no);
config_phy_opt_mode_v3_hw(hisi_hba, phy_no);
enable_phy_v3_hw(hisi_hba, phy_no);
}
static void phy_hard_reset_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
u32 txid_auto;
hisi_sas_phy_enable(hisi_hba, phy_no, 0);
if (phy->identify.device_type == SAS_END_DEVICE) {
txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO);
hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO,
txid_auto | TX_HARDRST_MSK);
}
msleep(100);
hisi_sas_phy_enable(hisi_hba, phy_no, 1);
}
static enum sas_linkrate phy_get_max_linkrate_v3_hw(void)
{
return SAS_LINK_RATE_12_0_GBPS;
}
static void phys_init_v3_hw(struct hisi_hba *hisi_hba)
{
int i;
for (i = 0; i < hisi_hba->n_phy; i++) {
struct hisi_sas_phy *phy = &hisi_hba->phy[i];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
if (!sas_phy->phy->enabled)
continue;
hisi_sas_phy_enable(hisi_hba, i, 1);
}
}
static void sl_notify_ssp_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 sl_control;
sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL);
sl_control |= SL_CONTROL_NOTIFY_EN_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control);
msleep(1);
sl_control = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL);
sl_control &= ~SL_CONTROL_NOTIFY_EN_MSK;
hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL, sl_control);
}
static int get_wideport_bitmap_v3_hw(struct hisi_hba *hisi_hba, int port_id)
{
int i, bitmap = 0;
u32 phy_port_num_ma = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA);
u32 phy_state = hisi_sas_read32(hisi_hba, PHY_STATE);
for (i = 0; i < hisi_hba->n_phy; i++)
if (phy_state & BIT(i))
if (((phy_port_num_ma >> (i * 4)) & 0xf) == port_id)
bitmap |= BIT(i);
return bitmap;
}
static void start_delivery_v3_hw(struct hisi_sas_dq *dq)
{
struct hisi_hba *hisi_hba = dq->hisi_hba;
struct hisi_sas_slot *s, *s1, *s2 = NULL;
int dlvry_queue = dq->id;
int wp;
list_for_each_entry_safe(s, s1, &dq->list, delivery) {
if (!s->ready)
break;
s2 = s;
list_del(&s->delivery);
}
if (!s2)
return;
/*
* Ensure that memories for slots built on other CPUs is observed.
*/
smp_rmb();
wp = (s2->dlvry_queue_slot + 1) % HISI_SAS_QUEUE_SLOTS;
hisi_sas_write32(hisi_hba, DLVRY_Q_0_WR_PTR + (dlvry_queue * 0x14), wp);
}
static void prep_prd_sge_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot,
struct hisi_sas_cmd_hdr *hdr,
struct scatterlist *scatter,
int n_elem)
{
struct hisi_sas_sge_page *sge_page = hisi_sas_sge_addr_mem(slot);
struct scatterlist *sg;
int i;
for_each_sg(scatter, sg, n_elem, i) {
struct hisi_sas_sge *entry = &sge_page->sge[i];
entry->addr = cpu_to_le64(sg_dma_address(sg));
entry->page_ctrl_0 = entry->page_ctrl_1 = 0;
entry->data_len = cpu_to_le32(sg_dma_len(sg));
entry->data_off = 0;
}
hdr->prd_table_addr = cpu_to_le64(hisi_sas_sge_addr_dma(slot));
hdr->sg_len |= cpu_to_le32(n_elem << CMD_HDR_DATA_SGL_LEN_OFF);
}
static void prep_prd_sge_dif_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot,
struct hisi_sas_cmd_hdr *hdr,
struct scatterlist *scatter,
int n_elem)
{
struct hisi_sas_sge_dif_page *sge_dif_page;
struct scatterlist *sg;
int i;
sge_dif_page = hisi_sas_sge_dif_addr_mem(slot);
for_each_sg(scatter, sg, n_elem, i) {
struct hisi_sas_sge *entry = &sge_dif_page->sge[i];
entry->addr = cpu_to_le64(sg_dma_address(sg));
entry->page_ctrl_0 = 0;
entry->page_ctrl_1 = 0;
entry->data_len = cpu_to_le32(sg_dma_len(sg));
entry->data_off = 0;
}
hdr->dif_prd_table_addr =
cpu_to_le64(hisi_sas_sge_dif_addr_dma(slot));
hdr->sg_len |= cpu_to_le32(n_elem << CMD_HDR_DIF_SGL_LEN_OFF);
}
static u32 get_prot_chk_msk_v3_hw(struct scsi_cmnd *scsi_cmnd)
{
unsigned char prot_flags = scsi_cmnd->prot_flags;
if (prot_flags & SCSI_PROT_REF_CHECK)
return T10_CHK_APP_TAG_MSK;
return T10_CHK_REF_TAG_MSK | T10_CHK_APP_TAG_MSK;
}
static void fill_prot_v3_hw(struct scsi_cmnd *scsi_cmnd,
struct hisi_sas_protect_iu_v3_hw *prot)
{
unsigned char prot_op = scsi_get_prot_op(scsi_cmnd);
unsigned int interval = scsi_prot_interval(scsi_cmnd);
u32 lbrt_chk_val = t10_pi_ref_tag(scsi_cmnd->request);
switch (prot_op) {
case SCSI_PROT_READ_INSERT:
prot->dw0 |= T10_INSRT_EN_MSK;
prot->lbrtgv = lbrt_chk_val;
break;
case SCSI_PROT_READ_STRIP:
prot->dw0 |= (T10_RMV_EN_MSK | T10_CHK_EN_MSK);
prot->lbrtcv = lbrt_chk_val;
prot->dw4 |= get_prot_chk_msk_v3_hw(scsi_cmnd);
break;
case SCSI_PROT_READ_PASS:
prot->dw0 |= T10_CHK_EN_MSK;
prot->lbrtcv = lbrt_chk_val;
prot->dw4 |= get_prot_chk_msk_v3_hw(scsi_cmnd);
break;
case SCSI_PROT_WRITE_INSERT:
prot->dw0 |= T10_INSRT_EN_MSK;
prot->lbrtgv = lbrt_chk_val;
break;
case SCSI_PROT_WRITE_STRIP:
prot->dw0 |= (T10_RMV_EN_MSK | T10_CHK_EN_MSK);
prot->lbrtcv = lbrt_chk_val;
break;
case SCSI_PROT_WRITE_PASS:
prot->dw0 |= T10_CHK_EN_MSK;
prot->lbrtcv = lbrt_chk_val;
prot->dw4 |= get_prot_chk_msk_v3_hw(scsi_cmnd);
break;
default:
WARN(1, "prot_op(0x%x) is not valid\n", prot_op);
break;
}
switch (interval) {
case 512:
break;
case 4096:
prot->dw0 |= (0x1 << USR_DATA_BLOCK_SZ_OFF);
break;
case 520:
prot->dw0 |= (0x2 << USR_DATA_BLOCK_SZ_OFF);
break;
default:
WARN(1, "protection interval (0x%x) invalid\n",
interval);
break;
}
prot->dw0 |= INCR_LBRT_MSK;
}
static void prep_ssp_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct domain_device *device = task->dev;
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_sas_port *port = slot->port;
struct sas_ssp_task *ssp_task = &task->ssp_task;
struct scsi_cmnd *scsi_cmnd = ssp_task->cmd;
struct hisi_sas_tmf_task *tmf = slot->tmf;
int has_data = 0, priority = !!tmf;
unsigned char prot_op;
u8 *buf_cmd;
u32 dw1 = 0, dw2 = 0, len = 0;
hdr->dw0 = cpu_to_le32((1 << CMD_HDR_RESP_REPORT_OFF) |
(2 << CMD_HDR_TLR_CTRL_OFF) |
(port->id << CMD_HDR_PORT_OFF) |
(priority << CMD_HDR_PRIORITY_OFF) |
(1 << CMD_HDR_CMD_OFF)); /* ssp */
dw1 = 1 << CMD_HDR_VDTL_OFF;
if (tmf) {
dw1 |= 2 << CMD_HDR_FRAME_TYPE_OFF;
dw1 |= DIR_NO_DATA << CMD_HDR_DIR_OFF;
} else {
prot_op = scsi_get_prot_op(scsi_cmnd);
dw1 |= 1 << CMD_HDR_FRAME_TYPE_OFF;
switch (scsi_cmnd->sc_data_direction) {
case DMA_TO_DEVICE:
has_data = 1;
dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF;
break;
case DMA_FROM_DEVICE:
has_data = 1;
dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF;
break;
default:
dw1 &= ~CMD_HDR_DIR_MSK;
}
}
/* map itct entry */
dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF;
dw2 = (((sizeof(struct ssp_command_iu) + sizeof(struct ssp_frame_hdr)
+ 3) / 4) << CMD_HDR_CFL_OFF) |
((HISI_SAS_MAX_SSP_RESP_SZ / 4) << CMD_HDR_MRFL_OFF) |
(2 << CMD_HDR_SG_MOD_OFF);
hdr->dw2 = cpu_to_le32(dw2);
hdr->transfer_tags = cpu_to_le32(slot->idx);
if (has_data) {
prep_prd_sge_v3_hw(hisi_hba, slot, hdr, task->scatter,
slot->n_elem);
if (scsi_prot_sg_count(scsi_cmnd))
prep_prd_sge_dif_v3_hw(hisi_hba, slot, hdr,
scsi_prot_sglist(scsi_cmnd),
slot->n_elem_dif);
}
hdr->cmd_table_addr = cpu_to_le64(hisi_sas_cmd_hdr_addr_dma(slot));
hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot));
buf_cmd = hisi_sas_cmd_hdr_addr_mem(slot) +
sizeof(struct ssp_frame_hdr);
memcpy(buf_cmd, &task->ssp_task.LUN, 8);
if (!tmf) {
buf_cmd[9] = ssp_task->task_attr | (ssp_task->task_prio << 3);
memcpy(buf_cmd + 12, scsi_cmnd->cmnd, scsi_cmnd->cmd_len);
} else {
buf_cmd[10] = tmf->tmf;
switch (tmf->tmf) {
case TMF_ABORT_TASK:
case TMF_QUERY_TASK:
buf_cmd[12] =
(tmf->tag_of_task_to_be_managed >> 8) & 0xff;
buf_cmd[13] =
tmf->tag_of_task_to_be_managed & 0xff;
break;
default:
break;
}
}
if (has_data && (prot_op != SCSI_PROT_NORMAL)) {
struct hisi_sas_protect_iu_v3_hw prot;
u8 *buf_cmd_prot;
hdr->dw7 |= cpu_to_le32(1 << CMD_HDR_ADDR_MODE_SEL_OFF);
dw1 |= CMD_HDR_PIR_MSK;
buf_cmd_prot = hisi_sas_cmd_hdr_addr_mem(slot) +
sizeof(struct ssp_frame_hdr) +
sizeof(struct ssp_command_iu);
memset(&prot, 0, sizeof(struct hisi_sas_protect_iu_v3_hw));
fill_prot_v3_hw(scsi_cmnd, &prot);
memcpy(buf_cmd_prot, &prot,
sizeof(struct hisi_sas_protect_iu_v3_hw));
/*
* For READ, we need length of info read to memory, while for
* WRITE we need length of data written to the disk.
*/
if (prot_op == SCSI_PROT_WRITE_INSERT ||
prot_op == SCSI_PROT_READ_INSERT ||
prot_op == SCSI_PROT_WRITE_PASS ||
prot_op == SCSI_PROT_READ_PASS) {
unsigned int interval = scsi_prot_interval(scsi_cmnd);
unsigned int ilog2_interval = ilog2(interval);
len = (task->total_xfer_len >> ilog2_interval) * 8;
}
}
hdr->dw1 = cpu_to_le32(dw1);
hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len + len);
}
static void prep_smp_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct domain_device *device = task->dev;
struct hisi_sas_port *port = slot->port;
struct scatterlist *sg_req;
struct hisi_sas_device *sas_dev = device->lldd_dev;
dma_addr_t req_dma_addr;
unsigned int req_len;
/* req */
sg_req = &task->smp_task.smp_req;
req_len = sg_dma_len(sg_req);
req_dma_addr = sg_dma_address(sg_req);
/* create header */
/* dw0 */
hdr->dw0 = cpu_to_le32((port->id << CMD_HDR_PORT_OFF) |
(1 << CMD_HDR_PRIORITY_OFF) | /* high pri */
(2 << CMD_HDR_CMD_OFF)); /* smp */
/* map itct entry */
hdr->dw1 = cpu_to_le32((sas_dev->device_id << CMD_HDR_DEV_ID_OFF) |
(1 << CMD_HDR_FRAME_TYPE_OFF) |
(DIR_NO_DATA << CMD_HDR_DIR_OFF));
/* dw2 */
hdr->dw2 = cpu_to_le32((((req_len - 4) / 4) << CMD_HDR_CFL_OFF) |
(HISI_SAS_MAX_SMP_RESP_SZ / 4 <<
CMD_HDR_MRFL_OFF));
hdr->transfer_tags = cpu_to_le32(slot->idx << CMD_HDR_IPTT_OFF);
hdr->cmd_table_addr = cpu_to_le64(req_dma_addr);
hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot));
}
static void prep_ata_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct domain_device *device = task->dev;
struct domain_device *parent_dev = device->parent;
struct hisi_sas_device *sas_dev = device->lldd_dev;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct asd_sas_port *sas_port = device->port;
struct hisi_sas_port *port = to_hisi_sas_port(sas_port);
u8 *buf_cmd;
int has_data = 0, hdr_tag = 0;
u32 dw1 = 0, dw2 = 0;
hdr->dw0 = cpu_to_le32(port->id << CMD_HDR_PORT_OFF);
if (parent_dev && dev_is_expander(parent_dev->dev_type))
hdr->dw0 |= cpu_to_le32(3 << CMD_HDR_CMD_OFF);
else
hdr->dw0 |= cpu_to_le32(4U << CMD_HDR_CMD_OFF);
switch (task->data_dir) {
case DMA_TO_DEVICE:
has_data = 1;
dw1 |= DIR_TO_DEVICE << CMD_HDR_DIR_OFF;
break;
case DMA_FROM_DEVICE:
has_data = 1;
dw1 |= DIR_TO_INI << CMD_HDR_DIR_OFF;
break;
default:
dw1 &= ~CMD_HDR_DIR_MSK;
}
if ((task->ata_task.fis.command == ATA_CMD_DEV_RESET) &&
(task->ata_task.fis.control & ATA_SRST))
dw1 |= 1 << CMD_HDR_RESET_OFF;
dw1 |= (hisi_sas_get_ata_protocol(
&task->ata_task.fis, task->data_dir))
<< CMD_HDR_FRAME_TYPE_OFF;
dw1 |= sas_dev->device_id << CMD_HDR_DEV_ID_OFF;
if (FIS_CMD_IS_UNCONSTRAINED(task->ata_task.fis))
dw1 |= 1 << CMD_HDR_UNCON_CMD_OFF;
hdr->dw1 = cpu_to_le32(dw1);
/* dw2 */
if (task->ata_task.use_ncq) {
struct ata_queued_cmd *qc = task->uldd_task;
hdr_tag = qc->tag;
task->ata_task.fis.sector_count |= (u8) (hdr_tag << 3);
dw2 |= hdr_tag << CMD_HDR_NCQ_TAG_OFF;
}
dw2 |= (HISI_SAS_MAX_STP_RESP_SZ / 4) << CMD_HDR_CFL_OFF |
2 << CMD_HDR_SG_MOD_OFF;
hdr->dw2 = cpu_to_le32(dw2);
/* dw3 */
hdr->transfer_tags = cpu_to_le32(slot->idx);
if (has_data)
prep_prd_sge_v3_hw(hisi_hba, slot, hdr, task->scatter,
slot->n_elem);
hdr->data_transfer_len = cpu_to_le32(task->total_xfer_len);
hdr->cmd_table_addr = cpu_to_le64(hisi_sas_cmd_hdr_addr_dma(slot));
hdr->sts_buffer_addr = cpu_to_le64(hisi_sas_status_buf_addr_dma(slot));
buf_cmd = hisi_sas_cmd_hdr_addr_mem(slot);
if (likely(!task->ata_task.device_control_reg_update))
task->ata_task.fis.flags |= 0x80; /* C=1: update ATA cmd reg */
/* fill in command FIS */
memcpy(buf_cmd, &task->ata_task.fis, sizeof(struct host_to_dev_fis));
}
static void prep_abort_v3_hw(struct hisi_hba *hisi_hba,
struct hisi_sas_slot *slot,
int device_id, int abort_flag, int tag_to_abort)
{
struct sas_task *task = slot->task;
struct domain_device *dev = task->dev;
struct hisi_sas_cmd_hdr *hdr = slot->cmd_hdr;
struct hisi_sas_port *port = slot->port;
/* dw0 */
hdr->dw0 = cpu_to_le32((5U << CMD_HDR_CMD_OFF) | /*abort*/
(port->id << CMD_HDR_PORT_OFF) |
(dev_is_sata(dev)
<< CMD_HDR_ABORT_DEVICE_TYPE_OFF) |
(abort_flag
<< CMD_HDR_ABORT_FLAG_OFF));
/* dw1 */
hdr->dw1 = cpu_to_le32(device_id
<< CMD_HDR_DEV_ID_OFF);
/* dw7 */
hdr->dw7 = cpu_to_le32(tag_to_abort << CMD_HDR_ABORT_IPTT_OFF);
hdr->transfer_tags = cpu_to_le32(slot->idx);
}
static irqreturn_t phy_up_v3_hw(int phy_no, struct hisi_hba *hisi_hba)
{
int i;
irqreturn_t res;
u32 context, port_id, link_rate;
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct device *dev = hisi_hba->dev;
unsigned long flags;
del_timer(&phy->timer);
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 1);
port_id = hisi_sas_read32(hisi_hba, PHY_PORT_NUM_MA);
port_id = (port_id >> (4 * phy_no)) & 0xf;
link_rate = hisi_sas_read32(hisi_hba, PHY_CONN_RATE);
link_rate = (link_rate >> (phy_no * 4)) & 0xf;
if (port_id == 0xf) {
dev_err(dev, "phyup: phy%d invalid portid\n", phy_no);
res = IRQ_NONE;
goto end;
}
sas_phy->linkrate = link_rate;
phy->phy_type &= ~(PORT_TYPE_SAS | PORT_TYPE_SATA);
/* Check for SATA dev */
context = hisi_sas_read32(hisi_hba, PHY_CONTEXT);
if (context & (1 << phy_no)) {
struct hisi_sas_initial_fis *initial_fis;
struct dev_to_host_fis *fis;
u8 attached_sas_addr[SAS_ADDR_SIZE] = {0};
struct Scsi_Host *shost = hisi_hba->shost;
dev_info(dev, "phyup: phy%d link_rate=%d(sata)\n", phy_no, link_rate);
initial_fis = &hisi_hba->initial_fis[phy_no];
fis = &initial_fis->fis;
/* check ERR bit of Status Register */
if (fis->status & ATA_ERR) {
dev_warn(dev, "sata int: phy%d FIS status: 0x%x\n",
phy_no, fis->status);
hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET);
res = IRQ_NONE;
goto end;
}
sas_phy->oob_mode = SATA_OOB_MODE;
attached_sas_addr[0] = 0x50;
attached_sas_addr[6] = shost->host_no;
attached_sas_addr[7] = phy_no;
memcpy(sas_phy->attached_sas_addr,
attached_sas_addr,
SAS_ADDR_SIZE);
memcpy(sas_phy->frame_rcvd, fis,
sizeof(struct dev_to_host_fis));
phy->phy_type |= PORT_TYPE_SATA;
phy->identify.device_type = SAS_SATA_DEV;
phy->frame_rcvd_size = sizeof(struct dev_to_host_fis);
phy->identify.target_port_protocols = SAS_PROTOCOL_SATA;
} else {
u32 *frame_rcvd = (u32 *)sas_phy->frame_rcvd;
struct sas_identify_frame *id =
(struct sas_identify_frame *)frame_rcvd;
dev_info(dev, "phyup: phy%d link_rate=%d\n", phy_no, link_rate);
for (i = 0; i < 6; i++) {
u32 idaf = hisi_sas_phy_read32(hisi_hba, phy_no,
RX_IDAF_DWORD0 + (i * 4));
frame_rcvd[i] = __swab32(idaf);
}
sas_phy->oob_mode = SAS_OOB_MODE;
memcpy(sas_phy->attached_sas_addr,
&id->sas_addr,
SAS_ADDR_SIZE);
phy->phy_type |= PORT_TYPE_SAS;
phy->identify.device_type = id->dev_type;
phy->frame_rcvd_size = sizeof(struct sas_identify_frame);
if (phy->identify.device_type == SAS_END_DEVICE)
phy->identify.target_port_protocols =
SAS_PROTOCOL_SSP;
else if (phy->identify.device_type != SAS_PHY_UNUSED)
phy->identify.target_port_protocols =
SAS_PROTOCOL_SMP;
}
phy->port_id = port_id;
phy->phy_attached = 1;
hisi_sas_notify_phy_event(phy, HISI_PHYE_PHY_UP);
res = IRQ_HANDLED;
spin_lock_irqsave(&phy->lock, flags);
if (phy->reset_completion) {
phy->in_reset = 0;
complete(phy->reset_completion);
}
spin_unlock_irqrestore(&phy->lock, flags);
end:
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0,
CHL_INT0_SL_PHY_ENABLE_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_PHY_ENA_MSK, 0);
return res;
}
static irqreturn_t phy_down_v3_hw(int phy_no, struct hisi_hba *hisi_hba)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
u32 phy_state, sl_ctrl, txid_auto;
struct device *dev = hisi_hba->dev;
del_timer(&phy->timer);
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 1);
phy_state = hisi_sas_read32(hisi_hba, PHY_STATE);
dev_info(dev, "phydown: phy%d phy_state=0x%x\n", phy_no, phy_state);
hisi_sas_phy_down(hisi_hba, phy_no, (phy_state & 1 << phy_no) ? 1 : 0);
sl_ctrl = hisi_sas_phy_read32(hisi_hba, phy_no, SL_CONTROL);
hisi_sas_phy_write32(hisi_hba, phy_no, SL_CONTROL,
sl_ctrl&(~SL_CTA_MSK));
txid_auto = hisi_sas_phy_read32(hisi_hba, phy_no, TXID_AUTO);
hisi_sas_phy_write32(hisi_hba, phy_no, TXID_AUTO,
txid_auto | CT3_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0, CHL_INT0_NOT_RDY_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, PHYCTRL_NOT_RDY_MSK, 0);
return IRQ_HANDLED;
}
static irqreturn_t phy_bcast_v3_hw(int phy_no, struct hisi_hba *hisi_hba)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct sas_ha_struct *sas_ha = &hisi_hba->sha;
u32 bcast_status;
hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 1);
bcast_status = hisi_sas_phy_read32(hisi_hba, phy_no, RX_PRIMS_STATUS);
if ((bcast_status & RX_BCAST_CHG_MSK) &&
!test_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags))
sas_ha->notify_port_event(sas_phy, PORTE_BROADCAST_RCVD);
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0,
CHL_INT0_SL_RX_BCST_ACK_MSK);
hisi_sas_phy_write32(hisi_hba, phy_no, SL_RX_BCAST_CHK_MSK, 0);
return IRQ_HANDLED;
}
static irqreturn_t int_phy_up_down_bcast_v3_hw(int irq_no, void *p)
{
struct hisi_hba *hisi_hba = p;
u32 irq_msk;
int phy_no = 0;
irqreturn_t res = IRQ_NONE;
irq_msk = hisi_sas_read32(hisi_hba, CHNL_INT_STATUS)
& 0x11111111;
while (irq_msk) {
if (irq_msk & 1) {
u32 irq_value = hisi_sas_phy_read32(hisi_hba, phy_no,
CHL_INT0);
u32 phy_state = hisi_sas_read32(hisi_hba, PHY_STATE);
int rdy = phy_state & (1 << phy_no);
if (rdy) {
if (irq_value & CHL_INT0_SL_PHY_ENABLE_MSK)
/* phy up */
if (phy_up_v3_hw(phy_no, hisi_hba)
== IRQ_HANDLED)
res = IRQ_HANDLED;
if (irq_value & CHL_INT0_SL_RX_BCST_ACK_MSK)
/* phy bcast */
if (phy_bcast_v3_hw(phy_no, hisi_hba)
== IRQ_HANDLED)
res = IRQ_HANDLED;
} else {
if (irq_value & CHL_INT0_NOT_RDY_MSK)
/* phy down */
if (phy_down_v3_hw(phy_no, hisi_hba)
== IRQ_HANDLED)
res = IRQ_HANDLED;
}
}
irq_msk >>= 4;
phy_no++;
}
return res;
}
static const struct hisi_sas_hw_error port_axi_error[] = {
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_ECC_MB_ERR_OFF),
.msg = "dmac_tx_ecc_bad_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_ECC_MB_ERR_OFF),
.msg = "dmac_rx_ecc_bad_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_WR_ERR_OFF),
.msg = "dma_tx_axi_wr_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_RD_ERR_OFF),
.msg = "dma_tx_axi_rd_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_WR_ERR_OFF),
.msg = "dma_rx_axi_wr_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_RD_ERR_OFF),
.msg = "dma_rx_axi_rd_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_FIFO_ERR_OFF),
.msg = "dma_tx_fifo_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_FIFO_ERR_OFF),
.msg = "dma_rx_fifo_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_TX_AXI_RUSER_ERR_OFF),
.msg = "dma_tx_axi_ruser_err",
},
{
.irq_msk = BIT(CHL_INT1_DMAC_RX_AXI_RUSER_ERR_OFF),
.msg = "dma_rx_axi_ruser_err",
},
};
static void handle_chl_int1_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 irq_value = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT1);
u32 irq_msk = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT1_MSK);
struct device *dev = hisi_hba->dev;
int i;
irq_value &= ~irq_msk;
if (!irq_value)
return;
for (i = 0; i < ARRAY_SIZE(port_axi_error); i++) {
const struct hisi_sas_hw_error *error = &port_axi_error[i];
if (!(irq_value & error->irq_msk))
continue;
dev_err(dev, "%s error (phy%d 0x%x) found!\n",
error->msg, phy_no, irq_value);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT1, irq_value);
}
static void phy_get_events_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct sas_phy *sphy = sas_phy->phy;
unsigned long flags;
u32 reg_value;
spin_lock_irqsave(&phy->lock, flags);
/* loss dword sync */
reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_DWS_LOST);
sphy->loss_of_dword_sync_count += reg_value;
/* phy reset problem */
reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_RESET_PROB);
sphy->phy_reset_problem_count += reg_value;
/* invalid dword */
reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_INVLD_DW);
sphy->invalid_dword_count += reg_value;
/* disparity err */
reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_DISP_ERR);
sphy->running_disparity_error_count += reg_value;
/* code violation error */
reg_value = hisi_sas_phy_read32(hisi_hba, phy_no, ERR_CNT_CODE_ERR);
phy->code_violation_err_count += reg_value;
spin_unlock_irqrestore(&phy->lock, flags);
}
static void handle_chl_int2_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 irq_msk = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT2_MSK);
u32 irq_value = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT2);
struct hisi_sas_phy *phy = &hisi_hba->phy[phy_no];
struct pci_dev *pci_dev = hisi_hba->pci_dev;
struct device *dev = hisi_hba->dev;
static const u32 msk = BIT(CHL_INT2_RX_DISP_ERR_OFF) |
BIT(CHL_INT2_RX_CODE_ERR_OFF) |
BIT(CHL_INT2_RX_INVLD_DW_OFF);
irq_value &= ~irq_msk;
if (!irq_value)
return;
if (irq_value & BIT(CHL_INT2_SL_IDAF_TOUT_CONF_OFF)) {
dev_warn(dev, "phy%d identify timeout\n", phy_no);
hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET);
}
if (irq_value & BIT(CHL_INT2_STP_LINK_TIMEOUT_OFF)) {
u32 reg_value = hisi_sas_phy_read32(hisi_hba, phy_no,
STP_LINK_TIMEOUT_STATE);
dev_warn(dev, "phy%d stp link timeout (0x%x)\n",
phy_no, reg_value);
if (reg_value & BIT(4))
hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET);
}
if (pci_dev->revision > 0x20 && (irq_value & msk)) {
struct asd_sas_phy *sas_phy = &phy->sas_phy;
struct sas_phy *sphy = sas_phy->phy;
phy_get_events_v3_hw(hisi_hba, phy_no);
if (irq_value & BIT(CHL_INT2_RX_INVLD_DW_OFF))
dev_info(dev, "phy%d invalid dword cnt: %u\n", phy_no,
sphy->invalid_dword_count);
if (irq_value & BIT(CHL_INT2_RX_CODE_ERR_OFF))
dev_info(dev, "phy%d code violation cnt: %u\n", phy_no,
phy->code_violation_err_count);
if (irq_value & BIT(CHL_INT2_RX_DISP_ERR_OFF))
dev_info(dev, "phy%d disparity error cnt: %u\n", phy_no,
sphy->running_disparity_error_count);
}
if ((irq_value & BIT(CHL_INT2_RX_INVLD_DW_OFF)) &&
(pci_dev->revision == 0x20)) {
u32 reg_value;
int rc;
rc = hisi_sas_read32_poll_timeout_atomic(
HILINK_ERR_DFX, reg_value,
!((reg_value >> 8) & BIT(phy_no)),
1000, 10000);
if (rc)
hisi_sas_notify_phy_event(phy, HISI_PHYE_LINK_RESET);
}
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT2, irq_value);
}
static void handle_chl_int0_v3_hw(struct hisi_hba *hisi_hba, int phy_no)
{
u32 irq_value0 = hisi_sas_phy_read32(hisi_hba, phy_no, CHL_INT0);
if (irq_value0 & CHL_INT0_PHY_RDY_MSK)
hisi_sas_phy_oob_ready(hisi_hba, phy_no);
hisi_sas_phy_write32(hisi_hba, phy_no, CHL_INT0,
irq_value0 & (~CHL_INT0_SL_RX_BCST_ACK_MSK)
& (~CHL_INT0_SL_PHY_ENABLE_MSK)
& (~CHL_INT0_NOT_RDY_MSK));
}
static irqreturn_t int_chnl_int_v3_hw(int irq_no, void *p)
{
struct hisi_hba *hisi_hba = p;
u32 irq_msk;
int phy_no = 0;
irq_msk = hisi_sas_read32(hisi_hba, CHNL_INT_STATUS)
& 0xeeeeeeee;
while (irq_msk) {
if (irq_msk & (2 << (phy_no * 4)))
handle_chl_int0_v3_hw(hisi_hba, phy_no);
if (irq_msk & (4 << (phy_no * 4)))
handle_chl_int1_v3_hw(hisi_hba, phy_no);
if (irq_msk & (8 << (phy_no * 4)))
handle_chl_int2_v3_hw(hisi_hba, phy_no);
irq_msk &= ~(0xe << (phy_no * 4));
phy_no++;
}
return IRQ_HANDLED;
}
static const struct hisi_sas_hw_error multi_bit_ecc_errors[] = {
{
.irq_msk = BIT(SAS_ECC_INTR_DQE_ECC_MB_OFF),
.msk = HGC_DQE_ECC_MB_ADDR_MSK,
.shift = HGC_DQE_ECC_MB_ADDR_OFF,
.msg = "hgc_dqe_eccbad_intr",
.reg = HGC_DQE_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_IOST_ECC_MB_OFF),
.msk = HGC_IOST_ECC_MB_ADDR_MSK,
.shift = HGC_IOST_ECC_MB_ADDR_OFF,
.msg = "hgc_iost_eccbad_intr",
.reg = HGC_IOST_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_ITCT_ECC_MB_OFF),
.msk = HGC_ITCT_ECC_MB_ADDR_MSK,
.shift = HGC_ITCT_ECC_MB_ADDR_OFF,
.msg = "hgc_itct_eccbad_intr",
.reg = HGC_ITCT_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_IOSTLIST_ECC_MB_OFF),
.msk = HGC_LM_DFX_STATUS2_IOSTLIST_MSK,
.shift = HGC_LM_DFX_STATUS2_IOSTLIST_OFF,
.msg = "hgc_iostl_eccbad_intr",
.reg = HGC_LM_DFX_STATUS2,
},
{
.irq_msk = BIT(SAS_ECC_INTR_ITCTLIST_ECC_MB_OFF),
.msk = HGC_LM_DFX_STATUS2_ITCTLIST_MSK,
.shift = HGC_LM_DFX_STATUS2_ITCTLIST_OFF,
.msg = "hgc_itctl_eccbad_intr",
.reg = HGC_LM_DFX_STATUS2,
},
{
.irq_msk = BIT(SAS_ECC_INTR_CQE_ECC_MB_OFF),
.msk = HGC_CQE_ECC_MB_ADDR_MSK,
.shift = HGC_CQE_ECC_MB_ADDR_OFF,
.msg = "hgc_cqe_eccbad_intr",
.reg = HGC_CQE_ECC_ADDR,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM0_ECC_MB_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM0_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM0_OFF,
.msg = "rxm_mem0_eccbad_intr",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM1_ECC_MB_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM1_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM1_OFF,
.msg = "rxm_mem1_eccbad_intr",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM2_ECC_MB_OFF),
.msk = HGC_RXM_DFX_STATUS14_MEM2_MSK,
.shift = HGC_RXM_DFX_STATUS14_MEM2_OFF,
.msg = "rxm_mem2_eccbad_intr",
.reg = HGC_RXM_DFX_STATUS14,
},
{
.irq_msk = BIT(SAS_ECC_INTR_NCQ_MEM3_ECC_MB_OFF),
.msk = HGC_RXM_DFX_STATUS15_MEM3_MSK,
.shift = HGC_RXM_DFX_STATUS15_MEM3_OFF,
.msg = "rxm_mem3_eccbad_intr",
.reg = HGC_RXM_DFX_STATUS15,
},
{
.irq_msk = BIT(SAS_ECC_INTR_OOO_RAM_ECC_MB_OFF),
.msk = AM_ROB_ECC_ERR_ADDR_MSK,
.shift = AM_ROB_ECC_ERR_ADDR_OFF,
.msg = "ooo_ram_eccbad_intr",
.reg = AM_ROB_ECC_ERR_ADDR,
},
};
static void multi_bit_ecc_error_process_v3_hw(struct hisi_hba *hisi_hba,
u32 irq_value)
{
struct device *dev = hisi_hba->dev;
const struct hisi_sas_hw_error *ecc_error;
u32 val;
int i;
for (i = 0; i < ARRAY_SIZE(multi_bit_ecc_errors); i++) {
ecc_error = &multi_bit_ecc_errors[i];
if (irq_value & ecc_error->irq_msk) {
val = hisi_sas_read32(hisi_hba, ecc_error->reg);
val &= ecc_error->msk;
val >>= ecc_error->shift;
dev_err(dev, "%s (0x%x) found: mem addr is 0x%08X\n",
ecc_error->msg, irq_value, val);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
}
}
static void fatal_ecc_int_v3_hw(struct hisi_hba *hisi_hba)
{
u32 irq_value, irq_msk;
irq_msk = hisi_sas_read32(hisi_hba, SAS_ECC_INTR_MSK);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0xffffffff);
irq_value = hisi_sas_read32(hisi_hba, SAS_ECC_INTR);
if (irq_value)
multi_bit_ecc_error_process_v3_hw(hisi_hba, irq_value);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR, irq_value);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, irq_msk);
}
static const struct hisi_sas_hw_error axi_error[] = {
{ .msk = BIT(0), .msg = "IOST_AXI_W_ERR" },
{ .msk = BIT(1), .msg = "IOST_AXI_R_ERR" },
{ .msk = BIT(2), .msg = "ITCT_AXI_W_ERR" },
{ .msk = BIT(3), .msg = "ITCT_AXI_R_ERR" },
{ .msk = BIT(4), .msg = "SATA_AXI_W_ERR" },
{ .msk = BIT(5), .msg = "SATA_AXI_R_ERR" },
{ .msk = BIT(6), .msg = "DQE_AXI_R_ERR" },
{ .msk = BIT(7), .msg = "CQE_AXI_W_ERR" },
{}
};
static const struct hisi_sas_hw_error fifo_error[] = {
{ .msk = BIT(8), .msg = "CQE_WINFO_FIFO" },
{ .msk = BIT(9), .msg = "CQE_MSG_FIFIO" },
{ .msk = BIT(10), .msg = "GETDQE_FIFO" },
{ .msk = BIT(11), .msg = "CMDP_FIFO" },
{ .msk = BIT(12), .msg = "AWTCTRL_FIFO" },
{}
};
static const struct hisi_sas_hw_error fatal_axi_error[] = {
{
.irq_msk = BIT(ENT_INT_SRC3_WP_DEPTH_OFF),
.msg = "write pointer and depth",
},
{
.irq_msk = BIT(ENT_INT_SRC3_IPTT_SLOT_NOMATCH_OFF),
.msg = "iptt no match slot",
},
{
.irq_msk = BIT(ENT_INT_SRC3_RP_DEPTH_OFF),
.msg = "read pointer and depth",
},
{
.irq_msk = BIT(ENT_INT_SRC3_AXI_OFF),
.reg = HGC_AXI_FIFO_ERR_INFO,
.sub = axi_error,
},
{
.irq_msk = BIT(ENT_INT_SRC3_FIFO_OFF),
.reg = HGC_AXI_FIFO_ERR_INFO,
.sub = fifo_error,
},
{
.irq_msk = BIT(ENT_INT_SRC3_LM_OFF),
.msg = "LM add/fetch list",
},
{
.irq_msk = BIT(ENT_INT_SRC3_ABT_OFF),
.msg = "SAS_HGC_ABT fetch LM list",
},
{
.irq_msk = BIT(ENT_INT_SRC3_DQE_POISON_OFF),
.msg = "read dqe poison",
},
{
.irq_msk = BIT(ENT_INT_SRC3_IOST_POISON_OFF),
.msg = "read iost poison",
},
{
.irq_msk = BIT(ENT_INT_SRC3_ITCT_POISON_OFF),
.msg = "read itct poison",
},
{
.irq_msk = BIT(ENT_INT_SRC3_ITCT_NCQ_POISON_OFF),
.msg = "read itct ncq poison",
},
};
static irqreturn_t fatal_axi_int_v3_hw(int irq_no, void *p)
{
u32 irq_value, irq_msk;
struct hisi_hba *hisi_hba = p;
struct device *dev = hisi_hba->dev;
struct pci_dev *pdev = hisi_hba->pci_dev;
int i;
irq_msk = hisi_sas_read32(hisi_hba, ENT_INT_SRC_MSK3);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk | 0x1df00);
irq_value = hisi_sas_read32(hisi_hba, ENT_INT_SRC3);
irq_value &= ~irq_msk;
for (i = 0; i < ARRAY_SIZE(fatal_axi_error); i++) {
const struct hisi_sas_hw_error *error = &fatal_axi_error[i];
if (!(irq_value & error->irq_msk))
continue;
if (error->sub) {
const struct hisi_sas_hw_error *sub = error->sub;
u32 err_value = hisi_sas_read32(hisi_hba, error->reg);
for (; sub->msk || sub->msg; sub++) {
if (!(err_value & sub->msk))
continue;
dev_err(dev, "%s error (0x%x) found!\n",
sub->msg, irq_value);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
} else {
dev_err(dev, "%s error (0x%x) found!\n",
error->msg, irq_value);
queue_work(hisi_hba->wq, &hisi_hba->rst_work);
}
if (pdev->revision < 0x21) {
u32 reg_val;
reg_val = hisi_sas_read32(hisi_hba,
AXI_MASTER_CFG_BASE +
AM_CTRL_GLOBAL);
reg_val |= AM_CTRL_SHUTDOWN_REQ_MSK;
hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE +
AM_CTRL_GLOBAL, reg_val);
}
}
fatal_ecc_int_v3_hw(hisi_hba);
if (irq_value & BIT(ENT_INT_SRC3_ITC_INT_OFF)) {
u32 reg_val = hisi_sas_read32(hisi_hba, ITCT_CLR);
u32 dev_id = reg_val & ITCT_DEV_MSK;
struct hisi_sas_device *sas_dev =
&hisi_hba->devices[dev_id];
hisi_sas_write32(hisi_hba, ITCT_CLR, 0);
dev_dbg(dev, "clear ITCT ok\n");
complete(sas_dev->completion);
}
hisi_sas_write32(hisi_hba, ENT_INT_SRC3, irq_value & 0x1df00);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, irq_msk);
return IRQ_HANDLED;
}
static void
slot_err_v3_hw(struct hisi_hba *hisi_hba, struct sas_task *task,
struct hisi_sas_slot *slot)
{
struct task_status_struct *ts = &task->task_status;
struct hisi_sas_complete_v3_hdr *complete_queue =
hisi_hba->complete_hdr[slot->cmplt_queue];
struct hisi_sas_complete_v3_hdr *complete_hdr =
&complete_queue[slot->cmplt_queue_slot];
struct hisi_sas_err_record_v3 *record =
hisi_sas_status_buf_addr_mem(slot);
u32 dma_rx_err_type = le32_to_cpu(record->dma_rx_err_type);
u32 trans_tx_fail_type = le32_to_cpu(record->trans_tx_fail_type);
u32 dw3 = le32_to_cpu(complete_hdr->dw3);
switch (task->task_proto) {
case SAS_PROTOCOL_SSP:
if (dma_rx_err_type & RX_DATA_LEN_UNDERFLOW_MSK) {
ts->residual = trans_tx_fail_type;
ts->stat = SAS_DATA_UNDERRUN;
} else if (dw3 & CMPLT_HDR_IO_IN_TARGET_MSK) {
ts->stat = SAS_QUEUE_FULL;
slot->abort = 1;
} else {
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
}
break;
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
if (dma_rx_err_type & RX_DATA_LEN_UNDERFLOW_MSK) {
ts->residual = trans_tx_fail_type;
ts->stat = SAS_DATA_UNDERRUN;
} else if (dw3 & CMPLT_HDR_IO_IN_TARGET_MSK) {
ts->stat = SAS_PHY_DOWN;
slot->abort = 1;
} else {
ts->stat = SAS_OPEN_REJECT;
ts->open_rej_reason = SAS_OREJ_RSVD_RETRY;
}
hisi_sas_sata_done(task, slot);
break;
case SAS_PROTOCOL_SMP:
ts->stat = SAM_STAT_CHECK_CONDITION;
break;
default:
break;
}
}
static int
slot_complete_v3_hw(struct hisi_hba *hisi_hba, struct hisi_sas_slot *slot)
{
struct sas_task *task = slot->task;
struct hisi_sas_device *sas_dev;
struct device *dev = hisi_hba->dev;
struct task_status_struct *ts;
struct domain_device *device;
struct sas_ha_struct *ha;
enum exec_status sts;
struct hisi_sas_complete_v3_hdr *complete_queue =
hisi_hba->complete_hdr[slot->cmplt_queue];
struct hisi_sas_complete_v3_hdr *complete_hdr =
&complete_queue[slot->cmplt_queue_slot];
unsigned long flags;
bool is_internal = slot->is_internal;
u32 dw0, dw1, dw3;
if (unlikely(!task || !task->lldd_task || !task->dev))
return -EINVAL;
ts = &task->task_status;
device = task->dev;
ha = device->port->ha;
sas_dev = device->lldd_dev;
spin_lock_irqsave(&task->task_state_lock, flags);
task->task_state_flags &=
~(SAS_TASK_STATE_PENDING | SAS_TASK_AT_INITIATOR);
spin_unlock_irqrestore(&task->task_state_lock, flags);
memset(ts, 0, sizeof(*ts));
ts->resp = SAS_TASK_COMPLETE;
if (unlikely(!sas_dev)) {
dev_dbg(dev, "slot complete: port has not device\n");
ts->stat = SAS_PHY_DOWN;
goto out;
}
dw0 = le32_to_cpu(complete_hdr->dw0);
dw1 = le32_to_cpu(complete_hdr->dw1);
dw3 = le32_to_cpu(complete_hdr->dw3);
/*
* Use SAS+TMF status codes
*/
switch ((dw0 & CMPLT_HDR_ABORT_STAT_MSK) >> CMPLT_HDR_ABORT_STAT_OFF) {
case STAT_IO_ABORTED:
/* this IO has been aborted by abort command */
ts->stat = SAS_ABORTED_TASK;
goto out;
case STAT_IO_COMPLETE:
/* internal abort command complete */
ts->stat = TMF_RESP_FUNC_SUCC;
goto out;
case STAT_IO_NO_DEVICE:
ts->stat = TMF_RESP_FUNC_COMPLETE;
goto out;
case STAT_IO_NOT_VALID:
/*
* abort single IO, the controller can't find the IO
*/
ts->stat = TMF_RESP_FUNC_FAILED;
goto out;
default:
break;
}
/* check for erroneous completion */
if ((dw0 & CMPLT_HDR_CMPLT_MSK) == 0x3) {
u32 *error_info = hisi_sas_status_buf_addr_mem(slot);
slot_err_v3_hw(hisi_hba, task, slot);
if (ts->stat != SAS_DATA_UNDERRUN)
dev_info(dev, "erroneous completion iptt=%d task=%pK dev id=%d CQ hdr: 0x%x 0x%x 0x%x 0x%x Error info: 0x%x 0x%x 0x%x 0x%x\n",
slot->idx, task, sas_dev->device_id,
dw0, dw1, complete_hdr->act, dw3,
error_info[0], error_info[1],
error_info[2], error_info[3]);
if (unlikely(slot->abort))
return ts->stat;
goto out;
}
switch (task->task_proto) {
case SAS_PROTOCOL_SSP: {
struct ssp_response_iu *iu =
hisi_sas_status_buf_addr_mem(slot) +
sizeof(struct hisi_sas_err_record);
sas_ssp_task_response(dev, task, iu);
break;
}
case SAS_PROTOCOL_SMP: {
struct scatterlist *sg_resp = &task->smp_task.smp_resp;
void *to = page_address(sg_page(sg_resp));
ts->stat = SAM_STAT_GOOD;
dma_unmap_sg(dev, &task->smp_task.smp_req, 1,
DMA_TO_DEVICE);
memcpy(to + sg_resp->offset,
hisi_sas_status_buf_addr_mem(slot) +
sizeof(struct hisi_sas_err_record),
sg_resp->length);
break;
}
case SAS_PROTOCOL_SATA:
case SAS_PROTOCOL_STP:
case SAS_PROTOCOL_SATA | SAS_PROTOCOL_STP:
ts->stat = SAM_STAT_GOOD;
hisi_sas_sata_done(task, slot);
break;
default:
ts->stat = SAM_STAT_CHECK_CONDITION;
break;
}
if (!slot->port->port_attached) {
dev_warn(dev, "slot complete: port %d has removed\n",
slot->port->sas_port.id);
ts->stat = SAS_PHY_DOWN;
}
out:
sts = ts->stat;
spin_lock_irqsave(&task->task_state_lock, flags);
if (task->task_state_flags & SAS_TASK_STATE_ABORTED) {
spin_unlock_irqrestore(&task->task_state_lock, flags);
dev_info(dev, "slot complete: task(%pK) aborted\n", task);
return SAS_ABORTED_TASK;
}
task->task_state_flags |= SAS_TASK_STATE_DONE;
spin_unlock_irqrestore(&task->task_state_lock, flags);
hisi_sas_slot_task_free(hisi_hba, task, slot);
if (!is_internal && (task->task_proto != SAS_PROTOCOL_SMP)) {
spin_lock_irqsave(&device->done_lock, flags);
if (test_bit(SAS_HA_FROZEN, &ha->state)) {
spin_unlock_irqrestore(&device->done_lock, flags);
dev_info(dev, "slot complete: task(%pK) ignored\n ",
task);
return sts;
}
spin_unlock_irqrestore(&device->done_lock, flags);
}
if (task->task_done)
task->task_done(task);
return sts;
}
static void cq_tasklet_v3_hw(unsigned long val)
{
struct hisi_sas_cq *cq = (struct hisi_sas_cq *)val;
struct hisi_hba *hisi_hba = cq->hisi_hba;
struct hisi_sas_slot *slot;
struct hisi_sas_complete_v3_hdr *complete_queue;
u32 rd_point = cq->rd_point, wr_point;
int queue = cq->id;
complete_queue = hisi_hba->complete_hdr[queue];
wr_point = hisi_sas_read32(hisi_hba, COMPL_Q_0_WR_PTR +
(0x14 * queue));
while (rd_point != wr_point) {
struct hisi_sas_complete_v3_hdr *complete_hdr;
struct device *dev = hisi_hba->dev;
u32 dw1;
int iptt;
complete_hdr = &complete_queue[rd_point];
dw1 = le32_to_cpu(complete_hdr->dw1);
iptt = dw1 & CMPLT_HDR_IPTT_MSK;
if (likely(iptt < HISI_SAS_COMMAND_ENTRIES_V3_HW)) {
slot = &hisi_hba->slot_info[iptt];
slot->cmplt_queue_slot = rd_point;
slot->cmplt_queue = queue;
slot_complete_v3_hw(hisi_hba, slot);
} else
dev_err(dev, "IPTT %d is invalid, discard it.\n", iptt);
if (++rd_point >= HISI_SAS_QUEUE_SLOTS)
rd_point = 0;
}
/* update rd_point */
cq->rd_point = rd_point;
hisi_sas_write32(hisi_hba, COMPL_Q_0_RD_PTR + (0x14 * queue), rd_point);
}
static irqreturn_t cq_interrupt_v3_hw(int irq_no, void *p)
{
struct hisi_sas_cq *cq = p;
struct hisi_hba *hisi_hba = cq->hisi_hba;
int queue = cq->id;
hisi_sas_write32(hisi_hba, OQ_INT_SRC, 1 << queue);
tasklet_schedule(&cq->tasklet);
return IRQ_HANDLED;
}
static void setup_reply_map_v3_hw(struct hisi_hba *hisi_hba, int nvecs)
{
const struct cpumask *mask;
int queue, cpu;
for (queue = 0; queue < nvecs; queue++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[queue];
mask = pci_irq_get_affinity(hisi_hba->pci_dev, queue +
BASE_VECTORS_V3_HW);
if (!mask)
goto fallback;
cq->pci_irq_mask = mask;
for_each_cpu(cpu, mask)
hisi_hba->reply_map[cpu] = queue;
}
return;
fallback:
for_each_possible_cpu(cpu)
hisi_hba->reply_map[cpu] = cpu % hisi_hba->queue_count;
/* Don't clean all CQ masks */
}
static int interrupt_init_v3_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
struct pci_dev *pdev = hisi_hba->pci_dev;
int vectors, rc, i;
int max_msi = HISI_SAS_MSI_COUNT_V3_HW, min_msi;
if (auto_affine_msi_experimental) {
struct irq_affinity desc = {
.pre_vectors = BASE_VECTORS_V3_HW,
};
min_msi = MIN_AFFINE_VECTORS_V3_HW;
hisi_hba->reply_map = devm_kcalloc(dev, nr_cpu_ids,
sizeof(unsigned int),
GFP_KERNEL);
if (!hisi_hba->reply_map)
return -ENOMEM;
vectors = pci_alloc_irq_vectors_affinity(hisi_hba->pci_dev,
min_msi, max_msi,
PCI_IRQ_MSI |
PCI_IRQ_AFFINITY,
&desc);
if (vectors < 0)
return -ENOENT;
setup_reply_map_v3_hw(hisi_hba, vectors - BASE_VECTORS_V3_HW);
} else {
min_msi = max_msi;
vectors = pci_alloc_irq_vectors(hisi_hba->pci_dev, min_msi,
max_msi, PCI_IRQ_MSI);
if (vectors < 0)
return vectors;
}
hisi_hba->cq_nvecs = vectors - BASE_VECTORS_V3_HW;
rc = devm_request_irq(dev, pci_irq_vector(pdev, 1),
int_phy_up_down_bcast_v3_hw, 0,
DRV_NAME " phy", hisi_hba);
if (rc) {
dev_err(dev, "could not request phy interrupt, rc=%d\n", rc);
rc = -ENOENT;
goto free_irq_vectors;
}
rc = devm_request_irq(dev, pci_irq_vector(pdev, 2),
int_chnl_int_v3_hw, 0,
DRV_NAME " channel", hisi_hba);
if (rc) {
dev_err(dev, "could not request chnl interrupt, rc=%d\n", rc);
rc = -ENOENT;
goto free_irq_vectors;
}
rc = devm_request_irq(dev, pci_irq_vector(pdev, 11),
fatal_axi_int_v3_hw, 0,
DRV_NAME " fatal", hisi_hba);
if (rc) {
dev_err(dev, "could not request fatal interrupt, rc=%d\n", rc);
rc = -ENOENT;
goto free_irq_vectors;
}
/* Init tasklets for cq only */
for (i = 0; i < hisi_hba->cq_nvecs; i++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[i];
struct tasklet_struct *t = &cq->tasklet;
int nr = hisi_sas_intr_conv ? 16 : 16 + i;
unsigned long irqflags = hisi_sas_intr_conv ? IRQF_SHARED : 0;
rc = devm_request_irq(dev, pci_irq_vector(pdev, nr),
cq_interrupt_v3_hw, irqflags,
DRV_NAME " cq", cq);
if (rc) {
dev_err(dev, "could not request cq%d interrupt, rc=%d\n",
i, rc);
rc = -ENOENT;
goto free_irq_vectors;
}
tasklet_init(t, cq_tasklet_v3_hw, (unsigned long)cq);
}
return 0;
free_irq_vectors:
pci_free_irq_vectors(pdev);
return rc;
}
static int hisi_sas_v3_init(struct hisi_hba *hisi_hba)
{
int rc;
rc = hw_init_v3_hw(hisi_hba);
if (rc)
return rc;
rc = interrupt_init_v3_hw(hisi_hba);
if (rc)
return rc;
return 0;
}
static void phy_set_linkrate_v3_hw(struct hisi_hba *hisi_hba, int phy_no,
struct sas_phy_linkrates *r)
{
enum sas_linkrate max = r->maximum_linkrate;
u32 prog_phy_link_rate = 0x800;
prog_phy_link_rate |= hisi_sas_get_prog_phy_linkrate_mask(max);
hisi_sas_phy_write32(hisi_hba, phy_no, PROG_PHY_LINK_RATE,
prog_phy_link_rate);
}
static void interrupt_disable_v3_hw(struct hisi_hba *hisi_hba)
{
struct pci_dev *pdev = hisi_hba->pci_dev;
int i;
synchronize_irq(pci_irq_vector(pdev, 1));
synchronize_irq(pci_irq_vector(pdev, 2));
synchronize_irq(pci_irq_vector(pdev, 11));
for (i = 0; i < hisi_hba->queue_count; i++) {
hisi_sas_write32(hisi_hba, OQ0_INT_SRC_MSK + 0x4 * i, 0x1);
synchronize_irq(pci_irq_vector(pdev, i + 16));
}
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK1, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK2, 0xffffffff);
hisi_sas_write32(hisi_hba, ENT_INT_SRC_MSK3, 0xffffffff);
hisi_sas_write32(hisi_hba, SAS_ECC_INTR_MSK, 0xffffffff);
for (i = 0; i < hisi_hba->n_phy; i++) {
hisi_sas_phy_write32(hisi_hba, i, CHL_INT1_MSK, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, CHL_INT2_MSK, 0xffffffff);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_NOT_RDY_MSK, 0x1);
hisi_sas_phy_write32(hisi_hba, i, PHYCTRL_PHY_ENA_MSK, 0x1);
hisi_sas_phy_write32(hisi_hba, i, SL_RX_BCAST_CHK_MSK, 0x1);
}
}
static u32 get_phys_state_v3_hw(struct hisi_hba *hisi_hba)
{
return hisi_sas_read32(hisi_hba, PHY_STATE);
}
static int disable_host_v3_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
u32 status, reg_val;
int rc;
interrupt_disable_v3_hw(hisi_hba);
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0x0);
hisi_sas_kill_tasklets(hisi_hba);
hisi_sas_stop_phys(hisi_hba);
mdelay(10);
reg_val = hisi_sas_read32(hisi_hba, AXI_MASTER_CFG_BASE +
AM_CTRL_GLOBAL);
reg_val |= AM_CTRL_SHUTDOWN_REQ_MSK;
hisi_sas_write32(hisi_hba, AXI_MASTER_CFG_BASE +
AM_CTRL_GLOBAL, reg_val);
/* wait until bus idle */
rc = hisi_sas_read32_poll_timeout(AXI_MASTER_CFG_BASE +
AM_CURR_TRANS_RETURN, status,
status == 0x3, 10, 100);
if (rc) {
dev_err(dev, "axi bus is not idle, rc=%d\n", rc);
return rc;
}
return 0;
}
static int soft_reset_v3_hw(struct hisi_hba *hisi_hba)
{
struct device *dev = hisi_hba->dev;
int rc;
rc = disable_host_v3_hw(hisi_hba);
if (rc) {
dev_err(dev, "soft reset: disable host failed rc=%d\n", rc);
return rc;
}
hisi_sas_init_mem(hisi_hba);
return hw_init_v3_hw(hisi_hba);
}
static int write_gpio_v3_hw(struct hisi_hba *hisi_hba, u8 reg_type,
u8 reg_index, u8 reg_count, u8 *write_data)
{
struct device *dev = hisi_hba->dev;
u32 *data = (u32 *)write_data;
int i;
switch (reg_type) {
case SAS_GPIO_REG_TX:
if ((reg_index + reg_count) > ((hisi_hba->n_phy + 3) / 4)) {
dev_err(dev, "write gpio: invalid reg range[%d, %d]\n",
reg_index, reg_index + reg_count - 1);
return -EINVAL;
}
for (i = 0; i < reg_count; i++)
hisi_sas_write32(hisi_hba,
SAS_GPIO_TX_0_1 + (reg_index + i) * 4,
data[i]);
break;
default:
dev_err(dev, "write gpio: unsupported or bad reg type %d\n",
reg_type);
return -EINVAL;
}
return 0;
}
static void wait_cmds_complete_timeout_v3_hw(struct hisi_hba *hisi_hba,
int delay_ms, int timeout_ms)
{
struct device *dev = hisi_hba->dev;
int entries, entries_old = 0, time;
for (time = 0; time < timeout_ms; time += delay_ms) {
entries = hisi_sas_read32(hisi_hba, CQE_SEND_CNT);
if (entries == entries_old)
break;
entries_old = entries;
msleep(delay_ms);
}
if (time >= timeout_ms) {
dev_dbg(dev, "Wait commands complete timeout!\n");
return;
}
dev_dbg(dev, "wait commands complete %dms\n", time);
}
static ssize_t intr_conv_v3_hw_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return scnprintf(buf, PAGE_SIZE, "%u\n", hisi_sas_intr_conv);
}
static DEVICE_ATTR_RO(intr_conv_v3_hw);
static void config_intr_coal_v3_hw(struct hisi_hba *hisi_hba)
{
/* config those registers between enable and disable PHYs */
hisi_sas_stop_phys(hisi_hba);
if (hisi_hba->intr_coal_ticks == 0 ||
hisi_hba->intr_coal_count == 0) {
hisi_sas_write32(hisi_hba, INT_COAL_EN, 0x1);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_TIME, 0x1);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_CNT, 0x1);
} else {
hisi_sas_write32(hisi_hba, INT_COAL_EN, 0x3);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_TIME,
hisi_hba->intr_coal_ticks);
hisi_sas_write32(hisi_hba, OQ_INT_COAL_CNT,
hisi_hba->intr_coal_count);
}
phys_init_v3_hw(hisi_hba);
}
static ssize_t intr_coal_ticks_v3_hw_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct hisi_hba *hisi_hba = shost_priv(shost);
return scnprintf(buf, PAGE_SIZE, "%u\n",
hisi_hba->intr_coal_ticks);
}
static ssize_t intr_coal_ticks_v3_hw_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct hisi_hba *hisi_hba = shost_priv(shost);
u32 intr_coal_ticks;
int ret;
ret = kstrtou32(buf, 10, &intr_coal_ticks);
if (ret) {
dev_err(dev, "Input data of interrupt coalesce unmatch\n");
return -EINVAL;
}
if (intr_coal_ticks >= BIT(24)) {
dev_err(dev, "intr_coal_ticks must be less than 2^24!\n");
return -EINVAL;
}
hisi_hba->intr_coal_ticks = intr_coal_ticks;
config_intr_coal_v3_hw(hisi_hba);
return count;
}
static DEVICE_ATTR_RW(intr_coal_ticks_v3_hw);
static ssize_t intr_coal_count_v3_hw_show(struct device *dev,
struct device_attribute
*attr, char *buf)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct hisi_hba *hisi_hba = shost_priv(shost);
return scnprintf(buf, PAGE_SIZE, "%u\n",
hisi_hba->intr_coal_count);
}
static ssize_t intr_coal_count_v3_hw_store(struct device *dev,
struct device_attribute
*attr, const char *buf, size_t count)
{
struct Scsi_Host *shost = class_to_shost(dev);
struct hisi_hba *hisi_hba = shost_priv(shost);
u32 intr_coal_count;
int ret;
ret = kstrtou32(buf, 10, &intr_coal_count);
if (ret) {
dev_err(dev, "Input data of interrupt coalesce unmatch\n");
return -EINVAL;
}
if (intr_coal_count >= BIT(8)) {
dev_err(dev, "intr_coal_count must be less than 2^8!\n");
return -EINVAL;
}
hisi_hba->intr_coal_count = intr_coal_count;
config_intr_coal_v3_hw(hisi_hba);
return count;
}
static DEVICE_ATTR_RW(intr_coal_count_v3_hw);
static struct device_attribute *host_attrs_v3_hw[] = {
&dev_attr_phy_event_threshold,
&dev_attr_intr_conv_v3_hw,
&dev_attr_intr_coal_ticks_v3_hw,
&dev_attr_intr_coal_count_v3_hw,
NULL
};
static const struct hisi_sas_debugfs_reg_lu debugfs_port_reg_lu[] = {
HISI_SAS_DEBUGFS_REG(PHY_CFG),
HISI_SAS_DEBUGFS_REG(HARD_PHY_LINKRATE),
HISI_SAS_DEBUGFS_REG(PROG_PHY_LINK_RATE),
HISI_SAS_DEBUGFS_REG(PHY_CTRL),
HISI_SAS_DEBUGFS_REG(SL_CFG),
HISI_SAS_DEBUGFS_REG(AIP_LIMIT),
HISI_SAS_DEBUGFS_REG(SL_CONTROL),
HISI_SAS_DEBUGFS_REG(RX_PRIMS_STATUS),
HISI_SAS_DEBUGFS_REG(TX_ID_DWORD0),
HISI_SAS_DEBUGFS_REG(TX_ID_DWORD1),
HISI_SAS_DEBUGFS_REG(TX_ID_DWORD2),
HISI_SAS_DEBUGFS_REG(TX_ID_DWORD3),
HISI_SAS_DEBUGFS_REG(TX_ID_DWORD4),
HISI_SAS_DEBUGFS_REG(TX_ID_DWORD5),
HISI_SAS_DEBUGFS_REG(TX_ID_DWORD6),
HISI_SAS_DEBUGFS_REG(TXID_AUTO),
HISI_SAS_DEBUGFS_REG(RX_IDAF_DWORD0),
HISI_SAS_DEBUGFS_REG(RXOP_CHECK_CFG_H),
HISI_SAS_DEBUGFS_REG(STP_LINK_TIMER),
HISI_SAS_DEBUGFS_REG(STP_LINK_TIMEOUT_STATE),
HISI_SAS_DEBUGFS_REG(CON_CFG_DRIVER),
HISI_SAS_DEBUGFS_REG(SAS_SSP_CON_TIMER_CFG),
HISI_SAS_DEBUGFS_REG(SAS_SMP_CON_TIMER_CFG),
HISI_SAS_DEBUGFS_REG(SAS_STP_CON_TIMER_CFG),
HISI_SAS_DEBUGFS_REG(CHL_INT0),
HISI_SAS_DEBUGFS_REG(CHL_INT1),
HISI_SAS_DEBUGFS_REG(CHL_INT2),
HISI_SAS_DEBUGFS_REG(CHL_INT0_MSK),
HISI_SAS_DEBUGFS_REG(CHL_INT1_MSK),
HISI_SAS_DEBUGFS_REG(CHL_INT2_MSK),
HISI_SAS_DEBUGFS_REG(SAS_EC_INT_COAL_TIME),
HISI_SAS_DEBUGFS_REG(CHL_INT_COAL_EN),
HISI_SAS_DEBUGFS_REG(SAS_RX_TRAIN_TIMER),
HISI_SAS_DEBUGFS_REG(PHY_CTRL_RDY_MSK),
HISI_SAS_DEBUGFS_REG(PHYCTRL_NOT_RDY_MSK),
HISI_SAS_DEBUGFS_REG(PHYCTRL_DWS_RESET_MSK),
HISI_SAS_DEBUGFS_REG(PHYCTRL_PHY_ENA_MSK),
HISI_SAS_DEBUGFS_REG(SL_RX_BCAST_CHK_MSK),
HISI_SAS_DEBUGFS_REG(PHYCTRL_OOB_RESTART_MSK),
HISI_SAS_DEBUGFS_REG(DMA_TX_STATUS),
HISI_SAS_DEBUGFS_REG(DMA_RX_STATUS),
HISI_SAS_DEBUGFS_REG(COARSETUNE_TIME),
HISI_SAS_DEBUGFS_REG(ERR_CNT_DWS_LOST),
HISI_SAS_DEBUGFS_REG(ERR_CNT_RESET_PROB),
HISI_SAS_DEBUGFS_REG(ERR_CNT_INVLD_DW),
HISI_SAS_DEBUGFS_REG(ERR_CNT_CODE_ERR),
HISI_SAS_DEBUGFS_REG(ERR_CNT_DISP_ERR),
{}
};
static const struct hisi_sas_debugfs_reg debugfs_port_reg = {
.lu = debugfs_port_reg_lu,
.count = 0x100,
.base_off = PORT_BASE,
.read_port_reg = hisi_sas_phy_read32,
};
static const struct hisi_sas_debugfs_reg_lu debugfs_global_reg_lu[] = {
HISI_SAS_DEBUGFS_REG(DLVRY_QUEUE_ENABLE),
HISI_SAS_DEBUGFS_REG(PHY_CONTEXT),
HISI_SAS_DEBUGFS_REG(PHY_STATE),
HISI_SAS_DEBUGFS_REG(PHY_PORT_NUM_MA),
HISI_SAS_DEBUGFS_REG(PHY_CONN_RATE),
HISI_SAS_DEBUGFS_REG(ITCT_CLR),
HISI_SAS_DEBUGFS_REG(IO_SATA_BROKEN_MSG_ADDR_LO),
HISI_SAS_DEBUGFS_REG(IO_SATA_BROKEN_MSG_ADDR_HI),
HISI_SAS_DEBUGFS_REG(SATA_INITI_D2H_STORE_ADDR_LO),
HISI_SAS_DEBUGFS_REG(SATA_INITI_D2H_STORE_ADDR_HI),
HISI_SAS_DEBUGFS_REG(CFG_MAX_TAG),
HISI_SAS_DEBUGFS_REG(HGC_SAS_TX_OPEN_FAIL_RETRY_CTRL),
HISI_SAS_DEBUGFS_REG(HGC_SAS_TXFAIL_RETRY_CTRL),
HISI_SAS_DEBUGFS_REG(HGC_GET_ITV_TIME),
HISI_SAS_DEBUGFS_REG(DEVICE_MSG_WORK_MODE),
HISI_SAS_DEBUGFS_REG(OPENA_WT_CONTI_TIME),
HISI_SAS_DEBUGFS_REG(I_T_NEXUS_LOSS_TIME),
HISI_SAS_DEBUGFS_REG(MAX_CON_TIME_LIMIT_TIME),
HISI_SAS_DEBUGFS_REG(BUS_INACTIVE_LIMIT_TIME),
HISI_SAS_DEBUGFS_REG(REJECT_TO_OPEN_LIMIT_TIME),
HISI_SAS_DEBUGFS_REG(CQ_INT_CONVERGE_EN),
HISI_SAS_DEBUGFS_REG(CFG_AGING_TIME),
HISI_SAS_DEBUGFS_REG(HGC_DFX_CFG2),
HISI_SAS_DEBUGFS_REG(CFG_ABT_SET_QUERY_IPTT),
HISI_SAS_DEBUGFS_REG(CFG_ABT_SET_IPTT_DONE),
HISI_SAS_DEBUGFS_REG(HGC_IOMB_PROC1_STATUS),
HISI_SAS_DEBUGFS_REG(CHNL_INT_STATUS),
HISI_SAS_DEBUGFS_REG(HGC_AXI_FIFO_ERR_INFO),
HISI_SAS_DEBUGFS_REG(INT_COAL_EN),
HISI_SAS_DEBUGFS_REG(OQ_INT_COAL_TIME),
HISI_SAS_DEBUGFS_REG(OQ_INT_COAL_CNT),
HISI_SAS_DEBUGFS_REG(ENT_INT_COAL_TIME),
HISI_SAS_DEBUGFS_REG(ENT_INT_COAL_CNT),
HISI_SAS_DEBUGFS_REG(OQ_INT_SRC),
HISI_SAS_DEBUGFS_REG(OQ_INT_SRC_MSK),
HISI_SAS_DEBUGFS_REG(ENT_INT_SRC1),
HISI_SAS_DEBUGFS_REG(ENT_INT_SRC2),
HISI_SAS_DEBUGFS_REG(ENT_INT_SRC3),
HISI_SAS_DEBUGFS_REG(ENT_INT_SRC_MSK1),
HISI_SAS_DEBUGFS_REG(ENT_INT_SRC_MSK2),
HISI_SAS_DEBUGFS_REG(ENT_INT_SRC_MSK3),
HISI_SAS_DEBUGFS_REG(CHNL_PHYUPDOWN_INT_MSK),
HISI_SAS_DEBUGFS_REG(CHNL_ENT_INT_MSK),
HISI_SAS_DEBUGFS_REG(HGC_COM_INT_MSK),
HISI_SAS_DEBUGFS_REG(SAS_ECC_INTR),
HISI_SAS_DEBUGFS_REG(SAS_ECC_INTR_MSK),
HISI_SAS_DEBUGFS_REG(HGC_ERR_STAT_EN),
HISI_SAS_DEBUGFS_REG(CQE_SEND_CNT),
HISI_SAS_DEBUGFS_REG(DLVRY_Q_0_DEPTH),
HISI_SAS_DEBUGFS_REG(DLVRY_Q_0_WR_PTR),
HISI_SAS_DEBUGFS_REG(DLVRY_Q_0_RD_PTR),
HISI_SAS_DEBUGFS_REG(HYPER_STREAM_ID_EN_CFG),
HISI_SAS_DEBUGFS_REG(OQ0_INT_SRC_MSK),
HISI_SAS_DEBUGFS_REG(COMPL_Q_0_DEPTH),
HISI_SAS_DEBUGFS_REG(COMPL_Q_0_WR_PTR),
HISI_SAS_DEBUGFS_REG(COMPL_Q_0_RD_PTR),
HISI_SAS_DEBUGFS_REG(AWQOS_AWCACHE_CFG),
HISI_SAS_DEBUGFS_REG(ARQOS_ARCACHE_CFG),
HISI_SAS_DEBUGFS_REG(HILINK_ERR_DFX),
HISI_SAS_DEBUGFS_REG(SAS_GPIO_CFG_0),
HISI_SAS_DEBUGFS_REG(SAS_GPIO_CFG_1),
HISI_SAS_DEBUGFS_REG(SAS_GPIO_TX_0_1),
HISI_SAS_DEBUGFS_REG(SAS_CFG_DRIVE_VLD),
{}
};
static const struct hisi_sas_debugfs_reg debugfs_global_reg = {
.lu = debugfs_global_reg_lu,
.count = 0x800,
.read_global_reg = hisi_sas_read32,
};
static const struct hisi_sas_debugfs_reg_lu debugfs_axi_reg_lu[] = {
HISI_SAS_DEBUGFS_REG(AM_CFG_MAX_TRANS),
HISI_SAS_DEBUGFS_REG(AM_CFG_SINGLE_PORT_MAX_TRANS),
HISI_SAS_DEBUGFS_REG(AXI_CFG),
HISI_SAS_DEBUGFS_REG(AM_ROB_ECC_ERR_ADDR),
{}
};
static const struct hisi_sas_debugfs_reg debugfs_axi_reg = {
.lu = debugfs_axi_reg_lu,
.count = 0x61,
.base_off = AXI_MASTER_CFG_BASE,
.read_global_reg = hisi_sas_read32,
};
static const struct hisi_sas_debugfs_reg_lu debugfs_ras_reg_lu[] = {
HISI_SAS_DEBUGFS_REG(SAS_RAS_INTR1),
HISI_SAS_DEBUGFS_REG(SAS_RAS_INTR0_MASK),
HISI_SAS_DEBUGFS_REG(SAS_RAS_INTR1_MASK),
HISI_SAS_DEBUGFS_REG(CFG_SAS_RAS_INTR_MASK),
HISI_SAS_DEBUGFS_REG(SAS_RAS_INTR2),
HISI_SAS_DEBUGFS_REG(SAS_RAS_INTR2_MASK),
{}
};
static const struct hisi_sas_debugfs_reg debugfs_ras_reg = {
.lu = debugfs_ras_reg_lu,
.count = 0x10,
.base_off = RAS_BASE,
.read_global_reg = hisi_sas_read32,
};
static void debugfs_snapshot_prepare_v3_hw(struct hisi_hba *hisi_hba)
{
set_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags);
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE, 0);
wait_cmds_complete_timeout_v3_hw(hisi_hba, 100, 5000);
hisi_sas_kill_tasklets(hisi_hba);
}
static void debugfs_snapshot_restore_v3_hw(struct hisi_hba *hisi_hba)
{
hisi_sas_write32(hisi_hba, DLVRY_QUEUE_ENABLE,
(u32)((1ULL << hisi_hba->queue_count) - 1));
clear_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags);
}
static void read_iost_itct_cache_v3_hw(struct hisi_hba *hisi_hba,
enum hisi_sas_debugfs_cache_type type,
u32 *cache)
{
u32 cache_dw_size = HISI_SAS_IOST_ITCT_CACHE_DW_SZ *
HISI_SAS_IOST_ITCT_CACHE_NUM;
u32 *buf = cache;
u32 i, val;
hisi_sas_write32(hisi_hba, TAB_RD_TYPE, type);
for (i = 0; i < HISI_SAS_IOST_ITCT_CACHE_DW_SZ; i++) {
val = hisi_sas_read32(hisi_hba, TAB_DFX);
if (val == 0xffffffff)
break;
}
if (val != 0xffffffff) {
pr_err("Issue occur when reading IOST/ITCT cache!\n");
return;
}
memset(buf, 0, cache_dw_size * 4);
buf[0] = val;
for (i = 1; i < cache_dw_size; i++)
buf[i] = hisi_sas_read32(hisi_hba, TAB_DFX);
}
static void hisi_sas_bist_test_prep_v3_hw(struct hisi_hba *hisi_hba)
{
u32 reg_val;
int phy_id = hisi_hba->debugfs_bist_phy_no;
/* disable PHY */
hisi_sas_phy_enable(hisi_hba, phy_id, 0);
/* disable ALOS */
reg_val = hisi_sas_phy_read32(hisi_hba, phy_id, SERDES_CFG);
reg_val |= CFG_ALOS_CHK_DISABLE_MSK;
hisi_sas_phy_write32(hisi_hba, phy_id, SERDES_CFG, reg_val);
}
static void hisi_sas_bist_test_restore_v3_hw(struct hisi_hba *hisi_hba)
{
u32 reg_val;
int phy_id = hisi_hba->debugfs_bist_phy_no;
/* disable loopback */
reg_val = hisi_sas_phy_read32(hisi_hba, phy_id, SAS_PHY_BIST_CTRL);
reg_val &= ~(CFG_RX_BIST_EN_MSK | CFG_TX_BIST_EN_MSK |
CFG_BIST_TEST_MSK);
hisi_sas_phy_write32(hisi_hba, phy_id, SAS_PHY_BIST_CTRL, reg_val);
/* enable ALOS */
reg_val = hisi_sas_phy_read32(hisi_hba, phy_id, SERDES_CFG);
reg_val &= ~CFG_ALOS_CHK_DISABLE_MSK;
hisi_sas_phy_write32(hisi_hba, phy_id, SERDES_CFG, reg_val);
/* restore the linkrate */
reg_val = hisi_sas_phy_read32(hisi_hba, phy_id, PROG_PHY_LINK_RATE);
/* init OOB link rate as 1.5 Gbits */
reg_val &= ~CFG_PROG_PHY_LINK_RATE_MSK;
reg_val |= (0x8 << CFG_PROG_PHY_LINK_RATE_OFF);
hisi_sas_phy_write32(hisi_hba, phy_id, PROG_PHY_LINK_RATE, reg_val);
/* enable PHY */
hisi_sas_phy_enable(hisi_hba, phy_id, 1);
}
#define SAS_PHY_BIST_CODE_INIT 0x1
#define SAS_PHY_BIST_CODE1_INIT 0X80
static int debugfs_set_bist_v3_hw(struct hisi_hba *hisi_hba, bool enable)
{
u32 reg_val, mode_tmp;
u32 linkrate = hisi_hba->debugfs_bist_linkrate;
u32 phy_id = hisi_hba->debugfs_bist_phy_no;
u32 code_mode = hisi_hba->debugfs_bist_code_mode;
u32 path_mode = hisi_hba->debugfs_bist_mode;
struct device *dev = hisi_hba->dev;
dev_info(dev, "BIST info:linkrate=%d phy_id=%d code_mode=%d path_mode=%d\n",
linkrate, phy_id, code_mode, path_mode);
mode_tmp = path_mode ? 2 : 1;
if (enable) {
/* some preparations before bist test */
hisi_sas_bist_test_prep_v3_hw(hisi_hba);
/* set linkrate of bit test*/
reg_val = hisi_sas_phy_read32(hisi_hba, phy_id,
PROG_PHY_LINK_RATE);
reg_val &= ~CFG_PROG_PHY_LINK_RATE_MSK;
reg_val |= (linkrate << CFG_PROG_PHY_LINK_RATE_OFF);
hisi_sas_phy_write32(hisi_hba, phy_id,
PROG_PHY_LINK_RATE, reg_val);
/* set code mode of bit test */
reg_val = hisi_sas_phy_read32(hisi_hba, phy_id,
SAS_PHY_BIST_CTRL);
reg_val &= ~(CFG_BIST_MODE_SEL_MSK |
CFG_LOOP_TEST_MODE_MSK |
CFG_RX_BIST_EN_MSK |
CFG_TX_BIST_EN_MSK |
CFG_BIST_TEST_MSK);
reg_val |= ((code_mode << CFG_BIST_MODE_SEL_OFF) |
(mode_tmp << CFG_LOOP_TEST_MODE_OFF) |
CFG_BIST_TEST_MSK);
hisi_sas_phy_write32(hisi_hba, phy_id,
SAS_PHY_BIST_CTRL, reg_val);
mdelay(100);
reg_val |= (CFG_RX_BIST_EN_MSK | CFG_TX_BIST_EN_MSK);
hisi_sas_phy_write32(hisi_hba, phy_id,
SAS_PHY_BIST_CTRL, reg_val);
/* set the bist init value */
hisi_sas_phy_write32(hisi_hba, phy_id,
SAS_PHY_BIST_CODE,
SAS_PHY_BIST_CODE_INIT);
hisi_sas_phy_write32(hisi_hba, phy_id,
SAS_PHY_BIST_CODE1,
SAS_PHY_BIST_CODE1_INIT);
/* clear error bit */
mdelay(100);
hisi_sas_phy_read32(hisi_hba, phy_id, SAS_BIST_ERR_CNT);
} else {
/* disable bist test and recover it */
hisi_hba->debugfs_bist_cnt += hisi_sas_phy_read32(hisi_hba,
phy_id, SAS_BIST_ERR_CNT);
hisi_sas_bist_test_restore_v3_hw(hisi_hba);
}
return 0;
}
static struct scsi_host_template sht_v3_hw = {
.name = DRV_NAME,
.module = THIS_MODULE,
.queuecommand = sas_queuecommand,
.target_alloc = sas_target_alloc,
.slave_configure = hisi_sas_slave_configure,
.scan_finished = hisi_sas_scan_finished,
.scan_start = hisi_sas_scan_start,
.change_queue_depth = sas_change_queue_depth,
.bios_param = sas_bios_param,
.this_id = -1,
.sg_tablesize = HISI_SAS_SGE_PAGE_CNT,
.sg_prot_tablesize = HISI_SAS_SGE_PAGE_CNT,
.max_sectors = SCSI_DEFAULT_MAX_SECTORS,
.eh_device_reset_handler = sas_eh_device_reset_handler,
.eh_target_reset_handler = sas_eh_target_reset_handler,
.target_destroy = sas_target_destroy,
.ioctl = sas_ioctl,
.shost_attrs = host_attrs_v3_hw,
.tag_alloc_policy = BLK_TAG_ALLOC_RR,
.host_reset = hisi_sas_host_reset,
};
static const struct hisi_sas_hw hisi_sas_v3_hw = {
.hw_init = hisi_sas_v3_init,
.setup_itct = setup_itct_v3_hw,
.get_wideport_bitmap = get_wideport_bitmap_v3_hw,
.complete_hdr_size = sizeof(struct hisi_sas_complete_v3_hdr),
.clear_itct = clear_itct_v3_hw,
.sl_notify_ssp = sl_notify_ssp_v3_hw,
.prep_ssp = prep_ssp_v3_hw,
.prep_smp = prep_smp_v3_hw,
.prep_stp = prep_ata_v3_hw,
.prep_abort = prep_abort_v3_hw,
.start_delivery = start_delivery_v3_hw,
.phys_init = phys_init_v3_hw,
.phy_start = start_phy_v3_hw,
.phy_disable = disable_phy_v3_hw,
.phy_hard_reset = phy_hard_reset_v3_hw,
.phy_get_max_linkrate = phy_get_max_linkrate_v3_hw,
.phy_set_linkrate = phy_set_linkrate_v3_hw,
.dereg_device = dereg_device_v3_hw,
.soft_reset = soft_reset_v3_hw,
.get_phys_state = get_phys_state_v3_hw,
.get_events = phy_get_events_v3_hw,
.write_gpio = write_gpio_v3_hw,
.wait_cmds_complete_timeout = wait_cmds_complete_timeout_v3_hw,
.debugfs_reg_array[DEBUGFS_GLOBAL] = &debugfs_global_reg,
.debugfs_reg_array[DEBUGFS_AXI] = &debugfs_axi_reg,
.debugfs_reg_array[DEBUGFS_RAS] = &debugfs_ras_reg,
.debugfs_reg_port = &debugfs_port_reg,
.snapshot_prepare = debugfs_snapshot_prepare_v3_hw,
.snapshot_restore = debugfs_snapshot_restore_v3_hw,
.read_iost_itct_cache = read_iost_itct_cache_v3_hw,
.set_bist = debugfs_set_bist_v3_hw,
};
static struct Scsi_Host *
hisi_sas_shost_alloc_pci(struct pci_dev *pdev)
{
struct Scsi_Host *shost;
struct hisi_hba *hisi_hba;
struct device *dev = &pdev->dev;
shost = scsi_host_alloc(&sht_v3_hw, sizeof(*hisi_hba));
if (!shost) {
dev_err(dev, "shost alloc failed\n");
return NULL;
}
hisi_hba = shost_priv(shost);
INIT_WORK(&hisi_hba->rst_work, hisi_sas_rst_work_handler);
INIT_WORK(&hisi_hba->debugfs_work, hisi_sas_debugfs_work_handler);
hisi_hba->hw = &hisi_sas_v3_hw;
hisi_hba->pci_dev = pdev;
hisi_hba->dev = dev;
hisi_hba->shost = shost;
SHOST_TO_SAS_HA(shost) = &hisi_hba->sha;
if (prot_mask & ~HISI_SAS_PROT_MASK)
dev_err(dev, "unsupported protection mask 0x%x, using default (0x0)\n",
prot_mask);
else
hisi_hba->prot_mask = prot_mask;
if (hisi_sas_get_fw_info(hisi_hba) < 0)
goto err_out;
if (hisi_sas_alloc(hisi_hba)) {
hisi_sas_free(hisi_hba);
goto err_out;
}
return shost;
err_out:
scsi_host_put(shost);
dev_err(dev, "shost alloc failed\n");
return NULL;
}
static int
hisi_sas_v3_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct Scsi_Host *shost;
struct hisi_hba *hisi_hba;
struct device *dev = &pdev->dev;
struct asd_sas_phy **arr_phy;
struct asd_sas_port **arr_port;
struct sas_ha_struct *sha;
int rc, phy_nr, port_nr, i;
rc = pci_enable_device(pdev);
if (rc)
goto err_out;
pci_set_master(pdev);
rc = pci_request_regions(pdev, DRV_NAME);
if (rc)
goto err_out_disable_device;
rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
if (rc)
rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
if (rc) {
dev_err(dev, "No usable DMA addressing method\n");
rc = -ENODEV;
goto err_out_regions;
}
shost = hisi_sas_shost_alloc_pci(pdev);
if (!shost) {
rc = -ENOMEM;
goto err_out_regions;
}
sha = SHOST_TO_SAS_HA(shost);
hisi_hba = shost_priv(shost);
dev_set_drvdata(dev, sha);
hisi_hba->regs = pcim_iomap(pdev, 5, 0);
if (!hisi_hba->regs) {
dev_err(dev, "cannot map register\n");
rc = -ENOMEM;
goto err_out_ha;
}
phy_nr = port_nr = hisi_hba->n_phy;
arr_phy = devm_kcalloc(dev, phy_nr, sizeof(void *), GFP_KERNEL);
arr_port = devm_kcalloc(dev, port_nr, sizeof(void *), GFP_KERNEL);
if (!arr_phy || !arr_port) {
rc = -ENOMEM;
goto err_out_ha;
}
sha->sas_phy = arr_phy;
sha->sas_port = arr_port;
sha->core.shost = shost;
sha->lldd_ha = hisi_hba;
shost->transportt = hisi_sas_stt;
shost->max_id = HISI_SAS_MAX_DEVICES;
shost->max_lun = ~0;
shost->max_channel = 1;
shost->max_cmd_len = 16;
shost->can_queue = HISI_SAS_UNRESERVED_IPTT;
shost->cmd_per_lun = HISI_SAS_UNRESERVED_IPTT;
sha->sas_ha_name = DRV_NAME;
sha->dev = dev;
sha->lldd_module = THIS_MODULE;
sha->sas_addr = &hisi_hba->sas_addr[0];
sha->num_phys = hisi_hba->n_phy;
for (i = 0; i < hisi_hba->n_phy; i++) {
sha->sas_phy[i] = &hisi_hba->phy[i].sas_phy;
sha->sas_port[i] = &hisi_hba->port[i].sas_port;
}
if (hisi_hba->prot_mask) {
dev_info(dev, "Registering for DIF/DIX prot_mask=0x%x\n",
prot_mask);
scsi_host_set_prot(hisi_hba->shost, prot_mask);
if (hisi_hba->prot_mask & HISI_SAS_DIX_PROT_MASK)
scsi_host_set_guard(hisi_hba->shost,
SHOST_DIX_GUARD_CRC);
}
if (hisi_sas_debugfs_enable)
hisi_sas_debugfs_init(hisi_hba);
rc = scsi_add_host(shost, dev);
if (rc)
goto err_out_ha;
rc = sas_register_ha(sha);
if (rc)
goto err_out_register_ha;
rc = hisi_hba->hw->hw_init(hisi_hba);
if (rc)
goto err_out_register_ha;
scsi_scan_host(shost);
return 0;
err_out_register_ha:
scsi_remove_host(shost);
err_out_ha:
scsi_host_put(shost);
err_out_regions:
pci_release_regions(pdev);
err_out_disable_device:
pci_disable_device(pdev);
err_out:
return rc;
}
static void
hisi_sas_v3_destroy_irqs(struct pci_dev *pdev, struct hisi_hba *hisi_hba)
{
int i;
free_irq(pci_irq_vector(pdev, 1), hisi_hba);
free_irq(pci_irq_vector(pdev, 2), hisi_hba);
free_irq(pci_irq_vector(pdev, 11), hisi_hba);
for (i = 0; i < hisi_hba->cq_nvecs; i++) {
struct hisi_sas_cq *cq = &hisi_hba->cq[i];
int nr = hisi_sas_intr_conv ? 16 : 16 + i;
free_irq(pci_irq_vector(pdev, nr), cq);
}
pci_free_irq_vectors(pdev);
}
static void hisi_sas_v3_remove(struct pci_dev *pdev)
{
struct device *dev = &pdev->dev;
struct sas_ha_struct *sha = dev_get_drvdata(dev);
struct hisi_hba *hisi_hba = sha->lldd_ha;
struct Scsi_Host *shost = sha->core.shost;
hisi_sas_debugfs_exit(hisi_hba);
if (timer_pending(&hisi_hba->timer))
del_timer(&hisi_hba->timer);
sas_unregister_ha(sha);
sas_remove_host(sha->core.shost);
hisi_sas_v3_destroy_irqs(pdev, hisi_hba);
hisi_sas_kill_tasklets(hisi_hba);
pci_release_regions(pdev);
pci_disable_device(pdev);
hisi_sas_free(hisi_hba);
scsi_host_put(shost);
}
static void hisi_sas_reset_prepare_v3_hw(struct pci_dev *pdev)
{
struct sas_ha_struct *sha = pci_get_drvdata(pdev);
struct hisi_hba *hisi_hba = sha->lldd_ha;
struct device *dev = hisi_hba->dev;
int rc;
dev_info(dev, "FLR prepare\n");
set_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags);
hisi_sas_controller_reset_prepare(hisi_hba);
rc = disable_host_v3_hw(hisi_hba);
if (rc)
dev_err(dev, "FLR: disable host failed rc=%d\n", rc);
}
static void hisi_sas_reset_done_v3_hw(struct pci_dev *pdev)
{
struct sas_ha_struct *sha = pci_get_drvdata(pdev);
struct hisi_hba *hisi_hba = sha->lldd_ha;
struct device *dev = hisi_hba->dev;
int rc;
hisi_sas_init_mem(hisi_hba);
rc = hw_init_v3_hw(hisi_hba);
if (rc) {
dev_err(dev, "FLR: hw init failed rc=%d\n", rc);
return;
}
hisi_sas_controller_reset_done(hisi_hba);
dev_info(dev, "FLR done\n");
}
enum {
/* instances of the controller */
hip08,
};
static int hisi_sas_v3_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct sas_ha_struct *sha = pci_get_drvdata(pdev);
struct hisi_hba *hisi_hba = sha->lldd_ha;
struct device *dev = hisi_hba->dev;
struct Scsi_Host *shost = hisi_hba->shost;
pci_power_t device_state;
int rc;
if (!pdev->pm_cap) {
dev_err(dev, "PCI PM not supported\n");
return -ENODEV;
}
if (test_and_set_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags))
return -1;
scsi_block_requests(shost);
set_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags);
flush_workqueue(hisi_hba->wq);
rc = disable_host_v3_hw(hisi_hba);
if (rc) {
dev_err(dev, "PM suspend: disable host failed rc=%d\n", rc);
clear_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags);
clear_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags);
scsi_unblock_requests(shost);
return rc;
}
hisi_sas_init_mem(hisi_hba);
device_state = pci_choose_state(pdev, state);
dev_warn(dev, "entering operating state [D%d]\n",
device_state);
pci_save_state(pdev);
pci_disable_device(pdev);
pci_set_power_state(pdev, device_state);
hisi_sas_release_tasks(hisi_hba);
sas_suspend_ha(sha);
return 0;
}
static int hisi_sas_v3_resume(struct pci_dev *pdev)
{
struct sas_ha_struct *sha = pci_get_drvdata(pdev);
struct hisi_hba *hisi_hba = sha->lldd_ha;
struct Scsi_Host *shost = hisi_hba->shost;
struct device *dev = hisi_hba->dev;
unsigned int rc;
pci_power_t device_state = pdev->current_state;
dev_warn(dev, "resuming from operating state [D%d]\n",
device_state);
pci_set_power_state(pdev, PCI_D0);
pci_enable_wake(pdev, PCI_D0, 0);
pci_restore_state(pdev);
rc = pci_enable_device(pdev);
if (rc) {
dev_err(dev, "enable device failed during resume (%d)\n", rc);
return rc;
}
pci_set_master(pdev);
scsi_unblock_requests(shost);
clear_bit(HISI_SAS_REJECT_CMD_BIT, &hisi_hba->flags);
sas_prep_resume_ha(sha);
rc = hw_init_v3_hw(hisi_hba);
if (rc) {
scsi_remove_host(shost);
pci_disable_device(pdev);
}
hisi_hba->hw->phys_init(hisi_hba);
sas_resume_ha(sha);
clear_bit(HISI_SAS_RESET_BIT, &hisi_hba->flags);
return 0;
}
static const struct pci_device_id sas_v3_pci_table[] = {
{ PCI_VDEVICE(HUAWEI, 0xa230), hip08 },
{}
};
MODULE_DEVICE_TABLE(pci, sas_v3_pci_table);
static const struct pci_error_handlers hisi_sas_err_handler = {
.reset_prepare = hisi_sas_reset_prepare_v3_hw,
.reset_done = hisi_sas_reset_done_v3_hw,
};
static struct pci_driver sas_v3_pci_driver = {
.name = DRV_NAME,
.id_table = sas_v3_pci_table,
.probe = hisi_sas_v3_probe,
.remove = hisi_sas_v3_remove,
.suspend = hisi_sas_v3_suspend,
.resume = hisi_sas_v3_resume,
.err_handler = &hisi_sas_err_handler,
};
module_pci_driver(sas_v3_pci_driver);
module_param_named(intr_conv, hisi_sas_intr_conv, bool, 0444);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("John Garry <john.garry@huawei.com>");
MODULE_DESCRIPTION("HISILICON SAS controller v3 hw driver based on pci device");
MODULE_ALIAS("pci:" DRV_NAME);