| #include <linux/module.h> |
| #include <linux/reboot.h> |
| #include <linux/init.h> |
| #include <linux/pm.h> |
| #include <linux/efi.h> |
| #include <linux/dmi.h> |
| #include <acpi/reboot.h> |
| #include <asm/io.h> |
| #include <asm/apic.h> |
| #include <asm/desc.h> |
| #include <asm/hpet.h> |
| #include <asm/pgtable.h> |
| #include <asm/proto.h> |
| #include <asm/reboot_fixups.h> |
| #include <asm/reboot.h> |
| #include <asm/pci_x86.h> |
| #include <asm/virtext.h> |
| #include <asm/cpu.h> |
| |
| #ifdef CONFIG_X86_32 |
| # include <linux/ctype.h> |
| # include <linux/mc146818rtc.h> |
| #else |
| # include <asm/iommu.h> |
| #endif |
| |
| /* |
| * Power off function, if any |
| */ |
| void (*pm_power_off)(void); |
| EXPORT_SYMBOL(pm_power_off); |
| |
| static const struct desc_ptr no_idt = {}; |
| static int reboot_mode; |
| enum reboot_type reboot_type = BOOT_KBD; |
| int reboot_force; |
| |
| #if defined(CONFIG_X86_32) && defined(CONFIG_SMP) |
| static int reboot_cpu = -1; |
| #endif |
| |
| /* This is set if we need to go through the 'emergency' path. |
| * When machine_emergency_restart() is called, we may be on |
| * an inconsistent state and won't be able to do a clean cleanup |
| */ |
| static int reboot_emergency; |
| |
| /* This is set by the PCI code if either type 1 or type 2 PCI is detected */ |
| bool port_cf9_safe = false; |
| |
| /* reboot=b[ios] | s[mp] | t[riple] | k[bd] | e[fi] [, [w]arm | [c]old] | p[ci] |
| warm Don't set the cold reboot flag |
| cold Set the cold reboot flag |
| bios Reboot by jumping through the BIOS (only for X86_32) |
| smp Reboot by executing reset on BSP or other CPU (only for X86_32) |
| triple Force a triple fault (init) |
| kbd Use the keyboard controller. cold reset (default) |
| acpi Use the RESET_REG in the FADT |
| efi Use efi reset_system runtime service |
| pci Use the so-called "PCI reset register", CF9 |
| force Avoid anything that could hang. |
| */ |
| static int __init reboot_setup(char *str) |
| { |
| for (;;) { |
| switch (*str) { |
| case 'w': |
| reboot_mode = 0x1234; |
| break; |
| |
| case 'c': |
| reboot_mode = 0; |
| break; |
| |
| #ifdef CONFIG_X86_32 |
| #ifdef CONFIG_SMP |
| case 's': |
| if (isdigit(*(str+1))) { |
| reboot_cpu = (int) (*(str+1) - '0'); |
| if (isdigit(*(str+2))) |
| reboot_cpu = reboot_cpu*10 + (int)(*(str+2) - '0'); |
| } |
| /* we will leave sorting out the final value |
| when we are ready to reboot, since we might not |
| have set up boot_cpu_id or smp_num_cpu */ |
| break; |
| #endif /* CONFIG_SMP */ |
| |
| case 'b': |
| #endif |
| case 'a': |
| case 'k': |
| case 't': |
| case 'e': |
| case 'p': |
| reboot_type = *str; |
| break; |
| |
| case 'f': |
| reboot_force = 1; |
| break; |
| } |
| |
| str = strchr(str, ','); |
| if (str) |
| str++; |
| else |
| break; |
| } |
| return 1; |
| } |
| |
| __setup("reboot=", reboot_setup); |
| |
| |
| #ifdef CONFIG_X86_32 |
| /* |
| * Reboot options and system auto-detection code provided by |
| * Dell Inc. so their systems "just work". :-) |
| */ |
| |
| /* |
| * Some machines require the "reboot=b" commandline option, |
| * this quirk makes that automatic. |
| */ |
| static int __init set_bios_reboot(const struct dmi_system_id *d) |
| { |
| if (reboot_type != BOOT_BIOS) { |
| reboot_type = BOOT_BIOS; |
| printk(KERN_INFO "%s series board detected. Selecting BIOS-method for reboots.\n", d->ident); |
| } |
| return 0; |
| } |
| |
| static struct dmi_system_id __initdata reboot_dmi_table[] = { |
| { /* Handle problems with rebooting on Dell E520's */ |
| .callback = set_bios_reboot, |
| .ident = "Dell E520", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), |
| DMI_MATCH(DMI_PRODUCT_NAME, "Dell DM061"), |
| }, |
| }, |
| { /* Handle problems with rebooting on Dell 1300's */ |
| .callback = set_bios_reboot, |
| .ident = "Dell PowerEdge 1300", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Dell Computer Corporation"), |
| DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 1300/"), |
| }, |
| }, |
| { /* Handle problems with rebooting on Dell 300's */ |
| .callback = set_bios_reboot, |
| .ident = "Dell PowerEdge 300", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Dell Computer Corporation"), |
| DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 300/"), |
| }, |
| }, |
| { /* Handle problems with rebooting on Dell Optiplex 745's SFF*/ |
| .callback = set_bios_reboot, |
| .ident = "Dell OptiPlex 745", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), |
| DMI_MATCH(DMI_PRODUCT_NAME, "OptiPlex 745"), |
| }, |
| }, |
| { /* Handle problems with rebooting on Dell Optiplex 745's DFF*/ |
| .callback = set_bios_reboot, |
| .ident = "Dell OptiPlex 745", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), |
| DMI_MATCH(DMI_PRODUCT_NAME, "OptiPlex 745"), |
| DMI_MATCH(DMI_BOARD_NAME, "0MM599"), |
| }, |
| }, |
| { /* Handle problems with rebooting on Dell Optiplex 745 with 0KW626 */ |
| .callback = set_bios_reboot, |
| .ident = "Dell OptiPlex 745", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), |
| DMI_MATCH(DMI_PRODUCT_NAME, "OptiPlex 745"), |
| DMI_MATCH(DMI_BOARD_NAME, "0KW626"), |
| }, |
| }, |
| { /* Handle problems with rebooting on Dell Optiplex 330 with 0KP561 */ |
| .callback = set_bios_reboot, |
| .ident = "Dell OptiPlex 330", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), |
| DMI_MATCH(DMI_PRODUCT_NAME, "OptiPlex 330"), |
| DMI_MATCH(DMI_BOARD_NAME, "0KP561"), |
| }, |
| }, |
| { /* Handle problems with rebooting on Dell Optiplex 360 with 0T656F */ |
| .callback = set_bios_reboot, |
| .ident = "Dell OptiPlex 360", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), |
| DMI_MATCH(DMI_PRODUCT_NAME, "OptiPlex 360"), |
| DMI_MATCH(DMI_BOARD_NAME, "0T656F"), |
| }, |
| }, |
| { /* Handle problems with rebooting on Dell 2400's */ |
| .callback = set_bios_reboot, |
| .ident = "Dell PowerEdge 2400", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Dell Computer Corporation"), |
| DMI_MATCH(DMI_PRODUCT_NAME, "PowerEdge 2400"), |
| }, |
| }, |
| { /* Handle problems with rebooting on Dell T5400's */ |
| .callback = set_bios_reboot, |
| .ident = "Dell Precision T5400", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), |
| DMI_MATCH(DMI_PRODUCT_NAME, "Precision WorkStation T5400"), |
| }, |
| }, |
| { /* Handle problems with rebooting on HP laptops */ |
| .callback = set_bios_reboot, |
| .ident = "HP Compaq Laptop", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"), |
| DMI_MATCH(DMI_PRODUCT_NAME, "HP Compaq"), |
| }, |
| }, |
| { /* Handle problems with rebooting on Dell XPS710 */ |
| .callback = set_bios_reboot, |
| .ident = "Dell XPS710", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), |
| DMI_MATCH(DMI_PRODUCT_NAME, "Dell XPS710"), |
| }, |
| }, |
| { /* Handle problems with rebooting on Dell DXP061 */ |
| .callback = set_bios_reboot, |
| .ident = "Dell DXP061", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Dell Inc."), |
| DMI_MATCH(DMI_PRODUCT_NAME, "Dell DXP061"), |
| }, |
| }, |
| { /* Handle problems with rebooting on Sony VGN-Z540N */ |
| .callback = set_bios_reboot, |
| .ident = "Sony VGN-Z540N", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Sony Corporation"), |
| DMI_MATCH(DMI_PRODUCT_NAME, "VGN-Z540N"), |
| }, |
| }, |
| { /* Handle problems with rebooting on CompuLab SBC-FITPC2 */ |
| .callback = set_bios_reboot, |
| .ident = "CompuLab SBC-FITPC2", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "CompuLab"), |
| DMI_MATCH(DMI_PRODUCT_NAME, "SBC-FITPC2"), |
| }, |
| }, |
| { } |
| }; |
| |
| static int __init reboot_init(void) |
| { |
| dmi_check_system(reboot_dmi_table); |
| return 0; |
| } |
| core_initcall(reboot_init); |
| |
| /* The following code and data reboots the machine by switching to real |
| mode and jumping to the BIOS reset entry point, as if the CPU has |
| really been reset. The previous version asked the keyboard |
| controller to pulse the CPU reset line, which is more thorough, but |
| doesn't work with at least one type of 486 motherboard. It is easy |
| to stop this code working; hence the copious comments. */ |
| static const unsigned long long |
| real_mode_gdt_entries [3] = |
| { |
| 0x0000000000000000ULL, /* Null descriptor */ |
| 0x00009b000000ffffULL, /* 16-bit real-mode 64k code at 0x00000000 */ |
| 0x000093000100ffffULL /* 16-bit real-mode 64k data at 0x00000100 */ |
| }; |
| |
| static const struct desc_ptr |
| real_mode_gdt = { sizeof (real_mode_gdt_entries) - 1, (long)real_mode_gdt_entries }, |
| real_mode_idt = { 0x3ff, 0 }; |
| |
| /* This is 16-bit protected mode code to disable paging and the cache, |
| switch to real mode and jump to the BIOS reset code. |
| |
| The instruction that switches to real mode by writing to CR0 must be |
| followed immediately by a far jump instruction, which set CS to a |
| valid value for real mode, and flushes the prefetch queue to avoid |
| running instructions that have already been decoded in protected |
| mode. |
| |
| Clears all the flags except ET, especially PG (paging), PE |
| (protected-mode enable) and TS (task switch for coprocessor state |
| save). Flushes the TLB after paging has been disabled. Sets CD and |
| NW, to disable the cache on a 486, and invalidates the cache. This |
| is more like the state of a 486 after reset. I don't know if |
| something else should be done for other chips. |
| |
| More could be done here to set up the registers as if a CPU reset had |
| occurred; hopefully real BIOSs don't assume much. */ |
| static const unsigned char real_mode_switch [] = |
| { |
| 0x66, 0x0f, 0x20, 0xc0, /* movl %cr0,%eax */ |
| 0x66, 0x83, 0xe0, 0x11, /* andl $0x00000011,%eax */ |
| 0x66, 0x0d, 0x00, 0x00, 0x00, 0x60, /* orl $0x60000000,%eax */ |
| 0x66, 0x0f, 0x22, 0xc0, /* movl %eax,%cr0 */ |
| 0x66, 0x0f, 0x22, 0xd8, /* movl %eax,%cr3 */ |
| 0x66, 0x0f, 0x20, 0xc3, /* movl %cr0,%ebx */ |
| 0x66, 0x81, 0xe3, 0x00, 0x00, 0x00, 0x60, /* andl $0x60000000,%ebx */ |
| 0x74, 0x02, /* jz f */ |
| 0x0f, 0x09, /* wbinvd */ |
| 0x24, 0x10, /* f: andb $0x10,al */ |
| 0x66, 0x0f, 0x22, 0xc0 /* movl %eax,%cr0 */ |
| }; |
| static const unsigned char jump_to_bios [] = |
| { |
| 0xea, 0x00, 0x00, 0xff, 0xff /* ljmp $0xffff,$0x0000 */ |
| }; |
| |
| /* |
| * Switch to real mode and then execute the code |
| * specified by the code and length parameters. |
| * We assume that length will aways be less that 100! |
| */ |
| void machine_real_restart(const unsigned char *code, int length) |
| { |
| local_irq_disable(); |
| |
| /* Write zero to CMOS register number 0x0f, which the BIOS POST |
| routine will recognize as telling it to do a proper reboot. (Well |
| that's what this book in front of me says -- it may only apply to |
| the Phoenix BIOS though, it's not clear). At the same time, |
| disable NMIs by setting the top bit in the CMOS address register, |
| as we're about to do peculiar things to the CPU. I'm not sure if |
| `outb_p' is needed instead of just `outb'. Use it to be on the |
| safe side. (Yes, CMOS_WRITE does outb_p's. - Paul G.) |
| */ |
| spin_lock(&rtc_lock); |
| CMOS_WRITE(0x00, 0x8f); |
| spin_unlock(&rtc_lock); |
| |
| /* Remap the kernel at virtual address zero, as well as offset zero |
| from the kernel segment. This assumes the kernel segment starts at |
| virtual address PAGE_OFFSET. */ |
| memcpy(swapper_pg_dir, swapper_pg_dir + KERNEL_PGD_BOUNDARY, |
| sizeof(swapper_pg_dir [0]) * KERNEL_PGD_PTRS); |
| |
| /* |
| * Use `swapper_pg_dir' as our page directory. |
| */ |
| load_cr3(swapper_pg_dir); |
| |
| /* Write 0x1234 to absolute memory location 0x472. The BIOS reads |
| this on booting to tell it to "Bypass memory test (also warm |
| boot)". This seems like a fairly standard thing that gets set by |
| REBOOT.COM programs, and the previous reset routine did this |
| too. */ |
| *((unsigned short *)0x472) = reboot_mode; |
| |
| /* For the switch to real mode, copy some code to low memory. It has |
| to be in the first 64k because it is running in 16-bit mode, and it |
| has to have the same physical and virtual address, because it turns |
| off paging. Copy it near the end of the first page, out of the way |
| of BIOS variables. */ |
| memcpy((void *)(0x1000 - sizeof(real_mode_switch) - 100), |
| real_mode_switch, sizeof (real_mode_switch)); |
| memcpy((void *)(0x1000 - 100), code, length); |
| |
| /* Set up the IDT for real mode. */ |
| load_idt(&real_mode_idt); |
| |
| /* Set up a GDT from which we can load segment descriptors for real |
| mode. The GDT is not used in real mode; it is just needed here to |
| prepare the descriptors. */ |
| load_gdt(&real_mode_gdt); |
| |
| /* Load the data segment registers, and thus the descriptors ready for |
| real mode. The base address of each segment is 0x100, 16 times the |
| selector value being loaded here. This is so that the segment |
| registers don't have to be reloaded after switching to real mode: |
| the values are consistent for real mode operation already. */ |
| __asm__ __volatile__ ("movl $0x0010,%%eax\n" |
| "\tmovl %%eax,%%ds\n" |
| "\tmovl %%eax,%%es\n" |
| "\tmovl %%eax,%%fs\n" |
| "\tmovl %%eax,%%gs\n" |
| "\tmovl %%eax,%%ss" : : : "eax"); |
| |
| /* Jump to the 16-bit code that we copied earlier. It disables paging |
| and the cache, switches to real mode, and jumps to the BIOS reset |
| entry point. */ |
| __asm__ __volatile__ ("ljmp $0x0008,%0" |
| : |
| : "i" ((void *)(0x1000 - sizeof (real_mode_switch) - 100))); |
| } |
| #ifdef CONFIG_APM_MODULE |
| EXPORT_SYMBOL(machine_real_restart); |
| #endif |
| |
| #endif /* CONFIG_X86_32 */ |
| |
| /* |
| * Apple MacBook5,2 (2009 MacBook) needs reboot=p |
| */ |
| static int __init set_pci_reboot(const struct dmi_system_id *d) |
| { |
| if (reboot_type != BOOT_CF9) { |
| reboot_type = BOOT_CF9; |
| printk(KERN_INFO "%s series board detected. " |
| "Selecting PCI-method for reboots.\n", d->ident); |
| } |
| return 0; |
| } |
| |
| static struct dmi_system_id __initdata pci_reboot_dmi_table[] = { |
| { /* Handle problems with rebooting on Apple MacBook5,2 */ |
| .callback = set_pci_reboot, |
| .ident = "Apple MacBook", |
| .matches = { |
| DMI_MATCH(DMI_SYS_VENDOR, "Apple Inc."), |
| DMI_MATCH(DMI_PRODUCT_NAME, "MacBook5,2"), |
| }, |
| }, |
| { } |
| }; |
| |
| static int __init pci_reboot_init(void) |
| { |
| dmi_check_system(pci_reboot_dmi_table); |
| return 0; |
| } |
| core_initcall(pci_reboot_init); |
| |
| static inline void kb_wait(void) |
| { |
| int i; |
| |
| for (i = 0; i < 0x10000; i++) { |
| if ((inb(0x64) & 0x02) == 0) |
| break; |
| udelay(2); |
| } |
| } |
| |
| static void vmxoff_nmi(int cpu, struct die_args *args) |
| { |
| cpu_emergency_vmxoff(); |
| } |
| |
| /* Use NMIs as IPIs to tell all CPUs to disable virtualization |
| */ |
| static void emergency_vmx_disable_all(void) |
| { |
| /* Just make sure we won't change CPUs while doing this */ |
| local_irq_disable(); |
| |
| /* We need to disable VMX on all CPUs before rebooting, otherwise |
| * we risk hanging up the machine, because the CPU ignore INIT |
| * signals when VMX is enabled. |
| * |
| * We can't take any locks and we may be on an inconsistent |
| * state, so we use NMIs as IPIs to tell the other CPUs to disable |
| * VMX and halt. |
| * |
| * For safety, we will avoid running the nmi_shootdown_cpus() |
| * stuff unnecessarily, but we don't have a way to check |
| * if other CPUs have VMX enabled. So we will call it only if the |
| * CPU we are running on has VMX enabled. |
| * |
| * We will miss cases where VMX is not enabled on all CPUs. This |
| * shouldn't do much harm because KVM always enable VMX on all |
| * CPUs anyway. But we can miss it on the small window where KVM |
| * is still enabling VMX. |
| */ |
| if (cpu_has_vmx() && cpu_vmx_enabled()) { |
| /* Disable VMX on this CPU. |
| */ |
| cpu_vmxoff(); |
| |
| /* Halt and disable VMX on the other CPUs */ |
| nmi_shootdown_cpus(vmxoff_nmi); |
| |
| } |
| } |
| |
| |
| void __attribute__((weak)) mach_reboot_fixups(void) |
| { |
| } |
| |
| static void native_machine_emergency_restart(void) |
| { |
| int i; |
| |
| if (reboot_emergency) |
| emergency_vmx_disable_all(); |
| |
| /* Tell the BIOS if we want cold or warm reboot */ |
| *((unsigned short *)__va(0x472)) = reboot_mode; |
| |
| for (;;) { |
| /* Could also try the reset bit in the Hammer NB */ |
| switch (reboot_type) { |
| case BOOT_KBD: |
| mach_reboot_fixups(); /* for board specific fixups */ |
| |
| for (i = 0; i < 10; i++) { |
| kb_wait(); |
| udelay(50); |
| outb(0xfe, 0x64); /* pulse reset low */ |
| udelay(50); |
| } |
| |
| case BOOT_TRIPLE: |
| load_idt(&no_idt); |
| __asm__ __volatile__("int3"); |
| |
| reboot_type = BOOT_KBD; |
| break; |
| |
| #ifdef CONFIG_X86_32 |
| case BOOT_BIOS: |
| machine_real_restart(jump_to_bios, sizeof(jump_to_bios)); |
| |
| reboot_type = BOOT_KBD; |
| break; |
| #endif |
| |
| case BOOT_ACPI: |
| acpi_reboot(); |
| reboot_type = BOOT_KBD; |
| break; |
| |
| case BOOT_EFI: |
| if (efi_enabled) |
| efi.reset_system(reboot_mode ? |
| EFI_RESET_WARM : |
| EFI_RESET_COLD, |
| EFI_SUCCESS, 0, NULL); |
| reboot_type = BOOT_KBD; |
| break; |
| |
| case BOOT_CF9: |
| port_cf9_safe = true; |
| /* fall through */ |
| |
| case BOOT_CF9_COND: |
| if (port_cf9_safe) { |
| u8 cf9 = inb(0xcf9) & ~6; |
| outb(cf9|2, 0xcf9); /* Request hard reset */ |
| udelay(50); |
| outb(cf9|6, 0xcf9); /* Actually do the reset */ |
| udelay(50); |
| } |
| reboot_type = BOOT_KBD; |
| break; |
| } |
| } |
| } |
| |
| void native_machine_shutdown(void) |
| { |
| /* Stop the cpus and apics */ |
| #ifdef CONFIG_SMP |
| |
| /* The boot cpu is always logical cpu 0 */ |
| int reboot_cpu_id = 0; |
| |
| #ifdef CONFIG_X86_32 |
| /* See if there has been given a command line override */ |
| if ((reboot_cpu != -1) && (reboot_cpu < nr_cpu_ids) && |
| cpu_online(reboot_cpu)) |
| reboot_cpu_id = reboot_cpu; |
| #endif |
| |
| /* Make certain the cpu I'm about to reboot on is online */ |
| if (!cpu_online(reboot_cpu_id)) |
| reboot_cpu_id = smp_processor_id(); |
| |
| /* Make certain I only run on the appropriate processor */ |
| set_cpus_allowed_ptr(current, cpumask_of(reboot_cpu_id)); |
| |
| /* O.K Now that I'm on the appropriate processor, |
| * stop all of the others. |
| */ |
| smp_send_stop(); |
| #endif |
| |
| lapic_shutdown(); |
| |
| #ifdef CONFIG_X86_IO_APIC |
| disable_IO_APIC(); |
| #endif |
| |
| #ifdef CONFIG_HPET_TIMER |
| hpet_disable(); |
| #endif |
| |
| #ifdef CONFIG_X86_64 |
| pci_iommu_shutdown(); |
| #endif |
| } |
| |
| static void __machine_emergency_restart(int emergency) |
| { |
| reboot_emergency = emergency; |
| machine_ops.emergency_restart(); |
| } |
| |
| static void native_machine_restart(char *__unused) |
| { |
| printk("machine restart\n"); |
| |
| if (!reboot_force) |
| machine_shutdown(); |
| __machine_emergency_restart(0); |
| } |
| |
| static void native_machine_halt(void) |
| { |
| /* stop other cpus and apics */ |
| machine_shutdown(); |
| |
| /* stop this cpu */ |
| stop_this_cpu(NULL); |
| } |
| |
| static void native_machine_power_off(void) |
| { |
| if (pm_power_off) { |
| if (!reboot_force) |
| machine_shutdown(); |
| pm_power_off(); |
| } |
| } |
| |
| struct machine_ops machine_ops = { |
| .power_off = native_machine_power_off, |
| .shutdown = native_machine_shutdown, |
| .emergency_restart = native_machine_emergency_restart, |
| .restart = native_machine_restart, |
| .halt = native_machine_halt, |
| #ifdef CONFIG_KEXEC |
| .crash_shutdown = native_machine_crash_shutdown, |
| #endif |
| }; |
| |
| void machine_power_off(void) |
| { |
| machine_ops.power_off(); |
| } |
| |
| void machine_shutdown(void) |
| { |
| machine_ops.shutdown(); |
| } |
| |
| void machine_emergency_restart(void) |
| { |
| __machine_emergency_restart(1); |
| } |
| |
| void machine_restart(char *cmd) |
| { |
| machine_ops.restart(cmd); |
| } |
| |
| void machine_halt(void) |
| { |
| machine_ops.halt(); |
| } |
| |
| #ifdef CONFIG_KEXEC |
| void machine_crash_shutdown(struct pt_regs *regs) |
| { |
| machine_ops.crash_shutdown(regs); |
| } |
| #endif |
| |
| |
| #if defined(CONFIG_SMP) |
| |
| /* This keeps a track of which one is crashing cpu. */ |
| static int crashing_cpu; |
| static nmi_shootdown_cb shootdown_callback; |
| |
| static atomic_t waiting_for_crash_ipi; |
| |
| static int crash_nmi_callback(struct notifier_block *self, |
| unsigned long val, void *data) |
| { |
| int cpu; |
| |
| if (val != DIE_NMI_IPI) |
| return NOTIFY_OK; |
| |
| cpu = raw_smp_processor_id(); |
| |
| /* Don't do anything if this handler is invoked on crashing cpu. |
| * Otherwise, system will completely hang. Crashing cpu can get |
| * an NMI if system was initially booted with nmi_watchdog parameter. |
| */ |
| if (cpu == crashing_cpu) |
| return NOTIFY_STOP; |
| local_irq_disable(); |
| |
| shootdown_callback(cpu, (struct die_args *)data); |
| |
| atomic_dec(&waiting_for_crash_ipi); |
| /* Assume hlt works */ |
| halt(); |
| for (;;) |
| cpu_relax(); |
| |
| return 1; |
| } |
| |
| static void smp_send_nmi_allbutself(void) |
| { |
| apic->send_IPI_allbutself(NMI_VECTOR); |
| } |
| |
| static struct notifier_block crash_nmi_nb = { |
| .notifier_call = crash_nmi_callback, |
| }; |
| |
| /* Halt all other CPUs, calling the specified function on each of them |
| * |
| * This function can be used to halt all other CPUs on crash |
| * or emergency reboot time. The function passed as parameter |
| * will be called inside a NMI handler on all CPUs. |
| */ |
| void nmi_shootdown_cpus(nmi_shootdown_cb callback) |
| { |
| unsigned long msecs; |
| local_irq_disable(); |
| |
| /* Make a note of crashing cpu. Will be used in NMI callback.*/ |
| crashing_cpu = safe_smp_processor_id(); |
| |
| shootdown_callback = callback; |
| |
| atomic_set(&waiting_for_crash_ipi, num_online_cpus() - 1); |
| /* Would it be better to replace the trap vector here? */ |
| if (register_die_notifier(&crash_nmi_nb)) |
| return; /* return what? */ |
| /* Ensure the new callback function is set before sending |
| * out the NMI |
| */ |
| wmb(); |
| |
| smp_send_nmi_allbutself(); |
| |
| msecs = 1000; /* Wait at most a second for the other cpus to stop */ |
| while ((atomic_read(&waiting_for_crash_ipi) > 0) && msecs) { |
| mdelay(1); |
| msecs--; |
| } |
| |
| /* Leave the nmi callback set */ |
| } |
| #else /* !CONFIG_SMP */ |
| void nmi_shootdown_cpus(nmi_shootdown_cb callback) |
| { |
| /* No other CPUs to shoot down */ |
| } |
| #endif |