| // SPDX-License-Identifier: GPL-2.0 |
| /* |
| * Copyright (c) 2017 Christoph Hellwig. |
| */ |
| |
| #include "xfs.h" |
| #include "xfs_shared.h" |
| #include "xfs_format.h" |
| #include "xfs_bit.h" |
| #include "xfs_log_format.h" |
| #include "xfs_inode.h" |
| #include "xfs_trans_resv.h" |
| #include "xfs_mount.h" |
| #include "xfs_trace.h" |
| |
| /* |
| * In-core extent record layout: |
| * |
| * +-------+----------------------------+ |
| * | 00:53 | all 54 bits of startoff | |
| * | 54:63 | low 10 bits of startblock | |
| * +-------+----------------------------+ |
| * | 00:20 | all 21 bits of length | |
| * | 21 | unwritten extent bit | |
| * | 22:63 | high 42 bits of startblock | |
| * +-------+----------------------------+ |
| */ |
| #define XFS_IEXT_STARTOFF_MASK xfs_mask64lo(BMBT_STARTOFF_BITLEN) |
| #define XFS_IEXT_LENGTH_MASK xfs_mask64lo(BMBT_BLOCKCOUNT_BITLEN) |
| #define XFS_IEXT_STARTBLOCK_MASK xfs_mask64lo(BMBT_STARTBLOCK_BITLEN) |
| |
| struct xfs_iext_rec { |
| uint64_t lo; |
| uint64_t hi; |
| }; |
| |
| /* |
| * Given that the length can't be a zero, only an empty hi value indicates an |
| * unused record. |
| */ |
| static bool xfs_iext_rec_is_empty(struct xfs_iext_rec *rec) |
| { |
| return rec->hi == 0; |
| } |
| |
| static inline void xfs_iext_rec_clear(struct xfs_iext_rec *rec) |
| { |
| rec->lo = 0; |
| rec->hi = 0; |
| } |
| |
| static void |
| xfs_iext_set( |
| struct xfs_iext_rec *rec, |
| struct xfs_bmbt_irec *irec) |
| { |
| ASSERT((irec->br_startoff & ~XFS_IEXT_STARTOFF_MASK) == 0); |
| ASSERT((irec->br_blockcount & ~XFS_IEXT_LENGTH_MASK) == 0); |
| ASSERT((irec->br_startblock & ~XFS_IEXT_STARTBLOCK_MASK) == 0); |
| |
| rec->lo = irec->br_startoff & XFS_IEXT_STARTOFF_MASK; |
| rec->hi = irec->br_blockcount & XFS_IEXT_LENGTH_MASK; |
| |
| rec->lo |= (irec->br_startblock << 54); |
| rec->hi |= ((irec->br_startblock & ~xfs_mask64lo(10)) << (22 - 10)); |
| |
| if (irec->br_state == XFS_EXT_UNWRITTEN) |
| rec->hi |= (1 << 21); |
| } |
| |
| static void |
| xfs_iext_get( |
| struct xfs_bmbt_irec *irec, |
| struct xfs_iext_rec *rec) |
| { |
| irec->br_startoff = rec->lo & XFS_IEXT_STARTOFF_MASK; |
| irec->br_blockcount = rec->hi & XFS_IEXT_LENGTH_MASK; |
| |
| irec->br_startblock = rec->lo >> 54; |
| irec->br_startblock |= (rec->hi & xfs_mask64hi(42)) >> (22 - 10); |
| |
| if (rec->hi & (1 << 21)) |
| irec->br_state = XFS_EXT_UNWRITTEN; |
| else |
| irec->br_state = XFS_EXT_NORM; |
| } |
| |
| enum { |
| NODE_SIZE = 256, |
| KEYS_PER_NODE = NODE_SIZE / (sizeof(uint64_t) + sizeof(void *)), |
| RECS_PER_LEAF = (NODE_SIZE - (2 * sizeof(struct xfs_iext_leaf *))) / |
| sizeof(struct xfs_iext_rec), |
| }; |
| |
| /* |
| * In-core extent btree block layout: |
| * |
| * There are two types of blocks in the btree: leaf and inner (non-leaf) blocks. |
| * |
| * The leaf blocks are made up by %KEYS_PER_NODE extent records, which each |
| * contain the startoffset, blockcount, startblock and unwritten extent flag. |
| * See above for the exact format, followed by pointers to the previous and next |
| * leaf blocks (if there are any). |
| * |
| * The inner (non-leaf) blocks first contain KEYS_PER_NODE lookup keys, followed |
| * by an equal number of pointers to the btree blocks at the next lower level. |
| * |
| * +-------+-------+-------+-------+-------+----------+----------+ |
| * Leaf: | rec 1 | rec 2 | rec 3 | rec 4 | rec N | prev-ptr | next-ptr | |
| * +-------+-------+-------+-------+-------+----------+----------+ |
| * |
| * +-------+-------+-------+-------+-------+-------+------+-------+ |
| * Inner: | key 1 | key 2 | key 3 | key N | ptr 1 | ptr 2 | ptr3 | ptr N | |
| * +-------+-------+-------+-------+-------+-------+------+-------+ |
| */ |
| struct xfs_iext_node { |
| uint64_t keys[KEYS_PER_NODE]; |
| #define XFS_IEXT_KEY_INVALID (1ULL << 63) |
| void *ptrs[KEYS_PER_NODE]; |
| }; |
| |
| struct xfs_iext_leaf { |
| struct xfs_iext_rec recs[RECS_PER_LEAF]; |
| struct xfs_iext_leaf *prev; |
| struct xfs_iext_leaf *next; |
| }; |
| |
| inline xfs_extnum_t xfs_iext_count(struct xfs_ifork *ifp) |
| { |
| return ifp->if_bytes / sizeof(struct xfs_iext_rec); |
| } |
| |
| static inline int xfs_iext_max_recs(struct xfs_ifork *ifp) |
| { |
| if (ifp->if_height == 1) |
| return xfs_iext_count(ifp); |
| return RECS_PER_LEAF; |
| } |
| |
| static inline struct xfs_iext_rec *cur_rec(struct xfs_iext_cursor *cur) |
| { |
| return &cur->leaf->recs[cur->pos]; |
| } |
| |
| static inline bool xfs_iext_valid(struct xfs_ifork *ifp, |
| struct xfs_iext_cursor *cur) |
| { |
| if (!cur->leaf) |
| return false; |
| if (cur->pos < 0 || cur->pos >= xfs_iext_max_recs(ifp)) |
| return false; |
| if (xfs_iext_rec_is_empty(cur_rec(cur))) |
| return false; |
| return true; |
| } |
| |
| static void * |
| xfs_iext_find_first_leaf( |
| struct xfs_ifork *ifp) |
| { |
| struct xfs_iext_node *node = ifp->if_u1.if_root; |
| int height; |
| |
| if (!ifp->if_height) |
| return NULL; |
| |
| for (height = ifp->if_height; height > 1; height--) { |
| node = node->ptrs[0]; |
| ASSERT(node); |
| } |
| |
| return node; |
| } |
| |
| static void * |
| xfs_iext_find_last_leaf( |
| struct xfs_ifork *ifp) |
| { |
| struct xfs_iext_node *node = ifp->if_u1.if_root; |
| int height, i; |
| |
| if (!ifp->if_height) |
| return NULL; |
| |
| for (height = ifp->if_height; height > 1; height--) { |
| for (i = 1; i < KEYS_PER_NODE; i++) |
| if (!node->ptrs[i]) |
| break; |
| node = node->ptrs[i - 1]; |
| ASSERT(node); |
| } |
| |
| return node; |
| } |
| |
| void |
| xfs_iext_first( |
| struct xfs_ifork *ifp, |
| struct xfs_iext_cursor *cur) |
| { |
| cur->pos = 0; |
| cur->leaf = xfs_iext_find_first_leaf(ifp); |
| } |
| |
| void |
| xfs_iext_last( |
| struct xfs_ifork *ifp, |
| struct xfs_iext_cursor *cur) |
| { |
| int i; |
| |
| cur->leaf = xfs_iext_find_last_leaf(ifp); |
| if (!cur->leaf) { |
| cur->pos = 0; |
| return; |
| } |
| |
| for (i = 1; i < xfs_iext_max_recs(ifp); i++) { |
| if (xfs_iext_rec_is_empty(&cur->leaf->recs[i])) |
| break; |
| } |
| cur->pos = i - 1; |
| } |
| |
| void |
| xfs_iext_next( |
| struct xfs_ifork *ifp, |
| struct xfs_iext_cursor *cur) |
| { |
| if (!cur->leaf) { |
| ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF); |
| xfs_iext_first(ifp, cur); |
| return; |
| } |
| |
| ASSERT(cur->pos >= 0); |
| ASSERT(cur->pos < xfs_iext_max_recs(ifp)); |
| |
| cur->pos++; |
| if (ifp->if_height > 1 && !xfs_iext_valid(ifp, cur) && |
| cur->leaf->next) { |
| cur->leaf = cur->leaf->next; |
| cur->pos = 0; |
| } |
| } |
| |
| void |
| xfs_iext_prev( |
| struct xfs_ifork *ifp, |
| struct xfs_iext_cursor *cur) |
| { |
| if (!cur->leaf) { |
| ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF); |
| xfs_iext_last(ifp, cur); |
| return; |
| } |
| |
| ASSERT(cur->pos >= 0); |
| ASSERT(cur->pos <= RECS_PER_LEAF); |
| |
| recurse: |
| do { |
| cur->pos--; |
| if (xfs_iext_valid(ifp, cur)) |
| return; |
| } while (cur->pos > 0); |
| |
| if (ifp->if_height > 1 && cur->leaf->prev) { |
| cur->leaf = cur->leaf->prev; |
| cur->pos = RECS_PER_LEAF; |
| goto recurse; |
| } |
| } |
| |
| static inline int |
| xfs_iext_key_cmp( |
| struct xfs_iext_node *node, |
| int n, |
| xfs_fileoff_t offset) |
| { |
| if (node->keys[n] > offset) |
| return 1; |
| if (node->keys[n] < offset) |
| return -1; |
| return 0; |
| } |
| |
| static inline int |
| xfs_iext_rec_cmp( |
| struct xfs_iext_rec *rec, |
| xfs_fileoff_t offset) |
| { |
| uint64_t rec_offset = rec->lo & XFS_IEXT_STARTOFF_MASK; |
| uint32_t rec_len = rec->hi & XFS_IEXT_LENGTH_MASK; |
| |
| if (rec_offset > offset) |
| return 1; |
| if (rec_offset + rec_len <= offset) |
| return -1; |
| return 0; |
| } |
| |
| static void * |
| xfs_iext_find_level( |
| struct xfs_ifork *ifp, |
| xfs_fileoff_t offset, |
| int level) |
| { |
| struct xfs_iext_node *node = ifp->if_u1.if_root; |
| int height, i; |
| |
| if (!ifp->if_height) |
| return NULL; |
| |
| for (height = ifp->if_height; height > level; height--) { |
| for (i = 1; i < KEYS_PER_NODE; i++) |
| if (xfs_iext_key_cmp(node, i, offset) > 0) |
| break; |
| |
| node = node->ptrs[i - 1]; |
| if (!node) |
| break; |
| } |
| |
| return node; |
| } |
| |
| static int |
| xfs_iext_node_pos( |
| struct xfs_iext_node *node, |
| xfs_fileoff_t offset) |
| { |
| int i; |
| |
| for (i = 1; i < KEYS_PER_NODE; i++) { |
| if (xfs_iext_key_cmp(node, i, offset) > 0) |
| break; |
| } |
| |
| return i - 1; |
| } |
| |
| static int |
| xfs_iext_node_insert_pos( |
| struct xfs_iext_node *node, |
| xfs_fileoff_t offset) |
| { |
| int i; |
| |
| for (i = 0; i < KEYS_PER_NODE; i++) { |
| if (xfs_iext_key_cmp(node, i, offset) > 0) |
| return i; |
| } |
| |
| return KEYS_PER_NODE; |
| } |
| |
| static int |
| xfs_iext_node_nr_entries( |
| struct xfs_iext_node *node, |
| int start) |
| { |
| int i; |
| |
| for (i = start; i < KEYS_PER_NODE; i++) { |
| if (node->keys[i] == XFS_IEXT_KEY_INVALID) |
| break; |
| } |
| |
| return i; |
| } |
| |
| static int |
| xfs_iext_leaf_nr_entries( |
| struct xfs_ifork *ifp, |
| struct xfs_iext_leaf *leaf, |
| int start) |
| { |
| int i; |
| |
| for (i = start; i < xfs_iext_max_recs(ifp); i++) { |
| if (xfs_iext_rec_is_empty(&leaf->recs[i])) |
| break; |
| } |
| |
| return i; |
| } |
| |
| static inline uint64_t |
| xfs_iext_leaf_key( |
| struct xfs_iext_leaf *leaf, |
| int n) |
| { |
| return leaf->recs[n].lo & XFS_IEXT_STARTOFF_MASK; |
| } |
| |
| static void |
| xfs_iext_grow( |
| struct xfs_ifork *ifp) |
| { |
| struct xfs_iext_node *node = kmem_zalloc(NODE_SIZE, KM_NOFS); |
| int i; |
| |
| if (ifp->if_height == 1) { |
| struct xfs_iext_leaf *prev = ifp->if_u1.if_root; |
| |
| node->keys[0] = xfs_iext_leaf_key(prev, 0); |
| node->ptrs[0] = prev; |
| } else { |
| struct xfs_iext_node *prev = ifp->if_u1.if_root; |
| |
| ASSERT(ifp->if_height > 1); |
| |
| node->keys[0] = prev->keys[0]; |
| node->ptrs[0] = prev; |
| } |
| |
| for (i = 1; i < KEYS_PER_NODE; i++) |
| node->keys[i] = XFS_IEXT_KEY_INVALID; |
| |
| ifp->if_u1.if_root = node; |
| ifp->if_height++; |
| } |
| |
| static void |
| xfs_iext_update_node( |
| struct xfs_ifork *ifp, |
| xfs_fileoff_t old_offset, |
| xfs_fileoff_t new_offset, |
| int level, |
| void *ptr) |
| { |
| struct xfs_iext_node *node = ifp->if_u1.if_root; |
| int height, i; |
| |
| for (height = ifp->if_height; height > level; height--) { |
| for (i = 0; i < KEYS_PER_NODE; i++) { |
| if (i > 0 && xfs_iext_key_cmp(node, i, old_offset) > 0) |
| break; |
| if (node->keys[i] == old_offset) |
| node->keys[i] = new_offset; |
| } |
| node = node->ptrs[i - 1]; |
| ASSERT(node); |
| } |
| |
| ASSERT(node == ptr); |
| } |
| |
| static struct xfs_iext_node * |
| xfs_iext_split_node( |
| struct xfs_iext_node **nodep, |
| int *pos, |
| int *nr_entries) |
| { |
| struct xfs_iext_node *node = *nodep; |
| struct xfs_iext_node *new = kmem_zalloc(NODE_SIZE, KM_NOFS); |
| const int nr_move = KEYS_PER_NODE / 2; |
| int nr_keep = nr_move + (KEYS_PER_NODE & 1); |
| int i = 0; |
| |
| /* for sequential append operations just spill over into the new node */ |
| if (*pos == KEYS_PER_NODE) { |
| *nodep = new; |
| *pos = 0; |
| *nr_entries = 0; |
| goto done; |
| } |
| |
| |
| for (i = 0; i < nr_move; i++) { |
| new->keys[i] = node->keys[nr_keep + i]; |
| new->ptrs[i] = node->ptrs[nr_keep + i]; |
| |
| node->keys[nr_keep + i] = XFS_IEXT_KEY_INVALID; |
| node->ptrs[nr_keep + i] = NULL; |
| } |
| |
| if (*pos >= nr_keep) { |
| *nodep = new; |
| *pos -= nr_keep; |
| *nr_entries = nr_move; |
| } else { |
| *nr_entries = nr_keep; |
| } |
| done: |
| for (; i < KEYS_PER_NODE; i++) |
| new->keys[i] = XFS_IEXT_KEY_INVALID; |
| return new; |
| } |
| |
| static void |
| xfs_iext_insert_node( |
| struct xfs_ifork *ifp, |
| uint64_t offset, |
| void *ptr, |
| int level) |
| { |
| struct xfs_iext_node *node, *new; |
| int i, pos, nr_entries; |
| |
| again: |
| if (ifp->if_height < level) |
| xfs_iext_grow(ifp); |
| |
| new = NULL; |
| node = xfs_iext_find_level(ifp, offset, level); |
| pos = xfs_iext_node_insert_pos(node, offset); |
| nr_entries = xfs_iext_node_nr_entries(node, pos); |
| |
| ASSERT(pos >= nr_entries || xfs_iext_key_cmp(node, pos, offset) != 0); |
| ASSERT(nr_entries <= KEYS_PER_NODE); |
| |
| if (nr_entries == KEYS_PER_NODE) |
| new = xfs_iext_split_node(&node, &pos, &nr_entries); |
| |
| /* |
| * Update the pointers in higher levels if the first entry changes |
| * in an existing node. |
| */ |
| if (node != new && pos == 0 && nr_entries > 0) |
| xfs_iext_update_node(ifp, node->keys[0], offset, level, node); |
| |
| for (i = nr_entries; i > pos; i--) { |
| node->keys[i] = node->keys[i - 1]; |
| node->ptrs[i] = node->ptrs[i - 1]; |
| } |
| node->keys[pos] = offset; |
| node->ptrs[pos] = ptr; |
| |
| if (new) { |
| offset = new->keys[0]; |
| ptr = new; |
| level++; |
| goto again; |
| } |
| } |
| |
| static struct xfs_iext_leaf * |
| xfs_iext_split_leaf( |
| struct xfs_iext_cursor *cur, |
| int *nr_entries) |
| { |
| struct xfs_iext_leaf *leaf = cur->leaf; |
| struct xfs_iext_leaf *new = kmem_zalloc(NODE_SIZE, KM_NOFS); |
| const int nr_move = RECS_PER_LEAF / 2; |
| int nr_keep = nr_move + (RECS_PER_LEAF & 1); |
| int i; |
| |
| /* for sequential append operations just spill over into the new node */ |
| if (cur->pos == RECS_PER_LEAF) { |
| cur->leaf = new; |
| cur->pos = 0; |
| *nr_entries = 0; |
| goto done; |
| } |
| |
| for (i = 0; i < nr_move; i++) { |
| new->recs[i] = leaf->recs[nr_keep + i]; |
| xfs_iext_rec_clear(&leaf->recs[nr_keep + i]); |
| } |
| |
| if (cur->pos >= nr_keep) { |
| cur->leaf = new; |
| cur->pos -= nr_keep; |
| *nr_entries = nr_move; |
| } else { |
| *nr_entries = nr_keep; |
| } |
| done: |
| if (leaf->next) |
| leaf->next->prev = new; |
| new->next = leaf->next; |
| new->prev = leaf; |
| leaf->next = new; |
| return new; |
| } |
| |
| static void |
| xfs_iext_alloc_root( |
| struct xfs_ifork *ifp, |
| struct xfs_iext_cursor *cur) |
| { |
| ASSERT(ifp->if_bytes == 0); |
| |
| ifp->if_u1.if_root = kmem_zalloc(sizeof(struct xfs_iext_rec), KM_NOFS); |
| ifp->if_height = 1; |
| |
| /* now that we have a node step into it */ |
| cur->leaf = ifp->if_u1.if_root; |
| cur->pos = 0; |
| } |
| |
| static void |
| xfs_iext_realloc_root( |
| struct xfs_ifork *ifp, |
| struct xfs_iext_cursor *cur) |
| { |
| size_t new_size = ifp->if_bytes + sizeof(struct xfs_iext_rec); |
| void *new; |
| |
| /* account for the prev/next pointers */ |
| if (new_size / sizeof(struct xfs_iext_rec) == RECS_PER_LEAF) |
| new_size = NODE_SIZE; |
| |
| new = kmem_realloc(ifp->if_u1.if_root, new_size, KM_NOFS); |
| memset(new + ifp->if_bytes, 0, new_size - ifp->if_bytes); |
| ifp->if_u1.if_root = new; |
| cur->leaf = new; |
| } |
| |
| /* |
| * Increment the sequence counter on extent tree changes. If we are on a COW |
| * fork, this allows the writeback code to skip looking for a COW extent if the |
| * COW fork hasn't changed. We use WRITE_ONCE here to ensure the update to the |
| * sequence counter is seen before the modifications to the extent tree itself |
| * take effect. |
| */ |
| static inline void xfs_iext_inc_seq(struct xfs_ifork *ifp) |
| { |
| WRITE_ONCE(ifp->if_seq, READ_ONCE(ifp->if_seq) + 1); |
| } |
| |
| void |
| xfs_iext_insert( |
| struct xfs_inode *ip, |
| struct xfs_iext_cursor *cur, |
| struct xfs_bmbt_irec *irec, |
| int state) |
| { |
| struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state); |
| xfs_fileoff_t offset = irec->br_startoff; |
| struct xfs_iext_leaf *new = NULL; |
| int nr_entries, i; |
| |
| xfs_iext_inc_seq(ifp); |
| |
| if (ifp->if_height == 0) |
| xfs_iext_alloc_root(ifp, cur); |
| else if (ifp->if_height == 1) |
| xfs_iext_realloc_root(ifp, cur); |
| |
| nr_entries = xfs_iext_leaf_nr_entries(ifp, cur->leaf, cur->pos); |
| ASSERT(nr_entries <= RECS_PER_LEAF); |
| ASSERT(cur->pos >= nr_entries || |
| xfs_iext_rec_cmp(cur_rec(cur), irec->br_startoff) != 0); |
| |
| if (nr_entries == RECS_PER_LEAF) |
| new = xfs_iext_split_leaf(cur, &nr_entries); |
| |
| /* |
| * Update the pointers in higher levels if the first entry changes |
| * in an existing node. |
| */ |
| if (cur->leaf != new && cur->pos == 0 && nr_entries > 0) { |
| xfs_iext_update_node(ifp, xfs_iext_leaf_key(cur->leaf, 0), |
| offset, 1, cur->leaf); |
| } |
| |
| for (i = nr_entries; i > cur->pos; i--) |
| cur->leaf->recs[i] = cur->leaf->recs[i - 1]; |
| xfs_iext_set(cur_rec(cur), irec); |
| ifp->if_bytes += sizeof(struct xfs_iext_rec); |
| |
| trace_xfs_iext_insert(ip, cur, state, _RET_IP_); |
| |
| if (new) |
| xfs_iext_insert_node(ifp, xfs_iext_leaf_key(new, 0), new, 2); |
| } |
| |
| static struct xfs_iext_node * |
| xfs_iext_rebalance_node( |
| struct xfs_iext_node *parent, |
| int *pos, |
| struct xfs_iext_node *node, |
| int nr_entries) |
| { |
| /* |
| * If the neighbouring nodes are completely full, or have different |
| * parents, we might never be able to merge our node, and will only |
| * delete it once the number of entries hits zero. |
| */ |
| if (nr_entries == 0) |
| return node; |
| |
| if (*pos > 0) { |
| struct xfs_iext_node *prev = parent->ptrs[*pos - 1]; |
| int nr_prev = xfs_iext_node_nr_entries(prev, 0), i; |
| |
| if (nr_prev + nr_entries <= KEYS_PER_NODE) { |
| for (i = 0; i < nr_entries; i++) { |
| prev->keys[nr_prev + i] = node->keys[i]; |
| prev->ptrs[nr_prev + i] = node->ptrs[i]; |
| } |
| return node; |
| } |
| } |
| |
| if (*pos + 1 < xfs_iext_node_nr_entries(parent, *pos)) { |
| struct xfs_iext_node *next = parent->ptrs[*pos + 1]; |
| int nr_next = xfs_iext_node_nr_entries(next, 0), i; |
| |
| if (nr_entries + nr_next <= KEYS_PER_NODE) { |
| /* |
| * Merge the next node into this node so that we don't |
| * have to do an additional update of the keys in the |
| * higher levels. |
| */ |
| for (i = 0; i < nr_next; i++) { |
| node->keys[nr_entries + i] = next->keys[i]; |
| node->ptrs[nr_entries + i] = next->ptrs[i]; |
| } |
| |
| ++*pos; |
| return next; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static void |
| xfs_iext_remove_node( |
| struct xfs_ifork *ifp, |
| xfs_fileoff_t offset, |
| void *victim) |
| { |
| struct xfs_iext_node *node, *parent; |
| int level = 2, pos, nr_entries, i; |
| |
| ASSERT(level <= ifp->if_height); |
| node = xfs_iext_find_level(ifp, offset, level); |
| pos = xfs_iext_node_pos(node, offset); |
| again: |
| ASSERT(node->ptrs[pos]); |
| ASSERT(node->ptrs[pos] == victim); |
| kmem_free(victim); |
| |
| nr_entries = xfs_iext_node_nr_entries(node, pos) - 1; |
| offset = node->keys[0]; |
| for (i = pos; i < nr_entries; i++) { |
| node->keys[i] = node->keys[i + 1]; |
| node->ptrs[i] = node->ptrs[i + 1]; |
| } |
| node->keys[nr_entries] = XFS_IEXT_KEY_INVALID; |
| node->ptrs[nr_entries] = NULL; |
| |
| if (pos == 0 && nr_entries > 0) { |
| xfs_iext_update_node(ifp, offset, node->keys[0], level, node); |
| offset = node->keys[0]; |
| } |
| |
| if (nr_entries >= KEYS_PER_NODE / 2) |
| return; |
| |
| if (level < ifp->if_height) { |
| /* |
| * If we aren't at the root yet try to find a neighbour node to |
| * merge with (or delete the node if it is empty), and then |
| * recurse up to the next level. |
| */ |
| level++; |
| parent = xfs_iext_find_level(ifp, offset, level); |
| pos = xfs_iext_node_pos(parent, offset); |
| |
| ASSERT(pos != KEYS_PER_NODE); |
| ASSERT(parent->ptrs[pos] == node); |
| |
| node = xfs_iext_rebalance_node(parent, &pos, node, nr_entries); |
| if (node) { |
| victim = node; |
| node = parent; |
| goto again; |
| } |
| } else if (nr_entries == 1) { |
| /* |
| * If we are at the root and only one entry is left we can just |
| * free this node and update the root pointer. |
| */ |
| ASSERT(node == ifp->if_u1.if_root); |
| ifp->if_u1.if_root = node->ptrs[0]; |
| ifp->if_height--; |
| kmem_free(node); |
| } |
| } |
| |
| static void |
| xfs_iext_rebalance_leaf( |
| struct xfs_ifork *ifp, |
| struct xfs_iext_cursor *cur, |
| struct xfs_iext_leaf *leaf, |
| xfs_fileoff_t offset, |
| int nr_entries) |
| { |
| /* |
| * If the neighbouring nodes are completely full we might never be able |
| * to merge our node, and will only delete it once the number of |
| * entries hits zero. |
| */ |
| if (nr_entries == 0) |
| goto remove_node; |
| |
| if (leaf->prev) { |
| int nr_prev = xfs_iext_leaf_nr_entries(ifp, leaf->prev, 0), i; |
| |
| if (nr_prev + nr_entries <= RECS_PER_LEAF) { |
| for (i = 0; i < nr_entries; i++) |
| leaf->prev->recs[nr_prev + i] = leaf->recs[i]; |
| |
| if (cur->leaf == leaf) { |
| cur->leaf = leaf->prev; |
| cur->pos += nr_prev; |
| } |
| goto remove_node; |
| } |
| } |
| |
| if (leaf->next) { |
| int nr_next = xfs_iext_leaf_nr_entries(ifp, leaf->next, 0), i; |
| |
| if (nr_entries + nr_next <= RECS_PER_LEAF) { |
| /* |
| * Merge the next node into this node so that we don't |
| * have to do an additional update of the keys in the |
| * higher levels. |
| */ |
| for (i = 0; i < nr_next; i++) { |
| leaf->recs[nr_entries + i] = |
| leaf->next->recs[i]; |
| } |
| |
| if (cur->leaf == leaf->next) { |
| cur->leaf = leaf; |
| cur->pos += nr_entries; |
| } |
| |
| offset = xfs_iext_leaf_key(leaf->next, 0); |
| leaf = leaf->next; |
| goto remove_node; |
| } |
| } |
| |
| return; |
| remove_node: |
| if (leaf->prev) |
| leaf->prev->next = leaf->next; |
| if (leaf->next) |
| leaf->next->prev = leaf->prev; |
| xfs_iext_remove_node(ifp, offset, leaf); |
| } |
| |
| static void |
| xfs_iext_free_last_leaf( |
| struct xfs_ifork *ifp) |
| { |
| ifp->if_height--; |
| kmem_free(ifp->if_u1.if_root); |
| ifp->if_u1.if_root = NULL; |
| } |
| |
| void |
| xfs_iext_remove( |
| struct xfs_inode *ip, |
| struct xfs_iext_cursor *cur, |
| int state) |
| { |
| struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state); |
| struct xfs_iext_leaf *leaf = cur->leaf; |
| xfs_fileoff_t offset = xfs_iext_leaf_key(leaf, 0); |
| int i, nr_entries; |
| |
| trace_xfs_iext_remove(ip, cur, state, _RET_IP_); |
| |
| ASSERT(ifp->if_height > 0); |
| ASSERT(ifp->if_u1.if_root != NULL); |
| ASSERT(xfs_iext_valid(ifp, cur)); |
| |
| xfs_iext_inc_seq(ifp); |
| |
| nr_entries = xfs_iext_leaf_nr_entries(ifp, leaf, cur->pos) - 1; |
| for (i = cur->pos; i < nr_entries; i++) |
| leaf->recs[i] = leaf->recs[i + 1]; |
| xfs_iext_rec_clear(&leaf->recs[nr_entries]); |
| ifp->if_bytes -= sizeof(struct xfs_iext_rec); |
| |
| if (cur->pos == 0 && nr_entries > 0) { |
| xfs_iext_update_node(ifp, offset, xfs_iext_leaf_key(leaf, 0), 1, |
| leaf); |
| offset = xfs_iext_leaf_key(leaf, 0); |
| } else if (cur->pos == nr_entries) { |
| if (ifp->if_height > 1 && leaf->next) |
| cur->leaf = leaf->next; |
| else |
| cur->leaf = NULL; |
| cur->pos = 0; |
| } |
| |
| if (nr_entries >= RECS_PER_LEAF / 2) |
| return; |
| |
| if (ifp->if_height > 1) |
| xfs_iext_rebalance_leaf(ifp, cur, leaf, offset, nr_entries); |
| else if (nr_entries == 0) |
| xfs_iext_free_last_leaf(ifp); |
| } |
| |
| /* |
| * Lookup the extent covering bno. |
| * |
| * If there is an extent covering bno return the extent index, and store the |
| * expanded extent structure in *gotp, and the extent cursor in *cur. |
| * If there is no extent covering bno, but there is an extent after it (e.g. |
| * it lies in a hole) return that extent in *gotp and its cursor in *cur |
| * instead. |
| * If bno is beyond the last extent return false, and return an invalid |
| * cursor value. |
| */ |
| bool |
| xfs_iext_lookup_extent( |
| struct xfs_inode *ip, |
| struct xfs_ifork *ifp, |
| xfs_fileoff_t offset, |
| struct xfs_iext_cursor *cur, |
| struct xfs_bmbt_irec *gotp) |
| { |
| XFS_STATS_INC(ip->i_mount, xs_look_exlist); |
| |
| cur->leaf = xfs_iext_find_level(ifp, offset, 1); |
| if (!cur->leaf) { |
| cur->pos = 0; |
| return false; |
| } |
| |
| for (cur->pos = 0; cur->pos < xfs_iext_max_recs(ifp); cur->pos++) { |
| struct xfs_iext_rec *rec = cur_rec(cur); |
| |
| if (xfs_iext_rec_is_empty(rec)) |
| break; |
| if (xfs_iext_rec_cmp(rec, offset) >= 0) |
| goto found; |
| } |
| |
| /* Try looking in the next node for an entry > offset */ |
| if (ifp->if_height == 1 || !cur->leaf->next) |
| return false; |
| cur->leaf = cur->leaf->next; |
| cur->pos = 0; |
| if (!xfs_iext_valid(ifp, cur)) |
| return false; |
| found: |
| xfs_iext_get(gotp, cur_rec(cur)); |
| return true; |
| } |
| |
| /* |
| * Returns the last extent before end, and if this extent doesn't cover |
| * end, update end to the end of the extent. |
| */ |
| bool |
| xfs_iext_lookup_extent_before( |
| struct xfs_inode *ip, |
| struct xfs_ifork *ifp, |
| xfs_fileoff_t *end, |
| struct xfs_iext_cursor *cur, |
| struct xfs_bmbt_irec *gotp) |
| { |
| /* could be optimized to not even look up the next on a match.. */ |
| if (xfs_iext_lookup_extent(ip, ifp, *end - 1, cur, gotp) && |
| gotp->br_startoff <= *end - 1) |
| return true; |
| if (!xfs_iext_prev_extent(ifp, cur, gotp)) |
| return false; |
| *end = gotp->br_startoff + gotp->br_blockcount; |
| return true; |
| } |
| |
| void |
| xfs_iext_update_extent( |
| struct xfs_inode *ip, |
| int state, |
| struct xfs_iext_cursor *cur, |
| struct xfs_bmbt_irec *new) |
| { |
| struct xfs_ifork *ifp = xfs_iext_state_to_fork(ip, state); |
| |
| xfs_iext_inc_seq(ifp); |
| |
| if (cur->pos == 0) { |
| struct xfs_bmbt_irec old; |
| |
| xfs_iext_get(&old, cur_rec(cur)); |
| if (new->br_startoff != old.br_startoff) { |
| xfs_iext_update_node(ifp, old.br_startoff, |
| new->br_startoff, 1, cur->leaf); |
| } |
| } |
| |
| trace_xfs_bmap_pre_update(ip, cur, state, _RET_IP_); |
| xfs_iext_set(cur_rec(cur), new); |
| trace_xfs_bmap_post_update(ip, cur, state, _RET_IP_); |
| } |
| |
| /* |
| * Return true if the cursor points at an extent and return the extent structure |
| * in gotp. Else return false. |
| */ |
| bool |
| xfs_iext_get_extent( |
| struct xfs_ifork *ifp, |
| struct xfs_iext_cursor *cur, |
| struct xfs_bmbt_irec *gotp) |
| { |
| if (!xfs_iext_valid(ifp, cur)) |
| return false; |
| xfs_iext_get(gotp, cur_rec(cur)); |
| return true; |
| } |
| |
| /* |
| * This is a recursive function, because of that we need to be extremely |
| * careful with stack usage. |
| */ |
| static void |
| xfs_iext_destroy_node( |
| struct xfs_iext_node *node, |
| int level) |
| { |
| int i; |
| |
| if (level > 1) { |
| for (i = 0; i < KEYS_PER_NODE; i++) { |
| if (node->keys[i] == XFS_IEXT_KEY_INVALID) |
| break; |
| xfs_iext_destroy_node(node->ptrs[i], level - 1); |
| } |
| } |
| |
| kmem_free(node); |
| } |
| |
| void |
| xfs_iext_destroy( |
| struct xfs_ifork *ifp) |
| { |
| xfs_iext_destroy_node(ifp->if_u1.if_root, ifp->if_height); |
| |
| ifp->if_bytes = 0; |
| ifp->if_height = 0; |
| ifp->if_u1.if_root = NULL; |
| } |