| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Copyright (C) 2014-2017 Linaro Ltd. <ard.biesheuvel@linaro.org> |
| */ |
| |
| #include <linux/elf.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/sort.h> |
| #include <linux/moduleloader.h> |
| |
| #include <asm/cache.h> |
| #include <asm/opcodes.h> |
| |
| #define PLT_ENT_STRIDE L1_CACHE_BYTES |
| #define PLT_ENT_COUNT (PLT_ENT_STRIDE / sizeof(u32)) |
| #define PLT_ENT_SIZE (sizeof(struct plt_entries) / PLT_ENT_COUNT) |
| |
| #ifdef CONFIG_THUMB2_KERNEL |
| #define PLT_ENT_LDR __opcode_to_mem_thumb32(0xf8dff000 | \ |
| (PLT_ENT_STRIDE - 4)) |
| #else |
| #define PLT_ENT_LDR __opcode_to_mem_arm(0xe59ff000 | \ |
| (PLT_ENT_STRIDE - 8)) |
| #endif |
| |
| struct plt_entries { |
| u32 ldr[PLT_ENT_COUNT]; |
| u32 lit[PLT_ENT_COUNT]; |
| }; |
| |
| static bool in_init(const struct module *mod, unsigned long loc) |
| { |
| return loc - (u32)mod->init_layout.base < mod->init_layout.size; |
| } |
| |
| u32 get_module_plt(struct module *mod, unsigned long loc, Elf32_Addr val) |
| { |
| struct mod_plt_sec *pltsec = !in_init(mod, loc) ? &mod->arch.core : |
| &mod->arch.init; |
| |
| struct plt_entries *plt = (struct plt_entries *)pltsec->plt->sh_addr; |
| int idx = 0; |
| |
| /* |
| * Look for an existing entry pointing to 'val'. Given that the |
| * relocations are sorted, this will be the last entry we allocated. |
| * (if one exists). |
| */ |
| if (pltsec->plt_count > 0) { |
| plt += (pltsec->plt_count - 1) / PLT_ENT_COUNT; |
| idx = (pltsec->plt_count - 1) % PLT_ENT_COUNT; |
| |
| if (plt->lit[idx] == val) |
| return (u32)&plt->ldr[idx]; |
| |
| idx = (idx + 1) % PLT_ENT_COUNT; |
| if (!idx) |
| plt++; |
| } |
| |
| pltsec->plt_count++; |
| BUG_ON(pltsec->plt_count * PLT_ENT_SIZE > pltsec->plt->sh_size); |
| |
| if (!idx) |
| /* Populate a new set of entries */ |
| *plt = (struct plt_entries){ |
| { [0 ... PLT_ENT_COUNT - 1] = PLT_ENT_LDR, }, |
| { val, } |
| }; |
| else |
| plt->lit[idx] = val; |
| |
| return (u32)&plt->ldr[idx]; |
| } |
| |
| #define cmp_3way(a,b) ((a) < (b) ? -1 : (a) > (b)) |
| |
| static int cmp_rel(const void *a, const void *b) |
| { |
| const Elf32_Rel *x = a, *y = b; |
| int i; |
| |
| /* sort by type and symbol index */ |
| i = cmp_3way(ELF32_R_TYPE(x->r_info), ELF32_R_TYPE(y->r_info)); |
| if (i == 0) |
| i = cmp_3way(ELF32_R_SYM(x->r_info), ELF32_R_SYM(y->r_info)); |
| return i; |
| } |
| |
| static bool is_zero_addend_relocation(Elf32_Addr base, const Elf32_Rel *rel) |
| { |
| u32 *tval = (u32 *)(base + rel->r_offset); |
| |
| /* |
| * Do a bitwise compare on the raw addend rather than fully decoding |
| * the offset and doing an arithmetic comparison. |
| * Note that a zero-addend jump/call relocation is encoded taking the |
| * PC bias into account, i.e., -8 for ARM and -4 for Thumb2. |
| */ |
| switch (ELF32_R_TYPE(rel->r_info)) { |
| u16 upper, lower; |
| |
| case R_ARM_THM_CALL: |
| case R_ARM_THM_JUMP24: |
| upper = __mem_to_opcode_thumb16(((u16 *)tval)[0]); |
| lower = __mem_to_opcode_thumb16(((u16 *)tval)[1]); |
| |
| return (upper & 0x7ff) == 0x7ff && (lower & 0x2fff) == 0x2ffe; |
| |
| case R_ARM_CALL: |
| case R_ARM_PC24: |
| case R_ARM_JUMP24: |
| return (__mem_to_opcode_arm(*tval) & 0xffffff) == 0xfffffe; |
| } |
| BUG(); |
| } |
| |
| static bool duplicate_rel(Elf32_Addr base, const Elf32_Rel *rel, int num) |
| { |
| const Elf32_Rel *prev; |
| |
| /* |
| * Entries are sorted by type and symbol index. That means that, |
| * if a duplicate entry exists, it must be in the preceding |
| * slot. |
| */ |
| if (!num) |
| return false; |
| |
| prev = rel + num - 1; |
| return cmp_rel(rel + num, prev) == 0 && |
| is_zero_addend_relocation(base, prev); |
| } |
| |
| /* Count how many PLT entries we may need */ |
| static unsigned int count_plts(const Elf32_Sym *syms, Elf32_Addr base, |
| const Elf32_Rel *rel, int num, Elf32_Word dstidx) |
| { |
| unsigned int ret = 0; |
| const Elf32_Sym *s; |
| int i; |
| |
| for (i = 0; i < num; i++) { |
| switch (ELF32_R_TYPE(rel[i].r_info)) { |
| case R_ARM_CALL: |
| case R_ARM_PC24: |
| case R_ARM_JUMP24: |
| case R_ARM_THM_CALL: |
| case R_ARM_THM_JUMP24: |
| /* |
| * We only have to consider branch targets that resolve |
| * to symbols that are defined in a different section. |
| * This is not simply a heuristic, it is a fundamental |
| * limitation, since there is no guaranteed way to emit |
| * PLT entries sufficiently close to the branch if the |
| * section size exceeds the range of a branch |
| * instruction. So ignore relocations against defined |
| * symbols if they live in the same section as the |
| * relocation target. |
| */ |
| s = syms + ELF32_R_SYM(rel[i].r_info); |
| if (s->st_shndx == dstidx) |
| break; |
| |
| /* |
| * Jump relocations with non-zero addends against |
| * undefined symbols are supported by the ELF spec, but |
| * do not occur in practice (e.g., 'jump n bytes past |
| * the entry point of undefined function symbol f'). |
| * So we need to support them, but there is no need to |
| * take them into consideration when trying to optimize |
| * this code. So let's only check for duplicates when |
| * the addend is zero. (Note that calls into the core |
| * module via init PLT entries could involve section |
| * relative symbol references with non-zero addends, for |
| * which we may end up emitting duplicates, but the init |
| * PLT is released along with the rest of the .init |
| * region as soon as module loading completes.) |
| */ |
| if (!is_zero_addend_relocation(base, rel + i) || |
| !duplicate_rel(base, rel, i)) |
| ret++; |
| } |
| } |
| return ret; |
| } |
| |
| int module_frob_arch_sections(Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, |
| char *secstrings, struct module *mod) |
| { |
| unsigned long core_plts = 0; |
| unsigned long init_plts = 0; |
| Elf32_Shdr *s, *sechdrs_end = sechdrs + ehdr->e_shnum; |
| Elf32_Sym *syms = NULL; |
| |
| /* |
| * To store the PLTs, we expand the .text section for core module code |
| * and for initialization code. |
| */ |
| for (s = sechdrs; s < sechdrs_end; ++s) { |
| if (strcmp(".plt", secstrings + s->sh_name) == 0) |
| mod->arch.core.plt = s; |
| else if (strcmp(".init.plt", secstrings + s->sh_name) == 0) |
| mod->arch.init.plt = s; |
| else if (s->sh_type == SHT_SYMTAB) |
| syms = (Elf32_Sym *)s->sh_addr; |
| } |
| |
| if (!mod->arch.core.plt || !mod->arch.init.plt) { |
| pr_err("%s: module PLT section(s) missing\n", mod->name); |
| return -ENOEXEC; |
| } |
| if (!syms) { |
| pr_err("%s: module symtab section missing\n", mod->name); |
| return -ENOEXEC; |
| } |
| |
| for (s = sechdrs + 1; s < sechdrs_end; ++s) { |
| Elf32_Rel *rels = (void *)ehdr + s->sh_offset; |
| int numrels = s->sh_size / sizeof(Elf32_Rel); |
| Elf32_Shdr *dstsec = sechdrs + s->sh_info; |
| |
| if (s->sh_type != SHT_REL) |
| continue; |
| |
| /* ignore relocations that operate on non-exec sections */ |
| if (!(dstsec->sh_flags & SHF_EXECINSTR)) |
| continue; |
| |
| /* sort by type and symbol index */ |
| sort(rels, numrels, sizeof(Elf32_Rel), cmp_rel, NULL); |
| |
| if (strncmp(secstrings + dstsec->sh_name, ".init", 5) != 0) |
| core_plts += count_plts(syms, dstsec->sh_addr, rels, |
| numrels, s->sh_info); |
| else |
| init_plts += count_plts(syms, dstsec->sh_addr, rels, |
| numrels, s->sh_info); |
| } |
| |
| mod->arch.core.plt->sh_type = SHT_NOBITS; |
| mod->arch.core.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC; |
| mod->arch.core.plt->sh_addralign = L1_CACHE_BYTES; |
| mod->arch.core.plt->sh_size = round_up(core_plts * PLT_ENT_SIZE, |
| sizeof(struct plt_entries)); |
| mod->arch.core.plt_count = 0; |
| |
| mod->arch.init.plt->sh_type = SHT_NOBITS; |
| mod->arch.init.plt->sh_flags = SHF_EXECINSTR | SHF_ALLOC; |
| mod->arch.init.plt->sh_addralign = L1_CACHE_BYTES; |
| mod->arch.init.plt->sh_size = round_up(init_plts * PLT_ENT_SIZE, |
| sizeof(struct plt_entries)); |
| mod->arch.init.plt_count = 0; |
| |
| pr_debug("%s: plt=%x, init.plt=%x\n", __func__, |
| mod->arch.core.plt->sh_size, mod->arch.init.plt->sh_size); |
| return 0; |
| } |