blob: a249db528d543dcad37e9b5162cc4b196a2f41e1 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* NVMe over Fabrics RDMA host code.
* Copyright (c) 2015-2016 HGST, a Western Digital Company.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <rdma/mr_pool.h>
#include <linux/err.h>
#include <linux/string.h>
#include <linux/atomic.h>
#include <linux/blk-mq.h>
#include <linux/blk-mq-rdma.h>
#include <linux/types.h>
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/scatterlist.h>
#include <linux/nvme.h>
#include <asm/unaligned.h>
#include <rdma/ib_verbs.h>
#include <rdma/rdma_cm.h>
#include <linux/nvme-rdma.h>
#include "nvme.h"
#include "fabrics.h"
#define NVME_RDMA_CONNECT_TIMEOUT_MS 3000 /* 3 second */
#define NVME_RDMA_MAX_SEGMENTS 256
#define NVME_RDMA_MAX_INLINE_SEGMENTS 4
struct nvme_rdma_device {
struct ib_device *dev;
struct ib_pd *pd;
struct kref ref;
struct list_head entry;
unsigned int num_inline_segments;
};
struct nvme_rdma_qe {
struct ib_cqe cqe;
void *data;
u64 dma;
};
struct nvme_rdma_queue;
struct nvme_rdma_request {
struct nvme_request req;
struct ib_mr *mr;
struct nvme_rdma_qe sqe;
union nvme_result result;
__le16 status;
refcount_t ref;
struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
u32 num_sge;
int nents;
struct ib_reg_wr reg_wr;
struct ib_cqe reg_cqe;
struct nvme_rdma_queue *queue;
struct sg_table sg_table;
struct scatterlist first_sgl[];
};
enum nvme_rdma_queue_flags {
NVME_RDMA_Q_ALLOCATED = 0,
NVME_RDMA_Q_LIVE = 1,
NVME_RDMA_Q_TR_READY = 2,
};
struct nvme_rdma_queue {
struct nvme_rdma_qe *rsp_ring;
int queue_size;
size_t cmnd_capsule_len;
struct nvme_rdma_ctrl *ctrl;
struct nvme_rdma_device *device;
struct ib_cq *ib_cq;
struct ib_qp *qp;
unsigned long flags;
struct rdma_cm_id *cm_id;
int cm_error;
struct completion cm_done;
};
struct nvme_rdma_ctrl {
/* read only in the hot path */
struct nvme_rdma_queue *queues;
/* other member variables */
struct blk_mq_tag_set tag_set;
struct work_struct err_work;
struct nvme_rdma_qe async_event_sqe;
struct delayed_work reconnect_work;
struct list_head list;
struct blk_mq_tag_set admin_tag_set;
struct nvme_rdma_device *device;
u32 max_fr_pages;
struct sockaddr_storage addr;
struct sockaddr_storage src_addr;
struct nvme_ctrl ctrl;
bool use_inline_data;
u32 io_queues[HCTX_MAX_TYPES];
};
static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
{
return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
}
static LIST_HEAD(device_list);
static DEFINE_MUTEX(device_list_mutex);
static LIST_HEAD(nvme_rdma_ctrl_list);
static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
/*
* Disabling this option makes small I/O goes faster, but is fundamentally
* unsafe. With it turned off we will have to register a global rkey that
* allows read and write access to all physical memory.
*/
static bool register_always = true;
module_param(register_always, bool, 0444);
MODULE_PARM_DESC(register_always,
"Use memory registration even for contiguous memory regions");
static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
struct rdma_cm_event *event);
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
static const struct blk_mq_ops nvme_rdma_mq_ops;
static const struct blk_mq_ops nvme_rdma_admin_mq_ops;
/* XXX: really should move to a generic header sooner or later.. */
static inline void put_unaligned_le24(u32 val, u8 *p)
{
*p++ = val;
*p++ = val >> 8;
*p++ = val >> 16;
}
static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
{
return queue - queue->ctrl->queues;
}
static bool nvme_rdma_poll_queue(struct nvme_rdma_queue *queue)
{
return nvme_rdma_queue_idx(queue) >
queue->ctrl->io_queues[HCTX_TYPE_DEFAULT] +
queue->ctrl->io_queues[HCTX_TYPE_READ];
}
static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
{
return queue->cmnd_capsule_len - sizeof(struct nvme_command);
}
static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
size_t capsule_size, enum dma_data_direction dir)
{
ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
kfree(qe->data);
}
static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
size_t capsule_size, enum dma_data_direction dir)
{
qe->data = kzalloc(capsule_size, GFP_KERNEL);
if (!qe->data)
return -ENOMEM;
qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
if (ib_dma_mapping_error(ibdev, qe->dma)) {
kfree(qe->data);
qe->data = NULL;
return -ENOMEM;
}
return 0;
}
static void nvme_rdma_free_ring(struct ib_device *ibdev,
struct nvme_rdma_qe *ring, size_t ib_queue_size,
size_t capsule_size, enum dma_data_direction dir)
{
int i;
for (i = 0; i < ib_queue_size; i++)
nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
kfree(ring);
}
static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
size_t ib_queue_size, size_t capsule_size,
enum dma_data_direction dir)
{
struct nvme_rdma_qe *ring;
int i;
ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
if (!ring)
return NULL;
/*
* Bind the CQEs (post recv buffers) DMA mapping to the RDMA queue
* lifetime. It's safe, since any chage in the underlying RDMA device
* will issue error recovery and queue re-creation.
*/
for (i = 0; i < ib_queue_size; i++) {
if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
goto out_free_ring;
}
return ring;
out_free_ring:
nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
return NULL;
}
static void nvme_rdma_qp_event(struct ib_event *event, void *context)
{
pr_debug("QP event %s (%d)\n",
ib_event_msg(event->event), event->event);
}
static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
{
int ret;
ret = wait_for_completion_interruptible_timeout(&queue->cm_done,
msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
if (ret < 0)
return ret;
if (ret == 0)
return -ETIMEDOUT;
WARN_ON_ONCE(queue->cm_error > 0);
return queue->cm_error;
}
static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
{
struct nvme_rdma_device *dev = queue->device;
struct ib_qp_init_attr init_attr;
int ret;
memset(&init_attr, 0, sizeof(init_attr));
init_attr.event_handler = nvme_rdma_qp_event;
/* +1 for drain */
init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
/* +1 for drain */
init_attr.cap.max_recv_wr = queue->queue_size + 1;
init_attr.cap.max_recv_sge = 1;
init_attr.cap.max_send_sge = 1 + dev->num_inline_segments;
init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
init_attr.qp_type = IB_QPT_RC;
init_attr.send_cq = queue->ib_cq;
init_attr.recv_cq = queue->ib_cq;
ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
queue->qp = queue->cm_id->qp;
return ret;
}
static void nvme_rdma_exit_request(struct blk_mq_tag_set *set,
struct request *rq, unsigned int hctx_idx)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
kfree(req->sqe.data);
}
static int nvme_rdma_init_request(struct blk_mq_tag_set *set,
struct request *rq, unsigned int hctx_idx,
unsigned int numa_node)
{
struct nvme_rdma_ctrl *ctrl = set->driver_data;
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
nvme_req(rq)->ctrl = &ctrl->ctrl;
req->sqe.data = kzalloc(sizeof(struct nvme_command), GFP_KERNEL);
if (!req->sqe.data)
return -ENOMEM;
req->queue = queue;
return 0;
}
static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_rdma_ctrl *ctrl = data;
struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
BUG_ON(hctx_idx >= ctrl->ctrl.queue_count);
hctx->driver_data = queue;
return 0;
}
static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
unsigned int hctx_idx)
{
struct nvme_rdma_ctrl *ctrl = data;
struct nvme_rdma_queue *queue = &ctrl->queues[0];
BUG_ON(hctx_idx != 0);
hctx->driver_data = queue;
return 0;
}
static void nvme_rdma_free_dev(struct kref *ref)
{
struct nvme_rdma_device *ndev =
container_of(ref, struct nvme_rdma_device, ref);
mutex_lock(&device_list_mutex);
list_del(&ndev->entry);
mutex_unlock(&device_list_mutex);
ib_dealloc_pd(ndev->pd);
kfree(ndev);
}
static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
{
kref_put(&dev->ref, nvme_rdma_free_dev);
}
static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
{
return kref_get_unless_zero(&dev->ref);
}
static struct nvme_rdma_device *
nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
{
struct nvme_rdma_device *ndev;
mutex_lock(&device_list_mutex);
list_for_each_entry(ndev, &device_list, entry) {
if (ndev->dev->node_guid == cm_id->device->node_guid &&
nvme_rdma_dev_get(ndev))
goto out_unlock;
}
ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
if (!ndev)
goto out_err;
ndev->dev = cm_id->device;
kref_init(&ndev->ref);
ndev->pd = ib_alloc_pd(ndev->dev,
register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
if (IS_ERR(ndev->pd))
goto out_free_dev;
if (!(ndev->dev->attrs.device_cap_flags &
IB_DEVICE_MEM_MGT_EXTENSIONS)) {
dev_err(&ndev->dev->dev,
"Memory registrations not supported.\n");
goto out_free_pd;
}
ndev->num_inline_segments = min(NVME_RDMA_MAX_INLINE_SEGMENTS,
ndev->dev->attrs.max_send_sge - 1);
list_add(&ndev->entry, &device_list);
out_unlock:
mutex_unlock(&device_list_mutex);
return ndev;
out_free_pd:
ib_dealloc_pd(ndev->pd);
out_free_dev:
kfree(ndev);
out_err:
mutex_unlock(&device_list_mutex);
return NULL;
}
static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
{
struct nvme_rdma_device *dev;
struct ib_device *ibdev;
if (!test_and_clear_bit(NVME_RDMA_Q_TR_READY, &queue->flags))
return;
dev = queue->device;
ibdev = dev->dev;
ib_mr_pool_destroy(queue->qp, &queue->qp->rdma_mrs);
/*
* The cm_id object might have been destroyed during RDMA connection
* establishment error flow to avoid getting other cma events, thus
* the destruction of the QP shouldn't use rdma_cm API.
*/
ib_destroy_qp(queue->qp);
ib_free_cq(queue->ib_cq);
nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
sizeof(struct nvme_completion), DMA_FROM_DEVICE);
nvme_rdma_dev_put(dev);
}
static int nvme_rdma_get_max_fr_pages(struct ib_device *ibdev)
{
return min_t(u32, NVME_RDMA_MAX_SEGMENTS,
ibdev->attrs.max_fast_reg_page_list_len);
}
static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue)
{
struct ib_device *ibdev;
const int send_wr_factor = 3; /* MR, SEND, INV */
const int cq_factor = send_wr_factor + 1; /* + RECV */
int comp_vector, idx = nvme_rdma_queue_idx(queue);
enum ib_poll_context poll_ctx;
int ret;
queue->device = nvme_rdma_find_get_device(queue->cm_id);
if (!queue->device) {
dev_err(queue->cm_id->device->dev.parent,
"no client data found!\n");
return -ECONNREFUSED;
}
ibdev = queue->device->dev;
/*
* Spread I/O queues completion vectors according their queue index.
* Admin queues can always go on completion vector 0.
*/
comp_vector = idx == 0 ? idx : idx - 1;
/* Polling queues need direct cq polling context */
if (nvme_rdma_poll_queue(queue))
poll_ctx = IB_POLL_DIRECT;
else
poll_ctx = IB_POLL_SOFTIRQ;
/* +1 for ib_stop_cq */
queue->ib_cq = ib_alloc_cq(ibdev, queue,
cq_factor * queue->queue_size + 1,
comp_vector, poll_ctx);
if (IS_ERR(queue->ib_cq)) {
ret = PTR_ERR(queue->ib_cq);
goto out_put_dev;
}
ret = nvme_rdma_create_qp(queue, send_wr_factor);
if (ret)
goto out_destroy_ib_cq;
queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
sizeof(struct nvme_completion), DMA_FROM_DEVICE);
if (!queue->rsp_ring) {
ret = -ENOMEM;
goto out_destroy_qp;
}
ret = ib_mr_pool_init(queue->qp, &queue->qp->rdma_mrs,
queue->queue_size,
IB_MR_TYPE_MEM_REG,
nvme_rdma_get_max_fr_pages(ibdev), 0);
if (ret) {
dev_err(queue->ctrl->ctrl.device,
"failed to initialize MR pool sized %d for QID %d\n",
queue->queue_size, idx);
goto out_destroy_ring;
}
set_bit(NVME_RDMA_Q_TR_READY, &queue->flags);
return 0;
out_destroy_ring:
nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
sizeof(struct nvme_completion), DMA_FROM_DEVICE);
out_destroy_qp:
rdma_destroy_qp(queue->cm_id);
out_destroy_ib_cq:
ib_free_cq(queue->ib_cq);
out_put_dev:
nvme_rdma_dev_put(queue->device);
return ret;
}
static int nvme_rdma_alloc_queue(struct nvme_rdma_ctrl *ctrl,
int idx, size_t queue_size)
{
struct nvme_rdma_queue *queue;
struct sockaddr *src_addr = NULL;
int ret;
queue = &ctrl->queues[idx];
queue->ctrl = ctrl;
init_completion(&queue->cm_done);
if (idx > 0)
queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
else
queue->cmnd_capsule_len = sizeof(struct nvme_command);
queue->queue_size = queue_size;
queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
RDMA_PS_TCP, IB_QPT_RC);
if (IS_ERR(queue->cm_id)) {
dev_info(ctrl->ctrl.device,
"failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
return PTR_ERR(queue->cm_id);
}
if (ctrl->ctrl.opts->mask & NVMF_OPT_HOST_TRADDR)
src_addr = (struct sockaddr *)&ctrl->src_addr;
queue->cm_error = -ETIMEDOUT;
ret = rdma_resolve_addr(queue->cm_id, src_addr,
(struct sockaddr *)&ctrl->addr,
NVME_RDMA_CONNECT_TIMEOUT_MS);
if (ret) {
dev_info(ctrl->ctrl.device,
"rdma_resolve_addr failed (%d).\n", ret);
goto out_destroy_cm_id;
}
ret = nvme_rdma_wait_for_cm(queue);
if (ret) {
dev_info(ctrl->ctrl.device,
"rdma connection establishment failed (%d)\n", ret);
goto out_destroy_cm_id;
}
set_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags);
return 0;
out_destroy_cm_id:
rdma_destroy_id(queue->cm_id);
nvme_rdma_destroy_queue_ib(queue);
return ret;
}
static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
{
if (!test_and_clear_bit(NVME_RDMA_Q_LIVE, &queue->flags))
return;
rdma_disconnect(queue->cm_id);
ib_drain_qp(queue->qp);
}
static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
{
if (!test_and_clear_bit(NVME_RDMA_Q_ALLOCATED, &queue->flags))
return;
nvme_rdma_destroy_queue_ib(queue);
rdma_destroy_id(queue->cm_id);
}
static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
{
int i;
for (i = 1; i < ctrl->ctrl.queue_count; i++)
nvme_rdma_free_queue(&ctrl->queues[i]);
}
static void nvme_rdma_stop_io_queues(struct nvme_rdma_ctrl *ctrl)
{
int i;
for (i = 1; i < ctrl->ctrl.queue_count; i++)
nvme_rdma_stop_queue(&ctrl->queues[i]);
}
static int nvme_rdma_start_queue(struct nvme_rdma_ctrl *ctrl, int idx)
{
struct nvme_rdma_queue *queue = &ctrl->queues[idx];
bool poll = nvme_rdma_poll_queue(queue);
int ret;
if (idx)
ret = nvmf_connect_io_queue(&ctrl->ctrl, idx, poll);
else
ret = nvmf_connect_admin_queue(&ctrl->ctrl);
if (!ret)
set_bit(NVME_RDMA_Q_LIVE, &queue->flags);
else
dev_info(ctrl->ctrl.device,
"failed to connect queue: %d ret=%d\n", idx, ret);
return ret;
}
static int nvme_rdma_start_io_queues(struct nvme_rdma_ctrl *ctrl)
{
int i, ret = 0;
for (i = 1; i < ctrl->ctrl.queue_count; i++) {
ret = nvme_rdma_start_queue(ctrl, i);
if (ret)
goto out_stop_queues;
}
return 0;
out_stop_queues:
for (i--; i >= 1; i--)
nvme_rdma_stop_queue(&ctrl->queues[i]);
return ret;
}
static int nvme_rdma_alloc_io_queues(struct nvme_rdma_ctrl *ctrl)
{
struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
struct ib_device *ibdev = ctrl->device->dev;
unsigned int nr_io_queues, nr_default_queues;
unsigned int nr_read_queues, nr_poll_queues;
int i, ret;
nr_read_queues = min_t(unsigned int, ibdev->num_comp_vectors,
min(opts->nr_io_queues, num_online_cpus()));
nr_default_queues = min_t(unsigned int, ibdev->num_comp_vectors,
min(opts->nr_write_queues, num_online_cpus()));
nr_poll_queues = min(opts->nr_poll_queues, num_online_cpus());
nr_io_queues = nr_read_queues + nr_default_queues + nr_poll_queues;
ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
if (ret)
return ret;
ctrl->ctrl.queue_count = nr_io_queues + 1;
if (ctrl->ctrl.queue_count < 2)
return 0;
dev_info(ctrl->ctrl.device,
"creating %d I/O queues.\n", nr_io_queues);
if (opts->nr_write_queues && nr_read_queues < nr_io_queues) {
/*
* separate read/write queues
* hand out dedicated default queues only after we have
* sufficient read queues.
*/
ctrl->io_queues[HCTX_TYPE_READ] = nr_read_queues;
nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
ctrl->io_queues[HCTX_TYPE_DEFAULT] =
min(nr_default_queues, nr_io_queues);
nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
} else {
/*
* shared read/write queues
* either no write queues were requested, or we don't have
* sufficient queue count to have dedicated default queues.
*/
ctrl->io_queues[HCTX_TYPE_DEFAULT] =
min(nr_read_queues, nr_io_queues);
nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
}
if (opts->nr_poll_queues && nr_io_queues) {
/* map dedicated poll queues only if we have queues left */
ctrl->io_queues[HCTX_TYPE_POLL] =
min(nr_poll_queues, nr_io_queues);
}
for (i = 1; i < ctrl->ctrl.queue_count; i++) {
ret = nvme_rdma_alloc_queue(ctrl, i,
ctrl->ctrl.sqsize + 1);
if (ret)
goto out_free_queues;
}
return 0;
out_free_queues:
for (i--; i >= 1; i--)
nvme_rdma_free_queue(&ctrl->queues[i]);
return ret;
}
static struct blk_mq_tag_set *nvme_rdma_alloc_tagset(struct nvme_ctrl *nctrl,
bool admin)
{
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
struct blk_mq_tag_set *set;
int ret;
if (admin) {
set = &ctrl->admin_tag_set;
memset(set, 0, sizeof(*set));
set->ops = &nvme_rdma_admin_mq_ops;
set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
set->reserved_tags = 2; /* connect + keep-alive */
set->numa_node = nctrl->numa_node;
set->cmd_size = sizeof(struct nvme_rdma_request) +
SG_CHUNK_SIZE * sizeof(struct scatterlist);
set->driver_data = ctrl;
set->nr_hw_queues = 1;
set->timeout = ADMIN_TIMEOUT;
set->flags = BLK_MQ_F_NO_SCHED;
} else {
set = &ctrl->tag_set;
memset(set, 0, sizeof(*set));
set->ops = &nvme_rdma_mq_ops;
set->queue_depth = nctrl->sqsize + 1;
set->reserved_tags = 1; /* fabric connect */
set->numa_node = nctrl->numa_node;
set->flags = BLK_MQ_F_SHOULD_MERGE;
set->cmd_size = sizeof(struct nvme_rdma_request) +
SG_CHUNK_SIZE * sizeof(struct scatterlist);
set->driver_data = ctrl;
set->nr_hw_queues = nctrl->queue_count - 1;
set->timeout = NVME_IO_TIMEOUT;
set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
}
ret = blk_mq_alloc_tag_set(set);
if (ret)
return ERR_PTR(ret);
return set;
}
static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl,
bool remove)
{
if (remove) {
blk_cleanup_queue(ctrl->ctrl.admin_q);
blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
}
if (ctrl->async_event_sqe.data) {
nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
sizeof(struct nvme_command), DMA_TO_DEVICE);
ctrl->async_event_sqe.data = NULL;
}
nvme_rdma_free_queue(&ctrl->queues[0]);
}
static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl,
bool new)
{
int error;
error = nvme_rdma_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
if (error)
return error;
ctrl->device = ctrl->queues[0].device;
ctrl->ctrl.numa_node = dev_to_node(ctrl->device->dev->dma_device);
ctrl->max_fr_pages = nvme_rdma_get_max_fr_pages(ctrl->device->dev);
/*
* Bind the async event SQE DMA mapping to the admin queue lifetime.
* It's safe, since any chage in the underlying RDMA device will issue
* error recovery and queue re-creation.
*/
error = nvme_rdma_alloc_qe(ctrl->device->dev, &ctrl->async_event_sqe,
sizeof(struct nvme_command), DMA_TO_DEVICE);
if (error)
goto out_free_queue;
if (new) {
ctrl->ctrl.admin_tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, true);
if (IS_ERR(ctrl->ctrl.admin_tagset)) {
error = PTR_ERR(ctrl->ctrl.admin_tagset);
goto out_free_async_qe;
}
ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
if (IS_ERR(ctrl->ctrl.admin_q)) {
error = PTR_ERR(ctrl->ctrl.admin_q);
goto out_free_tagset;
}
}
error = nvme_rdma_start_queue(ctrl, 0);
if (error)
goto out_cleanup_queue;
error = ctrl->ctrl.ops->reg_read64(&ctrl->ctrl, NVME_REG_CAP,
&ctrl->ctrl.cap);
if (error) {
dev_err(ctrl->ctrl.device,
"prop_get NVME_REG_CAP failed\n");
goto out_stop_queue;
}
ctrl->ctrl.sqsize =
min_t(int, NVME_CAP_MQES(ctrl->ctrl.cap), ctrl->ctrl.sqsize);
error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
if (error)
goto out_stop_queue;
ctrl->ctrl.max_hw_sectors =
(ctrl->max_fr_pages - 1) << (ilog2(SZ_4K) - 9);
error = nvme_init_identify(&ctrl->ctrl);
if (error)
goto out_stop_queue;
return 0;
out_stop_queue:
nvme_rdma_stop_queue(&ctrl->queues[0]);
out_cleanup_queue:
if (new)
blk_cleanup_queue(ctrl->ctrl.admin_q);
out_free_tagset:
if (new)
blk_mq_free_tag_set(ctrl->ctrl.admin_tagset);
out_free_async_qe:
nvme_rdma_free_qe(ctrl->device->dev, &ctrl->async_event_sqe,
sizeof(struct nvme_command), DMA_TO_DEVICE);
ctrl->async_event_sqe.data = NULL;
out_free_queue:
nvme_rdma_free_queue(&ctrl->queues[0]);
return error;
}
static void nvme_rdma_destroy_io_queues(struct nvme_rdma_ctrl *ctrl,
bool remove)
{
if (remove) {
blk_cleanup_queue(ctrl->ctrl.connect_q);
blk_mq_free_tag_set(ctrl->ctrl.tagset);
}
nvme_rdma_free_io_queues(ctrl);
}
static int nvme_rdma_configure_io_queues(struct nvme_rdma_ctrl *ctrl, bool new)
{
int ret;
ret = nvme_rdma_alloc_io_queues(ctrl);
if (ret)
return ret;
if (new) {
ctrl->ctrl.tagset = nvme_rdma_alloc_tagset(&ctrl->ctrl, false);
if (IS_ERR(ctrl->ctrl.tagset)) {
ret = PTR_ERR(ctrl->ctrl.tagset);
goto out_free_io_queues;
}
ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
if (IS_ERR(ctrl->ctrl.connect_q)) {
ret = PTR_ERR(ctrl->ctrl.connect_q);
goto out_free_tag_set;
}
} else {
blk_mq_update_nr_hw_queues(&ctrl->tag_set,
ctrl->ctrl.queue_count - 1);
}
ret = nvme_rdma_start_io_queues(ctrl);
if (ret)
goto out_cleanup_connect_q;
return 0;
out_cleanup_connect_q:
if (new)
blk_cleanup_queue(ctrl->ctrl.connect_q);
out_free_tag_set:
if (new)
blk_mq_free_tag_set(ctrl->ctrl.tagset);
out_free_io_queues:
nvme_rdma_free_io_queues(ctrl);
return ret;
}
static void nvme_rdma_teardown_admin_queue(struct nvme_rdma_ctrl *ctrl,
bool remove)
{
blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
nvme_rdma_stop_queue(&ctrl->queues[0]);
if (ctrl->ctrl.admin_tagset)
blk_mq_tagset_busy_iter(ctrl->ctrl.admin_tagset,
nvme_cancel_request, &ctrl->ctrl);
blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
nvme_rdma_destroy_admin_queue(ctrl, remove);
}
static void nvme_rdma_teardown_io_queues(struct nvme_rdma_ctrl *ctrl,
bool remove)
{
if (ctrl->ctrl.queue_count > 1) {
nvme_stop_queues(&ctrl->ctrl);
nvme_rdma_stop_io_queues(ctrl);
if (ctrl->ctrl.tagset)
blk_mq_tagset_busy_iter(ctrl->ctrl.tagset,
nvme_cancel_request, &ctrl->ctrl);
if (remove)
nvme_start_queues(&ctrl->ctrl);
nvme_rdma_destroy_io_queues(ctrl, remove);
}
}
static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
{
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
if (list_empty(&ctrl->list))
goto free_ctrl;
mutex_lock(&nvme_rdma_ctrl_mutex);
list_del(&ctrl->list);
mutex_unlock(&nvme_rdma_ctrl_mutex);
nvmf_free_options(nctrl->opts);
free_ctrl:
kfree(ctrl->queues);
kfree(ctrl);
}
static void nvme_rdma_reconnect_or_remove(struct nvme_rdma_ctrl *ctrl)
{
/* If we are resetting/deleting then do nothing */
if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
WARN_ON_ONCE(ctrl->ctrl.state == NVME_CTRL_NEW ||
ctrl->ctrl.state == NVME_CTRL_LIVE);
return;
}
if (nvmf_should_reconnect(&ctrl->ctrl)) {
dev_info(ctrl->ctrl.device, "Reconnecting in %d seconds...\n",
ctrl->ctrl.opts->reconnect_delay);
queue_delayed_work(nvme_wq, &ctrl->reconnect_work,
ctrl->ctrl.opts->reconnect_delay * HZ);
} else {
nvme_delete_ctrl(&ctrl->ctrl);
}
}
static int nvme_rdma_setup_ctrl(struct nvme_rdma_ctrl *ctrl, bool new)
{
int ret = -EINVAL;
bool changed;
ret = nvme_rdma_configure_admin_queue(ctrl, new);
if (ret)
return ret;
if (ctrl->ctrl.icdoff) {
dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
goto destroy_admin;
}
if (!(ctrl->ctrl.sgls & (1 << 2))) {
dev_err(ctrl->ctrl.device,
"Mandatory keyed sgls are not supported!\n");
goto destroy_admin;
}
if (ctrl->ctrl.opts->queue_size > ctrl->ctrl.sqsize + 1) {
dev_warn(ctrl->ctrl.device,
"queue_size %zu > ctrl sqsize %u, clamping down\n",
ctrl->ctrl.opts->queue_size, ctrl->ctrl.sqsize + 1);
}
if (ctrl->ctrl.sqsize + 1 > ctrl->ctrl.maxcmd) {
dev_warn(ctrl->ctrl.device,
"sqsize %u > ctrl maxcmd %u, clamping down\n",
ctrl->ctrl.sqsize + 1, ctrl->ctrl.maxcmd);
ctrl->ctrl.sqsize = ctrl->ctrl.maxcmd - 1;
}
if (ctrl->ctrl.sgls & (1 << 20))
ctrl->use_inline_data = true;
if (ctrl->ctrl.queue_count > 1) {
ret = nvme_rdma_configure_io_queues(ctrl, new);
if (ret)
goto destroy_admin;
}
changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
if (!changed) {
/* state change failure is ok if we're in DELETING state */
WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
ret = -EINVAL;
goto destroy_io;
}
nvme_start_ctrl(&ctrl->ctrl);
return 0;
destroy_io:
if (ctrl->ctrl.queue_count > 1)
nvme_rdma_destroy_io_queues(ctrl, new);
destroy_admin:
nvme_rdma_stop_queue(&ctrl->queues[0]);
nvme_rdma_destroy_admin_queue(ctrl, new);
return ret;
}
static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
{
struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
struct nvme_rdma_ctrl, reconnect_work);
++ctrl->ctrl.nr_reconnects;
if (nvme_rdma_setup_ctrl(ctrl, false))
goto requeue;
dev_info(ctrl->ctrl.device, "Successfully reconnected (%d attempts)\n",
ctrl->ctrl.nr_reconnects);
ctrl->ctrl.nr_reconnects = 0;
return;
requeue:
dev_info(ctrl->ctrl.device, "Failed reconnect attempt %d\n",
ctrl->ctrl.nr_reconnects);
nvme_rdma_reconnect_or_remove(ctrl);
}
static void nvme_rdma_error_recovery_work(struct work_struct *work)
{
struct nvme_rdma_ctrl *ctrl = container_of(work,
struct nvme_rdma_ctrl, err_work);
nvme_stop_keep_alive(&ctrl->ctrl);
nvme_rdma_teardown_io_queues(ctrl, false);
nvme_start_queues(&ctrl->ctrl);
nvme_rdma_teardown_admin_queue(ctrl, false);
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
/* state change failure is ok if we're in DELETING state */
WARN_ON_ONCE(ctrl->ctrl.state != NVME_CTRL_DELETING);
return;
}
nvme_rdma_reconnect_or_remove(ctrl);
}
static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
{
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
return;
queue_work(nvme_wq, &ctrl->err_work);
}
static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
const char *op)
{
struct nvme_rdma_queue *queue = cq->cq_context;
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
if (ctrl->ctrl.state == NVME_CTRL_LIVE)
dev_info(ctrl->ctrl.device,
"%s for CQE 0x%p failed with status %s (%d)\n",
op, wc->wr_cqe,
ib_wc_status_msg(wc->status), wc->status);
nvme_rdma_error_recovery(ctrl);
}
static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
{
if (unlikely(wc->status != IB_WC_SUCCESS))
nvme_rdma_wr_error(cq, wc, "MEMREG");
}
static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct nvme_rdma_request *req =
container_of(wc->wr_cqe, struct nvme_rdma_request, reg_cqe);
struct request *rq = blk_mq_rq_from_pdu(req);
if (unlikely(wc->status != IB_WC_SUCCESS)) {
nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
return;
}
if (refcount_dec_and_test(&req->ref))
nvme_end_request(rq, req->status, req->result);
}
static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
struct nvme_rdma_request *req)
{
struct ib_send_wr wr = {
.opcode = IB_WR_LOCAL_INV,
.next = NULL,
.num_sge = 0,
.send_flags = IB_SEND_SIGNALED,
.ex.invalidate_rkey = req->mr->rkey,
};
req->reg_cqe.done = nvme_rdma_inv_rkey_done;
wr.wr_cqe = &req->reg_cqe;
return ib_post_send(queue->qp, &wr, NULL);
}
static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
struct request *rq)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_device *dev = queue->device;
struct ib_device *ibdev = dev->dev;
if (!blk_rq_nr_phys_segments(rq))
return;
if (req->mr) {
ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
req->mr = NULL;
}
ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
req->nents, rq_data_dir(rq) ==
WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
nvme_cleanup_cmd(rq);
sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE);
}
static int nvme_rdma_set_sg_null(struct nvme_command *c)
{
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
sg->addr = 0;
put_unaligned_le24(0, sg->length);
put_unaligned_le32(0, sg->key);
sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
return 0;
}
static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
struct nvme_rdma_request *req, struct nvme_command *c,
int count)
{
struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
struct scatterlist *sgl = req->sg_table.sgl;
struct ib_sge *sge = &req->sge[1];
u32 len = 0;
int i;
for (i = 0; i < count; i++, sgl++, sge++) {
sge->addr = sg_dma_address(sgl);
sge->length = sg_dma_len(sgl);
sge->lkey = queue->device->pd->local_dma_lkey;
len += sge->length;
}
sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
sg->length = cpu_to_le32(len);
sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
req->num_sge += count;
return 0;
}
static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
struct nvme_rdma_request *req, struct nvme_command *c)
{
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
return 0;
}
static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
struct nvme_rdma_request *req, struct nvme_command *c,
int count)
{
struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
int nr;
req->mr = ib_mr_pool_get(queue->qp, &queue->qp->rdma_mrs);
if (WARN_ON_ONCE(!req->mr))
return -EAGAIN;
/*
* Align the MR to a 4K page size to match the ctrl page size and
* the block virtual boundary.
*/
nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, SZ_4K);
if (unlikely(nr < count)) {
ib_mr_pool_put(queue->qp, &queue->qp->rdma_mrs, req->mr);
req->mr = NULL;
if (nr < 0)
return nr;
return -EINVAL;
}
ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
req->reg_cqe.done = nvme_rdma_memreg_done;
memset(&req->reg_wr, 0, sizeof(req->reg_wr));
req->reg_wr.wr.opcode = IB_WR_REG_MR;
req->reg_wr.wr.wr_cqe = &req->reg_cqe;
req->reg_wr.wr.num_sge = 0;
req->reg_wr.mr = req->mr;
req->reg_wr.key = req->mr->rkey;
req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_READ |
IB_ACCESS_REMOTE_WRITE;
sg->addr = cpu_to_le64(req->mr->iova);
put_unaligned_le24(req->mr->length, sg->length);
put_unaligned_le32(req->mr->rkey, sg->key);
sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
NVME_SGL_FMT_INVALIDATE;
return 0;
}
static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
struct request *rq, struct nvme_command *c)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_device *dev = queue->device;
struct ib_device *ibdev = dev->dev;
int count, ret;
req->num_sge = 1;
refcount_set(&req->ref, 2); /* send and recv completions */
c->common.flags |= NVME_CMD_SGL_METABUF;
if (!blk_rq_nr_phys_segments(rq))
return nvme_rdma_set_sg_null(c);
req->sg_table.sgl = req->first_sgl;
ret = sg_alloc_table_chained(&req->sg_table,
blk_rq_nr_phys_segments(rq), req->sg_table.sgl,
SG_CHUNK_SIZE);
if (ret)
return -ENOMEM;
req->nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
count = ib_dma_map_sg(ibdev, req->sg_table.sgl, req->nents,
rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
if (unlikely(count <= 0)) {
ret = -EIO;
goto out_free_table;
}
if (count <= dev->num_inline_segments) {
if (rq_data_dir(rq) == WRITE && nvme_rdma_queue_idx(queue) &&
queue->ctrl->use_inline_data &&
blk_rq_payload_bytes(rq) <=
nvme_rdma_inline_data_size(queue)) {
ret = nvme_rdma_map_sg_inline(queue, req, c, count);
goto out;
}
if (count == 1 && dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY) {
ret = nvme_rdma_map_sg_single(queue, req, c);
goto out;
}
}
ret = nvme_rdma_map_sg_fr(queue, req, c, count);
out:
if (unlikely(ret))
goto out_unmap_sg;
return 0;
out_unmap_sg:
ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
req->nents, rq_data_dir(rq) ==
WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
out_free_table:
sg_free_table_chained(&req->sg_table, SG_CHUNK_SIZE);
return ret;
}
static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct nvme_rdma_qe *qe =
container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
struct nvme_rdma_request *req =
container_of(qe, struct nvme_rdma_request, sqe);
struct request *rq = blk_mq_rq_from_pdu(req);
if (unlikely(wc->status != IB_WC_SUCCESS)) {
nvme_rdma_wr_error(cq, wc, "SEND");
return;
}
if (refcount_dec_and_test(&req->ref))
nvme_end_request(rq, req->status, req->result);
}
static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
struct ib_send_wr *first)
{
struct ib_send_wr wr;
int ret;
sge->addr = qe->dma;
sge->length = sizeof(struct nvme_command),
sge->lkey = queue->device->pd->local_dma_lkey;
wr.next = NULL;
wr.wr_cqe = &qe->cqe;
wr.sg_list = sge;
wr.num_sge = num_sge;
wr.opcode = IB_WR_SEND;
wr.send_flags = IB_SEND_SIGNALED;
if (first)
first->next = &wr;
else
first = &wr;
ret = ib_post_send(queue->qp, first, NULL);
if (unlikely(ret)) {
dev_err(queue->ctrl->ctrl.device,
"%s failed with error code %d\n", __func__, ret);
}
return ret;
}
static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
struct nvme_rdma_qe *qe)
{
struct ib_recv_wr wr;
struct ib_sge list;
int ret;
list.addr = qe->dma;
list.length = sizeof(struct nvme_completion);
list.lkey = queue->device->pd->local_dma_lkey;
qe->cqe.done = nvme_rdma_recv_done;
wr.next = NULL;
wr.wr_cqe = &qe->cqe;
wr.sg_list = &list;
wr.num_sge = 1;
ret = ib_post_recv(queue->qp, &wr, NULL);
if (unlikely(ret)) {
dev_err(queue->ctrl->ctrl.device,
"%s failed with error code %d\n", __func__, ret);
}
return ret;
}
static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
{
u32 queue_idx = nvme_rdma_queue_idx(queue);
if (queue_idx == 0)
return queue->ctrl->admin_tag_set.tags[queue_idx];
return queue->ctrl->tag_set.tags[queue_idx - 1];
}
static void nvme_rdma_async_done(struct ib_cq *cq, struct ib_wc *wc)
{
if (unlikely(wc->status != IB_WC_SUCCESS))
nvme_rdma_wr_error(cq, wc, "ASYNC");
}
static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg)
{
struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
struct nvme_rdma_queue *queue = &ctrl->queues[0];
struct ib_device *dev = queue->device->dev;
struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
struct nvme_command *cmd = sqe->data;
struct ib_sge sge;
int ret;
ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
memset(cmd, 0, sizeof(*cmd));
cmd->common.opcode = nvme_admin_async_event;
cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
cmd->common.flags |= NVME_CMD_SGL_METABUF;
nvme_rdma_set_sg_null(cmd);
sqe->cqe.done = nvme_rdma_async_done;
ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
DMA_TO_DEVICE);
ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL);
WARN_ON_ONCE(ret);
}
static void nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
struct nvme_completion *cqe, struct ib_wc *wc)
{
struct request *rq;
struct nvme_rdma_request *req;
rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
if (!rq) {
dev_err(queue->ctrl->ctrl.device,
"tag 0x%x on QP %#x not found\n",
cqe->command_id, queue->qp->qp_num);
nvme_rdma_error_recovery(queue->ctrl);
return;
}
req = blk_mq_rq_to_pdu(rq);
req->status = cqe->status;
req->result = cqe->result;
if (wc->wc_flags & IB_WC_WITH_INVALIDATE) {
if (unlikely(wc->ex.invalidate_rkey != req->mr->rkey)) {
dev_err(queue->ctrl->ctrl.device,
"Bogus remote invalidation for rkey %#x\n",
req->mr->rkey);
nvme_rdma_error_recovery(queue->ctrl);
}
} else if (req->mr) {
int ret;
ret = nvme_rdma_inv_rkey(queue, req);
if (unlikely(ret < 0)) {
dev_err(queue->ctrl->ctrl.device,
"Queueing INV WR for rkey %#x failed (%d)\n",
req->mr->rkey, ret);
nvme_rdma_error_recovery(queue->ctrl);
}
/* the local invalidation completion will end the request */
return;
}
if (refcount_dec_and_test(&req->ref))
nvme_end_request(rq, req->status, req->result);
}
static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
{
struct nvme_rdma_qe *qe =
container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
struct nvme_rdma_queue *queue = cq->cq_context;
struct ib_device *ibdev = queue->device->dev;
struct nvme_completion *cqe = qe->data;
const size_t len = sizeof(struct nvme_completion);
if (unlikely(wc->status != IB_WC_SUCCESS)) {
nvme_rdma_wr_error(cq, wc, "RECV");
return;
}
ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
/*
* AEN requests are special as they don't time out and can
* survive any kind of queue freeze and often don't respond to
* aborts. We don't even bother to allocate a struct request
* for them but rather special case them here.
*/
if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
cqe->command_id >= NVME_AQ_BLK_MQ_DEPTH))
nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
&cqe->result);
else
nvme_rdma_process_nvme_rsp(queue, cqe, wc);
ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
nvme_rdma_post_recv(queue, qe);
}
static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
{
int ret, i;
for (i = 0; i < queue->queue_size; i++) {
ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
if (ret)
goto out_destroy_queue_ib;
}
return 0;
out_destroy_queue_ib:
nvme_rdma_destroy_queue_ib(queue);
return ret;
}
static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
struct rdma_cm_event *ev)
{
struct rdma_cm_id *cm_id = queue->cm_id;
int status = ev->status;
const char *rej_msg;
const struct nvme_rdma_cm_rej *rej_data;
u8 rej_data_len;
rej_msg = rdma_reject_msg(cm_id, status);
rej_data = rdma_consumer_reject_data(cm_id, ev, &rej_data_len);
if (rej_data && rej_data_len >= sizeof(u16)) {
u16 sts = le16_to_cpu(rej_data->sts);
dev_err(queue->ctrl->ctrl.device,
"Connect rejected: status %d (%s) nvme status %d (%s).\n",
status, rej_msg, sts, nvme_rdma_cm_msg(sts));
} else {
dev_err(queue->ctrl->ctrl.device,
"Connect rejected: status %d (%s).\n", status, rej_msg);
}
return -ECONNRESET;
}
static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
{
int ret;
ret = nvme_rdma_create_queue_ib(queue);
if (ret)
return ret;
ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
if (ret) {
dev_err(queue->ctrl->ctrl.device,
"rdma_resolve_route failed (%d).\n",
queue->cm_error);
goto out_destroy_queue;
}
return 0;
out_destroy_queue:
nvme_rdma_destroy_queue_ib(queue);
return ret;
}
static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
{
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
struct rdma_conn_param param = { };
struct nvme_rdma_cm_req priv = { };
int ret;
param.qp_num = queue->qp->qp_num;
param.flow_control = 1;
param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
/* maximum retry count */
param.retry_count = 7;
param.rnr_retry_count = 7;
param.private_data = &priv;
param.private_data_len = sizeof(priv);
priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
/*
* set the admin queue depth to the minimum size
* specified by the Fabrics standard.
*/
if (priv.qid == 0) {
priv.hrqsize = cpu_to_le16(NVME_AQ_DEPTH);
priv.hsqsize = cpu_to_le16(NVME_AQ_DEPTH - 1);
} else {
/*
* current interpretation of the fabrics spec
* is at minimum you make hrqsize sqsize+1, or a
* 1's based representation of sqsize.
*/
priv.hrqsize = cpu_to_le16(queue->queue_size);
priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
}
ret = rdma_connect(queue->cm_id, &param);
if (ret) {
dev_err(ctrl->ctrl.device,
"rdma_connect failed (%d).\n", ret);
goto out_destroy_queue_ib;
}
return 0;
out_destroy_queue_ib:
nvme_rdma_destroy_queue_ib(queue);
return ret;
}
static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
struct rdma_cm_event *ev)
{
struct nvme_rdma_queue *queue = cm_id->context;
int cm_error = 0;
dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
rdma_event_msg(ev->event), ev->event,
ev->status, cm_id);
switch (ev->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
cm_error = nvme_rdma_addr_resolved(queue);
break;
case RDMA_CM_EVENT_ROUTE_RESOLVED:
cm_error = nvme_rdma_route_resolved(queue);
break;
case RDMA_CM_EVENT_ESTABLISHED:
queue->cm_error = nvme_rdma_conn_established(queue);
/* complete cm_done regardless of success/failure */
complete(&queue->cm_done);
return 0;
case RDMA_CM_EVENT_REJECTED:
nvme_rdma_destroy_queue_ib(queue);
cm_error = nvme_rdma_conn_rejected(queue, ev);
break;
case RDMA_CM_EVENT_ROUTE_ERROR:
case RDMA_CM_EVENT_CONNECT_ERROR:
case RDMA_CM_EVENT_UNREACHABLE:
nvme_rdma_destroy_queue_ib(queue);
/* fall through */
case RDMA_CM_EVENT_ADDR_ERROR:
dev_dbg(queue->ctrl->ctrl.device,
"CM error event %d\n", ev->event);
cm_error = -ECONNRESET;
break;
case RDMA_CM_EVENT_DISCONNECTED:
case RDMA_CM_EVENT_ADDR_CHANGE:
case RDMA_CM_EVENT_TIMEWAIT_EXIT:
dev_dbg(queue->ctrl->ctrl.device,
"disconnect received - connection closed\n");
nvme_rdma_error_recovery(queue->ctrl);
break;
case RDMA_CM_EVENT_DEVICE_REMOVAL:
/* device removal is handled via the ib_client API */
break;
default:
dev_err(queue->ctrl->ctrl.device,
"Unexpected RDMA CM event (%d)\n", ev->event);
nvme_rdma_error_recovery(queue->ctrl);
break;
}
if (cm_error) {
queue->cm_error = cm_error;
complete(&queue->cm_done);
}
return 0;
}
static enum blk_eh_timer_return
nvme_rdma_timeout(struct request *rq, bool reserved)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_queue *queue = req->queue;
struct nvme_rdma_ctrl *ctrl = queue->ctrl;
dev_warn(ctrl->ctrl.device, "I/O %d QID %d timeout\n",
rq->tag, nvme_rdma_queue_idx(queue));
if (ctrl->ctrl.state != NVME_CTRL_LIVE) {
/*
* Teardown immediately if controller times out while starting
* or we are already started error recovery. all outstanding
* requests are completed on shutdown, so we return BLK_EH_DONE.
*/
flush_work(&ctrl->err_work);
nvme_rdma_teardown_io_queues(ctrl, false);
nvme_rdma_teardown_admin_queue(ctrl, false);
return BLK_EH_DONE;
}
dev_warn(ctrl->ctrl.device, "starting error recovery\n");
nvme_rdma_error_recovery(ctrl);
return BLK_EH_RESET_TIMER;
}
static blk_status_t nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
const struct blk_mq_queue_data *bd)
{
struct nvme_ns *ns = hctx->queue->queuedata;
struct nvme_rdma_queue *queue = hctx->driver_data;
struct request *rq = bd->rq;
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_qe *sqe = &req->sqe;
struct nvme_command *c = sqe->data;
struct ib_device *dev;
bool queue_ready = test_bit(NVME_RDMA_Q_LIVE, &queue->flags);
blk_status_t ret;
int err;
WARN_ON_ONCE(rq->tag < 0);
if (!nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
dev = queue->device->dev;
req->sqe.dma = ib_dma_map_single(dev, req->sqe.data,
sizeof(struct nvme_command),
DMA_TO_DEVICE);
err = ib_dma_mapping_error(dev, req->sqe.dma);
if (unlikely(err))
return BLK_STS_RESOURCE;
ib_dma_sync_single_for_cpu(dev, sqe->dma,
sizeof(struct nvme_command), DMA_TO_DEVICE);
ret = nvme_setup_cmd(ns, rq, c);
if (ret)
goto unmap_qe;
blk_mq_start_request(rq);
err = nvme_rdma_map_data(queue, rq, c);
if (unlikely(err < 0)) {
dev_err(queue->ctrl->ctrl.device,
"Failed to map data (%d)\n", err);
nvme_cleanup_cmd(rq);
goto err;
}
sqe->cqe.done = nvme_rdma_send_done;
ib_dma_sync_single_for_device(dev, sqe->dma,
sizeof(struct nvme_command), DMA_TO_DEVICE);
err = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
req->mr ? &req->reg_wr.wr : NULL);
if (unlikely(err)) {
nvme_rdma_unmap_data(queue, rq);
goto err;
}
return BLK_STS_OK;
err:
if (err == -ENOMEM || err == -EAGAIN)
ret = BLK_STS_RESOURCE;
else
ret = BLK_STS_IOERR;
unmap_qe:
ib_dma_unmap_single(dev, req->sqe.dma, sizeof(struct nvme_command),
DMA_TO_DEVICE);
return ret;
}
static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx)
{
struct nvme_rdma_queue *queue = hctx->driver_data;
return ib_process_cq_direct(queue->ib_cq, -1);
}
static void nvme_rdma_complete_rq(struct request *rq)
{
struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
struct nvme_rdma_queue *queue = req->queue;
struct ib_device *ibdev = queue->device->dev;
nvme_rdma_unmap_data(queue, rq);
ib_dma_unmap_single(ibdev, req->sqe.dma, sizeof(struct nvme_command),
DMA_TO_DEVICE);
nvme_complete_rq(rq);
}
static int nvme_rdma_map_queues(struct blk_mq_tag_set *set)
{
struct nvme_rdma_ctrl *ctrl = set->driver_data;
struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
/* separate read/write queues */
set->map[HCTX_TYPE_DEFAULT].nr_queues =
ctrl->io_queues[HCTX_TYPE_DEFAULT];
set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
set->map[HCTX_TYPE_READ].nr_queues =
ctrl->io_queues[HCTX_TYPE_READ];
set->map[HCTX_TYPE_READ].queue_offset =
ctrl->io_queues[HCTX_TYPE_DEFAULT];
} else {
/* shared read/write queues */
set->map[HCTX_TYPE_DEFAULT].nr_queues =
ctrl->io_queues[HCTX_TYPE_DEFAULT];
set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
set->map[HCTX_TYPE_READ].nr_queues =
ctrl->io_queues[HCTX_TYPE_DEFAULT];
set->map[HCTX_TYPE_READ].queue_offset = 0;
}
blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_DEFAULT],
ctrl->device->dev, 0);
blk_mq_rdma_map_queues(&set->map[HCTX_TYPE_READ],
ctrl->device->dev, 0);
if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
/* map dedicated poll queues only if we have queues left */
set->map[HCTX_TYPE_POLL].nr_queues =
ctrl->io_queues[HCTX_TYPE_POLL];
set->map[HCTX_TYPE_POLL].queue_offset =
ctrl->io_queues[HCTX_TYPE_DEFAULT] +
ctrl->io_queues[HCTX_TYPE_READ];
blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
}
dev_info(ctrl->ctrl.device,
"mapped %d/%d/%d default/read/poll queues.\n",
ctrl->io_queues[HCTX_TYPE_DEFAULT],
ctrl->io_queues[HCTX_TYPE_READ],
ctrl->io_queues[HCTX_TYPE_POLL]);
return 0;
}
static const struct blk_mq_ops nvme_rdma_mq_ops = {
.queue_rq = nvme_rdma_queue_rq,
.complete = nvme_rdma_complete_rq,
.init_request = nvme_rdma_init_request,
.exit_request = nvme_rdma_exit_request,
.init_hctx = nvme_rdma_init_hctx,
.timeout = nvme_rdma_timeout,
.map_queues = nvme_rdma_map_queues,
.poll = nvme_rdma_poll,
};
static const struct blk_mq_ops nvme_rdma_admin_mq_ops = {
.queue_rq = nvme_rdma_queue_rq,
.complete = nvme_rdma_complete_rq,
.init_request = nvme_rdma_init_request,
.exit_request = nvme_rdma_exit_request,
.init_hctx = nvme_rdma_init_admin_hctx,
.timeout = nvme_rdma_timeout,
};
static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
{
cancel_work_sync(&ctrl->err_work);
cancel_delayed_work_sync(&ctrl->reconnect_work);
nvme_rdma_teardown_io_queues(ctrl, shutdown);
if (shutdown)
nvme_shutdown_ctrl(&ctrl->ctrl);
else
nvme_disable_ctrl(&ctrl->ctrl, ctrl->ctrl.cap);
nvme_rdma_teardown_admin_queue(ctrl, shutdown);
}
static void nvme_rdma_delete_ctrl(struct nvme_ctrl *ctrl)
{
nvme_rdma_shutdown_ctrl(to_rdma_ctrl(ctrl), true);
}
static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
{
struct nvme_rdma_ctrl *ctrl =
container_of(work, struct nvme_rdma_ctrl, ctrl.reset_work);
nvme_stop_ctrl(&ctrl->ctrl);
nvme_rdma_shutdown_ctrl(ctrl, false);
if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
/* state change failure should never happen */
WARN_ON_ONCE(1);
return;
}
if (nvme_rdma_setup_ctrl(ctrl, false))
goto out_fail;
return;
out_fail:
++ctrl->ctrl.nr_reconnects;
nvme_rdma_reconnect_or_remove(ctrl);
}
static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
.name = "rdma",
.module = THIS_MODULE,
.flags = NVME_F_FABRICS,
.reg_read32 = nvmf_reg_read32,
.reg_read64 = nvmf_reg_read64,
.reg_write32 = nvmf_reg_write32,
.free_ctrl = nvme_rdma_free_ctrl,
.submit_async_event = nvme_rdma_submit_async_event,
.delete_ctrl = nvme_rdma_delete_ctrl,
.get_address = nvmf_get_address,
};
/*
* Fails a connection request if it matches an existing controller
* (association) with the same tuple:
* <Host NQN, Host ID, local address, remote address, remote port, SUBSYS NQN>
*
* if local address is not specified in the request, it will match an
* existing controller with all the other parameters the same and no
* local port address specified as well.
*
* The ports don't need to be compared as they are intrinsically
* already matched by the port pointers supplied.
*/
static bool
nvme_rdma_existing_controller(struct nvmf_ctrl_options *opts)
{
struct nvme_rdma_ctrl *ctrl;
bool found = false;
mutex_lock(&nvme_rdma_ctrl_mutex);
list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
found = nvmf_ip_options_match(&ctrl->ctrl, opts);
if (found)
break;
}
mutex_unlock(&nvme_rdma_ctrl_mutex);
return found;
}
static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
struct nvmf_ctrl_options *opts)
{
struct nvme_rdma_ctrl *ctrl;
int ret;
bool changed;
ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
if (!ctrl)
return ERR_PTR(-ENOMEM);
ctrl->ctrl.opts = opts;
INIT_LIST_HEAD(&ctrl->list);
if (!(opts->mask & NVMF_OPT_TRSVCID)) {
opts->trsvcid =
kstrdup(__stringify(NVME_RDMA_IP_PORT), GFP_KERNEL);
if (!opts->trsvcid) {
ret = -ENOMEM;
goto out_free_ctrl;
}
opts->mask |= NVMF_OPT_TRSVCID;
}
ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
opts->traddr, opts->trsvcid, &ctrl->addr);
if (ret) {
pr_err("malformed address passed: %s:%s\n",
opts->traddr, opts->trsvcid);
goto out_free_ctrl;
}
if (opts->mask & NVMF_OPT_HOST_TRADDR) {
ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
opts->host_traddr, NULL, &ctrl->src_addr);
if (ret) {
pr_err("malformed src address passed: %s\n",
opts->host_traddr);
goto out_free_ctrl;
}
}
if (!opts->duplicate_connect && nvme_rdma_existing_controller(opts)) {
ret = -EALREADY;
goto out_free_ctrl;
}
INIT_DELAYED_WORK(&ctrl->reconnect_work,
nvme_rdma_reconnect_ctrl_work);
INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
INIT_WORK(&ctrl->ctrl.reset_work, nvme_rdma_reset_ctrl_work);
ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
opts->nr_poll_queues + 1;
ctrl->ctrl.sqsize = opts->queue_size - 1;
ctrl->ctrl.kato = opts->kato;
ret = -ENOMEM;
ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
GFP_KERNEL);
if (!ctrl->queues)
goto out_free_ctrl;
ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
0 /* no quirks, we're perfect! */);
if (ret)
goto out_kfree_queues;
changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING);
WARN_ON_ONCE(!changed);
ret = nvme_rdma_setup_ctrl(ctrl, true);
if (ret)
goto out_uninit_ctrl;
dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISpcs\n",
ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
nvme_get_ctrl(&ctrl->ctrl);
mutex_lock(&nvme_rdma_ctrl_mutex);
list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
mutex_unlock(&nvme_rdma_ctrl_mutex);
return &ctrl->ctrl;
out_uninit_ctrl:
nvme_uninit_ctrl(&ctrl->ctrl);
nvme_put_ctrl(&ctrl->ctrl);
if (ret > 0)
ret = -EIO;
return ERR_PTR(ret);
out_kfree_queues:
kfree(ctrl->queues);
out_free_ctrl:
kfree(ctrl);
return ERR_PTR(ret);
}
static struct nvmf_transport_ops nvme_rdma_transport = {
.name = "rdma",
.module = THIS_MODULE,
.required_opts = NVMF_OPT_TRADDR,
.allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES,
.create_ctrl = nvme_rdma_create_ctrl,
};
static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
{
struct nvme_rdma_ctrl *ctrl;
struct nvme_rdma_device *ndev;
bool found = false;
mutex_lock(&device_list_mutex);
list_for_each_entry(ndev, &device_list, entry) {
if (ndev->dev == ib_device) {
found = true;
break;
}
}
mutex_unlock(&device_list_mutex);
if (!found)
return;
/* Delete all controllers using this device */
mutex_lock(&nvme_rdma_ctrl_mutex);
list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
if (ctrl->device->dev != ib_device)
continue;
nvme_delete_ctrl(&ctrl->ctrl);
}
mutex_unlock(&nvme_rdma_ctrl_mutex);
flush_workqueue(nvme_delete_wq);
}
static struct ib_client nvme_rdma_ib_client = {
.name = "nvme_rdma",
.remove = nvme_rdma_remove_one
};
static int __init nvme_rdma_init_module(void)
{
int ret;
ret = ib_register_client(&nvme_rdma_ib_client);
if (ret)
return ret;
ret = nvmf_register_transport(&nvme_rdma_transport);
if (ret)
goto err_unreg_client;
return 0;
err_unreg_client:
ib_unregister_client(&nvme_rdma_ib_client);
return ret;
}
static void __exit nvme_rdma_cleanup_module(void)
{
nvmf_unregister_transport(&nvme_rdma_transport);
ib_unregister_client(&nvme_rdma_ib_client);
}
module_init(nvme_rdma_init_module);
module_exit(nvme_rdma_cleanup_module);
MODULE_LICENSE("GPL v2");