blob: e2bb0d0072da5adc215d199765ee21a46d478e1f [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
#include <linux/ceph/ceph_debug.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/sched/signal.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/wait.h>
#include <linux/writeback.h>
#include <linux/iversion.h>
#include <linux/filelock.h>
#include "super.h"
#include "mds_client.h"
#include "cache.h"
#include <linux/ceph/decode.h>
#include <linux/ceph/messenger.h>
/*
* Capability management
*
* The Ceph metadata servers control client access to inode metadata
* and file data by issuing capabilities, granting clients permission
* to read and/or write both inode field and file data to OSDs
* (storage nodes). Each capability consists of a set of bits
* indicating which operations are allowed.
*
* If the client holds a *_SHARED cap, the client has a coherent value
* that can be safely read from the cached inode.
*
* In the case of a *_EXCL (exclusive) or FILE_WR capabilities, the
* client is allowed to change inode attributes (e.g., file size,
* mtime), note its dirty state in the ceph_cap, and asynchronously
* flush that metadata change to the MDS.
*
* In the event of a conflicting operation (perhaps by another
* client), the MDS will revoke the conflicting client capabilities.
*
* In order for a client to cache an inode, it must hold a capability
* with at least one MDS server. When inodes are released, release
* notifications are batched and periodically sent en masse to the MDS
* cluster to release server state.
*/
static u64 __get_oldest_flush_tid(struct ceph_mds_client *mdsc);
static void __kick_flushing_caps(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session,
struct ceph_inode_info *ci,
u64 oldest_flush_tid);
/*
* Generate readable cap strings for debugging output.
*/
#define MAX_CAP_STR 20
static char cap_str[MAX_CAP_STR][40];
static DEFINE_SPINLOCK(cap_str_lock);
static int last_cap_str;
static char *gcap_string(char *s, int c)
{
if (c & CEPH_CAP_GSHARED)
*s++ = 's';
if (c & CEPH_CAP_GEXCL)
*s++ = 'x';
if (c & CEPH_CAP_GCACHE)
*s++ = 'c';
if (c & CEPH_CAP_GRD)
*s++ = 'r';
if (c & CEPH_CAP_GWR)
*s++ = 'w';
if (c & CEPH_CAP_GBUFFER)
*s++ = 'b';
if (c & CEPH_CAP_GWREXTEND)
*s++ = 'a';
if (c & CEPH_CAP_GLAZYIO)
*s++ = 'l';
return s;
}
const char *ceph_cap_string(int caps)
{
int i;
char *s;
int c;
spin_lock(&cap_str_lock);
i = last_cap_str++;
if (last_cap_str == MAX_CAP_STR)
last_cap_str = 0;
spin_unlock(&cap_str_lock);
s = cap_str[i];
if (caps & CEPH_CAP_PIN)
*s++ = 'p';
c = (caps >> CEPH_CAP_SAUTH) & 3;
if (c) {
*s++ = 'A';
s = gcap_string(s, c);
}
c = (caps >> CEPH_CAP_SLINK) & 3;
if (c) {
*s++ = 'L';
s = gcap_string(s, c);
}
c = (caps >> CEPH_CAP_SXATTR) & 3;
if (c) {
*s++ = 'X';
s = gcap_string(s, c);
}
c = caps >> CEPH_CAP_SFILE;
if (c) {
*s++ = 'F';
s = gcap_string(s, c);
}
if (s == cap_str[i])
*s++ = '-';
*s = 0;
return cap_str[i];
}
void ceph_caps_init(struct ceph_mds_client *mdsc)
{
INIT_LIST_HEAD(&mdsc->caps_list);
spin_lock_init(&mdsc->caps_list_lock);
}
void ceph_caps_finalize(struct ceph_mds_client *mdsc)
{
struct ceph_cap *cap;
spin_lock(&mdsc->caps_list_lock);
while (!list_empty(&mdsc->caps_list)) {
cap = list_first_entry(&mdsc->caps_list,
struct ceph_cap, caps_item);
list_del(&cap->caps_item);
kmem_cache_free(ceph_cap_cachep, cap);
}
mdsc->caps_total_count = 0;
mdsc->caps_avail_count = 0;
mdsc->caps_use_count = 0;
mdsc->caps_reserve_count = 0;
mdsc->caps_min_count = 0;
spin_unlock(&mdsc->caps_list_lock);
}
void ceph_adjust_caps_max_min(struct ceph_mds_client *mdsc,
struct ceph_mount_options *fsopt)
{
spin_lock(&mdsc->caps_list_lock);
mdsc->caps_min_count = fsopt->max_readdir;
if (mdsc->caps_min_count < 1024)
mdsc->caps_min_count = 1024;
mdsc->caps_use_max = fsopt->caps_max;
if (mdsc->caps_use_max > 0 &&
mdsc->caps_use_max < mdsc->caps_min_count)
mdsc->caps_use_max = mdsc->caps_min_count;
spin_unlock(&mdsc->caps_list_lock);
}
static void __ceph_unreserve_caps(struct ceph_mds_client *mdsc, int nr_caps)
{
struct ceph_cap *cap;
int i;
if (nr_caps) {
BUG_ON(mdsc->caps_reserve_count < nr_caps);
mdsc->caps_reserve_count -= nr_caps;
if (mdsc->caps_avail_count >=
mdsc->caps_reserve_count + mdsc->caps_min_count) {
mdsc->caps_total_count -= nr_caps;
for (i = 0; i < nr_caps; i++) {
cap = list_first_entry(&mdsc->caps_list,
struct ceph_cap, caps_item);
list_del(&cap->caps_item);
kmem_cache_free(ceph_cap_cachep, cap);
}
} else {
mdsc->caps_avail_count += nr_caps;
}
dout("%s: caps %d = %d used + %d resv + %d avail\n",
__func__,
mdsc->caps_total_count, mdsc->caps_use_count,
mdsc->caps_reserve_count, mdsc->caps_avail_count);
BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
mdsc->caps_reserve_count +
mdsc->caps_avail_count);
}
}
/*
* Called under mdsc->mutex.
*/
int ceph_reserve_caps(struct ceph_mds_client *mdsc,
struct ceph_cap_reservation *ctx, int need)
{
int i, j;
struct ceph_cap *cap;
int have;
int alloc = 0;
int max_caps;
int err = 0;
bool trimmed = false;
struct ceph_mds_session *s;
LIST_HEAD(newcaps);
dout("reserve caps ctx=%p need=%d\n", ctx, need);
/* first reserve any caps that are already allocated */
spin_lock(&mdsc->caps_list_lock);
if (mdsc->caps_avail_count >= need)
have = need;
else
have = mdsc->caps_avail_count;
mdsc->caps_avail_count -= have;
mdsc->caps_reserve_count += have;
BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
mdsc->caps_reserve_count +
mdsc->caps_avail_count);
spin_unlock(&mdsc->caps_list_lock);
for (i = have; i < need; ) {
cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
if (cap) {
list_add(&cap->caps_item, &newcaps);
alloc++;
i++;
continue;
}
if (!trimmed) {
for (j = 0; j < mdsc->max_sessions; j++) {
s = __ceph_lookup_mds_session(mdsc, j);
if (!s)
continue;
mutex_unlock(&mdsc->mutex);
mutex_lock(&s->s_mutex);
max_caps = s->s_nr_caps - (need - i);
ceph_trim_caps(mdsc, s, max_caps);
mutex_unlock(&s->s_mutex);
ceph_put_mds_session(s);
mutex_lock(&mdsc->mutex);
}
trimmed = true;
spin_lock(&mdsc->caps_list_lock);
if (mdsc->caps_avail_count) {
int more_have;
if (mdsc->caps_avail_count >= need - i)
more_have = need - i;
else
more_have = mdsc->caps_avail_count;
i += more_have;
have += more_have;
mdsc->caps_avail_count -= more_have;
mdsc->caps_reserve_count += more_have;
}
spin_unlock(&mdsc->caps_list_lock);
continue;
}
pr_warn("reserve caps ctx=%p ENOMEM need=%d got=%d\n",
ctx, need, have + alloc);
err = -ENOMEM;
break;
}
if (!err) {
BUG_ON(have + alloc != need);
ctx->count = need;
ctx->used = 0;
}
spin_lock(&mdsc->caps_list_lock);
mdsc->caps_total_count += alloc;
mdsc->caps_reserve_count += alloc;
list_splice(&newcaps, &mdsc->caps_list);
BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
mdsc->caps_reserve_count +
mdsc->caps_avail_count);
if (err)
__ceph_unreserve_caps(mdsc, have + alloc);
spin_unlock(&mdsc->caps_list_lock);
dout("reserve caps ctx=%p %d = %d used + %d resv + %d avail\n",
ctx, mdsc->caps_total_count, mdsc->caps_use_count,
mdsc->caps_reserve_count, mdsc->caps_avail_count);
return err;
}
void ceph_unreserve_caps(struct ceph_mds_client *mdsc,
struct ceph_cap_reservation *ctx)
{
bool reclaim = false;
if (!ctx->count)
return;
dout("unreserve caps ctx=%p count=%d\n", ctx, ctx->count);
spin_lock(&mdsc->caps_list_lock);
__ceph_unreserve_caps(mdsc, ctx->count);
ctx->count = 0;
if (mdsc->caps_use_max > 0 &&
mdsc->caps_use_count > mdsc->caps_use_max)
reclaim = true;
spin_unlock(&mdsc->caps_list_lock);
if (reclaim)
ceph_reclaim_caps_nr(mdsc, ctx->used);
}
struct ceph_cap *ceph_get_cap(struct ceph_mds_client *mdsc,
struct ceph_cap_reservation *ctx)
{
struct ceph_cap *cap = NULL;
/* temporary, until we do something about cap import/export */
if (!ctx) {
cap = kmem_cache_alloc(ceph_cap_cachep, GFP_NOFS);
if (cap) {
spin_lock(&mdsc->caps_list_lock);
mdsc->caps_use_count++;
mdsc->caps_total_count++;
spin_unlock(&mdsc->caps_list_lock);
} else {
spin_lock(&mdsc->caps_list_lock);
if (mdsc->caps_avail_count) {
BUG_ON(list_empty(&mdsc->caps_list));
mdsc->caps_avail_count--;
mdsc->caps_use_count++;
cap = list_first_entry(&mdsc->caps_list,
struct ceph_cap, caps_item);
list_del(&cap->caps_item);
BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
mdsc->caps_reserve_count + mdsc->caps_avail_count);
}
spin_unlock(&mdsc->caps_list_lock);
}
return cap;
}
spin_lock(&mdsc->caps_list_lock);
dout("get_cap ctx=%p (%d) %d = %d used + %d resv + %d avail\n",
ctx, ctx->count, mdsc->caps_total_count, mdsc->caps_use_count,
mdsc->caps_reserve_count, mdsc->caps_avail_count);
BUG_ON(!ctx->count);
BUG_ON(ctx->count > mdsc->caps_reserve_count);
BUG_ON(list_empty(&mdsc->caps_list));
ctx->count--;
ctx->used++;
mdsc->caps_reserve_count--;
mdsc->caps_use_count++;
cap = list_first_entry(&mdsc->caps_list, struct ceph_cap, caps_item);
list_del(&cap->caps_item);
BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
mdsc->caps_reserve_count + mdsc->caps_avail_count);
spin_unlock(&mdsc->caps_list_lock);
return cap;
}
void ceph_put_cap(struct ceph_mds_client *mdsc, struct ceph_cap *cap)
{
spin_lock(&mdsc->caps_list_lock);
dout("put_cap %p %d = %d used + %d resv + %d avail\n",
cap, mdsc->caps_total_count, mdsc->caps_use_count,
mdsc->caps_reserve_count, mdsc->caps_avail_count);
mdsc->caps_use_count--;
/*
* Keep some preallocated caps around (ceph_min_count), to
* avoid lots of free/alloc churn.
*/
if (mdsc->caps_avail_count >= mdsc->caps_reserve_count +
mdsc->caps_min_count) {
mdsc->caps_total_count--;
kmem_cache_free(ceph_cap_cachep, cap);
} else {
mdsc->caps_avail_count++;
list_add(&cap->caps_item, &mdsc->caps_list);
}
BUG_ON(mdsc->caps_total_count != mdsc->caps_use_count +
mdsc->caps_reserve_count + mdsc->caps_avail_count);
spin_unlock(&mdsc->caps_list_lock);
}
void ceph_reservation_status(struct ceph_fs_client *fsc,
int *total, int *avail, int *used, int *reserved,
int *min)
{
struct ceph_mds_client *mdsc = fsc->mdsc;
spin_lock(&mdsc->caps_list_lock);
if (total)
*total = mdsc->caps_total_count;
if (avail)
*avail = mdsc->caps_avail_count;
if (used)
*used = mdsc->caps_use_count;
if (reserved)
*reserved = mdsc->caps_reserve_count;
if (min)
*min = mdsc->caps_min_count;
spin_unlock(&mdsc->caps_list_lock);
}
/*
* Find ceph_cap for given mds, if any.
*
* Called with i_ceph_lock held.
*/
struct ceph_cap *__get_cap_for_mds(struct ceph_inode_info *ci, int mds)
{
struct ceph_cap *cap;
struct rb_node *n = ci->i_caps.rb_node;
while (n) {
cap = rb_entry(n, struct ceph_cap, ci_node);
if (mds < cap->mds)
n = n->rb_left;
else if (mds > cap->mds)
n = n->rb_right;
else
return cap;
}
return NULL;
}
struct ceph_cap *ceph_get_cap_for_mds(struct ceph_inode_info *ci, int mds)
{
struct ceph_cap *cap;
spin_lock(&ci->i_ceph_lock);
cap = __get_cap_for_mds(ci, mds);
spin_unlock(&ci->i_ceph_lock);
return cap;
}
/*
* Called under i_ceph_lock.
*/
static void __insert_cap_node(struct ceph_inode_info *ci,
struct ceph_cap *new)
{
struct rb_node **p = &ci->i_caps.rb_node;
struct rb_node *parent = NULL;
struct ceph_cap *cap = NULL;
while (*p) {
parent = *p;
cap = rb_entry(parent, struct ceph_cap, ci_node);
if (new->mds < cap->mds)
p = &(*p)->rb_left;
else if (new->mds > cap->mds)
p = &(*p)->rb_right;
else
BUG();
}
rb_link_node(&new->ci_node, parent, p);
rb_insert_color(&new->ci_node, &ci->i_caps);
}
/*
* (re)set cap hold timeouts, which control the delayed release
* of unused caps back to the MDS. Should be called on cap use.
*/
static void __cap_set_timeouts(struct ceph_mds_client *mdsc,
struct ceph_inode_info *ci)
{
struct ceph_mount_options *opt = mdsc->fsc->mount_options;
ci->i_hold_caps_max = round_jiffies(jiffies +
opt->caps_wanted_delay_max * HZ);
dout("__cap_set_timeouts %p %lu\n", &ci->netfs.inode,
ci->i_hold_caps_max - jiffies);
}
/*
* (Re)queue cap at the end of the delayed cap release list.
*
* If I_FLUSH is set, leave the inode at the front of the list.
*
* Caller holds i_ceph_lock
* -> we take mdsc->cap_delay_lock
*/
static void __cap_delay_requeue(struct ceph_mds_client *mdsc,
struct ceph_inode_info *ci)
{
dout("__cap_delay_requeue %p flags 0x%lx at %lu\n", &ci->netfs.inode,
ci->i_ceph_flags, ci->i_hold_caps_max);
if (!mdsc->stopping) {
spin_lock(&mdsc->cap_delay_lock);
if (!list_empty(&ci->i_cap_delay_list)) {
if (ci->i_ceph_flags & CEPH_I_FLUSH)
goto no_change;
list_del_init(&ci->i_cap_delay_list);
}
__cap_set_timeouts(mdsc, ci);
list_add_tail(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
no_change:
spin_unlock(&mdsc->cap_delay_lock);
}
}
/*
* Queue an inode for immediate writeback. Mark inode with I_FLUSH,
* indicating we should send a cap message to flush dirty metadata
* asap, and move to the front of the delayed cap list.
*/
static void __cap_delay_requeue_front(struct ceph_mds_client *mdsc,
struct ceph_inode_info *ci)
{
dout("__cap_delay_requeue_front %p\n", &ci->netfs.inode);
spin_lock(&mdsc->cap_delay_lock);
ci->i_ceph_flags |= CEPH_I_FLUSH;
if (!list_empty(&ci->i_cap_delay_list))
list_del_init(&ci->i_cap_delay_list);
list_add(&ci->i_cap_delay_list, &mdsc->cap_delay_list);
spin_unlock(&mdsc->cap_delay_lock);
}
/*
* Cancel delayed work on cap.
*
* Caller must hold i_ceph_lock.
*/
static void __cap_delay_cancel(struct ceph_mds_client *mdsc,
struct ceph_inode_info *ci)
{
dout("__cap_delay_cancel %p\n", &ci->netfs.inode);
if (list_empty(&ci->i_cap_delay_list))
return;
spin_lock(&mdsc->cap_delay_lock);
list_del_init(&ci->i_cap_delay_list);
spin_unlock(&mdsc->cap_delay_lock);
}
/* Common issue checks for add_cap, handle_cap_grant. */
static void __check_cap_issue(struct ceph_inode_info *ci, struct ceph_cap *cap,
unsigned issued)
{
unsigned had = __ceph_caps_issued(ci, NULL);
lockdep_assert_held(&ci->i_ceph_lock);
/*
* Each time we receive FILE_CACHE anew, we increment
* i_rdcache_gen.
*/
if (S_ISREG(ci->netfs.inode.i_mode) &&
(issued & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
(had & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) == 0) {
ci->i_rdcache_gen++;
}
/*
* If FILE_SHARED is newly issued, mark dir not complete. We don't
* know what happened to this directory while we didn't have the cap.
* If FILE_SHARED is being revoked, also mark dir not complete. It
* stops on-going cached readdir.
*/
if ((issued & CEPH_CAP_FILE_SHARED) != (had & CEPH_CAP_FILE_SHARED)) {
if (issued & CEPH_CAP_FILE_SHARED)
atomic_inc(&ci->i_shared_gen);
if (S_ISDIR(ci->netfs.inode.i_mode)) {
dout(" marking %p NOT complete\n", &ci->netfs.inode);
__ceph_dir_clear_complete(ci);
}
}
/* Wipe saved layout if we're losing DIR_CREATE caps */
if (S_ISDIR(ci->netfs.inode.i_mode) && (had & CEPH_CAP_DIR_CREATE) &&
!(issued & CEPH_CAP_DIR_CREATE)) {
ceph_put_string(rcu_dereference_raw(ci->i_cached_layout.pool_ns));
memset(&ci->i_cached_layout, 0, sizeof(ci->i_cached_layout));
}
}
/**
* change_auth_cap_ses - move inode to appropriate lists when auth caps change
* @ci: inode to be moved
* @session: new auth caps session
*/
void change_auth_cap_ses(struct ceph_inode_info *ci,
struct ceph_mds_session *session)
{
lockdep_assert_held(&ci->i_ceph_lock);
if (list_empty(&ci->i_dirty_item) && list_empty(&ci->i_flushing_item))
return;
spin_lock(&session->s_mdsc->cap_dirty_lock);
if (!list_empty(&ci->i_dirty_item))
list_move(&ci->i_dirty_item, &session->s_cap_dirty);
if (!list_empty(&ci->i_flushing_item))
list_move_tail(&ci->i_flushing_item, &session->s_cap_flushing);
spin_unlock(&session->s_mdsc->cap_dirty_lock);
}
/*
* Add a capability under the given MDS session.
*
* Caller should hold session snap_rwsem (read) and ci->i_ceph_lock
*
* @fmode is the open file mode, if we are opening a file, otherwise
* it is < 0. (This is so we can atomically add the cap and add an
* open file reference to it.)
*/
void ceph_add_cap(struct inode *inode,
struct ceph_mds_session *session, u64 cap_id,
unsigned issued, unsigned wanted,
unsigned seq, unsigned mseq, u64 realmino, int flags,
struct ceph_cap **new_cap)
{
struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_cap *cap;
int mds = session->s_mds;
int actual_wanted;
u32 gen;
lockdep_assert_held(&ci->i_ceph_lock);
dout("add_cap %p mds%d cap %llx %s seq %d\n", inode,
session->s_mds, cap_id, ceph_cap_string(issued), seq);
gen = atomic_read(&session->s_cap_gen);
cap = __get_cap_for_mds(ci, mds);
if (!cap) {
cap = *new_cap;
*new_cap = NULL;
cap->issued = 0;
cap->implemented = 0;
cap->mds = mds;
cap->mds_wanted = 0;
cap->mseq = 0;
cap->ci = ci;
__insert_cap_node(ci, cap);
/* add to session cap list */
cap->session = session;
spin_lock(&session->s_cap_lock);
list_add_tail(&cap->session_caps, &session->s_caps);
session->s_nr_caps++;
atomic64_inc(&mdsc->metric.total_caps);
spin_unlock(&session->s_cap_lock);
} else {
spin_lock(&session->s_cap_lock);
list_move_tail(&cap->session_caps, &session->s_caps);
spin_unlock(&session->s_cap_lock);
if (cap->cap_gen < gen)
cap->issued = cap->implemented = CEPH_CAP_PIN;
/*
* auth mds of the inode changed. we received the cap export
* message, but still haven't received the cap import message.
* handle_cap_export() updated the new auth MDS' cap.
*
* "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing
* a message that was send before the cap import message. So
* don't remove caps.
*/
if (ceph_seq_cmp(seq, cap->seq) <= 0) {
WARN_ON(cap != ci->i_auth_cap);
WARN_ON(cap->cap_id != cap_id);
seq = cap->seq;
mseq = cap->mseq;
issued |= cap->issued;
flags |= CEPH_CAP_FLAG_AUTH;
}
}
if (!ci->i_snap_realm ||
((flags & CEPH_CAP_FLAG_AUTH) &&
realmino != (u64)-1 && ci->i_snap_realm->ino != realmino)) {
/*
* add this inode to the appropriate snap realm
*/
struct ceph_snap_realm *realm = ceph_lookup_snap_realm(mdsc,
realmino);
if (realm)
ceph_change_snap_realm(inode, realm);
else
WARN(1, "%s: couldn't find snap realm 0x%llx (ino 0x%llx oldrealm 0x%llx)\n",
__func__, realmino, ci->i_vino.ino,
ci->i_snap_realm ? ci->i_snap_realm->ino : 0);
}
__check_cap_issue(ci, cap, issued);
/*
* If we are issued caps we don't want, or the mds' wanted
* value appears to be off, queue a check so we'll release
* later and/or update the mds wanted value.
*/
actual_wanted = __ceph_caps_wanted(ci);
if ((wanted & ~actual_wanted) ||
(issued & ~actual_wanted & CEPH_CAP_ANY_WR)) {
dout(" issued %s, mds wanted %s, actual %s, queueing\n",
ceph_cap_string(issued), ceph_cap_string(wanted),
ceph_cap_string(actual_wanted));
__cap_delay_requeue(mdsc, ci);
}
if (flags & CEPH_CAP_FLAG_AUTH) {
if (!ci->i_auth_cap ||
ceph_seq_cmp(ci->i_auth_cap->mseq, mseq) < 0) {
if (ci->i_auth_cap &&
ci->i_auth_cap->session != cap->session)
change_auth_cap_ses(ci, cap->session);
ci->i_auth_cap = cap;
cap->mds_wanted = wanted;
}
} else {
WARN_ON(ci->i_auth_cap == cap);
}
dout("add_cap inode %p (%llx.%llx) cap %p %s now %s seq %d mds%d\n",
inode, ceph_vinop(inode), cap, ceph_cap_string(issued),
ceph_cap_string(issued|cap->issued), seq, mds);
cap->cap_id = cap_id;
cap->issued = issued;
cap->implemented |= issued;
if (ceph_seq_cmp(mseq, cap->mseq) > 0)
cap->mds_wanted = wanted;
else
cap->mds_wanted |= wanted;
cap->seq = seq;
cap->issue_seq = seq;
cap->mseq = mseq;
cap->cap_gen = gen;
wake_up_all(&ci->i_cap_wq);
}
/*
* Return true if cap has not timed out and belongs to the current
* generation of the MDS session (i.e. has not gone 'stale' due to
* us losing touch with the mds).
*/
static int __cap_is_valid(struct ceph_cap *cap)
{
unsigned long ttl;
u32 gen;
gen = atomic_read(&cap->session->s_cap_gen);
ttl = cap->session->s_cap_ttl;
if (cap->cap_gen < gen || time_after_eq(jiffies, ttl)) {
dout("__cap_is_valid %p cap %p issued %s "
"but STALE (gen %u vs %u)\n", &cap->ci->netfs.inode,
cap, ceph_cap_string(cap->issued), cap->cap_gen, gen);
return 0;
}
return 1;
}
/*
* Return set of valid cap bits issued to us. Note that caps time
* out, and may be invalidated in bulk if the client session times out
* and session->s_cap_gen is bumped.
*/
int __ceph_caps_issued(struct ceph_inode_info *ci, int *implemented)
{
int have = ci->i_snap_caps;
struct ceph_cap *cap;
struct rb_node *p;
if (implemented)
*implemented = 0;
for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
cap = rb_entry(p, struct ceph_cap, ci_node);
if (!__cap_is_valid(cap))
continue;
dout("__ceph_caps_issued %p cap %p issued %s\n",
&ci->netfs.inode, cap, ceph_cap_string(cap->issued));
have |= cap->issued;
if (implemented)
*implemented |= cap->implemented;
}
/*
* exclude caps issued by non-auth MDS, but are been revoking
* by the auth MDS. The non-auth MDS should be revoking/exporting
* these caps, but the message is delayed.
*/
if (ci->i_auth_cap) {
cap = ci->i_auth_cap;
have &= ~cap->implemented | cap->issued;
}
return have;
}
/*
* Get cap bits issued by caps other than @ocap
*/
int __ceph_caps_issued_other(struct ceph_inode_info *ci, struct ceph_cap *ocap)
{
int have = ci->i_snap_caps;
struct ceph_cap *cap;
struct rb_node *p;
for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
cap = rb_entry(p, struct ceph_cap, ci_node);
if (cap == ocap)
continue;
if (!__cap_is_valid(cap))
continue;
have |= cap->issued;
}
return have;
}
/*
* Move a cap to the end of the LRU (oldest caps at list head, newest
* at list tail).
*/
static void __touch_cap(struct ceph_cap *cap)
{
struct ceph_mds_session *s = cap->session;
spin_lock(&s->s_cap_lock);
if (!s->s_cap_iterator) {
dout("__touch_cap %p cap %p mds%d\n", &cap->ci->netfs.inode, cap,
s->s_mds);
list_move_tail(&cap->session_caps, &s->s_caps);
} else {
dout("__touch_cap %p cap %p mds%d NOP, iterating over caps\n",
&cap->ci->netfs.inode, cap, s->s_mds);
}
spin_unlock(&s->s_cap_lock);
}
/*
* Check if we hold the given mask. If so, move the cap(s) to the
* front of their respective LRUs. (This is the preferred way for
* callers to check for caps they want.)
*/
int __ceph_caps_issued_mask(struct ceph_inode_info *ci, int mask, int touch)
{
struct ceph_cap *cap;
struct rb_node *p;
int have = ci->i_snap_caps;
if ((have & mask) == mask) {
dout("__ceph_caps_issued_mask ino 0x%llx snap issued %s"
" (mask %s)\n", ceph_ino(&ci->netfs.inode),
ceph_cap_string(have),
ceph_cap_string(mask));
return 1;
}
for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
cap = rb_entry(p, struct ceph_cap, ci_node);
if (!__cap_is_valid(cap))
continue;
if ((cap->issued & mask) == mask) {
dout("__ceph_caps_issued_mask ino 0x%llx cap %p issued %s"
" (mask %s)\n", ceph_ino(&ci->netfs.inode), cap,
ceph_cap_string(cap->issued),
ceph_cap_string(mask));
if (touch)
__touch_cap(cap);
return 1;
}
/* does a combination of caps satisfy mask? */
have |= cap->issued;
if ((have & mask) == mask) {
dout("__ceph_caps_issued_mask ino 0x%llx combo issued %s"
" (mask %s)\n", ceph_ino(&ci->netfs.inode),
ceph_cap_string(cap->issued),
ceph_cap_string(mask));
if (touch) {
struct rb_node *q;
/* touch this + preceding caps */
__touch_cap(cap);
for (q = rb_first(&ci->i_caps); q != p;
q = rb_next(q)) {
cap = rb_entry(q, struct ceph_cap,
ci_node);
if (!__cap_is_valid(cap))
continue;
if (cap->issued & mask)
__touch_cap(cap);
}
}
return 1;
}
}
return 0;
}
int __ceph_caps_issued_mask_metric(struct ceph_inode_info *ci, int mask,
int touch)
{
struct ceph_fs_client *fsc = ceph_sb_to_client(ci->netfs.inode.i_sb);
int r;
r = __ceph_caps_issued_mask(ci, mask, touch);
if (r)
ceph_update_cap_hit(&fsc->mdsc->metric);
else
ceph_update_cap_mis(&fsc->mdsc->metric);
return r;
}
/*
* Return true if mask caps are currently being revoked by an MDS.
*/
int __ceph_caps_revoking_other(struct ceph_inode_info *ci,
struct ceph_cap *ocap, int mask)
{
struct ceph_cap *cap;
struct rb_node *p;
for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
cap = rb_entry(p, struct ceph_cap, ci_node);
if (cap != ocap &&
(cap->implemented & ~cap->issued & mask))
return 1;
}
return 0;
}
int ceph_caps_revoking(struct ceph_inode_info *ci, int mask)
{
struct inode *inode = &ci->netfs.inode;
int ret;
spin_lock(&ci->i_ceph_lock);
ret = __ceph_caps_revoking_other(ci, NULL, mask);
spin_unlock(&ci->i_ceph_lock);
dout("ceph_caps_revoking %p %s = %d\n", inode,
ceph_cap_string(mask), ret);
return ret;
}
int __ceph_caps_used(struct ceph_inode_info *ci)
{
int used = 0;
if (ci->i_pin_ref)
used |= CEPH_CAP_PIN;
if (ci->i_rd_ref)
used |= CEPH_CAP_FILE_RD;
if (ci->i_rdcache_ref ||
(S_ISREG(ci->netfs.inode.i_mode) &&
ci->netfs.inode.i_data.nrpages))
used |= CEPH_CAP_FILE_CACHE;
if (ci->i_wr_ref)
used |= CEPH_CAP_FILE_WR;
if (ci->i_wb_ref || ci->i_wrbuffer_ref)
used |= CEPH_CAP_FILE_BUFFER;
if (ci->i_fx_ref)
used |= CEPH_CAP_FILE_EXCL;
return used;
}
#define FMODE_WAIT_BIAS 1000
/*
* wanted, by virtue of open file modes
*/
int __ceph_caps_file_wanted(struct ceph_inode_info *ci)
{
const int PIN_SHIFT = ffs(CEPH_FILE_MODE_PIN);
const int RD_SHIFT = ffs(CEPH_FILE_MODE_RD);
const int WR_SHIFT = ffs(CEPH_FILE_MODE_WR);
const int LAZY_SHIFT = ffs(CEPH_FILE_MODE_LAZY);
struct ceph_mount_options *opt =
ceph_inode_to_client(&ci->netfs.inode)->mount_options;
unsigned long used_cutoff = jiffies - opt->caps_wanted_delay_max * HZ;
unsigned long idle_cutoff = jiffies - opt->caps_wanted_delay_min * HZ;
if (S_ISDIR(ci->netfs.inode.i_mode)) {
int want = 0;
/* use used_cutoff here, to keep dir's wanted caps longer */
if (ci->i_nr_by_mode[RD_SHIFT] > 0 ||
time_after(ci->i_last_rd, used_cutoff))
want |= CEPH_CAP_ANY_SHARED;
if (ci->i_nr_by_mode[WR_SHIFT] > 0 ||
time_after(ci->i_last_wr, used_cutoff)) {
want |= CEPH_CAP_ANY_SHARED | CEPH_CAP_FILE_EXCL;
if (opt->flags & CEPH_MOUNT_OPT_ASYNC_DIROPS)
want |= CEPH_CAP_ANY_DIR_OPS;
}
if (want || ci->i_nr_by_mode[PIN_SHIFT] > 0)
want |= CEPH_CAP_PIN;
return want;
} else {
int bits = 0;
if (ci->i_nr_by_mode[RD_SHIFT] > 0) {
if (ci->i_nr_by_mode[RD_SHIFT] >= FMODE_WAIT_BIAS ||
time_after(ci->i_last_rd, used_cutoff))
bits |= 1 << RD_SHIFT;
} else if (time_after(ci->i_last_rd, idle_cutoff)) {
bits |= 1 << RD_SHIFT;
}
if (ci->i_nr_by_mode[WR_SHIFT] > 0) {
if (ci->i_nr_by_mode[WR_SHIFT] >= FMODE_WAIT_BIAS ||
time_after(ci->i_last_wr, used_cutoff))
bits |= 1 << WR_SHIFT;
} else if (time_after(ci->i_last_wr, idle_cutoff)) {
bits |= 1 << WR_SHIFT;
}
/* check lazyio only when read/write is wanted */
if ((bits & (CEPH_FILE_MODE_RDWR << 1)) &&
ci->i_nr_by_mode[LAZY_SHIFT] > 0)
bits |= 1 << LAZY_SHIFT;
return bits ? ceph_caps_for_mode(bits >> 1) : 0;
}
}
/*
* wanted, by virtue of open file modes AND cap refs (buffered/cached data)
*/
int __ceph_caps_wanted(struct ceph_inode_info *ci)
{
int w = __ceph_caps_file_wanted(ci) | __ceph_caps_used(ci);
if (S_ISDIR(ci->netfs.inode.i_mode)) {
/* we want EXCL if holding caps of dir ops */
if (w & CEPH_CAP_ANY_DIR_OPS)
w |= CEPH_CAP_FILE_EXCL;
} else {
/* we want EXCL if dirty data */
if (w & CEPH_CAP_FILE_BUFFER)
w |= CEPH_CAP_FILE_EXCL;
}
return w;
}
/*
* Return caps we have registered with the MDS(s) as 'wanted'.
*/
int __ceph_caps_mds_wanted(struct ceph_inode_info *ci, bool check)
{
struct ceph_cap *cap;
struct rb_node *p;
int mds_wanted = 0;
for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
cap = rb_entry(p, struct ceph_cap, ci_node);
if (check && !__cap_is_valid(cap))
continue;
if (cap == ci->i_auth_cap)
mds_wanted |= cap->mds_wanted;
else
mds_wanted |= (cap->mds_wanted & ~CEPH_CAP_ANY_FILE_WR);
}
return mds_wanted;
}
int ceph_is_any_caps(struct inode *inode)
{
struct ceph_inode_info *ci = ceph_inode(inode);
int ret;
spin_lock(&ci->i_ceph_lock);
ret = __ceph_is_any_real_caps(ci);
spin_unlock(&ci->i_ceph_lock);
return ret;
}
/*
* Remove a cap. Take steps to deal with a racing iterate_session_caps.
*
* caller should hold i_ceph_lock.
* caller will not hold session s_mutex if called from destroy_inode.
*/
void __ceph_remove_cap(struct ceph_cap *cap, bool queue_release)
{
struct ceph_mds_session *session = cap->session;
struct ceph_inode_info *ci = cap->ci;
struct ceph_mds_client *mdsc;
int removed = 0;
/* 'ci' being NULL means the remove have already occurred */
if (!ci) {
dout("%s: cap inode is NULL\n", __func__);
return;
}
lockdep_assert_held(&ci->i_ceph_lock);
dout("__ceph_remove_cap %p from %p\n", cap, &ci->netfs.inode);
mdsc = ceph_inode_to_client(&ci->netfs.inode)->mdsc;
/* remove from inode's cap rbtree, and clear auth cap */
rb_erase(&cap->ci_node, &ci->i_caps);
if (ci->i_auth_cap == cap)
ci->i_auth_cap = NULL;
/* remove from session list */
spin_lock(&session->s_cap_lock);
if (session->s_cap_iterator == cap) {
/* not yet, we are iterating over this very cap */
dout("__ceph_remove_cap delaying %p removal from session %p\n",
cap, cap->session);
} else {
list_del_init(&cap->session_caps);
session->s_nr_caps--;
atomic64_dec(&mdsc->metric.total_caps);
cap->session = NULL;
removed = 1;
}
/* protect backpointer with s_cap_lock: see iterate_session_caps */
cap->ci = NULL;
/*
* s_cap_reconnect is protected by s_cap_lock. no one changes
* s_cap_gen while session is in the reconnect state.
*/
if (queue_release &&
(!session->s_cap_reconnect ||
cap->cap_gen == atomic_read(&session->s_cap_gen))) {
cap->queue_release = 1;
if (removed) {
__ceph_queue_cap_release(session, cap);
removed = 0;
}
} else {
cap->queue_release = 0;
}
cap->cap_ino = ci->i_vino.ino;
spin_unlock(&session->s_cap_lock);
if (removed)
ceph_put_cap(mdsc, cap);
if (!__ceph_is_any_real_caps(ci)) {
/* when reconnect denied, we remove session caps forcibly,
* i_wr_ref can be non-zero. If there are ongoing write,
* keep i_snap_realm.
*/
if (ci->i_wr_ref == 0 && ci->i_snap_realm)
ceph_change_snap_realm(&ci->netfs.inode, NULL);
__cap_delay_cancel(mdsc, ci);
}
}
void ceph_remove_cap(struct ceph_cap *cap, bool queue_release)
{
struct ceph_inode_info *ci = cap->ci;
struct ceph_fs_client *fsc;
/* 'ci' being NULL means the remove have already occurred */
if (!ci) {
dout("%s: cap inode is NULL\n", __func__);
return;
}
lockdep_assert_held(&ci->i_ceph_lock);
fsc = ceph_inode_to_client(&ci->netfs.inode);
WARN_ON_ONCE(ci->i_auth_cap == cap &&
!list_empty(&ci->i_dirty_item) &&
!fsc->blocklisted &&
!ceph_inode_is_shutdown(&ci->netfs.inode));
__ceph_remove_cap(cap, queue_release);
}
struct cap_msg_args {
struct ceph_mds_session *session;
u64 ino, cid, follows;
u64 flush_tid, oldest_flush_tid, size, max_size;
u64 xattr_version;
u64 change_attr;
struct ceph_buffer *xattr_buf;
struct ceph_buffer *old_xattr_buf;
struct timespec64 atime, mtime, ctime, btime;
int op, caps, wanted, dirty;
u32 seq, issue_seq, mseq, time_warp_seq;
u32 flags;
kuid_t uid;
kgid_t gid;
umode_t mode;
bool inline_data;
bool wake;
};
/*
* cap struct size + flock buffer size + inline version + inline data size +
* osd_epoch_barrier + oldest_flush_tid
*/
#define CAP_MSG_SIZE (sizeof(struct ceph_mds_caps) + \
4 + 8 + 4 + 4 + 8 + 4 + 4 + 4 + 8 + 8 + 4)
/* Marshal up the cap msg to the MDS */
static void encode_cap_msg(struct ceph_msg *msg, struct cap_msg_args *arg)
{
struct ceph_mds_caps *fc;
void *p;
struct ceph_osd_client *osdc = &arg->session->s_mdsc->fsc->client->osdc;
dout("%s %s %llx %llx caps %s wanted %s dirty %s seq %u/%u tid %llu/%llu mseq %u follows %lld size %llu/%llu xattr_ver %llu xattr_len %d\n",
__func__, ceph_cap_op_name(arg->op), arg->cid, arg->ino,
ceph_cap_string(arg->caps), ceph_cap_string(arg->wanted),
ceph_cap_string(arg->dirty), arg->seq, arg->issue_seq,
arg->flush_tid, arg->oldest_flush_tid, arg->mseq, arg->follows,
arg->size, arg->max_size, arg->xattr_version,
arg->xattr_buf ? (int)arg->xattr_buf->vec.iov_len : 0);
msg->hdr.version = cpu_to_le16(10);
msg->hdr.tid = cpu_to_le64(arg->flush_tid);
fc = msg->front.iov_base;
memset(fc, 0, sizeof(*fc));
fc->cap_id = cpu_to_le64(arg->cid);
fc->op = cpu_to_le32(arg->op);
fc->seq = cpu_to_le32(arg->seq);
fc->issue_seq = cpu_to_le32(arg->issue_seq);
fc->migrate_seq = cpu_to_le32(arg->mseq);
fc->caps = cpu_to_le32(arg->caps);
fc->wanted = cpu_to_le32(arg->wanted);
fc->dirty = cpu_to_le32(arg->dirty);
fc->ino = cpu_to_le64(arg->ino);
fc->snap_follows = cpu_to_le64(arg->follows);
fc->size = cpu_to_le64(arg->size);
fc->max_size = cpu_to_le64(arg->max_size);
ceph_encode_timespec64(&fc->mtime, &arg->mtime);
ceph_encode_timespec64(&fc->atime, &arg->atime);
ceph_encode_timespec64(&fc->ctime, &arg->ctime);
fc->time_warp_seq = cpu_to_le32(arg->time_warp_seq);
fc->uid = cpu_to_le32(from_kuid(&init_user_ns, arg->uid));
fc->gid = cpu_to_le32(from_kgid(&init_user_ns, arg->gid));
fc->mode = cpu_to_le32(arg->mode);
fc->xattr_version = cpu_to_le64(arg->xattr_version);
if (arg->xattr_buf) {
msg->middle = ceph_buffer_get(arg->xattr_buf);
fc->xattr_len = cpu_to_le32(arg->xattr_buf->vec.iov_len);
msg->hdr.middle_len = cpu_to_le32(arg->xattr_buf->vec.iov_len);
}
p = fc + 1;
/* flock buffer size (version 2) */
ceph_encode_32(&p, 0);
/* inline version (version 4) */
ceph_encode_64(&p, arg->inline_data ? 0 : CEPH_INLINE_NONE);
/* inline data size */
ceph_encode_32(&p, 0);
/*
* osd_epoch_barrier (version 5)
* The epoch_barrier is protected osdc->lock, so READ_ONCE here in
* case it was recently changed
*/
ceph_encode_32(&p, READ_ONCE(osdc->epoch_barrier));
/* oldest_flush_tid (version 6) */
ceph_encode_64(&p, arg->oldest_flush_tid);
/*
* caller_uid/caller_gid (version 7)
*
* Currently, we don't properly track which caller dirtied the caps
* last, and force a flush of them when there is a conflict. For now,
* just set this to 0:0, to emulate how the MDS has worked up to now.
*/
ceph_encode_32(&p, 0);
ceph_encode_32(&p, 0);
/* pool namespace (version 8) (mds always ignores this) */
ceph_encode_32(&p, 0);
/* btime and change_attr (version 9) */
ceph_encode_timespec64(p, &arg->btime);
p += sizeof(struct ceph_timespec);
ceph_encode_64(&p, arg->change_attr);
/* Advisory flags (version 10) */
ceph_encode_32(&p, arg->flags);
}
/*
* Queue cap releases when an inode is dropped from our cache.
*/
void __ceph_remove_caps(struct ceph_inode_info *ci)
{
struct rb_node *p;
/* lock i_ceph_lock, because ceph_d_revalidate(..., LOOKUP_RCU)
* may call __ceph_caps_issued_mask() on a freeing inode. */
spin_lock(&ci->i_ceph_lock);
p = rb_first(&ci->i_caps);
while (p) {
struct ceph_cap *cap = rb_entry(p, struct ceph_cap, ci_node);
p = rb_next(p);
ceph_remove_cap(cap, true);
}
spin_unlock(&ci->i_ceph_lock);
}
/*
* Prepare to send a cap message to an MDS. Update the cap state, and populate
* the arg struct with the parameters that will need to be sent. This should
* be done under the i_ceph_lock to guard against changes to cap state.
*
* Make note of max_size reported/requested from mds, revoked caps
* that have now been implemented.
*/
static void __prep_cap(struct cap_msg_args *arg, struct ceph_cap *cap,
int op, int flags, int used, int want, int retain,
int flushing, u64 flush_tid, u64 oldest_flush_tid)
{
struct ceph_inode_info *ci = cap->ci;
struct inode *inode = &ci->netfs.inode;
int held, revoking;
lockdep_assert_held(&ci->i_ceph_lock);
held = cap->issued | cap->implemented;
revoking = cap->implemented & ~cap->issued;
retain &= ~revoking;
dout("%s %p cap %p session %p %s -> %s (revoking %s)\n",
__func__, inode, cap, cap->session,
ceph_cap_string(held), ceph_cap_string(held & retain),
ceph_cap_string(revoking));
BUG_ON((retain & CEPH_CAP_PIN) == 0);
ci->i_ceph_flags &= ~CEPH_I_FLUSH;
cap->issued &= retain; /* drop bits we don't want */
/*
* Wake up any waiters on wanted -> needed transition. This is due to
* the weird transition from buffered to sync IO... we need to flush
* dirty pages _before_ allowing sync writes to avoid reordering.
*/
arg->wake = cap->implemented & ~cap->issued;
cap->implemented &= cap->issued | used;
cap->mds_wanted = want;
arg->session = cap->session;
arg->ino = ceph_vino(inode).ino;
arg->cid = cap->cap_id;
arg->follows = flushing ? ci->i_head_snapc->seq : 0;
arg->flush_tid = flush_tid;
arg->oldest_flush_tid = oldest_flush_tid;
arg->size = i_size_read(inode);
ci->i_reported_size = arg->size;
arg->max_size = ci->i_wanted_max_size;
if (cap == ci->i_auth_cap) {
if (want & CEPH_CAP_ANY_FILE_WR)
ci->i_requested_max_size = arg->max_size;
else
ci->i_requested_max_size = 0;
}
if (flushing & CEPH_CAP_XATTR_EXCL) {
arg->old_xattr_buf = __ceph_build_xattrs_blob(ci);
arg->xattr_version = ci->i_xattrs.version;
arg->xattr_buf = ci->i_xattrs.blob;
} else {
arg->xattr_buf = NULL;
arg->old_xattr_buf = NULL;
}
arg->mtime = inode->i_mtime;
arg->atime = inode->i_atime;
arg->ctime = inode->i_ctime;
arg->btime = ci->i_btime;
arg->change_attr = inode_peek_iversion_raw(inode);
arg->op = op;
arg->caps = cap->implemented;
arg->wanted = want;
arg->dirty = flushing;
arg->seq = cap->seq;
arg->issue_seq = cap->issue_seq;
arg->mseq = cap->mseq;
arg->time_warp_seq = ci->i_time_warp_seq;
arg->uid = inode->i_uid;
arg->gid = inode->i_gid;
arg->mode = inode->i_mode;
arg->inline_data = ci->i_inline_version != CEPH_INLINE_NONE;
if (!(flags & CEPH_CLIENT_CAPS_PENDING_CAPSNAP) &&
!list_empty(&ci->i_cap_snaps)) {
struct ceph_cap_snap *capsnap;
list_for_each_entry_reverse(capsnap, &ci->i_cap_snaps, ci_item) {
if (capsnap->cap_flush.tid)
break;
if (capsnap->need_flush) {
flags |= CEPH_CLIENT_CAPS_PENDING_CAPSNAP;
break;
}
}
}
arg->flags = flags;
}
/*
* Send a cap msg on the given inode.
*
* Caller should hold snap_rwsem (read), s_mutex.
*/
static void __send_cap(struct cap_msg_args *arg, struct ceph_inode_info *ci)
{
struct ceph_msg *msg;
struct inode *inode = &ci->netfs.inode;
msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, CAP_MSG_SIZE, GFP_NOFS, false);
if (!msg) {
pr_err("error allocating cap msg: ino (%llx.%llx) flushing %s tid %llu, requeuing cap.\n",
ceph_vinop(inode), ceph_cap_string(arg->dirty),
arg->flush_tid);
spin_lock(&ci->i_ceph_lock);
__cap_delay_requeue(arg->session->s_mdsc, ci);
spin_unlock(&ci->i_ceph_lock);
return;
}
encode_cap_msg(msg, arg);
ceph_con_send(&arg->session->s_con, msg);
ceph_buffer_put(arg->old_xattr_buf);
if (arg->wake)
wake_up_all(&ci->i_cap_wq);
}
static inline int __send_flush_snap(struct inode *inode,
struct ceph_mds_session *session,
struct ceph_cap_snap *capsnap,
u32 mseq, u64 oldest_flush_tid)
{
struct cap_msg_args arg;
struct ceph_msg *msg;
msg = ceph_msg_new(CEPH_MSG_CLIENT_CAPS, CAP_MSG_SIZE, GFP_NOFS, false);
if (!msg)
return -ENOMEM;
arg.session = session;
arg.ino = ceph_vino(inode).ino;
arg.cid = 0;
arg.follows = capsnap->follows;
arg.flush_tid = capsnap->cap_flush.tid;
arg.oldest_flush_tid = oldest_flush_tid;
arg.size = capsnap->size;
arg.max_size = 0;
arg.xattr_version = capsnap->xattr_version;
arg.xattr_buf = capsnap->xattr_blob;
arg.old_xattr_buf = NULL;
arg.atime = capsnap->atime;
arg.mtime = capsnap->mtime;
arg.ctime = capsnap->ctime;
arg.btime = capsnap->btime;
arg.change_attr = capsnap->change_attr;
arg.op = CEPH_CAP_OP_FLUSHSNAP;
arg.caps = capsnap->issued;
arg.wanted = 0;
arg.dirty = capsnap->dirty;
arg.seq = 0;
arg.issue_seq = 0;
arg.mseq = mseq;
arg.time_warp_seq = capsnap->time_warp_seq;
arg.uid = capsnap->uid;
arg.gid = capsnap->gid;
arg.mode = capsnap->mode;
arg.inline_data = capsnap->inline_data;
arg.flags = 0;
arg.wake = false;
encode_cap_msg(msg, &arg);
ceph_con_send(&arg.session->s_con, msg);
return 0;
}
/*
* When a snapshot is taken, clients accumulate dirty metadata on
* inodes with capabilities in ceph_cap_snaps to describe the file
* state at the time the snapshot was taken. This must be flushed
* asynchronously back to the MDS once sync writes complete and dirty
* data is written out.
*
* Called under i_ceph_lock.
*/
static void __ceph_flush_snaps(struct ceph_inode_info *ci,
struct ceph_mds_session *session)
__releases(ci->i_ceph_lock)
__acquires(ci->i_ceph_lock)
{
struct inode *inode = &ci->netfs.inode;
struct ceph_mds_client *mdsc = session->s_mdsc;
struct ceph_cap_snap *capsnap;
u64 oldest_flush_tid = 0;
u64 first_tid = 1, last_tid = 0;
dout("__flush_snaps %p session %p\n", inode, session);
list_for_each_entry(capsnap, &ci->i_cap_snaps, ci_item) {
/*
* we need to wait for sync writes to complete and for dirty
* pages to be written out.
*/
if (capsnap->dirty_pages || capsnap->writing)
break;
/* should be removed by ceph_try_drop_cap_snap() */
BUG_ON(!capsnap->need_flush);
/* only flush each capsnap once */
if (capsnap->cap_flush.tid > 0) {
dout(" already flushed %p, skipping\n", capsnap);
continue;
}
spin_lock(&mdsc->cap_dirty_lock);
capsnap->cap_flush.tid = ++mdsc->last_cap_flush_tid;
list_add_tail(&capsnap->cap_flush.g_list,
&mdsc->cap_flush_list);
if (oldest_flush_tid == 0)
oldest_flush_tid = __get_oldest_flush_tid(mdsc);
if (list_empty(&ci->i_flushing_item)) {
list_add_tail(&ci->i_flushing_item,
&session->s_cap_flushing);
}
spin_unlock(&mdsc->cap_dirty_lock);
list_add_tail(&capsnap->cap_flush.i_list,
&ci->i_cap_flush_list);
if (first_tid == 1)
first_tid = capsnap->cap_flush.tid;
last_tid = capsnap->cap_flush.tid;
}
ci->i_ceph_flags &= ~CEPH_I_FLUSH_SNAPS;
while (first_tid <= last_tid) {
struct ceph_cap *cap = ci->i_auth_cap;
struct ceph_cap_flush *cf = NULL, *iter;
int ret;
if (!(cap && cap->session == session)) {
dout("__flush_snaps %p auth cap %p not mds%d, "
"stop\n", inode, cap, session->s_mds);
break;
}
ret = -ENOENT;
list_for_each_entry(iter, &ci->i_cap_flush_list, i_list) {
if (iter->tid >= first_tid) {
cf = iter;
ret = 0;
break;
}
}
if (ret < 0)
break;
first_tid = cf->tid + 1;
capsnap = container_of(cf, struct ceph_cap_snap, cap_flush);
refcount_inc(&capsnap->nref);
spin_unlock(&ci->i_ceph_lock);
dout("__flush_snaps %p capsnap %p tid %llu %s\n",
inode, capsnap, cf->tid, ceph_cap_string(capsnap->dirty));
ret = __send_flush_snap(inode, session, capsnap, cap->mseq,
oldest_flush_tid);
if (ret < 0) {
pr_err("__flush_snaps: error sending cap flushsnap, "
"ino (%llx.%llx) tid %llu follows %llu\n",
ceph_vinop(inode), cf->tid, capsnap->follows);
}
ceph_put_cap_snap(capsnap);
spin_lock(&ci->i_ceph_lock);
}
}
void ceph_flush_snaps(struct ceph_inode_info *ci,
struct ceph_mds_session **psession)
{
struct inode *inode = &ci->netfs.inode;
struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
struct ceph_mds_session *session = NULL;
bool need_put = false;
int mds;
dout("ceph_flush_snaps %p\n", inode);
if (psession)
session = *psession;
retry:
spin_lock(&ci->i_ceph_lock);
if (!(ci->i_ceph_flags & CEPH_I_FLUSH_SNAPS)) {
dout(" no capsnap needs flush, doing nothing\n");
goto out;
}
if (!ci->i_auth_cap) {
dout(" no auth cap (migrating?), doing nothing\n");
goto out;
}
mds = ci->i_auth_cap->session->s_mds;
if (session && session->s_mds != mds) {
dout(" oops, wrong session %p mutex\n", session);
ceph_put_mds_session(session);
session = NULL;
}
if (!session) {
spin_unlock(&ci->i_ceph_lock);
mutex_lock(&mdsc->mutex);
session = __ceph_lookup_mds_session(mdsc, mds);
mutex_unlock(&mdsc->mutex);
goto retry;
}
// make sure flushsnap messages are sent in proper order.
if (ci->i_ceph_flags & CEPH_I_KICK_FLUSH)
__kick_flushing_caps(mdsc, session, ci, 0);
__ceph_flush_snaps(ci, session);
out:
spin_unlock(&ci->i_ceph_lock);
if (psession)
*psession = session;
else
ceph_put_mds_session(session);
/* we flushed them all; remove this inode from the queue */
spin_lock(&mdsc->snap_flush_lock);
if (!list_empty(&ci->i_snap_flush_item))
need_put = true;
list_del_init(&ci->i_snap_flush_item);
spin_unlock(&mdsc->snap_flush_lock);
if (need_put)
iput(inode);
}
/*
* Mark caps dirty. If inode is newly dirty, return the dirty flags.
* Caller is then responsible for calling __mark_inode_dirty with the
* returned flags value.
*/
int __ceph_mark_dirty_caps(struct ceph_inode_info *ci, int mask,
struct ceph_cap_flush **pcf)
{
struct ceph_mds_client *mdsc =
ceph_sb_to_client(ci->netfs.inode.i_sb)->mdsc;
struct inode *inode = &ci->netfs.inode;
int was = ci->i_dirty_caps;
int dirty = 0;
lockdep_assert_held(&ci->i_ceph_lock);
if (!ci->i_auth_cap) {
pr_warn("__mark_dirty_caps %p %llx mask %s, "
"but no auth cap (session was closed?)\n",
inode, ceph_ino(inode), ceph_cap_string(mask));
return 0;
}
dout("__mark_dirty_caps %p %s dirty %s -> %s\n", &ci->netfs.inode,
ceph_cap_string(mask), ceph_cap_string(was),
ceph_cap_string(was | mask));
ci->i_dirty_caps |= mask;
if (was == 0) {
struct ceph_mds_session *session = ci->i_auth_cap->session;
WARN_ON_ONCE(ci->i_prealloc_cap_flush);
swap(ci->i_prealloc_cap_flush, *pcf);
if (!ci->i_head_snapc) {
WARN_ON_ONCE(!rwsem_is_locked(&mdsc->snap_rwsem));
ci->i_head_snapc = ceph_get_snap_context(
ci->i_snap_realm->cached_context);
}
dout(" inode %p now dirty snapc %p auth cap %p\n",
&ci->netfs.inode, ci->i_head_snapc, ci->i_auth_cap);
BUG_ON(!list_empty(&ci->i_dirty_item));
spin_lock(&mdsc->cap_dirty_lock);
list_add(&ci->i_dirty_item, &session->s_cap_dirty);
spin_unlock(&mdsc->cap_dirty_lock);
if (ci->i_flushing_caps == 0) {
ihold(inode);
dirty |= I_DIRTY_SYNC;
}
} else {
WARN_ON_ONCE(!ci->i_prealloc_cap_flush);
}
BUG_ON(list_empty(&ci->i_dirty_item));
if (((was | ci->i_flushing_caps) & CEPH_CAP_FILE_BUFFER) &&
(mask & CEPH_CAP_FILE_BUFFER))
dirty |= I_DIRTY_DATASYNC;
__cap_delay_requeue(mdsc, ci);
return dirty;
}
struct ceph_cap_flush *ceph_alloc_cap_flush(void)
{
struct ceph_cap_flush *cf;
cf = kmem_cache_alloc(ceph_cap_flush_cachep, GFP_KERNEL);
if (!cf)
return NULL;
cf->is_capsnap = false;
return cf;
}
void ceph_free_cap_flush(struct ceph_cap_flush *cf)
{
if (cf)
kmem_cache_free(ceph_cap_flush_cachep, cf);
}
static u64 __get_oldest_flush_tid(struct ceph_mds_client *mdsc)
{
if (!list_empty(&mdsc->cap_flush_list)) {
struct ceph_cap_flush *cf =
list_first_entry(&mdsc->cap_flush_list,
struct ceph_cap_flush, g_list);
return cf->tid;
}
return 0;
}
/*
* Remove cap_flush from the mdsc's or inode's flushing cap list.
* Return true if caller needs to wake up flush waiters.
*/
static bool __detach_cap_flush_from_mdsc(struct ceph_mds_client *mdsc,
struct ceph_cap_flush *cf)
{
struct ceph_cap_flush *prev;
bool wake = cf->wake;
if (wake && cf->g_list.prev != &mdsc->cap_flush_list) {
prev = list_prev_entry(cf, g_list);
prev->wake = true;
wake = false;
}
list_del_init(&cf->g_list);
return wake;
}
static bool __detach_cap_flush_from_ci(struct ceph_inode_info *ci,
struct ceph_cap_flush *cf)
{
struct ceph_cap_flush *prev;
bool wake = cf->wake;
if (wake && cf->i_list.prev != &ci->i_cap_flush_list) {
prev = list_prev_entry(cf, i_list);
prev->wake = true;
wake = false;
}
list_del_init(&cf->i_list);
return wake;
}
/*
* Add dirty inode to the flushing list. Assigned a seq number so we
* can wait for caps to flush without starving.
*
* Called under i_ceph_lock. Returns the flush tid.
*/
static u64 __mark_caps_flushing(struct inode *inode,
struct ceph_mds_session *session, bool wake,
u64 *oldest_flush_tid)
{
struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_cap_flush *cf = NULL;
int flushing;
lockdep_assert_held(&ci->i_ceph_lock);
BUG_ON(ci->i_dirty_caps == 0);
BUG_ON(list_empty(&ci->i_dirty_item));
BUG_ON(!ci->i_prealloc_cap_flush);
flushing = ci->i_dirty_caps;
dout("__mark_caps_flushing flushing %s, flushing_caps %s -> %s\n",
ceph_cap_string(flushing),
ceph_cap_string(ci->i_flushing_caps),
ceph_cap_string(ci->i_flushing_caps | flushing));
ci->i_flushing_caps |= flushing;
ci->i_dirty_caps = 0;
dout(" inode %p now !dirty\n", inode);
swap(cf, ci->i_prealloc_cap_flush);
cf->caps = flushing;
cf->wake = wake;
spin_lock(&mdsc->cap_dirty_lock);
list_del_init(&ci->i_dirty_item);
cf->tid = ++mdsc->last_cap_flush_tid;
list_add_tail(&cf->g_list, &mdsc->cap_flush_list);
*oldest_flush_tid = __get_oldest_flush_tid(mdsc);
if (list_empty(&ci->i_flushing_item)) {
list_add_tail(&ci->i_flushing_item, &session->s_cap_flushing);
mdsc->num_cap_flushing++;
}
spin_unlock(&mdsc->cap_dirty_lock);
list_add_tail(&cf->i_list, &ci->i_cap_flush_list);
return cf->tid;
}
/*
* try to invalidate mapping pages without blocking.
*/
static int try_nonblocking_invalidate(struct inode *inode)
__releases(ci->i_ceph_lock)
__acquires(ci->i_ceph_lock)
{
struct ceph_inode_info *ci = ceph_inode(inode);
u32 invalidating_gen = ci->i_rdcache_gen;
spin_unlock(&ci->i_ceph_lock);
ceph_fscache_invalidate(inode, false);
invalidate_mapping_pages(&inode->i_data, 0, -1);
spin_lock(&ci->i_ceph_lock);
if (inode->i_data.nrpages == 0 &&
invalidating_gen == ci->i_rdcache_gen) {
/* success. */
dout("try_nonblocking_invalidate %p success\n", inode);
/* save any racing async invalidate some trouble */
ci->i_rdcache_revoking = ci->i_rdcache_gen - 1;
return 0;
}
dout("try_nonblocking_invalidate %p failed\n", inode);
return -1;
}
bool __ceph_should_report_size(struct ceph_inode_info *ci)
{
loff_t size = i_size_read(&ci->netfs.inode);
/* mds will adjust max size according to the reported size */
if (ci->i_flushing_caps & CEPH_CAP_FILE_WR)
return false;
if (size >= ci->i_max_size)
return true;
/* half of previous max_size increment has been used */
if (ci->i_max_size > ci->i_reported_size &&
(size << 1) >= ci->i_max_size + ci->i_reported_size)
return true;
return false;
}
/*
* Swiss army knife function to examine currently used and wanted
* versus held caps. Release, flush, ack revoked caps to mds as
* appropriate.
*
* CHECK_CAPS_AUTHONLY - we should only check the auth cap
* CHECK_CAPS_FLUSH - we should flush any dirty caps immediately, without
* further delay.
*/
void ceph_check_caps(struct ceph_inode_info *ci, int flags)
{
struct inode *inode = &ci->netfs.inode;
struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(inode->i_sb);
struct ceph_cap *cap;
u64 flush_tid, oldest_flush_tid;
int file_wanted, used, cap_used;
int issued, implemented, want, retain, revoking, flushing = 0;
int mds = -1; /* keep track of how far we've gone through i_caps list
to avoid an infinite loop on retry */
struct rb_node *p;
bool queue_invalidate = false;
bool tried_invalidate = false;
bool queue_writeback = false;
struct ceph_mds_session *session = NULL;
spin_lock(&ci->i_ceph_lock);
if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE) {
ci->i_ceph_flags |= CEPH_I_ASYNC_CHECK_CAPS;
/* Don't send messages until we get async create reply */
spin_unlock(&ci->i_ceph_lock);
return;
}
if (ci->i_ceph_flags & CEPH_I_FLUSH)
flags |= CHECK_CAPS_FLUSH;
retry:
/* Caps wanted by virtue of active open files. */
file_wanted = __ceph_caps_file_wanted(ci);
/* Caps which have active references against them */
used = __ceph_caps_used(ci);
/*
* "issued" represents the current caps that the MDS wants us to have.
* "implemented" is the set that we have been granted, and includes the
* ones that have not yet been returned to the MDS (the "revoking" set,
* usually because they have outstanding references).
*/
issued = __ceph_caps_issued(ci, &implemented);
revoking = implemented & ~issued;
want = file_wanted;
/* The ones we currently want to retain (may be adjusted below) */
retain = file_wanted | used | CEPH_CAP_PIN;
if (!mdsc->stopping && inode->i_nlink > 0) {
if (file_wanted) {
retain |= CEPH_CAP_ANY; /* be greedy */
} else if (S_ISDIR(inode->i_mode) &&
(issued & CEPH_CAP_FILE_SHARED) &&
__ceph_dir_is_complete(ci)) {
/*
* If a directory is complete, we want to keep
* the exclusive cap. So that MDS does not end up
* revoking the shared cap on every create/unlink
* operation.
*/
if (IS_RDONLY(inode)) {
want = CEPH_CAP_ANY_SHARED;
} else {
want |= CEPH_CAP_ANY_SHARED | CEPH_CAP_FILE_EXCL;
}
retain |= want;
} else {
retain |= CEPH_CAP_ANY_SHARED;
/*
* keep RD only if we didn't have the file open RW,
* because then the mds would revoke it anyway to
* journal max_size=0.
*/
if (ci->i_max_size == 0)
retain |= CEPH_CAP_ANY_RD;
}
}
dout("check_caps %llx.%llx file_want %s used %s dirty %s flushing %s"
" issued %s revoking %s retain %s %s%s%s\n", ceph_vinop(inode),
ceph_cap_string(file_wanted),
ceph_cap_string(used), ceph_cap_string(ci->i_dirty_caps),
ceph_cap_string(ci->i_flushing_caps),
ceph_cap_string(issued), ceph_cap_string(revoking),
ceph_cap_string(retain),
(flags & CHECK_CAPS_AUTHONLY) ? " AUTHONLY" : "",
(flags & CHECK_CAPS_FLUSH) ? " FLUSH" : "",
(flags & CHECK_CAPS_NOINVAL) ? " NOINVAL" : "");
/*
* If we no longer need to hold onto old our caps, and we may
* have cached pages, but don't want them, then try to invalidate.
* If we fail, it's because pages are locked.... try again later.
*/
if ((!(flags & CHECK_CAPS_NOINVAL) || mdsc->stopping) &&
S_ISREG(inode->i_mode) &&
!(ci->i_wb_ref || ci->i_wrbuffer_ref) && /* no dirty pages... */
inode->i_data.nrpages && /* have cached pages */
(revoking & (CEPH_CAP_FILE_CACHE|
CEPH_CAP_FILE_LAZYIO)) && /* or revoking cache */
!tried_invalidate) {
dout("check_caps trying to invalidate on %llx.%llx\n",
ceph_vinop(inode));
if (try_nonblocking_invalidate(inode) < 0) {
dout("check_caps queuing invalidate\n");
queue_invalidate = true;
ci->i_rdcache_revoking = ci->i_rdcache_gen;
}
tried_invalidate = true;
goto retry;
}
for (p = rb_first(&ci->i_caps); p; p = rb_next(p)) {
int mflags = 0;
struct cap_msg_args arg;
cap = rb_entry(p, struct ceph_cap, ci_node);
/* avoid looping forever */
if (mds >= cap->mds ||
((flags & CHECK_CAPS_AUTHONLY) && cap != ci->i_auth_cap))
continue;
/*
* If we have an auth cap, we don't need to consider any
* overlapping caps as used.
*/
cap_used = used;
if (ci->i_auth_cap && cap != ci->i_auth_cap)
cap_used &= ~ci->i_auth_cap->issued;
revoking = cap->implemented & ~cap->issued;
dout(" mds%d cap %p used %s issued %s implemented %s revoking %s\n",
cap->mds, cap, ceph_cap_string(cap_used),
ceph_cap_string(cap->issued),
ceph_cap_string(cap->implemented),
ceph_cap_string(revoking));
if (cap == ci->i_auth_cap &&
(cap->issued & CEPH_CAP_FILE_WR)) {
/* request larger max_size from MDS? */
if (ci->i_wanted_max_size > ci->i_max_size &&
ci->i_wanted_max_size > ci->i_requested_max_size) {
dout("requesting new max_size\n");
goto ack;
}
/* approaching file_max? */
if (__ceph_should_report_size(ci)) {
dout("i_size approaching max_size\n");
goto ack;
}
}
/* flush anything dirty? */
if (cap == ci->i_auth_cap) {
if ((flags & CHECK_CAPS_FLUSH) && ci->i_dirty_caps) {
dout("flushing dirty caps\n");
goto ack;
}
if (ci->i_ceph_flags & CEPH_I_FLUSH_SNAPS) {
dout("flushing snap caps\n");
goto ack;
}
}
/* completed revocation? going down and there are no caps? */
if (revoking) {
if ((revoking & cap_used) == 0) {
dout("completed revocation of %s\n",
ceph_cap_string(cap->implemented & ~cap->issued));
goto ack;
}
/*
* If the "i_wrbuffer_ref" was increased by mmap or generic
* cache write just before the ceph_check_caps() is called,
* the Fb capability revoking will fail this time. Then we
* must wait for the BDI's delayed work to flush the dirty
* pages and to release the "i_wrbuffer_ref", which will cost
* at most 5 seconds. That means the MDS needs to wait at
* most 5 seconds to finished the Fb capability's revocation.
*
* Let's queue a writeback for it.
*/
if (S_ISREG(inode->i_mode) && ci->i_wrbuffer_ref &&
(revoking & CEPH_CAP_FILE_BUFFER))
queue_writeback = true;
}
/* want more caps from mds? */
if (want & ~cap->mds_wanted) {
if (want & ~(cap->mds_wanted | cap->issued))
goto ack;
if (!__cap_is_valid(cap))
goto ack;
}
/* things we might delay */
if ((cap->issued & ~retain) == 0)
continue; /* nope, all good */
ack:
ceph_put_mds_session(session);
session = ceph_get_mds_session(cap->session);
/* kick flushing and flush snaps before sending normal
* cap message */
if (cap == ci->i_auth_cap &&
(ci->i_ceph_flags &
(CEPH_I_KICK_FLUSH | CEPH_I_FLUSH_SNAPS))) {
if (ci->i_ceph_flags & CEPH_I_KICK_FLUSH)
__kick_flushing_caps(mdsc, session, ci, 0);
if (ci->i_ceph_flags & CEPH_I_FLUSH_SNAPS)
__ceph_flush_snaps(ci, session);
goto retry;
}
if (cap == ci->i_auth_cap && ci->i_dirty_caps) {
flushing = ci->i_dirty_caps;
flush_tid = __mark_caps_flushing(inode, session, false,
&oldest_flush_tid);
if (flags & CHECK_CAPS_FLUSH &&
list_empty(&session->s_cap_dirty))
mflags |= CEPH_CLIENT_CAPS_SYNC;
} else {
flushing = 0;
flush_tid = 0;
spin_lock(&mdsc->cap_dirty_lock);
oldest_flush_tid = __get_oldest_flush_tid(mdsc);
spin_unlock(&mdsc->cap_dirty_lock);
}
mds = cap->mds; /* remember mds, so we don't repeat */
__prep_cap(&arg, cap, CEPH_CAP_OP_UPDATE, mflags, cap_used,
want, retain, flushing, flush_tid, oldest_flush_tid);
spin_unlock(&ci->i_ceph_lock);
__send_cap(&arg, ci);
spin_lock(&ci->i_ceph_lock);
goto retry; /* retake i_ceph_lock and restart our cap scan. */
}
/* periodically re-calculate caps wanted by open files */
if (__ceph_is_any_real_caps(ci) &&
list_empty(&ci->i_cap_delay_list) &&
(file_wanted & ~CEPH_CAP_PIN) &&
!(used & (CEPH_CAP_FILE_RD | CEPH_CAP_ANY_FILE_WR))) {
__cap_delay_requeue(mdsc, ci);
}
spin_unlock(&ci->i_ceph_lock);
ceph_put_mds_session(session);
if (queue_writeback)
ceph_queue_writeback(inode);
if (queue_invalidate)
ceph_queue_invalidate(inode);
}
/*
* Try to flush dirty caps back to the auth mds.
*/
static int try_flush_caps(struct inode *inode, u64 *ptid)
{
struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
struct ceph_inode_info *ci = ceph_inode(inode);
int flushing = 0;
u64 flush_tid = 0, oldest_flush_tid = 0;
spin_lock(&ci->i_ceph_lock);
retry_locked:
if (ci->i_dirty_caps && ci->i_auth_cap) {
struct ceph_cap *cap = ci->i_auth_cap;
struct cap_msg_args arg;
struct ceph_mds_session *session = cap->session;
if (session->s_state < CEPH_MDS_SESSION_OPEN) {
spin_unlock(&ci->i_ceph_lock);
goto out;
}
if (ci->i_ceph_flags &
(CEPH_I_KICK_FLUSH | CEPH_I_FLUSH_SNAPS)) {
if (ci->i_ceph_flags & CEPH_I_KICK_FLUSH)
__kick_flushing_caps(mdsc, session, ci, 0);
if (ci->i_ceph_flags & CEPH_I_FLUSH_SNAPS)
__ceph_flush_snaps(ci, session);
goto retry_locked;
}
flushing = ci->i_dirty_caps;
flush_tid = __mark_caps_flushing(inode, session, true,
&oldest_flush_tid);
__prep_cap(&arg, cap, CEPH_CAP_OP_FLUSH, CEPH_CLIENT_CAPS_SYNC,
__ceph_caps_used(ci), __ceph_caps_wanted(ci),
(cap->issued | cap->implemented),
flushing, flush_tid, oldest_flush_tid);
spin_unlock(&ci->i_ceph_lock);
__send_cap(&arg, ci);
} else {
if (!list_empty(&ci->i_cap_flush_list)) {
struct ceph_cap_flush *cf =
list_last_entry(&ci->i_cap_flush_list,
struct ceph_cap_flush, i_list);
cf->wake = true;
flush_tid = cf->tid;
}
flushing = ci->i_flushing_caps;
spin_unlock(&ci->i_ceph_lock);
}
out:
*ptid = flush_tid;
return flushing;
}
/*
* Return true if we've flushed caps through the given flush_tid.
*/
static int caps_are_flushed(struct inode *inode, u64 flush_tid)
{
struct ceph_inode_info *ci = ceph_inode(inode);
int ret = 1;
spin_lock(&ci->i_ceph_lock);
if (!list_empty(&ci->i_cap_flush_list)) {
struct ceph_cap_flush * cf =
list_first_entry(&ci->i_cap_flush_list,
struct ceph_cap_flush, i_list);
if (cf->tid <= flush_tid)
ret = 0;
}
spin_unlock(&ci->i_ceph_lock);
return ret;
}
/*
* flush the mdlog and wait for any unsafe requests to complete.
*/
static int flush_mdlog_and_wait_inode_unsafe_requests(struct inode *inode)
{
struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_mds_request *req1 = NULL, *req2 = NULL;
int ret, err = 0;
spin_lock(&ci->i_unsafe_lock);
if (S_ISDIR(inode->i_mode) && !list_empty(&ci->i_unsafe_dirops)) {
req1 = list_last_entry(&ci->i_unsafe_dirops,
struct ceph_mds_request,
r_unsafe_dir_item);
ceph_mdsc_get_request(req1);
}
if (!list_empty(&ci->i_unsafe_iops)) {
req2 = list_last_entry(&ci->i_unsafe_iops,
struct ceph_mds_request,
r_unsafe_target_item);
ceph_mdsc_get_request(req2);
}
spin_unlock(&ci->i_unsafe_lock);
/*
* Trigger to flush the journal logs in all the relevant MDSes
* manually, or in the worst case we must wait at most 5 seconds
* to wait the journal logs to be flushed by the MDSes periodically.
*/
if (req1 || req2) {
struct ceph_mds_request *req;
struct ceph_mds_session **sessions;
struct ceph_mds_session *s;
unsigned int max_sessions;
int i;
mutex_lock(&mdsc->mutex);
max_sessions = mdsc->max_sessions;
sessions = kcalloc(max_sessions, sizeof(s), GFP_KERNEL);
if (!sessions) {
mutex_unlock(&mdsc->mutex);
err = -ENOMEM;
goto out;
}
spin_lock(&ci->i_unsafe_lock);
if (req1) {
list_for_each_entry(req, &ci->i_unsafe_dirops,
r_unsafe_dir_item) {
s = req->r_session;
if (!s)
continue;
if (!sessions[s->s_mds]) {
s = ceph_get_mds_session(s);
sessions[s->s_mds] = s;
}
}
}
if (req2) {
list_for_each_entry(req, &ci->i_unsafe_iops,
r_unsafe_target_item) {
s = req->r_session;
if (!s)
continue;
if (!sessions[s->s_mds]) {
s = ceph_get_mds_session(s);
sessions[s->s_mds] = s;
}
}
}
spin_unlock(&ci->i_unsafe_lock);
/* the auth MDS */
spin_lock(&ci->i_ceph_lock);
if (ci->i_auth_cap) {
s = ci->i_auth_cap->session;
if (!sessions[s->s_mds])
sessions[s->s_mds] = ceph_get_mds_session(s);
}
spin_unlock(&ci->i_ceph_lock);
mutex_unlock(&mdsc->mutex);
/* send flush mdlog request to MDSes */
for (i = 0; i < max_sessions; i++) {
s = sessions[i];
if (s) {
send_flush_mdlog(s);
ceph_put_mds_session(s);
}
}
kfree(sessions);
}
dout("%s %p wait on tid %llu %llu\n", __func__,
inode, req1 ? req1->r_tid : 0ULL, req2 ? req2->r_tid : 0ULL);
if (req1) {
ret = !wait_for_completion_timeout(&req1->r_safe_completion,
ceph_timeout_jiffies(req1->r_timeout));
if (ret)
err = -EIO;
}
if (req2) {
ret = !wait_for_completion_timeout(&req2->r_safe_completion,
ceph_timeout_jiffies(req2->r_timeout));
if (ret)
err = -EIO;
}
out:
if (req1)
ceph_mdsc_put_request(req1);
if (req2)
ceph_mdsc_put_request(req2);
return err;
}
int ceph_fsync(struct file *file, loff_t start, loff_t end, int datasync)
{
struct inode *inode = file->f_mapping->host;
struct ceph_inode_info *ci = ceph_inode(inode);
u64 flush_tid;
int ret, err;
int dirty;
dout("fsync %p%s\n", inode, datasync ? " datasync" : "");
ret = file_write_and_wait_range(file, start, end);
if (datasync)
goto out;
ret = ceph_wait_on_async_create(inode);
if (ret)
goto out;
dirty = try_flush_caps(inode, &flush_tid);
dout("fsync dirty caps are %s\n", ceph_cap_string(dirty));
err = flush_mdlog_and_wait_inode_unsafe_requests(inode);
/*
* only wait on non-file metadata writeback (the mds
* can recover size and mtime, so we don't need to
* wait for that)
*/
if (!err && (dirty & ~CEPH_CAP_ANY_FILE_WR)) {
err = wait_event_interruptible(ci->i_cap_wq,
caps_are_flushed(inode, flush_tid));
}
if (err < 0)
ret = err;
err = file_check_and_advance_wb_err(file);
if (err < 0)
ret = err;
out:
dout("fsync %p%s result=%d\n", inode, datasync ? " datasync" : "", ret);
return ret;
}
/*
* Flush any dirty caps back to the mds. If we aren't asked to wait,
* queue inode for flush but don't do so immediately, because we can
* get by with fewer MDS messages if we wait for data writeback to
* complete first.
*/
int ceph_write_inode(struct inode *inode, struct writeback_control *wbc)
{
struct ceph_inode_info *ci = ceph_inode(inode);
u64 flush_tid;
int err = 0;
int dirty;
int wait = (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync);
dout("write_inode %p wait=%d\n", inode, wait);
ceph_fscache_unpin_writeback(inode, wbc);
if (wait) {
err = ceph_wait_on_async_create(inode);
if (err)
return err;
dirty = try_flush_caps(inode, &flush_tid);
if (dirty)
err = wait_event_interruptible(ci->i_cap_wq,
caps_are_flushed(inode, flush_tid));
} else {
struct ceph_mds_client *mdsc =
ceph_sb_to_client(inode->i_sb)->mdsc;
spin_lock(&ci->i_ceph_lock);
if (__ceph_caps_dirty(ci))
__cap_delay_requeue_front(mdsc, ci);
spin_unlock(&ci->i_ceph_lock);
}
return err;
}
static void __kick_flushing_caps(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session,
struct ceph_inode_info *ci,
u64 oldest_flush_tid)
__releases(ci->i_ceph_lock)
__acquires(ci->i_ceph_lock)
{
struct inode *inode = &ci->netfs.inode;
struct ceph_cap *cap;
struct ceph_cap_flush *cf;
int ret;
u64 first_tid = 0;
u64 last_snap_flush = 0;
/* Don't do anything until create reply comes in */
if (ci->i_ceph_flags & CEPH_I_ASYNC_CREATE)
return;
ci->i_ceph_flags &= ~CEPH_I_KICK_FLUSH;
list_for_each_entry_reverse(cf, &ci->i_cap_flush_list, i_list) {
if (cf->is_capsnap) {
last_snap_flush = cf->tid;
break;
}
}
list_for_each_entry(cf, &ci->i_cap_flush_list, i_list) {
if (cf->tid < first_tid)
continue;
cap = ci->i_auth_cap;
if (!(cap && cap->session == session)) {
pr_err("%p auth cap %p not mds%d ???\n",
inode, cap, session->s_mds);
break;
}
first_tid = cf->tid + 1;
if (!cf->is_capsnap) {
struct cap_msg_args arg;
dout("kick_flushing_caps %p cap %p tid %llu %s\n",
inode, cap, cf->tid, ceph_cap_string(cf->caps));
__prep_cap(&arg, cap, CEPH_CAP_OP_FLUSH,
(cf->tid < last_snap_flush ?
CEPH_CLIENT_CAPS_PENDING_CAPSNAP : 0),
__ceph_caps_used(ci),
__ceph_caps_wanted(ci),
(cap->issued | cap->implemented),
cf->caps, cf->tid, oldest_flush_tid);
spin_unlock(&ci->i_ceph_lock);
__send_cap(&arg, ci);
} else {
struct ceph_cap_snap *capsnap =
container_of(cf, struct ceph_cap_snap,
cap_flush);
dout("kick_flushing_caps %p capsnap %p tid %llu %s\n",
inode, capsnap, cf->tid,
ceph_cap_string(capsnap->dirty));
refcount_inc(&capsnap->nref);
spin_unlock(&ci->i_ceph_lock);
ret = __send_flush_snap(inode, session, capsnap, cap->mseq,
oldest_flush_tid);
if (ret < 0) {
pr_err("kick_flushing_caps: error sending "
"cap flushsnap, ino (%llx.%llx) "
"tid %llu follows %llu\n",
ceph_vinop(inode), cf->tid,
capsnap->follows);
}
ceph_put_cap_snap(capsnap);
}
spin_lock(&ci->i_ceph_lock);
}
}
void ceph_early_kick_flushing_caps(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session)
{
struct ceph_inode_info *ci;
struct ceph_cap *cap;
u64 oldest_flush_tid;
dout("early_kick_flushing_caps mds%d\n", session->s_mds);
spin_lock(&mdsc->cap_dirty_lock);
oldest_flush_tid = __get_oldest_flush_tid(mdsc);
spin_unlock(&mdsc->cap_dirty_lock);
list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
spin_lock(&ci->i_ceph_lock);
cap = ci->i_auth_cap;
if (!(cap && cap->session == session)) {
pr_err("%p auth cap %p not mds%d ???\n",
&ci->netfs.inode, cap, session->s_mds);
spin_unlock(&ci->i_ceph_lock);
continue;
}
/*
* if flushing caps were revoked, we re-send the cap flush
* in client reconnect stage. This guarantees MDS * processes
* the cap flush message before issuing the flushing caps to
* other client.
*/
if ((cap->issued & ci->i_flushing_caps) !=
ci->i_flushing_caps) {
/* encode_caps_cb() also will reset these sequence
* numbers. make sure sequence numbers in cap flush
* message match later reconnect message */
cap->seq = 0;
cap->issue_seq = 0;
cap->mseq = 0;
__kick_flushing_caps(mdsc, session, ci,
oldest_flush_tid);
} else {
ci->i_ceph_flags |= CEPH_I_KICK_FLUSH;
}
spin_unlock(&ci->i_ceph_lock);
}
}
void ceph_kick_flushing_caps(struct ceph_mds_client *mdsc,
struct ceph_mds_session *session)
{
struct ceph_inode_info *ci;
struct ceph_cap *cap;
u64 oldest_flush_tid;
lockdep_assert_held(&session->s_mutex);
dout("kick_flushing_caps mds%d\n", session->s_mds);
spin_lock(&mdsc->cap_dirty_lock);
oldest_flush_tid = __get_oldest_flush_tid(mdsc);
spin_unlock(&mdsc->cap_dirty_lock);
list_for_each_entry(ci, &session->s_cap_flushing, i_flushing_item) {
spin_lock(&ci->i_ceph_lock);
cap = ci->i_auth_cap;
if (!(cap && cap->session == session)) {
pr_err("%p auth cap %p not mds%d ???\n",
&ci->netfs.inode, cap, session->s_mds);
spin_unlock(&ci->i_ceph_lock);
continue;
}
if (ci->i_ceph_flags & CEPH_I_KICK_FLUSH) {
__kick_flushing_caps(mdsc, session, ci,
oldest_flush_tid);
}
spin_unlock(&ci->i_ceph_lock);
}
}
void ceph_kick_flushing_inode_caps(struct ceph_mds_session *session,
struct ceph_inode_info *ci)
{
struct ceph_mds_client *mdsc = session->s_mdsc;
struct ceph_cap *cap = ci->i_auth_cap;
lockdep_assert_held(&ci->i_ceph_lock);
dout("%s %p flushing %s\n", __func__, &ci->netfs.inode,
ceph_cap_string(ci->i_flushing_caps));
if (!list_empty(&ci->i_cap_flush_list)) {
u64 oldest_flush_tid;
spin_lock(&mdsc->cap_dirty_lock);
list_move_tail(&ci->i_flushing_item,
&cap->session->s_cap_flushing);
oldest_flush_tid = __get_oldest_flush_tid(mdsc);
spin_unlock(&mdsc->cap_dirty_lock);
__kick_flushing_caps(mdsc, session, ci, oldest_flush_tid);
}
}
/*
* Take references to capabilities we hold, so that we don't release
* them to the MDS prematurely.
*/
void ceph_take_cap_refs(struct ceph_inode_info *ci, int got,
bool snap_rwsem_locked)
{
lockdep_assert_held(&ci->i_ceph_lock);
if (got & CEPH_CAP_PIN)
ci->i_pin_ref++;
if (got & CEPH_CAP_FILE_RD)
ci->i_rd_ref++;
if (got & CEPH_CAP_FILE_CACHE)
ci->i_rdcache_ref++;
if (got & CEPH_CAP_FILE_EXCL)
ci->i_fx_ref++;
if (got & CEPH_CAP_FILE_WR) {
if (ci->i_wr_ref == 0 && !ci->i_head_snapc) {
BUG_ON(!snap_rwsem_locked);
ci->i_head_snapc = ceph_get_snap_context(
ci->i_snap_realm->cached_context);
}
ci->i_wr_ref++;
}
if (got & CEPH_CAP_FILE_BUFFER) {
if (ci->i_wb_ref == 0)
ihold(&ci->netfs.inode);
ci->i_wb_ref++;
dout("%s %p wb %d -> %d (?)\n", __func__,
&ci->netfs.inode, ci->i_wb_ref-1, ci->i_wb_ref);
}
}
/*
* Try to grab cap references. Specify those refs we @want, and the
* minimal set we @need. Also include the larger offset we are writing
* to (when applicable), and check against max_size here as well.
* Note that caller is responsible for ensuring max_size increases are
* requested from the MDS.
*
* Returns 0 if caps were not able to be acquired (yet), 1 if succeed,
* or a negative error code. There are 3 speical error codes:
* -EAGAIN: need to sleep but non-blocking is specified
* -EFBIG: ask caller to call check_max_size() and try again.
* -EUCLEAN: ask caller to call ceph_renew_caps() and try again.
*/
enum {
/* first 8 bits are reserved for CEPH_FILE_MODE_FOO */
NON_BLOCKING = (1 << 8),
CHECK_FILELOCK = (1 << 9),
};
static int try_get_cap_refs(struct inode *inode, int need, int want,
loff_t endoff, int flags, int *got)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
int ret = 0;
int have, implemented;
bool snap_rwsem_locked = false;
dout("get_cap_refs %p need %s want %s\n", inode,
ceph_cap_string(need), ceph_cap_string(want));
again:
spin_lock(&ci->i_ceph_lock);
if ((flags & CHECK_FILELOCK) &&
(ci->i_ceph_flags & CEPH_I_ERROR_FILELOCK)) {
dout("try_get_cap_refs %p error filelock\n", inode);
ret = -EIO;
goto out_unlock;
}
/* finish pending truncate */
while (ci->i_truncate_pending) {
spin_unlock(&ci->i_ceph_lock);
if (snap_rwsem_locked) {
up_read(&mdsc->snap_rwsem);
snap_rwsem_locked = false;
}
__ceph_do_pending_vmtruncate(inode);
spin_lock(&ci->i_ceph_lock);
}
have = __ceph_caps_issued(ci, &implemented);
if (have & need & CEPH_CAP_FILE_WR) {
if (endoff >= 0 && endoff > (loff_t)ci->i_max_size) {
dout("get_cap_refs %p endoff %llu > maxsize %llu\n",
inode, endoff, ci->i_max_size);
if (endoff > ci->i_requested_max_size)
ret = ci->i_auth_cap ? -EFBIG : -EUCLEAN;
goto out_unlock;
}
/*
* If a sync write is in progress, we must wait, so that we
* can get a final snapshot value for size+mtime.
*/
if (__ceph_have_pending_cap_snap(ci)) {
dout("get_cap_refs %p cap_snap_pending\n", inode);
goto out_unlock;
}
}
if ((have & need) == need) {
/*
* Look at (implemented & ~have & not) so that we keep waiting
* on transition from wanted -> needed caps. This is needed
* for WRBUFFER|WR -> WR to avoid a new WR sync write from
* going before a prior buffered writeback happens.
*
* For RDCACHE|RD -> RD, there is not need to wait and we can
* just exclude the revoking caps and force to sync read.
*/
int not = want & ~(have & need);
int revoking = implemented & ~have;
int exclude = revoking & not;
dout("get_cap_refs %p have %s but not %s (revoking %s)\n",
inode, ceph_cap_string(have), ceph_cap_string(not),
ceph_cap_string(revoking));
if (!exclude || !(exclude & CEPH_CAP_FILE_BUFFER)) {
if (!snap_rwsem_locked &&
!ci->i_head_snapc &&
(need & CEPH_CAP_FILE_WR)) {
if (!down_read_trylock(&mdsc->snap_rwsem)) {
/*
* we can not call down_read() when
* task isn't in TASK_RUNNING state
*/
if (flags & NON_BLOCKING) {
ret = -EAGAIN;
goto out_unlock;
}
spin_unlock(&ci->i_ceph_lock);
down_read(&mdsc->snap_rwsem);
snap_rwsem_locked = true;
goto again;
}
snap_rwsem_locked = true;
}
if ((have & want) == want)
*got = need | (want & ~exclude);
else
*got = need;
ceph_take_cap_refs(ci, *got, true);
ret = 1;
}
} else {
int session_readonly = false;
int mds_wanted;
if (ci->i_auth_cap &&
(need & (CEPH_CAP_FILE_WR | CEPH_CAP_FILE_EXCL))) {
struct ceph_mds_session *s = ci->i_auth_cap->session;
spin_lock(&s->s_cap_lock);
session_readonly = s->s_readonly;
spin_unlock(&s->s_cap_lock);
}
if (session_readonly) {
dout("get_cap_refs %p need %s but mds%d readonly\n",
inode, ceph_cap_string(need), ci->i_auth_cap->mds);
ret = -EROFS;
goto out_unlock;
}
if (ceph_inode_is_shutdown(inode)) {
dout("get_cap_refs %p inode is shutdown\n", inode);
ret = -ESTALE;
goto out_unlock;
}
mds_wanted = __ceph_caps_mds_wanted(ci, false);
if (need & ~mds_wanted) {
dout("get_cap_refs %p need %s > mds_wanted %s\n",
inode, ceph_cap_string(need),
ceph_cap_string(mds_wanted));
ret = -EUCLEAN;
goto out_unlock;
}
dout("get_cap_refs %p have %s need %s\n", inode,
ceph_cap_string(have), ceph_cap_string(need));
}
out_unlock:
__ceph_touch_fmode(ci, mdsc, flags);
spin_unlock(&ci->i_ceph_lock);
if (snap_rwsem_locked)
up_read(&mdsc->snap_rwsem);
if (!ret)
ceph_update_cap_mis(&mdsc->metric);
else if (ret == 1)
ceph_update_cap_hit(&mdsc->metric);
dout("get_cap_refs %p ret %d got %s\n", inode,
ret, ceph_cap_string(*got));
return ret;
}
/*
* Check the offset we are writing up to against our current
* max_size. If necessary, tell the MDS we want to write to
* a larger offset.
*/
static void check_max_size(struct inode *inode, loff_t endoff)
{
struct ceph_inode_info *ci = ceph_inode(inode);
int check = 0;
/* do we need to explicitly request a larger max_size? */
spin_lock(&ci->i_ceph_lock);
if (endoff >= ci->i_max_size && endoff > ci->i_wanted_max_size) {
dout("write %p at large endoff %llu, req max_size\n",
inode, endoff);
ci->i_wanted_max_size = endoff;
}
/* duplicate ceph_check_caps()'s logic */
if (ci->i_auth_cap &&
(ci->i_auth_cap->issued & CEPH_CAP_FILE_WR) &&
ci->i_wanted_max_size > ci->i_max_size &&
ci->i_wanted_max_size > ci->i_requested_max_size)
check = 1;
spin_unlock(&ci->i_ceph_lock);
if (check)
ceph_check_caps(ci, CHECK_CAPS_AUTHONLY);
}
static inline int get_used_fmode(int caps)
{
int fmode = 0;
if (caps & CEPH_CAP_FILE_RD)
fmode |= CEPH_FILE_MODE_RD;
if (caps & CEPH_CAP_FILE_WR)
fmode |= CEPH_FILE_MODE_WR;
return fmode;
}
int ceph_try_get_caps(struct inode *inode, int need, int want,
bool nonblock, int *got)
{
int ret, flags;
BUG_ON(need & ~CEPH_CAP_FILE_RD);
BUG_ON(want & ~(CEPH_CAP_FILE_CACHE | CEPH_CAP_FILE_LAZYIO |
CEPH_CAP_FILE_SHARED | CEPH_CAP_FILE_EXCL |
CEPH_CAP_ANY_DIR_OPS));
if (need) {
ret = ceph_pool_perm_check(inode, need);
if (ret < 0)
return ret;
}
flags = get_used_fmode(need | want);
if (nonblock)
flags |= NON_BLOCKING;
ret = try_get_cap_refs(inode, need, want, 0, flags, got);
/* three special error codes */
if (ret == -EAGAIN || ret == -EFBIG || ret == -EUCLEAN)
ret = 0;
return ret;
}
/*
* Wait for caps, and take cap references. If we can't get a WR cap
* due to a small max_size, make sure we check_max_size (and possibly
* ask the mds) so we don't get hung up indefinitely.
*/
int ceph_get_caps(struct file *filp, int need, int want, loff_t endoff, int *got)
{
struct ceph_file_info *fi = filp->private_data;
struct inode *inode = file_inode(filp);
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
int ret, _got, flags;
ret = ceph_pool_perm_check(inode, need);
if (ret < 0)
return ret;
if ((fi->fmode & CEPH_FILE_MODE_WR) &&
fi->filp_gen != READ_ONCE(fsc->filp_gen))
return -EBADF;
flags = get_used_fmode(need | want);
while (true) {
flags &= CEPH_FILE_MODE_MASK;
if (vfs_inode_has_locks(inode))
flags |= CHECK_FILELOCK;
_got = 0;
ret = try_get_cap_refs(inode, need, want, endoff,
flags, &_got);
WARN_ON_ONCE(ret == -EAGAIN);
if (!ret) {
struct ceph_mds_client *mdsc = fsc->mdsc;
struct cap_wait cw;
DEFINE_WAIT_FUNC(wait, woken_wake_function);
cw.ino = ceph_ino(inode);
cw.tgid = current->tgid;
cw.need = need;
cw.want = want;
spin_lock(&mdsc->caps_list_lock);
list_add(&cw.list, &mdsc->cap_wait_list);
spin_unlock(&mdsc->caps_list_lock);
/* make sure used fmode not timeout */
ceph_get_fmode(ci, flags, FMODE_WAIT_BIAS);
add_wait_queue(&ci->i_cap_wq, &wait);
flags |= NON_BLOCKING;
while (!(ret = try_get_cap_refs(inode, need, want,
endoff, flags, &_got))) {
if (signal_pending(current)) {
ret = -ERESTARTSYS;
break;
}
wait_woken(&wait, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
}
remove_wait_queue(&ci->i_cap_wq, &wait);
ceph_put_fmode(ci, flags, FMODE_WAIT_BIAS);
spin_lock(&mdsc->caps_list_lock);
list_del(&cw.list);
spin_unlock(&mdsc->caps_list_lock);
if (ret == -EAGAIN)
continue;
}
if ((fi->fmode & CEPH_FILE_MODE_WR) &&
fi->filp_gen != READ_ONCE(fsc->filp_gen)) {
if (ret >= 0 && _got)
ceph_put_cap_refs(ci, _got);
return -EBADF;
}
if (ret < 0) {
if (ret == -EFBIG || ret == -EUCLEAN) {
int ret2 = ceph_wait_on_async_create(inode);
if (ret2 < 0)
return ret2;
}
if (ret == -EFBIG) {
check_max_size(inode, endoff);
continue;
}
if (ret == -EUCLEAN) {
/* session was killed, try renew caps */
ret = ceph_renew_caps(inode, flags);
if (ret == 0)
continue;
}
return ret;
}
if (S_ISREG(ci->netfs.inode.i_mode) &&
ceph_has_inline_data(ci) &&
(_got & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)) &&
i_size_read(inode) > 0) {
struct page *page =
find_get_page(inode->i_mapping, 0);
if (page) {
bool uptodate = PageUptodate(page);
put_page(page);
if (uptodate)
break;
}
/*
* drop cap refs first because getattr while
* holding * caps refs can cause deadlock.
*/
ceph_put_cap_refs(ci, _got);
_got = 0;
/*
* getattr request will bring inline data into
* page cache
*/
ret = __ceph_do_getattr(inode, NULL,
CEPH_STAT_CAP_INLINE_DATA,
true);
if (ret < 0)
return ret;
continue;
}
break;
}
*got = _got;
return 0;
}
/*
* Take cap refs. Caller must already know we hold at least one ref
* on the caps in question or we don't know this is safe.
*/
void ceph_get_cap_refs(struct ceph_inode_info *ci, int caps)
{
spin_lock(&ci->i_ceph_lock);
ceph_take_cap_refs(ci, caps, false);
spin_unlock(&ci->i_ceph_lock);
}
/*
* drop cap_snap that is not associated with any snapshot.
* we don't need to send FLUSHSNAP message for it.
*/
static int ceph_try_drop_cap_snap(struct ceph_inode_info *ci,
struct ceph_cap_snap *capsnap)
{
if (!capsnap->need_flush &&
!capsnap->writing && !capsnap->dirty_pages) {
dout("dropping cap_snap %p follows %llu\n",
capsnap, capsnap->follows);
BUG_ON(capsnap->cap_flush.tid > 0);
ceph_put_snap_context(capsnap->context);
if (!list_is_last(&capsnap->ci_item, &ci->i_cap_snaps))
ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
list_del(&capsnap->ci_item);
ceph_put_cap_snap(capsnap);
return 1;
}
return 0;
}
enum put_cap_refs_mode {
PUT_CAP_REFS_SYNC = 0,
PUT_CAP_REFS_NO_CHECK,
PUT_CAP_REFS_ASYNC,
};
/*
* Release cap refs.
*
* If we released the last ref on any given cap, call ceph_check_caps
* to release (or schedule a release).
*
* If we are releasing a WR cap (from a sync write), finalize any affected
* cap_snap, and wake up any waiters.
*/
static void __ceph_put_cap_refs(struct ceph_inode_info *ci, int had,
enum put_cap_refs_mode mode)
{
struct inode *inode = &ci->netfs.inode;
int last = 0, put = 0, flushsnaps = 0, wake = 0;
bool check_flushsnaps = false;
spin_lock(&ci->i_ceph_lock);
if (had & CEPH_CAP_PIN)
--ci->i_pin_ref;
if (had & CEPH_CAP_FILE_RD)
if (--ci->i_rd_ref == 0)
last++;
if (had & CEPH_CAP_FILE_CACHE)
if (--ci->i_rdcache_ref == 0)
last++;
if (had & CEPH_CAP_FILE_EXCL)
if (--ci->i_fx_ref == 0)
last++;
if (had & CEPH_CAP_FILE_BUFFER) {
if (--ci->i_wb_ref == 0) {
last++;
/* put the ref held by ceph_take_cap_refs() */
put++;
check_flushsnaps = true;
}
dout("put_cap_refs %p wb %d -> %d (?)\n",
inode, ci->i_wb_ref+1, ci->i_wb_ref);
}
if (had & CEPH_CAP_FILE_WR) {
if (--ci->i_wr_ref == 0) {
/*
* The Fb caps will always be took and released
* together with the Fw caps.
*/
WARN_ON_ONCE(ci->i_wb_ref);
last++;
check_flushsnaps = true;
if (ci->i_wrbuffer_ref_head == 0 &&
ci->i_dirty_caps == 0 &&
ci->i_flushing_caps == 0) {
BUG_ON(!ci->i_head_snapc);
ceph_put_snap_context(ci->i_head_snapc);
ci->i_head_snapc = NULL;
}
/* see comment in __ceph_remove_cap() */
if (!__ceph_is_any_real_caps(ci) && ci->i_snap_realm)
ceph_change_snap_realm(inode, NULL);
}
}
if (check_flushsnaps && __ceph_have_pending_cap_snap(ci)) {
struct ceph_cap_snap *capsnap =
list_last_entry(&ci->i_cap_snaps,
struct ceph_cap_snap,
ci_item);
capsnap->writing = 0;
if (ceph_try_drop_cap_snap(ci, capsnap))
/* put the ref held by ceph_queue_cap_snap() */
put++;
else if (__ceph_finish_cap_snap(ci, capsnap))
flushsnaps = 1;
wake = 1;
}
spin_unlock(&ci->i_ceph_lock);
dout("put_cap_refs %p had %s%s%s\n", inode, ceph_cap_string(had),
last ? " last" : "", put ? " put" : "");
switch (mode) {
case PUT_CAP_REFS_SYNC:
if (last)
ceph_check_caps(ci, 0);
else if (flushsnaps)
ceph_flush_snaps(ci, NULL);
break;
case PUT_CAP_REFS_ASYNC:
if (last)
ceph_queue_check_caps(inode);
else if (flushsnaps)
ceph_queue_flush_snaps(inode);
break;
default:
break;
}
if (wake)
wake_up_all(&ci->i_cap_wq);
while (put-- > 0)
iput(inode);
}
void ceph_put_cap_refs(struct ceph_inode_info *ci, int had)
{
__ceph_put_cap_refs(ci, had, PUT_CAP_REFS_SYNC);
}
void ceph_put_cap_refs_async(struct ceph_inode_info *ci, int had)
{
__ceph_put_cap_refs(ci, had, PUT_CAP_REFS_ASYNC);
}
void ceph_put_cap_refs_no_check_caps(struct ceph_inode_info *ci, int had)
{
__ceph_put_cap_refs(ci, had, PUT_CAP_REFS_NO_CHECK);
}
/*
* Release @nr WRBUFFER refs on dirty pages for the given @snapc snap
* context. Adjust per-snap dirty page accounting as appropriate.
* Once all dirty data for a cap_snap is flushed, flush snapped file
* metadata back to the MDS. If we dropped the last ref, call
* ceph_check_caps.
*/
void ceph_put_wrbuffer_cap_refs(struct ceph_inode_info *ci, int nr,
struct ceph_snap_context *snapc)
{
struct inode *inode = &ci->netfs.inode;
struct ceph_cap_snap *capsnap = NULL, *iter;
int put = 0;
bool last = false;
bool flush_snaps = false;
bool complete_capsnap = false;
spin_lock(&ci->i_ceph_lock);
ci->i_wrbuffer_ref -= nr;
if (ci->i_wrbuffer_ref == 0) {
last = true;
put++;
}
if (ci->i_head_snapc == snapc) {
ci->i_wrbuffer_ref_head -= nr;
if (ci->i_wrbuffer_ref_head == 0 &&
ci->i_wr_ref == 0 &&
ci->i_dirty_caps == 0 &&
ci->i_flushing_caps == 0) {
BUG_ON(!ci->i_head_snapc);
ceph_put_snap_context(ci->i_head_snapc);
ci->i_head_snapc = NULL;
}
dout("put_wrbuffer_cap_refs on %p head %d/%d -> %d/%d %s\n",
inode,
ci->i_wrbuffer_ref+nr, ci->i_wrbuffer_ref_head+nr,
ci->i_wrbuffer_ref, ci->i_wrbuffer_ref_head,
last ? " LAST" : "");
} else {
list_for_each_entry(iter, &ci->i_cap_snaps, ci_item) {
if (iter->context == snapc) {
capsnap = iter;
break;
}
}
if (!capsnap) {
/*
* The capsnap should already be removed when removing
* auth cap in the case of a forced unmount.
*/
WARN_ON_ONCE(ci->i_auth_cap);
goto unlock;
}
capsnap->dirty_pages -= nr;
if (capsnap->dirty_pages == 0) {
complete_capsnap = true;
if (!capsnap->writing) {
if (ceph_try_drop_cap_snap(ci, capsnap)) {
put++;
} else {
ci->i_ceph_flags |= CEPH_I_FLUSH_SNAPS;
flush_snaps = true;
}
}
}
dout("put_wrbuffer_cap_refs on %p cap_snap %p "
" snap %lld %d/%d -> %d/%d %s%s\n",
inode, capsnap, capsnap->context->seq,
ci->i_wrbuffer_ref+nr, capsnap->dirty_pages + nr,
ci->i_wrbuffer_ref, capsnap->dirty_pages,
last ? " (wrbuffer last)" : "",
complete_capsnap ? " (complete capsnap)" : "");
}
unlock:
spin_unlock(&ci->i_ceph_lock);
if (last) {
ceph_check_caps(ci, 0);
} else if (flush_snaps) {
ceph_flush_snaps(ci, NULL);
}
if (complete_capsnap)
wake_up_all(&ci->i_cap_wq);
while (put-- > 0) {
iput(inode);
}
}
/*
* Invalidate unlinked inode's aliases, so we can drop the inode ASAP.
*/
static void invalidate_aliases(struct inode *inode)
{
struct dentry *dn, *prev = NULL;
dout("invalidate_aliases inode %p\n", inode);
d_prune_aliases(inode);
/*
* For non-directory inode, d_find_alias() only returns
* hashed dentry. After calling d_invalidate(), the
* dentry becomes unhashed.
*
* For directory inode, d_find_alias() can return
* unhashed dentry. But directory inode should have
* one alias at most.
*/
while ((dn = d_find_alias(inode))) {
if (dn == prev) {
dput(dn);
break;
}
d_invalidate(dn);
if (prev)
dput(prev);
prev = dn;
}
if (prev)
dput(prev);
}
struct cap_extra_info {
struct ceph_string *pool_ns;
/* inline data */
u64 inline_version;
void *inline_data;
u32 inline_len;
/* dirstat */
bool dirstat_valid;
u64 nfiles;
u64 nsubdirs;
u64 change_attr;
/* currently issued */
int issued;
struct timespec64 btime;
};
/*
* Handle a cap GRANT message from the MDS. (Note that a GRANT may
* actually be a revocation if it specifies a smaller cap set.)
*
* caller holds s_mutex and i_ceph_lock, we drop both.
*/
static void handle_cap_grant(struct inode *inode,
struct ceph_mds_session *session,
struct ceph_cap *cap,
struct ceph_mds_caps *grant,
struct ceph_buffer *xattr_buf,
struct cap_extra_info *extra_info)
__releases(ci->i_ceph_lock)
__releases(session->s_mdsc->snap_rwsem)
{
struct ceph_inode_info *ci = ceph_inode(inode);
int seq = le32_to_cpu(grant->seq);
int newcaps = le32_to_cpu(grant->caps);
int used, wanted, dirty;
u64 size = le64_to_cpu(grant->size);
u64 max_size = le64_to_cpu(grant->max_size);
unsigned char check_caps = 0;
bool was_stale = cap->cap_gen < atomic_read(&session->s_cap_gen);
bool wake = false;
bool writeback = false;
bool queue_trunc = false;
bool queue_invalidate = false;
bool deleted_inode = false;
bool fill_inline = false;
dout("handle_cap_grant inode %p cap %p mds%d seq %d %s\n",
inode, cap, session->s_mds, seq, ceph_cap_string(newcaps));
dout(" size %llu max_size %llu, i_size %llu\n", size, max_size,
i_size_read(inode));
/*
* If CACHE is being revoked, and we have no dirty buffers,
* try to invalidate (once). (If there are dirty buffers, we
* will invalidate _after_ writeback.)
*/
if (S_ISREG(inode->i_mode) && /* don't invalidate readdir cache */
((cap->issued & ~newcaps) & CEPH_CAP_FILE_CACHE) &&
(newcaps & CEPH_CAP_FILE_LAZYIO) == 0 &&
!(ci->i_wrbuffer_ref || ci->i_wb_ref)) {
if (try_nonblocking_invalidate(inode)) {
/* there were locked pages.. invalidate later
in a separate thread. */
if (ci->i_rdcache_revoking != ci->i_rdcache_gen) {
queue_invalidate = true;
ci->i_rdcache_revoking = ci->i_rdcache_gen;
}
}
}
if (was_stale)
cap->issued = cap->implemented = CEPH_CAP_PIN;
/*
* auth mds of the inode changed. we received the cap export message,
* but still haven't received the cap import message. handle_cap_export
* updated the new auth MDS' cap.
*
* "ceph_seq_cmp(seq, cap->seq) <= 0" means we are processing a message
* that was sent before the cap import message. So don't remove caps.
*/
if (ceph_seq_cmp(seq, cap->seq) <= 0) {
WARN_ON(cap != ci->i_auth_cap);
WARN_ON(cap->cap_id != le64_to_cpu(grant->cap_id));
seq = cap->seq;
newcaps |= cap->issued;
}
/* side effects now are allowed */
cap->cap_gen = atomic_read(&session->s_cap_gen);
cap->seq = seq;
__check_cap_issue(ci, cap, newcaps);
inode_set_max_iversion_raw(inode, extra_info->change_attr);
if ((newcaps & CEPH_CAP_AUTH_SHARED) &&
(extra_info->issued & CEPH_CAP_AUTH_EXCL) == 0) {
umode_t mode = le32_to_cpu(grant->mode);
if (inode_wrong_type(inode, mode))
pr_warn_once("inode type changed! (ino %llx.%llx is 0%o, mds says 0%o)\n",
ceph_vinop(inode), inode->i_mode, mode);
else
inode->i_mode = mode;
inode->i_uid = make_kuid(&init_user_ns, le32_to_cpu(grant->uid));
inode->i_gid = make_kgid(&init_user_ns, le32_to_cpu(grant->gid));
ci->i_btime = extra_info->btime;
dout("%p mode 0%o uid.gid %d.%d\n", inode, inode->i_mode,
from_kuid(&init_user_ns, inode->i_uid),
from_kgid(&init_user_ns, inode->i_gid));
}
if ((newcaps & CEPH_CAP_LINK_SHARED) &&
(extra_info->issued & CEPH_CAP_LINK_EXCL) == 0) {
set_nlink(inode, le32_to_cpu(grant->nlink));
if (inode->i_nlink == 0)
deleted_inode = true;
}
if ((extra_info->issued & CEPH_CAP_XATTR_EXCL) == 0 &&
grant->xattr_len) {
int len = le32_to_cpu(grant->xattr_len);
u64 version = le64_to_cpu(grant->xattr_version);
if (version > ci->i_xattrs.version) {
dout(" got new xattrs v%llu on %p len %d\n",
version, inode, len);
if (ci->i_xattrs.blob)
ceph_buffer_put(ci->i_xattrs.blob);
ci->i_xattrs.blob = ceph_buffer_get(xattr_buf);
ci->i_xattrs.version = version;
ceph_forget_all_cached_acls(inode);
ceph_security_invalidate_secctx(inode);
}
}
if (newcaps & CEPH_CAP_ANY_RD) {
struct timespec64 mtime, atime, ctime;
/* ctime/mtime/atime? */
ceph_decode_timespec64(&mtime, &grant->mtime);
ceph_decode_timespec64(&atime, &grant->atime);
ceph_decode_timespec64(&ctime, &grant->ctime);
ceph_fill_file_time(inode, extra_info->issued,
le32_to_cpu(grant->time_warp_seq),
&ctime, &mtime, &atime);
}
if ((newcaps & CEPH_CAP_FILE_SHARED) && extra_info->dirstat_valid) {
ci->i_files = extra_info->nfiles;
ci->i_subdirs = extra_info->nsubdirs;
}
if (newcaps & (CEPH_CAP_ANY_FILE_RD | CEPH_CAP_ANY_FILE_WR)) {
/* file layout may have changed */
s64 old_pool = ci->i_layout.pool_id;
struct ceph_string *old_ns;
ceph_file_layout_from_legacy(&ci->i_layout, &grant->layout);
old_ns = rcu_dereference_protected(ci->i_layout.pool_ns,
lockdep_is_held(&ci->i_ceph_lock));
rcu_assign_pointer(ci->i_layout.pool_ns, extra_info->pool_ns);
if (ci->i_layout.pool_id != old_pool ||
extra_info->pool_ns != old_ns)
ci->i_ceph_flags &= ~CEPH_I_POOL_PERM;
extra_info->pool_ns = old_ns;
/* size/truncate_seq? */
queue_trunc = ceph_fill_file_size(inode, extra_info->issued,
le32_to_cpu(grant->truncate_seq),
le64_to_cpu(grant->truncate_size),
size);
}
if (ci->i_auth_cap == cap && (newcaps & CEPH_CAP_ANY_FILE_WR)) {
if (max_size != ci->i_max_size) {
dout("max_size %lld -> %llu\n",
ci->i_max_size, max_size);
ci->i_max_size = max_size;
if (max_size >= ci->i_wanted_max_size) {
ci->i_wanted_max_size = 0; /* reset */
ci->i_requested_max_size = 0;
}
wake = true;
}
}
/* check cap bits */
wanted = __ceph_caps_wanted(ci);
used = __ceph_caps_used(ci);
dirty = __ceph_caps_dirty(ci);
dout(" my wanted = %s, used = %s, dirty %s\n",
ceph_cap_string(wanted),
ceph_cap_string(used),
ceph_cap_string(dirty));
if ((was_stale || le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) &&
(wanted & ~(cap->mds_wanted | newcaps))) {
/*
* If mds is importing cap, prior cap messages that update
* 'wanted' may get dropped by mds (migrate seq mismatch).
*
* We don't send cap message to update 'wanted' if what we
* want are already issued. If mds revokes caps, cap message
* that releases caps also tells mds what we want. But if
* caps got revoked by mds forcedly (session stale). We may
* haven't told mds what we want.
*/
check_caps = 1;
}
/* revocation, grant, or no-op? */
if (cap->issued & ~newcaps) {
int revoking = cap->issued & ~newcaps;
dout("revocation: %s -> %s (revoking %s)\n",
ceph_cap_string(cap->issued),
ceph_cap_string(newcaps),
ceph_cap_string(revoking));
if (S_ISREG(inode->i_mode) &&
(revoking & used & CEPH_CAP_FILE_BUFFER))
writeback = true; /* initiate writeback; will delay ack */
else if (queue_invalidate &&
revoking == CEPH_CAP_FILE_CACHE &&
(newcaps & CEPH_CAP_FILE_LAZYIO) == 0)
; /* do nothing yet, invalidation will be queued */
else if (cap == ci->i_auth_cap)
check_caps = 1; /* check auth cap only */
else
check_caps = 2; /* check all caps */
/* If there is new caps, try to wake up the waiters */
if (~cap->issued & newcaps)
wake = true;
cap->issued = newcaps;
cap->implemented |= newcaps;
} else if (cap->issued == newcaps) {
dout("caps unchanged: %s -> %s\n",
ceph_cap_string(cap->issued), ceph_cap_string(newcaps));
} else {
dout("grant: %s -> %s\n", ceph_cap_string(cap->issued),
ceph_cap_string(newcaps));
/* non-auth MDS is revoking the newly grant caps ? */
if (cap == ci->i_auth_cap &&
__ceph_caps_revoking_other(ci, cap, newcaps))
check_caps = 2;
cap->issued = newcaps;
cap->implemented |= newcaps; /* add bits only, to
* avoid stepping on a
* pending revocation */
wake = true;
}
BUG_ON(cap->issued & ~cap->implemented);
/* don't let check_caps skip sending a response to MDS for revoke msgs */
if (le32_to_cpu(grant->op) == CEPH_CAP_OP_REVOKE) {
cap->mds_wanted = 0;
if (cap == ci->i_auth_cap)
check_caps = 1; /* check auth cap only */
else
check_caps = 2; /* check all caps */
}
if (extra_info->inline_version > 0 &&
extra_info->inline_version >= ci->i_inline_version) {
ci->i_inline_version = extra_info->inline_version;
if (ci->i_inline_version != CEPH_INLINE_NONE &&
(newcaps & (CEPH_CAP_FILE_CACHE|CEPH_CAP_FILE_LAZYIO)))
fill_inline = true;
}
if (le32_to_cpu(grant->op) == CEPH_CAP_OP_IMPORT) {
if (ci->i_auth_cap == cap) {
if (newcaps & ~extra_info->issued)
wake = true;
if (ci->i_requested_max_size > max_size ||
!(le32_to_cpu(grant->wanted) & CEPH_CAP_ANY_FILE_WR)) {
/* re-request max_size if necessary */
ci->i_requested_max_size = 0;
wake = true;
}
ceph_kick_flushing_inode_caps(session, ci);
}
up_read(&session->s_mdsc->snap_rwsem);
}
spin_unlock(&ci->i_ceph_lock);
if (fill_inline)
ceph_fill_inline_data(inode, NULL, extra_info->inline_data,
extra_info->inline_len);
if (queue_trunc)
ceph_queue_vmtruncate(inode);
if (writeback)
/*
* queue inode for writeback: we can't actually call
* filemap_write_and_wait, etc. from message handler
* context.
*/
ceph_queue_writeback(inode);
if (queue_invalidate)
ceph_queue_invalidate(inode);
if (deleted_inode)
invalidate_aliases(inode);
if (wake)
wake_up_all(&ci->i_cap_wq);
mutex_unlock(&session->s_mutex);
if (check_caps == 1)
ceph_check_caps(ci, CHECK_CAPS_AUTHONLY | CHECK_CAPS_NOINVAL);
else if (check_caps == 2)
ceph_check_caps(ci, CHECK_CAPS_NOINVAL);
}
/*
* Handle FLUSH_ACK from MDS, indicating that metadata we sent to the
* MDS has been safely committed.
*/
static void handle_cap_flush_ack(struct inode *inode, u64 flush_tid,
struct ceph_mds_caps *m,
struct ceph_mds_session *session,
struct ceph_cap *cap)
__releases(ci->i_ceph_lock)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
struct ceph_cap_flush *cf, *tmp_cf;
LIST_HEAD(to_remove);
unsigned seq = le32_to_cpu(m->seq);
int dirty = le32_to_cpu(m->dirty);
int cleaned = 0;
bool drop = false;
bool wake_ci = false;
bool wake_mdsc = false;
list_for_each_entry_safe(cf, tmp_cf, &ci->i_cap_flush_list, i_list) {
/* Is this the one that was flushed? */
if (cf->tid == flush_tid)
cleaned = cf->caps;
/* Is this a capsnap? */
if (cf->is_capsnap)
continue;
if (cf->tid <= flush_tid) {
/*
* An earlier or current tid. The FLUSH_ACK should
* represent a superset of this flush's caps.
*/
wake_ci |= __detach_cap_flush_from_ci(ci, cf);
list_add_tail(&cf->i_list, &to_remove);
} else {
/*
* This is a later one. Any caps in it are still dirty
* so don't count them as cleaned.
*/
cleaned &= ~cf->caps;
if (!cleaned)
break;
}
}
dout("handle_cap_flush_ack inode %p mds%d seq %d on %s cleaned %s,"
" flushing %s -> %s\n",
inode, session->s_mds, seq, ceph_cap_string(dirty),
ceph_cap_string(cleaned), ceph_cap_string(ci->i_flushing_caps),
ceph_cap_string(ci->i_flushing_caps & ~cleaned));
if (list_empty(&to_remove) && !cleaned)
goto out;
ci->i_flushing_caps &= ~cleaned;
spin_lock(&mdsc->cap_dirty_lock);
list_for_each_entry(cf, &to_remove, i_list)
wake_mdsc |= __detach_cap_flush_from_mdsc(mdsc, cf);
if (ci->i_flushing_caps == 0) {
if (list_empty(&ci->i_cap_flush_list)) {
list_del_init(&ci->i_flushing_item);
if (!list_empty(&session->s_cap_flushing)) {
dout(" mds%d still flushing cap on %p\n",
session->s_mds,
&list_first_entry(&session->s_cap_flushing,
struct ceph_inode_info,
i_flushing_item)->netfs.inode);
}
}
mdsc->num_cap_flushing--;
dout(" inode %p now !flushing\n", inode);
if (ci->i_dirty_caps == 0) {
dout(" inode %p now clean\n", inode);
BUG_ON(!list_empty(&ci->i_dirty_item));
drop = true;
if (ci->i_wr_ref == 0 &&
ci->i_wrbuffer_ref_head == 0) {
BUG_ON(!ci->i_head_snapc);
ceph_put_snap_context(ci->i_head_snapc);
ci->i_head_snapc = NULL;
}
} else {
BUG_ON(list_empty(&ci->i_dirty_item));
}
}
spin_unlock(&mdsc->cap_dirty_lock);
out:
spin_unlock(&ci->i_ceph_lock);
while (!list_empty(&to_remove)) {
cf = list_first_entry(&to_remove,
struct ceph_cap_flush, i_list);
list_del_init(&cf->i_list);
if (!cf->is_capsnap)
ceph_free_cap_flush(cf);
}
if (wake_ci)
wake_up_all(&ci->i_cap_wq);
if (wake_mdsc)
wake_up_all(&mdsc->cap_flushing_wq);
if (drop)
iput(inode);
}
void __ceph_remove_capsnap(struct inode *inode, struct ceph_cap_snap *capsnap,
bool *wake_ci, bool *wake_mdsc)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
bool ret;
lockdep_assert_held(&ci->i_ceph_lock);
dout("removing capsnap %p, inode %p ci %p\n", capsnap, inode, ci);
list_del_init(&capsnap->ci_item);
ret = __detach_cap_flush_from_ci(ci, &capsnap->cap_flush);
if (wake_ci)
*wake_ci = ret;
spin_lock(&mdsc->cap_dirty_lock);
if (list_empty(&ci->i_cap_flush_list))
list_del_init(&ci->i_flushing_item);
ret = __detach_cap_flush_from_mdsc(mdsc, &capsnap->cap_flush);
if (wake_mdsc)
*wake_mdsc = ret;
spin_unlock(&mdsc->cap_dirty_lock);
}
void ceph_remove_capsnap(struct inode *inode, struct ceph_cap_snap *capsnap,
bool *wake_ci, bool *wake_mdsc)
{
struct ceph_inode_info *ci = ceph_inode(inode);
lockdep_assert_held(&ci->i_ceph_lock);
WARN_ON_ONCE(capsnap->dirty_pages || capsnap->writing);
__ceph_remove_capsnap(inode, capsnap, wake_ci, wake_mdsc);
}
/*
* Handle FLUSHSNAP_ACK. MDS has flushed snap data to disk and we can
* throw away our cap_snap.
*
* Caller hold s_mutex.
*/
static void handle_cap_flushsnap_ack(struct inode *inode, u64 flush_tid,
struct ceph_mds_caps *m,
struct ceph_mds_session *session)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_mds_client *mdsc = ceph_sb_to_client(inode->i_sb)->mdsc;
u64 follows = le64_to_cpu(m->snap_follows);
struct ceph_cap_snap *capsnap = NULL, *iter;
bool wake_ci = false;
bool wake_mdsc = false;
dout("handle_cap_flushsnap_ack inode %p ci %p mds%d follows %lld\n",
inode, ci, session->s_mds, follows);
spin_lock(&ci->i_ceph_lock);
list_for_each_entry(iter, &ci->i_cap_snaps, ci_item) {
if (iter->follows == follows) {
if (iter->cap_flush.tid != flush_tid) {
dout(" cap_snap %p follows %lld tid %lld !="
" %lld\n", iter, follows,
flush_tid, iter->cap_flush.tid);
break;
}
capsnap = iter;
break;
} else {
dout(" skipping cap_snap %p follows %lld\n",
iter, iter->follows);
}
}
if (capsnap)
ceph_remove_capsnap(inode, capsnap, &wake_ci, &wake_mdsc);
spin_unlock(&ci->i_ceph_lock);
if (capsnap) {
ceph_put_snap_context(capsnap->context);
ceph_put_cap_snap(capsnap);
if (wake_ci)
wake_up_all(&ci->i_cap_wq);
if (wake_mdsc)
wake_up_all(&mdsc->cap_flushing_wq);
iput(inode);
}
}
/*
* Handle TRUNC from MDS, indicating file truncation.
*
* caller hold s_mutex.
*/
static bool handle_cap_trunc(struct inode *inode,
struct ceph_mds_caps *trunc,
struct ceph_mds_session *session)
{
struct ceph_inode_info *ci = ceph_inode(inode);
int mds = session->s_mds;
int seq = le32_to_cpu(trunc->seq);
u32 truncate_seq = le32_to_cpu(trunc->truncate_seq);
u64 truncate_size = le64_to_cpu(trunc->truncate_size);
u64 size = le64_to_cpu(trunc->size);
int implemented = 0;
int dirty = __ceph_caps_dirty(ci);
int issued = __ceph_caps_issued(ceph_inode(inode), &implemented);
bool queue_trunc = false;
lockdep_assert_held(&ci->i_ceph_lock);
issued |= implemented | dirty;
dout("handle_cap_trunc inode %p mds%d seq %d to %lld seq %d\n",
inode, mds, seq, truncate_size, truncate_seq);
queue_trunc = ceph_fill_file_size(inode, issued,
truncate_seq, truncate_size, size);
return queue_trunc;
}
/*
* Handle EXPORT from MDS. Cap is being migrated _from_ this mds to a
* different one. If we are the most recent migration we've seen (as
* indicated by mseq), make note of the migrating cap bits for the
* duration (until we see the corresponding IMPORT).
*
* caller holds s_mutex
*/
static void handle_cap_export(struct inode *inode, struct ceph_mds_caps *ex,
struct ceph_mds_cap_peer *ph,
struct ceph_mds_session *session)
{
struct ceph_mds_client *mdsc = ceph_inode_to_client(inode)->mdsc;
struct ceph_mds_session *tsession = NULL;
struct ceph_cap *cap, *tcap, *new_cap = NULL;
struct ceph_inode_info *ci = ceph_inode(inode);
u64 t_cap_id;
unsigned mseq = le32_to_cpu(ex->migrate_seq);
unsigned t_seq, t_mseq;
int target, issued;
int mds = session->s_mds;
if (ph) {
t_cap_id = le64_to_cpu(ph->cap_id);
t_seq = le32_to_cpu(ph->seq);
t_mseq = le32_to_cpu(ph->mseq);
target = le32_to_cpu(ph->mds);
} else {
t_cap_id = t_seq = t_mseq = 0;
target = -1;
}
dout("handle_cap_export inode %p ci %p mds%d mseq %d target %d\n",
inode, ci, mds, mseq, target);
retry:
down_read(&mdsc->snap_rwsem);
spin_lock(&ci->i_ceph_lock);
cap = __get_cap_for_mds(ci, mds);
if (!cap || cap->cap_id != le64_to_cpu(ex->cap_id))
goto out_unlock;
if (target < 0) {
ceph_remove_cap(cap, false);
goto out_unlock;
}
/*
* now we know we haven't received the cap import message yet
* because the exported cap still exist.
*/
issued = cap->issued;
if (issued != cap->implemented)
pr_err_ratelimited("handle_cap_export: issued != implemented: "
"ino (%llx.%llx) mds%d seq %d mseq %d "
"issued %s implemented %s\n",
ceph_vinop(inode), mds, cap->seq, cap->mseq,
ceph_cap_string(issued),
ceph_cap_string(cap->implemented));
tcap = __get_cap_for_mds(ci, target);
if (tcap) {
/* already have caps from the target */
if (tcap->cap_id == t_cap_id &&
ceph_seq_cmp(tcap->seq, t_seq) < 0) {
dout(" updating import cap %p mds%d\n", tcap, target);
tcap->cap_id = t_cap_id;
tcap->seq = t_seq - 1;
tcap->issue_seq = t_seq - 1;
tcap->issued |= issued;
tcap->implemented |= issued;
if (cap == ci->i_auth_cap) {
ci->i_auth_cap = tcap;
change_auth_cap_ses(ci, tcap->session);
}
}
ceph_remove_cap(cap, false);
goto out_unlock;
} else if (tsession) {
/* add placeholder for the export tagert */
int flag = (cap == ci->i_auth_cap) ? CEPH_CAP_FLAG_AUTH : 0;
tcap = new_cap;
ceph_add_cap(inode, tsession, t_cap_id, issued, 0,
t_seq - 1, t_mseq, (u64)-1, flag, &new_cap);
if (!list_empty(&ci->i_cap_flush_list) &&
ci->i_auth_cap == tcap) {
spin_lock(&mdsc->cap_dirty_lock);
list_move_tail(&ci->i_flushing_item,
&tcap->session->s_cap_flushing);
spin_unlock(&mdsc->cap_dirty_lock);
}
ceph_remove_cap(cap, false);
goto out_unlock;
}
spin_unlock(&ci->i_ceph_lock);
up_read(&mdsc->snap_rwsem);
mutex_unlock(&session->s_mutex);
/* open target session */
tsession = ceph_mdsc_open_export_target_session(mdsc, target);
if (!IS_ERR(tsession)) {
if (mds > target) {
mutex_lock(&session->s_mutex);
mutex_lock_nested(&tsession->s_mutex,
SINGLE_DEPTH_NESTING);
} else {
mutex_lock(&tsession->s_mutex);
mutex_lock_nested(&session->s_mutex,
SINGLE_DEPTH_NESTING);
}
new_cap = ceph_get_cap(mdsc, NULL);
} else {
WARN_ON(1);
tsession = NULL;
target = -1;
mutex_lock(&session->s_mutex);
}
goto retry;
out_unlock:
spin_unlock(&ci->i_ceph_lock);
up_read(&mdsc->snap_rwsem);
mutex_unlock(&session->s_mutex);
if (tsession) {
mutex_unlock(&tsession->s_mutex);
ceph_put_mds_session(tsession);
}
if (new_cap)
ceph_put_cap(mdsc, new_cap);
}
/*
* Handle cap IMPORT.
*
* caller holds s_mutex. acquires i_ceph_lock
*/
static void handle_cap_import(struct ceph_mds_client *mdsc,
struct inode *inode, struct ceph_mds_caps *im,
struct ceph_mds_cap_peer *ph,
struct ceph_mds_session *session,
struct ceph_cap **target_cap, int *old_issued)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_cap *cap, *ocap, *new_cap = NULL;
int mds = session->s_mds;
int issued;
unsigned caps = le32_to_cpu(im->caps);
unsigned wanted = le32_to_cpu(im->wanted);
unsigned seq = le32_to_cpu(im->seq);
unsigned mseq = le32_to_cpu(im->migrate_seq);
u64 realmino = le64_to_cpu(im->realm);
u64 cap_id = le64_to_cpu(im->cap_id);
u64 p_cap_id;
int peer;
if (ph) {
p_cap_id = le64_to_cpu(ph->cap_id);
peer = le32_to_cpu(ph->mds);
} else {
p_cap_id = 0;
peer = -1;
}
dout("handle_cap_import inode %p ci %p mds%d mseq %d peer %d\n",
inode, ci, mds, mseq, peer);
retry:
cap = __get_cap_for_mds(ci, mds);
if (!cap) {
if (!new_cap) {
spin_unlock(&ci->i_ceph_lock);
new_cap = ceph_get_cap(mdsc, NULL);
spin_lock(&ci->i_ceph_lock);
goto retry;
}
cap = new_cap;
} else {
if (new_cap) {
ceph_put_cap(mdsc, new_cap);
new_cap = NULL;
}
}
__ceph_caps_issued(ci, &issued);
issued |= __ceph_caps_dirty(ci);
ceph_add_cap(inode, session, cap_id, caps, wanted, seq, mseq,
realmino, CEPH_CAP_FLAG_AUTH, &new_cap);
ocap = peer >= 0 ? __get_cap_for_mds(ci, peer) : NULL;
if (ocap && ocap->cap_id == p_cap_id) {
dout(" remove export cap %p mds%d flags %d\n",
ocap, peer, ph->flags);
if ((ph->flags & CEPH_CAP_FLAG_AUTH) &&
(ocap->seq != le32_to_cpu(ph->seq) ||
ocap->mseq != le32_to_cpu(ph->mseq))) {
pr_err_ratelimited("handle_cap_import: "
"mismatched seq/mseq: ino (%llx.%llx) "
"mds%d seq %d mseq %d importer mds%d "
"has peer seq %d mseq %d\n",
ceph_vinop(inode), peer, ocap->seq,
ocap->mseq, mds, le32_to_cpu(ph->seq),
le32_to_cpu(ph->mseq));
}
ceph_remove_cap(ocap, (ph->flags & CEPH_CAP_FLAG_RELEASE));
}
*old_issued = issued;
*target_cap = cap;
}
/*
* Handle a caps message from the MDS.
*
* Identify the appropriate session, inode, and call the right handler
* based on the cap op.
*/
void ceph_handle_caps(struct ceph_mds_session *session,
struct ceph_msg *msg)
{
struct ceph_mds_client *mdsc = session->s_mdsc;
struct inode *inode;
struct ceph_inode_info *ci;
struct ceph_cap *cap;
struct ceph_mds_caps *h;
struct ceph_mds_cap_peer *peer = NULL;
struct ceph_snap_realm *realm = NULL;
int op;
int msg_version = le16_to_cpu(msg->hdr.version);
u32 seq, mseq;
struct ceph_vino vino;
void *snaptrace;
size_t snaptrace_len;
void *p, *end;
struct cap_extra_info extra_info = {};
bool queue_trunc;
bool close_sessions = false;
bool do_cap_release = false;
dout("handle_caps from mds%d\n", session->s_mds);
/* decode */
end = msg->front.iov_base + msg->front.iov_len;
if (msg->front.iov_len < sizeof(*h))
goto bad;
h = msg->front.iov_base;
op = le32_to_cpu(h->op);
vino.ino = le64_to_cpu(h->ino);
vino.snap = CEPH_NOSNAP;
seq = le32_to_cpu(h->seq);
mseq = le32_to_cpu(h->migrate_seq);
snaptrace = h + 1;
snaptrace_len = le32_to_cpu(h->snap_trace_len);
p = snaptrace + snaptrace_len;
if (msg_version >= 2) {
u32 flock_len;
ceph_decode_32_safe(&p, end, flock_len, bad);
if (p + flock_len > end)
goto bad;
p += flock_len;
}
if (msg_version >= 3) {
if (op == CEPH_CAP_OP_IMPORT) {
if (p + sizeof(*peer) > end)
goto bad;
peer = p;
p += sizeof(*peer);
} else if (op == CEPH_CAP_OP_EXPORT) {
/* recorded in unused fields */
peer = (void *)&h->size;
}
}
if (msg_version >= 4) {
ceph_decode_64_safe(&p, end, extra_info.inline_version, bad);
ceph_decode_32_safe(&p, end, extra_info.inline_len, bad);
if (p + extra_info.inline_len > end)
goto bad;
extra_info.inline_data = p;
p += extra_info.inline_len;
}
if (msg_version >= 5) {
struct ceph_osd_client *osdc = &mdsc->fsc->client->osdc;
u32 epoch_barrier;
ceph_decode_32_safe(&p, end, epoch_barrier, bad);
ceph_osdc_update_epoch_barrier(osdc, epoch_barrier);
}
if (msg_version >= 8) {
u32 pool_ns_len;
/* version >= 6 */
ceph_decode_skip_64(&p, end, bad); // flush_tid
/* version >= 7 */
ceph_decode_skip_32(&p, end, bad); // caller_uid
ceph_decode_skip_32(&p, end, bad); // caller_gid
/* version >= 8 */
ceph_decode_32_safe(&p, end, pool_ns_len, bad);
if (pool_ns_len > 0) {
ceph_decode_need(&p, end, pool_ns_len, bad);
extra_info.pool_ns =
ceph_find_or_create_string(p, pool_ns_len);
p += pool_ns_len;
}
}
if (msg_version >= 9) {
struct ceph_timespec *btime;
if (p + sizeof(*btime) > end)
goto bad;
btime = p;
ceph_decode_timespec64(&extra_info.btime, btime);
p += sizeof(*btime);
ceph_decode_64_safe(&p, end, extra_info.change_attr, bad);
}
if (msg_version >= 11) {
/* version >= 10 */
ceph_decode_skip_32(&p, end, bad); // flags
/* version >= 11 */
extra_info.dirstat_valid = true;
ceph_decode_64_safe(&p, end, extra_info.nfiles, bad);
ceph_decode_64_safe(&p, end, extra_info.nsubdirs, bad);
}
/* lookup ino */
inode = ceph_find_inode(mdsc->fsc->sb, vino);
dout(" op %s ino %llx.%llx inode %p\n", ceph_cap_op_name(op), vino.ino,
vino.snap, inode);
mutex_lock(&session->s_mutex);
inc_session_sequence(session);
dout(" mds%d seq %lld cap seq %u\n", session->s_mds, session->s_seq,
(unsigned)seq);
if (!inode) {
dout(" i don't have ino %llx\n", vino.ino);
switch (op) {
case CEPH_CAP_OP_IMPORT:
case CEPH_CAP_OP_REVOKE:
case CEPH_CAP_OP_GRANT:
do_cap_release = true;
break;
default:
break;
}
goto flush_cap_releases;
}
ci = ceph_inode(inode);
/* these will work even if we don't have a cap yet */
switch (op) {
case CEPH_CAP_OP_FLUSHSNAP_ACK:
handle_cap_flushsnap_ack(inode, le64_to_cpu(msg->hdr.tid),
h, session);
goto done;
case CEPH_CAP_OP_EXPORT:
handle_cap_export(inode, h, peer, session);
goto done_unlocked;
case CEPH_CAP_OP_IMPORT:
realm = NULL;
if (snaptrace_len) {
down_write(&mdsc->snap_rwsem);
if (ceph_update_snap_trace(mdsc, snaptrace,
snaptrace + snaptrace_len,
false, &realm)) {
up_write(&mdsc->snap_rwsem);
close_sessions = true;
goto done;
}
downgrade_write(&mdsc->snap_rwsem);
} else {
down_read(&mdsc->snap_rwsem);
}
spin_lock(&ci->i_ceph_lock);
handle_cap_import(mdsc, inode, h, peer, session,
&cap, &extra_info.issued);
handle_cap_grant(inode, session, cap,
h, msg->middle, &extra_info);
if (realm)
ceph_put_snap_realm(mdsc, realm);
goto done_unlocked;
}
/* the rest require a cap */
spin_lock(&ci->i_ceph_lock);
cap = __get_cap_for_mds(ceph_inode(inode), session->s_mds);
if (!cap) {
dout(" no cap on %p ino %llx.%llx from mds%d\n",
inode, ceph_ino(inode), ceph_snap(inode),
session->s_mds);
spin_unlock(&ci->i_ceph_lock);
switch (op) {
case CEPH_CAP_OP_REVOKE:
case CEPH_CAP_OP_GRANT:
do_cap_release = true;
break;
default:
break;
}
goto flush_cap_releases;
}
/* note that each of these drops i_ceph_lock for us */
switch (op) {
case CEPH_CAP_OP_REVOKE:
case CEPH_CAP_OP_GRANT:
__ceph_caps_issued(ci, &extra_info.issued);
extra_info.issued |= __ceph_caps_dirty(ci);
handle_cap_grant(inode, session, cap,
h, msg->middle, &extra_info);
goto done_unlocked;
case CEPH_CAP_OP_FLUSH_ACK:
handle_cap_flush_ack(inode, le64_to_cpu(msg->hdr.tid),
h, session, cap);
break;
case CEPH_CAP_OP_TRUNC:
queue_trunc = handle_cap_trunc(inode, h, session);
spin_unlock(&ci->i_ceph_lock);
if (queue_trunc)
ceph_queue_vmtruncate(inode);
break;
default:
spin_unlock(&ci->i_ceph_lock);
pr_err("ceph_handle_caps: unknown cap op %d %s\n", op,
ceph_cap_op_name(op));
}
done:
mutex_unlock(&session->s_mutex);
done_unlocked:
iput(inode);
out:
ceph_put_string(extra_info.pool_ns);
/* Defer closing the sessions after s_mutex lock being released */
if (close_sessions)
ceph_mdsc_close_sessions(mdsc);
return;
flush_cap_releases:
/*
* send any cap release message to try to move things
* along for the mds (who clearly thinks we still have this
* cap).
*/
if (do_cap_release) {
cap = ceph_get_cap(mdsc, NULL);
cap->cap_ino = vino.ino;
cap->queue_release = 1;
cap->cap_id = le64_to_cpu(h->cap_id);
cap->mseq = mseq;
cap->seq = seq;
cap->issue_seq = seq;
spin_lock(&session->s_cap_lock);
__ceph_queue_cap_release(session, cap);
spin_unlock(&session->s_cap_lock);
}
ceph_flush_cap_releases(mdsc, session);
goto done;
bad:
pr_err("ceph_handle_caps: corrupt message\n");
ceph_msg_dump(msg);
goto out;
}
/*
* Delayed work handler to process end of delayed cap release LRU list.
*
* If new caps are added to the list while processing it, these won't get
* processed in this run. In this case, the ci->i_hold_caps_max will be
* returned so that the work can be scheduled accordingly.
*/
unsigned long ceph_check_delayed_caps(struct ceph_mds_client *mdsc)
{
struct inode *inode;
struct ceph_inode_info *ci;
struct ceph_mount_options *opt = mdsc->fsc->mount_options;
unsigned long delay_max = opt->caps_wanted_delay_max * HZ;
unsigned long loop_start = jiffies;
unsigned long delay = 0;
dout("check_delayed_caps\n");
spin_lock(&mdsc->cap_delay_lock);
while (!list_empty(&mdsc->cap_delay_list)) {
ci = list_first_entry(&mdsc->cap_delay_list,
struct ceph_inode_info,
i_cap_delay_list);
if (time_before(loop_start, ci->i_hold_caps_max - delay_max)) {
dout("%s caps added recently. Exiting loop", __func__);
delay = ci->i_hold_caps_max;
break;
}
if ((ci->i_ceph_flags & CEPH_I_FLUSH) == 0 &&
time_before(jiffies, ci->i_hold_caps_max))
break;
list_del_init(&ci->i_cap_delay_list);
inode = igrab(&ci->netfs.inode);
if (inode) {
spin_unlock(&mdsc->cap_delay_lock);
dout("check_delayed_caps on %p\n", inode);
ceph_check_caps(ci, 0);
iput(inode);
spin_lock(&mdsc->cap_delay_lock);
}
}
spin_unlock(&mdsc->cap_delay_lock);
return delay;
}
/*
* Flush all dirty caps to the mds
*/
static void flush_dirty_session_caps(struct ceph_mds_session *s)
{
struct ceph_mds_client *mdsc = s->s_mdsc;
struct ceph_inode_info *ci;
struct inode *inode;
dout("flush_dirty_caps\n");
spin_lock(&mdsc->cap_dirty_lock);
while (!list_empty(&s->s_cap_dirty)) {
ci = list_first_entry(&s->s_cap_dirty, struct ceph_inode_info,
i_dirty_item);
inode = &ci->netfs.inode;
ihold(inode);
dout("flush_dirty_caps %llx.%llx\n", ceph_vinop(inode));
spin_unlock(&mdsc->cap_dirty_lock);
ceph_wait_on_async_create(inode);
ceph_check_caps(ci, CHECK_CAPS_FLUSH);
iput(inode);
spin_lock(&mdsc->cap_dirty_lock);
}
spin_unlock(&mdsc->cap_dirty_lock);
dout("flush_dirty_caps done\n");
}
void ceph_flush_dirty_caps(struct ceph_mds_client *mdsc)
{
ceph_mdsc_iterate_sessions(mdsc, flush_dirty_session_caps, true);
}
void __ceph_touch_fmode(struct ceph_inode_info *ci,
struct ceph_mds_client *mdsc, int fmode)
{
unsigned long now = jiffies;
if (fmode & CEPH_FILE_MODE_RD)
ci->i_last_rd = now;
if (fmode & CEPH_FILE_MODE_WR)
ci->i_last_wr = now;
/* queue periodic check */
if (fmode &&
__ceph_is_any_real_caps(ci) &&
list_empty(&ci->i_cap_delay_list))
__cap_delay_requeue(mdsc, ci);
}
void ceph_get_fmode(struct ceph_inode_info *ci, int fmode, int count)
{
struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(ci->netfs.inode.i_sb);
int bits = (fmode << 1) | 1;
bool already_opened = false;
int i;
if (count == 1)
atomic64_inc(&mdsc->metric.opened_files);
spin_lock(&ci->i_ceph_lock);
for (i = 0; i < CEPH_FILE_MODE_BITS; i++) {
/*
* If any of the mode ref is larger than 0,
* that means it has been already opened by
* others. Just skip checking the PIN ref.
*/
if (i && ci->i_nr_by_mode[i])
already_opened = true;
if (bits & (1 << i))
ci->i_nr_by_mode[i] += count;
}
if (!already_opened)
percpu_counter_inc(&mdsc->metric.opened_inodes);
spin_unlock(&ci->i_ceph_lock);
}
/*
* Drop open file reference. If we were the last open file,
* we may need to release capabilities to the MDS (or schedule
* their delayed release).
*/
void ceph_put_fmode(struct ceph_inode_info *ci, int fmode, int count)
{
struct ceph_mds_client *mdsc = ceph_sb_to_mdsc(ci->netfs.inode.i_sb);
int bits = (fmode << 1) | 1;
bool is_closed = true;
int i;
if (count == 1)
atomic64_dec(&mdsc->metric.opened_files);
spin_lock(&ci->i_ceph_lock);
for (i = 0; i < CEPH_FILE_MODE_BITS; i++) {
if (bits & (1 << i)) {
BUG_ON(ci->i_nr_by_mode[i] < count);
ci->i_nr_by_mode[i] -= count;
}
/*
* If any of the mode ref is not 0 after
* decreased, that means it is still opened
* by others. Just skip checking the PIN ref.
*/
if (i && ci->i_nr_by_mode[i])
is_closed = false;
}
if (is_closed)
percpu_counter_dec(&mdsc->metric.opened_inodes);
spin_unlock(&ci->i_ceph_lock);
}
/*
* For a soon-to-be unlinked file, drop the LINK caps. If it
* looks like the link count will hit 0, drop any other caps (other
* than PIN) we don't specifically want (due to the file still being
* open).
*/
int ceph_drop_caps_for_unlink(struct inode *inode)
{
struct ceph_inode_info *ci = ceph_inode(inode);
int drop = CEPH_CAP_LINK_SHARED | CEPH_CAP_LINK_EXCL;
spin_lock(&ci->i_ceph_lock);
if (inode->i_nlink == 1) {
drop |= ~(__ceph_caps_wanted(ci) | CEPH_CAP_PIN);
if (__ceph_caps_dirty(ci)) {
struct ceph_mds_client *mdsc =
ceph_inode_to_client(inode)->mdsc;
__cap_delay_requeue_front(mdsc, ci);
}
}
spin_unlock(&ci->i_ceph_lock);
return drop;
}
/*
* Helpers for embedding cap and dentry lease releases into mds
* requests.
*
* @force is used by dentry_release (below) to force inclusion of a
* record for the directory inode, even when there aren't any caps to
* drop.
*/
int ceph_encode_inode_release(void **p, struct inode *inode,
int mds, int drop, int unless, int force)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_cap *cap;
struct ceph_mds_request_release *rel = *p;
int used, dirty;
int ret = 0;
spin_lock(&ci->i_ceph_lock);
used = __ceph_caps_used(ci);
dirty = __ceph_caps_dirty(ci);
dout("encode_inode_release %p mds%d used|dirty %s drop %s unless %s\n",
inode, mds, ceph_cap_string(used|dirty), ceph_cap_string(drop),
ceph_cap_string(unless));
/* only drop unused, clean caps */
drop &= ~(used | dirty);
cap = __get_cap_for_mds(ci, mds);
if (cap && __cap_is_valid(cap)) {
unless &= cap->issued;
if (unless) {
if (unless & CEPH_CAP_AUTH_EXCL)
drop &= ~CEPH_CAP_AUTH_SHARED;
if (unless & CEPH_CAP_LINK_EXCL)
drop &= ~CEPH_CAP_LINK_SHARED;
if (unless & CEPH_CAP_XATTR_EXCL)
drop &= ~CEPH_CAP_XATTR_SHARED;
if (unless & CEPH_CAP_FILE_EXCL)
drop &= ~CEPH_CAP_FILE_SHARED;
}
if (force || (cap->issued & drop)) {
if (cap->issued & drop) {
int wanted = __ceph_caps_wanted(ci);
dout("encode_inode_release %p cap %p "
"%s -> %s, wanted %s -> %s\n", inode, cap,
ceph_cap_string(cap->issued),
ceph_cap_string(cap->issued & ~drop),
ceph_cap_string(cap->mds_wanted),
ceph_cap_string(wanted));
cap->issued &= ~drop;
cap->implemented &= ~drop;
cap->mds_wanted = wanted;
if (cap == ci->i_auth_cap &&
!(wanted & CEPH_CAP_ANY_FILE_WR))
ci->i_requested_max_size = 0;
} else {
dout("encode_inode_release %p cap %p %s"
" (force)\n", inode, cap,
ceph_cap_string(cap->issued));
}
rel->ino = cpu_to_le64(ceph_ino(inode));
rel->cap_id = cpu_to_le64(cap->cap_id);
rel->seq = cpu_to_le32(cap->seq);
rel->issue_seq = cpu_to_le32(cap->issue_seq);
rel->mseq = cpu_to_le32(cap->mseq);
rel->caps = cpu_to_le32(cap->implemented);
rel->wanted = cpu_to_le32(cap->mds_wanted);
rel->dname_len = 0;
rel->dname_seq = 0;
*p += sizeof(*rel);
ret = 1;
} else {
dout("encode_inode_release %p cap %p %s (noop)\n",
inode, cap, ceph_cap_string(cap->issued));
}
}
spin_unlock(&ci->i_ceph_lock);
return ret;
}
int ceph_encode_dentry_release(void **p, struct dentry *dentry,
struct inode *dir,
int mds, int drop, int unless)
{
struct dentry *parent = NULL;
struct ceph_mds_request_release *rel = *p;
struct ceph_dentry_info *di = ceph_dentry(dentry);
int force = 0;
int ret;
/*
* force an record for the directory caps if we have a dentry lease.
* this is racy (can't take i_ceph_lock and d_lock together), but it
* doesn't have to be perfect; the mds will revoke anything we don't
* release.
*/
spin_lock(&dentry->d_lock);
if (di->lease_session && di->lease_session->s_mds == mds)
force = 1;
if (!dir) {
parent = dget(dentry->d_parent);
dir = d_inode(parent);
}
spin_unlock(&dentry->d_lock);
ret = ceph_encode_inode_release(p, dir, mds, drop, unless, force);
dput(parent);
spin_lock(&dentry->d_lock);
if (ret && di->lease_session && di->lease_session->s_mds == mds) {
dout("encode_dentry_release %p mds%d seq %d\n",
dentry, mds, (int)di->lease_seq);
rel->dname_len = cpu_to_le32(dentry->d_name.len);
memcpy(*p, dentry->d_name.name, dentry->d_name.len);
*p += dentry->d_name.len;
rel->dname_seq = cpu_to_le32(di->lease_seq);
__ceph_mdsc_drop_dentry_lease(dentry);
}
spin_unlock(&dentry->d_lock);
return ret;
}
static int remove_capsnaps(struct ceph_mds_client *mdsc, struct inode *inode)
{
struct ceph_inode_info *ci = ceph_inode(inode);
struct ceph_cap_snap *capsnap;
int capsnap_release = 0;
lockdep_assert_held(&ci->i_ceph_lock);
dout("removing capsnaps, ci is %p, inode is %p\n", ci, inode);
while (!list_empty(&ci->i_cap_snaps)) {
capsnap = list_first_entry(&ci->i_cap_snaps,
struct ceph_cap_snap, ci_item);
__ceph_remove_capsnap(inode, capsnap, NULL, NULL);
ceph_put_snap_context(capsnap->context);
ceph_put_cap_snap(capsnap);
capsnap_release++;
}
wake_up_all(&ci->i_cap_wq);
wake_up_all(&mdsc->cap_flushing_wq);
return capsnap_release;
}
int ceph_purge_inode_cap(struct inode *inode, struct ceph_cap *cap, bool *invalidate)
{
struct ceph_fs_client *fsc = ceph_inode_to_client(inode);
struct ceph_mds_client *mdsc = fsc->mdsc;
struct ceph_inode_info *ci = ceph_inode(inode);
bool is_auth;
bool dirty_dropped = false;
int iputs = 0;
lockdep_assert_held(&ci->i_ceph_lock);
dout("removing cap %p, ci is %p, inode is %p\n",
cap, ci, &ci->netfs.inode);
is_auth = (cap == ci->i_auth_cap);
__ceph_remove_cap(cap, false);
if (is_auth) {
struct ceph_cap_flush *cf;
if (ceph_inode_is_shutdown(inode)) {
if (inode->i_data.nrpages > 0)
*invalidate = true;
if (ci->i_wrbuffer_ref > 0)
mapping_set_error(&inode->i_data, -EIO);
}
spin_lock(&mdsc->cap_dirty_lock);
/* trash all of the cap flushes for this inode */
while (!list_empty(&ci->i_cap_flush_list)) {
cf = list_first_entry(&ci->i_cap_flush_list,
struct ceph_cap_flush, i_list);
list_del_init(&cf->g_list);
list_del_init(&cf->i_list);
if (!cf->is_capsnap)
ceph_free_cap_flush(cf);
}
if (!list_empty(&ci->i_dirty_item)) {
pr_warn_ratelimited(
" dropping dirty %s state for %p %lld\n",
ceph_cap_string(ci->i_dirty_caps),
inode, ceph_ino(inode));
ci->i_dirty_caps = 0;
list_del_init(&ci->i_dirty_item);
dirty_dropped = true;
}
if (!list_empty(&ci->i_flushing_item)) {
pr_warn_ratelimited(
" dropping dirty+flushing %s state for %p %lld\n",
ceph_cap_string(ci->i_flushing_caps),
inode, ceph_ino(inode));
ci->i_flushing_caps = 0;
list_del_init(&ci->i_flushing_item);
mdsc->num_cap_flushing--;
dirty_dropped = true;
}
spin_unlock(&mdsc->cap_dirty_lock);
if (dirty_dropped) {
mapping_set_error(inode->i_mapping, -EIO);
if (ci->i_wrbuffer_ref_head == 0 &&
ci->i_wr_ref == 0 &&
ci->i_dirty_caps == 0 &&
ci->i_flushing_caps == 0) {
ceph_put_snap_context(ci->i_head_snapc);
ci->i_head_snapc = NULL;
}
}
if (atomic_read(&ci->i_filelock_ref) > 0) {
/* make further file lock syscall return -EIO */
ci->i_ceph_flags |= CEPH_I_ERROR_FILELOCK;
pr_warn_ratelimited(" dropping file locks for %p %lld\n",
inode, ceph_ino(inode));
}
if (!ci->i_dirty_caps && ci->i_prealloc_cap_flush) {
cf = ci->i_prealloc_cap_flush;
ci->i_prealloc_cap_flush = NULL;
if (!cf->is_capsnap)
ceph_free_cap_flush(cf);
}
if (!list_empty(&ci->i_cap_snaps))
iputs = remove_capsnaps(mdsc, inode);
}
if (dirty_dropped)
++iputs;
return iputs;
}