| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Ingenic JZ4780 DMA controller |
| * |
| * Copyright (c) 2015 Imagination Technologies |
| * Author: Alex Smith <alex@alex-smith.me.uk> |
| */ |
| |
| #include <linux/clk.h> |
| #include <linux/dmapool.h> |
| #include <linux/init.h> |
| #include <linux/interrupt.h> |
| #include <linux/module.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/of_dma.h> |
| #include <linux/platform_device.h> |
| #include <linux/slab.h> |
| |
| #include "dmaengine.h" |
| #include "virt-dma.h" |
| |
| /* Global registers. */ |
| #define JZ_DMA_REG_DMAC 0x00 |
| #define JZ_DMA_REG_DIRQP 0x04 |
| #define JZ_DMA_REG_DDR 0x08 |
| #define JZ_DMA_REG_DDRS 0x0c |
| #define JZ_DMA_REG_DCKE 0x10 |
| #define JZ_DMA_REG_DCKES 0x14 |
| #define JZ_DMA_REG_DCKEC 0x18 |
| #define JZ_DMA_REG_DMACP 0x1c |
| #define JZ_DMA_REG_DSIRQP 0x20 |
| #define JZ_DMA_REG_DSIRQM 0x24 |
| #define JZ_DMA_REG_DCIRQP 0x28 |
| #define JZ_DMA_REG_DCIRQM 0x2c |
| |
| /* Per-channel registers. */ |
| #define JZ_DMA_REG_CHAN(n) (n * 0x20) |
| #define JZ_DMA_REG_DSA 0x00 |
| #define JZ_DMA_REG_DTA 0x04 |
| #define JZ_DMA_REG_DTC 0x08 |
| #define JZ_DMA_REG_DRT 0x0c |
| #define JZ_DMA_REG_DCS 0x10 |
| #define JZ_DMA_REG_DCM 0x14 |
| #define JZ_DMA_REG_DDA 0x18 |
| #define JZ_DMA_REG_DSD 0x1c |
| |
| #define JZ_DMA_DMAC_DMAE BIT(0) |
| #define JZ_DMA_DMAC_AR BIT(2) |
| #define JZ_DMA_DMAC_HLT BIT(3) |
| #define JZ_DMA_DMAC_FAIC BIT(27) |
| #define JZ_DMA_DMAC_FMSC BIT(31) |
| |
| #define JZ_DMA_DRT_AUTO 0x8 |
| |
| #define JZ_DMA_DCS_CTE BIT(0) |
| #define JZ_DMA_DCS_HLT BIT(2) |
| #define JZ_DMA_DCS_TT BIT(3) |
| #define JZ_DMA_DCS_AR BIT(4) |
| #define JZ_DMA_DCS_DES8 BIT(30) |
| |
| #define JZ_DMA_DCM_LINK BIT(0) |
| #define JZ_DMA_DCM_TIE BIT(1) |
| #define JZ_DMA_DCM_STDE BIT(2) |
| #define JZ_DMA_DCM_TSZ_SHIFT 8 |
| #define JZ_DMA_DCM_TSZ_MASK (0x7 << JZ_DMA_DCM_TSZ_SHIFT) |
| #define JZ_DMA_DCM_DP_SHIFT 12 |
| #define JZ_DMA_DCM_SP_SHIFT 14 |
| #define JZ_DMA_DCM_DAI BIT(22) |
| #define JZ_DMA_DCM_SAI BIT(23) |
| |
| #define JZ_DMA_SIZE_4_BYTE 0x0 |
| #define JZ_DMA_SIZE_1_BYTE 0x1 |
| #define JZ_DMA_SIZE_2_BYTE 0x2 |
| #define JZ_DMA_SIZE_16_BYTE 0x3 |
| #define JZ_DMA_SIZE_32_BYTE 0x4 |
| #define JZ_DMA_SIZE_64_BYTE 0x5 |
| #define JZ_DMA_SIZE_128_BYTE 0x6 |
| |
| #define JZ_DMA_WIDTH_32_BIT 0x0 |
| #define JZ_DMA_WIDTH_8_BIT 0x1 |
| #define JZ_DMA_WIDTH_16_BIT 0x2 |
| |
| #define JZ_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ |
| BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)) |
| |
| #define JZ4780_DMA_CTRL_OFFSET 0x1000 |
| |
| /* macros for use with jz4780_dma_soc_data.flags */ |
| #define JZ_SOC_DATA_ALLOW_LEGACY_DT BIT(0) |
| #define JZ_SOC_DATA_PROGRAMMABLE_DMA BIT(1) |
| #define JZ_SOC_DATA_PER_CHAN_PM BIT(2) |
| #define JZ_SOC_DATA_NO_DCKES_DCKEC BIT(3) |
| |
| /** |
| * struct jz4780_dma_hwdesc - descriptor structure read by the DMA controller. |
| * @dcm: value for the DCM (channel command) register |
| * @dsa: source address |
| * @dta: target address |
| * @dtc: transfer count (number of blocks of the transfer size specified in DCM |
| * to transfer) in the low 24 bits, offset of the next descriptor from the |
| * descriptor base address in the upper 8 bits. |
| */ |
| struct jz4780_dma_hwdesc { |
| uint32_t dcm; |
| uint32_t dsa; |
| uint32_t dta; |
| uint32_t dtc; |
| }; |
| |
| /* Size of allocations for hardware descriptor blocks. */ |
| #define JZ_DMA_DESC_BLOCK_SIZE PAGE_SIZE |
| #define JZ_DMA_MAX_DESC \ |
| (JZ_DMA_DESC_BLOCK_SIZE / sizeof(struct jz4780_dma_hwdesc)) |
| |
| struct jz4780_dma_desc { |
| struct virt_dma_desc vdesc; |
| |
| struct jz4780_dma_hwdesc *desc; |
| dma_addr_t desc_phys; |
| unsigned int count; |
| enum dma_transaction_type type; |
| uint32_t status; |
| }; |
| |
| struct jz4780_dma_chan { |
| struct virt_dma_chan vchan; |
| unsigned int id; |
| struct dma_pool *desc_pool; |
| |
| uint32_t transfer_type; |
| uint32_t transfer_shift; |
| struct dma_slave_config config; |
| |
| struct jz4780_dma_desc *desc; |
| unsigned int curr_hwdesc; |
| }; |
| |
| struct jz4780_dma_soc_data { |
| unsigned int nb_channels; |
| unsigned int transfer_ord_max; |
| unsigned long flags; |
| }; |
| |
| struct jz4780_dma_dev { |
| struct dma_device dma_device; |
| void __iomem *chn_base; |
| void __iomem *ctrl_base; |
| struct clk *clk; |
| unsigned int irq; |
| const struct jz4780_dma_soc_data *soc_data; |
| |
| uint32_t chan_reserved; |
| struct jz4780_dma_chan chan[]; |
| }; |
| |
| struct jz4780_dma_filter_data { |
| struct device_node *of_node; |
| uint32_t transfer_type; |
| int channel; |
| }; |
| |
| static inline struct jz4780_dma_chan *to_jz4780_dma_chan(struct dma_chan *chan) |
| { |
| return container_of(chan, struct jz4780_dma_chan, vchan.chan); |
| } |
| |
| static inline struct jz4780_dma_desc *to_jz4780_dma_desc( |
| struct virt_dma_desc *vdesc) |
| { |
| return container_of(vdesc, struct jz4780_dma_desc, vdesc); |
| } |
| |
| static inline struct jz4780_dma_dev *jz4780_dma_chan_parent( |
| struct jz4780_dma_chan *jzchan) |
| { |
| return container_of(jzchan->vchan.chan.device, struct jz4780_dma_dev, |
| dma_device); |
| } |
| |
| static inline uint32_t jz4780_dma_chn_readl(struct jz4780_dma_dev *jzdma, |
| unsigned int chn, unsigned int reg) |
| { |
| return readl(jzdma->chn_base + reg + JZ_DMA_REG_CHAN(chn)); |
| } |
| |
| static inline void jz4780_dma_chn_writel(struct jz4780_dma_dev *jzdma, |
| unsigned int chn, unsigned int reg, uint32_t val) |
| { |
| writel(val, jzdma->chn_base + reg + JZ_DMA_REG_CHAN(chn)); |
| } |
| |
| static inline uint32_t jz4780_dma_ctrl_readl(struct jz4780_dma_dev *jzdma, |
| unsigned int reg) |
| { |
| return readl(jzdma->ctrl_base + reg); |
| } |
| |
| static inline void jz4780_dma_ctrl_writel(struct jz4780_dma_dev *jzdma, |
| unsigned int reg, uint32_t val) |
| { |
| writel(val, jzdma->ctrl_base + reg); |
| } |
| |
| static inline void jz4780_dma_chan_enable(struct jz4780_dma_dev *jzdma, |
| unsigned int chn) |
| { |
| if (jzdma->soc_data->flags & JZ_SOC_DATA_PER_CHAN_PM) { |
| unsigned int reg; |
| |
| if (jzdma->soc_data->flags & JZ_SOC_DATA_NO_DCKES_DCKEC) |
| reg = JZ_DMA_REG_DCKE; |
| else |
| reg = JZ_DMA_REG_DCKES; |
| |
| jz4780_dma_ctrl_writel(jzdma, reg, BIT(chn)); |
| } |
| } |
| |
| static inline void jz4780_dma_chan_disable(struct jz4780_dma_dev *jzdma, |
| unsigned int chn) |
| { |
| if ((jzdma->soc_data->flags & JZ_SOC_DATA_PER_CHAN_PM) && |
| !(jzdma->soc_data->flags & JZ_SOC_DATA_NO_DCKES_DCKEC)) |
| jz4780_dma_ctrl_writel(jzdma, JZ_DMA_REG_DCKEC, BIT(chn)); |
| } |
| |
| static struct jz4780_dma_desc *jz4780_dma_desc_alloc( |
| struct jz4780_dma_chan *jzchan, unsigned int count, |
| enum dma_transaction_type type) |
| { |
| struct jz4780_dma_desc *desc; |
| |
| if (count > JZ_DMA_MAX_DESC) |
| return NULL; |
| |
| desc = kzalloc(sizeof(*desc), GFP_NOWAIT); |
| if (!desc) |
| return NULL; |
| |
| desc->desc = dma_pool_alloc(jzchan->desc_pool, GFP_NOWAIT, |
| &desc->desc_phys); |
| if (!desc->desc) { |
| kfree(desc); |
| return NULL; |
| } |
| |
| desc->count = count; |
| desc->type = type; |
| return desc; |
| } |
| |
| static void jz4780_dma_desc_free(struct virt_dma_desc *vdesc) |
| { |
| struct jz4780_dma_desc *desc = to_jz4780_dma_desc(vdesc); |
| struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(vdesc->tx.chan); |
| |
| dma_pool_free(jzchan->desc_pool, desc->desc, desc->desc_phys); |
| kfree(desc); |
| } |
| |
| static uint32_t jz4780_dma_transfer_size(struct jz4780_dma_chan *jzchan, |
| unsigned long val, uint32_t *shift) |
| { |
| struct jz4780_dma_dev *jzdma = jz4780_dma_chan_parent(jzchan); |
| int ord = ffs(val) - 1; |
| |
| /* |
| * 8 byte transfer sizes unsupported so fall back on 4. If it's larger |
| * than the maximum, just limit it. It is perfectly safe to fall back |
| * in this way since we won't exceed the maximum burst size supported |
| * by the device, the only effect is reduced efficiency. This is better |
| * than refusing to perform the request at all. |
| */ |
| if (ord == 3) |
| ord = 2; |
| else if (ord > jzdma->soc_data->transfer_ord_max) |
| ord = jzdma->soc_data->transfer_ord_max; |
| |
| *shift = ord; |
| |
| switch (ord) { |
| case 0: |
| return JZ_DMA_SIZE_1_BYTE; |
| case 1: |
| return JZ_DMA_SIZE_2_BYTE; |
| case 2: |
| return JZ_DMA_SIZE_4_BYTE; |
| case 4: |
| return JZ_DMA_SIZE_16_BYTE; |
| case 5: |
| return JZ_DMA_SIZE_32_BYTE; |
| case 6: |
| return JZ_DMA_SIZE_64_BYTE; |
| default: |
| return JZ_DMA_SIZE_128_BYTE; |
| } |
| } |
| |
| static int jz4780_dma_setup_hwdesc(struct jz4780_dma_chan *jzchan, |
| struct jz4780_dma_hwdesc *desc, dma_addr_t addr, size_t len, |
| enum dma_transfer_direction direction) |
| { |
| struct dma_slave_config *config = &jzchan->config; |
| uint32_t width, maxburst, tsz; |
| |
| if (direction == DMA_MEM_TO_DEV) { |
| desc->dcm = JZ_DMA_DCM_SAI; |
| desc->dsa = addr; |
| desc->dta = config->dst_addr; |
| |
| width = config->dst_addr_width; |
| maxburst = config->dst_maxburst; |
| } else { |
| desc->dcm = JZ_DMA_DCM_DAI; |
| desc->dsa = config->src_addr; |
| desc->dta = addr; |
| |
| width = config->src_addr_width; |
| maxburst = config->src_maxburst; |
| } |
| |
| /* |
| * This calculates the maximum transfer size that can be used with the |
| * given address, length, width and maximum burst size. The address |
| * must be aligned to the transfer size, the total length must be |
| * divisible by the transfer size, and we must not use more than the |
| * maximum burst specified by the user. |
| */ |
| tsz = jz4780_dma_transfer_size(jzchan, addr | len | (width * maxburst), |
| &jzchan->transfer_shift); |
| |
| switch (width) { |
| case DMA_SLAVE_BUSWIDTH_1_BYTE: |
| case DMA_SLAVE_BUSWIDTH_2_BYTES: |
| break; |
| case DMA_SLAVE_BUSWIDTH_4_BYTES: |
| width = JZ_DMA_WIDTH_32_BIT; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| desc->dcm |= tsz << JZ_DMA_DCM_TSZ_SHIFT; |
| desc->dcm |= width << JZ_DMA_DCM_SP_SHIFT; |
| desc->dcm |= width << JZ_DMA_DCM_DP_SHIFT; |
| |
| desc->dtc = len >> jzchan->transfer_shift; |
| return 0; |
| } |
| |
| static struct dma_async_tx_descriptor *jz4780_dma_prep_slave_sg( |
| struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, |
| enum dma_transfer_direction direction, unsigned long flags, |
| void *context) |
| { |
| struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan); |
| struct jz4780_dma_desc *desc; |
| unsigned int i; |
| int err; |
| |
| desc = jz4780_dma_desc_alloc(jzchan, sg_len, DMA_SLAVE); |
| if (!desc) |
| return NULL; |
| |
| for (i = 0; i < sg_len; i++) { |
| err = jz4780_dma_setup_hwdesc(jzchan, &desc->desc[i], |
| sg_dma_address(&sgl[i]), |
| sg_dma_len(&sgl[i]), |
| direction); |
| if (err < 0) { |
| jz4780_dma_desc_free(&jzchan->desc->vdesc); |
| return NULL; |
| } |
| |
| desc->desc[i].dcm |= JZ_DMA_DCM_TIE; |
| |
| if (i != (sg_len - 1)) { |
| /* Automatically proceeed to the next descriptor. */ |
| desc->desc[i].dcm |= JZ_DMA_DCM_LINK; |
| |
| /* |
| * The upper 8 bits of the DTC field in the descriptor |
| * must be set to (offset from descriptor base of next |
| * descriptor >> 4). |
| */ |
| desc->desc[i].dtc |= |
| (((i + 1) * sizeof(*desc->desc)) >> 4) << 24; |
| } |
| } |
| |
| return vchan_tx_prep(&jzchan->vchan, &desc->vdesc, flags); |
| } |
| |
| static struct dma_async_tx_descriptor *jz4780_dma_prep_dma_cyclic( |
| struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len, |
| size_t period_len, enum dma_transfer_direction direction, |
| unsigned long flags) |
| { |
| struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan); |
| struct jz4780_dma_desc *desc; |
| unsigned int periods, i; |
| int err; |
| |
| if (buf_len % period_len) |
| return NULL; |
| |
| periods = buf_len / period_len; |
| |
| desc = jz4780_dma_desc_alloc(jzchan, periods, DMA_CYCLIC); |
| if (!desc) |
| return NULL; |
| |
| for (i = 0; i < periods; i++) { |
| err = jz4780_dma_setup_hwdesc(jzchan, &desc->desc[i], buf_addr, |
| period_len, direction); |
| if (err < 0) { |
| jz4780_dma_desc_free(&jzchan->desc->vdesc); |
| return NULL; |
| } |
| |
| buf_addr += period_len; |
| |
| /* |
| * Set the link bit to indicate that the controller should |
| * automatically proceed to the next descriptor. In |
| * jz4780_dma_begin(), this will be cleared if we need to issue |
| * an interrupt after each period. |
| */ |
| desc->desc[i].dcm |= JZ_DMA_DCM_TIE | JZ_DMA_DCM_LINK; |
| |
| /* |
| * The upper 8 bits of the DTC field in the descriptor must be |
| * set to (offset from descriptor base of next descriptor >> 4). |
| * If this is the last descriptor, link it back to the first, |
| * i.e. leave offset set to 0, otherwise point to the next one. |
| */ |
| if (i != (periods - 1)) { |
| desc->desc[i].dtc |= |
| (((i + 1) * sizeof(*desc->desc)) >> 4) << 24; |
| } |
| } |
| |
| return vchan_tx_prep(&jzchan->vchan, &desc->vdesc, flags); |
| } |
| |
| static struct dma_async_tx_descriptor *jz4780_dma_prep_dma_memcpy( |
| struct dma_chan *chan, dma_addr_t dest, dma_addr_t src, |
| size_t len, unsigned long flags) |
| { |
| struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan); |
| struct jz4780_dma_desc *desc; |
| uint32_t tsz; |
| |
| desc = jz4780_dma_desc_alloc(jzchan, 1, DMA_MEMCPY); |
| if (!desc) |
| return NULL; |
| |
| tsz = jz4780_dma_transfer_size(jzchan, dest | src | len, |
| &jzchan->transfer_shift); |
| |
| jzchan->transfer_type = JZ_DMA_DRT_AUTO; |
| |
| desc->desc[0].dsa = src; |
| desc->desc[0].dta = dest; |
| desc->desc[0].dcm = JZ_DMA_DCM_TIE | JZ_DMA_DCM_SAI | JZ_DMA_DCM_DAI | |
| tsz << JZ_DMA_DCM_TSZ_SHIFT | |
| JZ_DMA_WIDTH_32_BIT << JZ_DMA_DCM_SP_SHIFT | |
| JZ_DMA_WIDTH_32_BIT << JZ_DMA_DCM_DP_SHIFT; |
| desc->desc[0].dtc = len >> jzchan->transfer_shift; |
| |
| return vchan_tx_prep(&jzchan->vchan, &desc->vdesc, flags); |
| } |
| |
| static void jz4780_dma_begin(struct jz4780_dma_chan *jzchan) |
| { |
| struct jz4780_dma_dev *jzdma = jz4780_dma_chan_parent(jzchan); |
| struct virt_dma_desc *vdesc; |
| unsigned int i; |
| dma_addr_t desc_phys; |
| |
| if (!jzchan->desc) { |
| vdesc = vchan_next_desc(&jzchan->vchan); |
| if (!vdesc) |
| return; |
| |
| list_del(&vdesc->node); |
| |
| jzchan->desc = to_jz4780_dma_desc(vdesc); |
| jzchan->curr_hwdesc = 0; |
| |
| if (jzchan->desc->type == DMA_CYCLIC && vdesc->tx.callback) { |
| /* |
| * The DMA controller doesn't support triggering an |
| * interrupt after processing each descriptor, only |
| * after processing an entire terminated list of |
| * descriptors. For a cyclic DMA setup the list of |
| * descriptors is not terminated so we can never get an |
| * interrupt. |
| * |
| * If the user requested a callback for a cyclic DMA |
| * setup then we workaround this hardware limitation |
| * here by degrading to a set of unlinked descriptors |
| * which we will submit in sequence in response to the |
| * completion of processing the previous descriptor. |
| */ |
| for (i = 0; i < jzchan->desc->count; i++) |
| jzchan->desc->desc[i].dcm &= ~JZ_DMA_DCM_LINK; |
| } |
| } else { |
| /* |
| * There is an existing transfer, therefore this must be one |
| * for which we unlinked the descriptors above. Advance to the |
| * next one in the list. |
| */ |
| jzchan->curr_hwdesc = |
| (jzchan->curr_hwdesc + 1) % jzchan->desc->count; |
| } |
| |
| /* Enable the channel's clock. */ |
| jz4780_dma_chan_enable(jzdma, jzchan->id); |
| |
| /* Use 4-word descriptors. */ |
| jz4780_dma_chn_writel(jzdma, jzchan->id, JZ_DMA_REG_DCS, 0); |
| |
| /* Set transfer type. */ |
| jz4780_dma_chn_writel(jzdma, jzchan->id, JZ_DMA_REG_DRT, |
| jzchan->transfer_type); |
| |
| /* |
| * Set the transfer count. This is redundant for a descriptor-driven |
| * transfer. However, there can be a delay between the transfer start |
| * time and when DTCn reg contains the new transfer count. Setting |
| * it explicitly ensures residue is computed correctly at all times. |
| */ |
| jz4780_dma_chn_writel(jzdma, jzchan->id, JZ_DMA_REG_DTC, |
| jzchan->desc->desc[jzchan->curr_hwdesc].dtc); |
| |
| /* Write descriptor address and initiate descriptor fetch. */ |
| desc_phys = jzchan->desc->desc_phys + |
| (jzchan->curr_hwdesc * sizeof(*jzchan->desc->desc)); |
| jz4780_dma_chn_writel(jzdma, jzchan->id, JZ_DMA_REG_DDA, desc_phys); |
| jz4780_dma_ctrl_writel(jzdma, JZ_DMA_REG_DDRS, BIT(jzchan->id)); |
| |
| /* Enable the channel. */ |
| jz4780_dma_chn_writel(jzdma, jzchan->id, JZ_DMA_REG_DCS, |
| JZ_DMA_DCS_CTE); |
| } |
| |
| static void jz4780_dma_issue_pending(struct dma_chan *chan) |
| { |
| struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan); |
| unsigned long flags; |
| |
| spin_lock_irqsave(&jzchan->vchan.lock, flags); |
| |
| if (vchan_issue_pending(&jzchan->vchan) && !jzchan->desc) |
| jz4780_dma_begin(jzchan); |
| |
| spin_unlock_irqrestore(&jzchan->vchan.lock, flags); |
| } |
| |
| static int jz4780_dma_terminate_all(struct dma_chan *chan) |
| { |
| struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan); |
| struct jz4780_dma_dev *jzdma = jz4780_dma_chan_parent(jzchan); |
| unsigned long flags; |
| LIST_HEAD(head); |
| |
| spin_lock_irqsave(&jzchan->vchan.lock, flags); |
| |
| /* Clear the DMA status and stop the transfer. */ |
| jz4780_dma_chn_writel(jzdma, jzchan->id, JZ_DMA_REG_DCS, 0); |
| if (jzchan->desc) { |
| vchan_terminate_vdesc(&jzchan->desc->vdesc); |
| jzchan->desc = NULL; |
| } |
| |
| jz4780_dma_chan_disable(jzdma, jzchan->id); |
| |
| vchan_get_all_descriptors(&jzchan->vchan, &head); |
| |
| spin_unlock_irqrestore(&jzchan->vchan.lock, flags); |
| |
| vchan_dma_desc_free_list(&jzchan->vchan, &head); |
| return 0; |
| } |
| |
| static void jz4780_dma_synchronize(struct dma_chan *chan) |
| { |
| struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan); |
| struct jz4780_dma_dev *jzdma = jz4780_dma_chan_parent(jzchan); |
| |
| vchan_synchronize(&jzchan->vchan); |
| jz4780_dma_chan_disable(jzdma, jzchan->id); |
| } |
| |
| static int jz4780_dma_config(struct dma_chan *chan, |
| struct dma_slave_config *config) |
| { |
| struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan); |
| |
| if ((config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES) |
| || (config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)) |
| return -EINVAL; |
| |
| /* Copy the reset of the slave configuration, it is used later. */ |
| memcpy(&jzchan->config, config, sizeof(jzchan->config)); |
| |
| return 0; |
| } |
| |
| static size_t jz4780_dma_desc_residue(struct jz4780_dma_chan *jzchan, |
| struct jz4780_dma_desc *desc, unsigned int next_sg) |
| { |
| struct jz4780_dma_dev *jzdma = jz4780_dma_chan_parent(jzchan); |
| unsigned int count = 0; |
| unsigned int i; |
| |
| for (i = next_sg; i < desc->count; i++) |
| count += desc->desc[i].dtc & GENMASK(23, 0); |
| |
| if (next_sg != 0) |
| count += jz4780_dma_chn_readl(jzdma, jzchan->id, |
| JZ_DMA_REG_DTC); |
| |
| return count << jzchan->transfer_shift; |
| } |
| |
| static enum dma_status jz4780_dma_tx_status(struct dma_chan *chan, |
| dma_cookie_t cookie, struct dma_tx_state *txstate) |
| { |
| struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan); |
| struct virt_dma_desc *vdesc; |
| enum dma_status status; |
| unsigned long flags; |
| unsigned long residue = 0; |
| |
| status = dma_cookie_status(chan, cookie, txstate); |
| if ((status == DMA_COMPLETE) || (txstate == NULL)) |
| return status; |
| |
| spin_lock_irqsave(&jzchan->vchan.lock, flags); |
| |
| vdesc = vchan_find_desc(&jzchan->vchan, cookie); |
| if (vdesc) { |
| /* On the issued list, so hasn't been processed yet */ |
| residue = jz4780_dma_desc_residue(jzchan, |
| to_jz4780_dma_desc(vdesc), 0); |
| } else if (cookie == jzchan->desc->vdesc.tx.cookie) { |
| residue = jz4780_dma_desc_residue(jzchan, jzchan->desc, |
| jzchan->curr_hwdesc + 1); |
| } |
| dma_set_residue(txstate, residue); |
| |
| if (vdesc && jzchan->desc && vdesc == &jzchan->desc->vdesc |
| && jzchan->desc->status & (JZ_DMA_DCS_AR | JZ_DMA_DCS_HLT)) |
| status = DMA_ERROR; |
| |
| spin_unlock_irqrestore(&jzchan->vchan.lock, flags); |
| return status; |
| } |
| |
| static bool jz4780_dma_chan_irq(struct jz4780_dma_dev *jzdma, |
| struct jz4780_dma_chan *jzchan) |
| { |
| uint32_t dcs; |
| bool ack = true; |
| |
| spin_lock(&jzchan->vchan.lock); |
| |
| dcs = jz4780_dma_chn_readl(jzdma, jzchan->id, JZ_DMA_REG_DCS); |
| jz4780_dma_chn_writel(jzdma, jzchan->id, JZ_DMA_REG_DCS, 0); |
| |
| if (dcs & JZ_DMA_DCS_AR) { |
| dev_warn(&jzchan->vchan.chan.dev->device, |
| "address error (DCS=0x%x)\n", dcs); |
| } |
| |
| if (dcs & JZ_DMA_DCS_HLT) { |
| dev_warn(&jzchan->vchan.chan.dev->device, |
| "channel halt (DCS=0x%x)\n", dcs); |
| } |
| |
| if (jzchan->desc) { |
| jzchan->desc->status = dcs; |
| |
| if ((dcs & (JZ_DMA_DCS_AR | JZ_DMA_DCS_HLT)) == 0) { |
| if (jzchan->desc->type == DMA_CYCLIC) { |
| vchan_cyclic_callback(&jzchan->desc->vdesc); |
| |
| jz4780_dma_begin(jzchan); |
| } else if (dcs & JZ_DMA_DCS_TT) { |
| vchan_cookie_complete(&jzchan->desc->vdesc); |
| jzchan->desc = NULL; |
| |
| jz4780_dma_begin(jzchan); |
| } else { |
| /* False positive - continue the transfer */ |
| ack = false; |
| jz4780_dma_chn_writel(jzdma, jzchan->id, |
| JZ_DMA_REG_DCS, |
| JZ_DMA_DCS_CTE); |
| } |
| } |
| } else { |
| dev_err(&jzchan->vchan.chan.dev->device, |
| "channel IRQ with no active transfer\n"); |
| } |
| |
| spin_unlock(&jzchan->vchan.lock); |
| |
| return ack; |
| } |
| |
| static irqreturn_t jz4780_dma_irq_handler(int irq, void *data) |
| { |
| struct jz4780_dma_dev *jzdma = data; |
| unsigned int nb_channels = jzdma->soc_data->nb_channels; |
| uint32_t pending, dmac; |
| int i; |
| |
| pending = jz4780_dma_ctrl_readl(jzdma, JZ_DMA_REG_DIRQP); |
| |
| for_each_set_bit(i, (unsigned long *)&pending, nb_channels) { |
| if (jz4780_dma_chan_irq(jzdma, &jzdma->chan[i])) |
| pending &= ~BIT(i); |
| } |
| |
| /* Clear halt and address error status of all channels. */ |
| dmac = jz4780_dma_ctrl_readl(jzdma, JZ_DMA_REG_DMAC); |
| dmac &= ~(JZ_DMA_DMAC_HLT | JZ_DMA_DMAC_AR); |
| jz4780_dma_ctrl_writel(jzdma, JZ_DMA_REG_DMAC, dmac); |
| |
| /* Clear interrupt pending status. */ |
| jz4780_dma_ctrl_writel(jzdma, JZ_DMA_REG_DIRQP, pending); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int jz4780_dma_alloc_chan_resources(struct dma_chan *chan) |
| { |
| struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan); |
| |
| jzchan->desc_pool = dma_pool_create(dev_name(&chan->dev->device), |
| chan->device->dev, |
| JZ_DMA_DESC_BLOCK_SIZE, |
| PAGE_SIZE, 0); |
| if (!jzchan->desc_pool) { |
| dev_err(&chan->dev->device, |
| "failed to allocate descriptor pool\n"); |
| return -ENOMEM; |
| } |
| |
| return 0; |
| } |
| |
| static void jz4780_dma_free_chan_resources(struct dma_chan *chan) |
| { |
| struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan); |
| |
| vchan_free_chan_resources(&jzchan->vchan); |
| dma_pool_destroy(jzchan->desc_pool); |
| jzchan->desc_pool = NULL; |
| } |
| |
| static bool jz4780_dma_filter_fn(struct dma_chan *chan, void *param) |
| { |
| struct jz4780_dma_chan *jzchan = to_jz4780_dma_chan(chan); |
| struct jz4780_dma_dev *jzdma = jz4780_dma_chan_parent(jzchan); |
| struct jz4780_dma_filter_data *data = param; |
| |
| if (jzdma->dma_device.dev->of_node != data->of_node) |
| return false; |
| |
| if (data->channel > -1) { |
| if (data->channel != jzchan->id) |
| return false; |
| } else if (jzdma->chan_reserved & BIT(jzchan->id)) { |
| return false; |
| } |
| |
| jzchan->transfer_type = data->transfer_type; |
| |
| return true; |
| } |
| |
| static struct dma_chan *jz4780_of_dma_xlate(struct of_phandle_args *dma_spec, |
| struct of_dma *ofdma) |
| { |
| struct jz4780_dma_dev *jzdma = ofdma->of_dma_data; |
| dma_cap_mask_t mask = jzdma->dma_device.cap_mask; |
| struct jz4780_dma_filter_data data; |
| |
| if (dma_spec->args_count != 2) |
| return NULL; |
| |
| data.of_node = ofdma->of_node; |
| data.transfer_type = dma_spec->args[0]; |
| data.channel = dma_spec->args[1]; |
| |
| if (data.channel > -1) { |
| if (data.channel >= jzdma->soc_data->nb_channels) { |
| dev_err(jzdma->dma_device.dev, |
| "device requested non-existent channel %u\n", |
| data.channel); |
| return NULL; |
| } |
| |
| /* Can only select a channel marked as reserved. */ |
| if (!(jzdma->chan_reserved & BIT(data.channel))) { |
| dev_err(jzdma->dma_device.dev, |
| "device requested unreserved channel %u\n", |
| data.channel); |
| return NULL; |
| } |
| |
| jzdma->chan[data.channel].transfer_type = data.transfer_type; |
| |
| return dma_get_slave_channel( |
| &jzdma->chan[data.channel].vchan.chan); |
| } else { |
| return dma_request_channel(mask, jz4780_dma_filter_fn, &data); |
| } |
| } |
| |
| static int jz4780_dma_probe(struct platform_device *pdev) |
| { |
| struct device *dev = &pdev->dev; |
| const struct jz4780_dma_soc_data *soc_data; |
| struct jz4780_dma_dev *jzdma; |
| struct jz4780_dma_chan *jzchan; |
| struct dma_device *dd; |
| struct resource *res; |
| int i, ret; |
| |
| if (!dev->of_node) { |
| dev_err(dev, "This driver must be probed from devicetree\n"); |
| return -EINVAL; |
| } |
| |
| soc_data = device_get_match_data(dev); |
| if (!soc_data) |
| return -EINVAL; |
| |
| jzdma = devm_kzalloc(dev, struct_size(jzdma, chan, |
| soc_data->nb_channels), GFP_KERNEL); |
| if (!jzdma) |
| return -ENOMEM; |
| |
| jzdma->soc_data = soc_data; |
| platform_set_drvdata(pdev, jzdma); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 0); |
| if (!res) { |
| dev_err(dev, "failed to get I/O memory\n"); |
| return -EINVAL; |
| } |
| |
| jzdma->chn_base = devm_ioremap_resource(dev, res); |
| if (IS_ERR(jzdma->chn_base)) |
| return PTR_ERR(jzdma->chn_base); |
| |
| res = platform_get_resource(pdev, IORESOURCE_MEM, 1); |
| if (res) { |
| jzdma->ctrl_base = devm_ioremap_resource(dev, res); |
| if (IS_ERR(jzdma->ctrl_base)) |
| return PTR_ERR(jzdma->ctrl_base); |
| } else if (soc_data->flags & JZ_SOC_DATA_ALLOW_LEGACY_DT) { |
| /* |
| * On JZ4780, if the second memory resource was not supplied, |
| * assume we're using an old devicetree, and calculate the |
| * offset to the control registers. |
| */ |
| jzdma->ctrl_base = jzdma->chn_base + JZ4780_DMA_CTRL_OFFSET; |
| } else { |
| dev_err(dev, "failed to get I/O memory\n"); |
| return -EINVAL; |
| } |
| |
| ret = platform_get_irq(pdev, 0); |
| if (ret < 0) { |
| dev_err(dev, "failed to get IRQ: %d\n", ret); |
| return ret; |
| } |
| |
| jzdma->irq = ret; |
| |
| ret = request_irq(jzdma->irq, jz4780_dma_irq_handler, 0, dev_name(dev), |
| jzdma); |
| if (ret) { |
| dev_err(dev, "failed to request IRQ %u!\n", jzdma->irq); |
| return ret; |
| } |
| |
| jzdma->clk = devm_clk_get(dev, NULL); |
| if (IS_ERR(jzdma->clk)) { |
| dev_err(dev, "failed to get clock\n"); |
| ret = PTR_ERR(jzdma->clk); |
| goto err_free_irq; |
| } |
| |
| clk_prepare_enable(jzdma->clk); |
| |
| /* Property is optional, if it doesn't exist the value will remain 0. */ |
| of_property_read_u32_index(dev->of_node, "ingenic,reserved-channels", |
| 0, &jzdma->chan_reserved); |
| |
| dd = &jzdma->dma_device; |
| |
| dma_cap_set(DMA_MEMCPY, dd->cap_mask); |
| dma_cap_set(DMA_SLAVE, dd->cap_mask); |
| dma_cap_set(DMA_CYCLIC, dd->cap_mask); |
| |
| dd->dev = dev; |
| dd->copy_align = DMAENGINE_ALIGN_4_BYTES; |
| dd->device_alloc_chan_resources = jz4780_dma_alloc_chan_resources; |
| dd->device_free_chan_resources = jz4780_dma_free_chan_resources; |
| dd->device_prep_slave_sg = jz4780_dma_prep_slave_sg; |
| dd->device_prep_dma_cyclic = jz4780_dma_prep_dma_cyclic; |
| dd->device_prep_dma_memcpy = jz4780_dma_prep_dma_memcpy; |
| dd->device_config = jz4780_dma_config; |
| dd->device_terminate_all = jz4780_dma_terminate_all; |
| dd->device_synchronize = jz4780_dma_synchronize; |
| dd->device_tx_status = jz4780_dma_tx_status; |
| dd->device_issue_pending = jz4780_dma_issue_pending; |
| dd->src_addr_widths = JZ_DMA_BUSWIDTHS; |
| dd->dst_addr_widths = JZ_DMA_BUSWIDTHS; |
| dd->directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); |
| dd->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; |
| |
| /* |
| * Enable DMA controller, mark all channels as not programmable. |
| * Also set the FMSC bit - it increases MSC performance, so it makes |
| * little sense not to enable it. |
| */ |
| jz4780_dma_ctrl_writel(jzdma, JZ_DMA_REG_DMAC, JZ_DMA_DMAC_DMAE | |
| JZ_DMA_DMAC_FAIC | JZ_DMA_DMAC_FMSC); |
| |
| if (soc_data->flags & JZ_SOC_DATA_PROGRAMMABLE_DMA) |
| jz4780_dma_ctrl_writel(jzdma, JZ_DMA_REG_DMACP, 0); |
| |
| INIT_LIST_HEAD(&dd->channels); |
| |
| for (i = 0; i < soc_data->nb_channels; i++) { |
| jzchan = &jzdma->chan[i]; |
| jzchan->id = i; |
| |
| vchan_init(&jzchan->vchan, dd); |
| jzchan->vchan.desc_free = jz4780_dma_desc_free; |
| } |
| |
| ret = dmaenginem_async_device_register(dd); |
| if (ret) { |
| dev_err(dev, "failed to register device\n"); |
| goto err_disable_clk; |
| } |
| |
| /* Register with OF DMA helpers. */ |
| ret = of_dma_controller_register(dev->of_node, jz4780_of_dma_xlate, |
| jzdma); |
| if (ret) { |
| dev_err(dev, "failed to register OF DMA controller\n"); |
| goto err_disable_clk; |
| } |
| |
| dev_info(dev, "JZ4780 DMA controller initialised\n"); |
| return 0; |
| |
| err_disable_clk: |
| clk_disable_unprepare(jzdma->clk); |
| |
| err_free_irq: |
| free_irq(jzdma->irq, jzdma); |
| return ret; |
| } |
| |
| static int jz4780_dma_remove(struct platform_device *pdev) |
| { |
| struct jz4780_dma_dev *jzdma = platform_get_drvdata(pdev); |
| int i; |
| |
| of_dma_controller_free(pdev->dev.of_node); |
| |
| free_irq(jzdma->irq, jzdma); |
| |
| for (i = 0; i < jzdma->soc_data->nb_channels; i++) |
| tasklet_kill(&jzdma->chan[i].vchan.task); |
| |
| return 0; |
| } |
| |
| static const struct jz4780_dma_soc_data jz4740_dma_soc_data = { |
| .nb_channels = 6, |
| .transfer_ord_max = 5, |
| }; |
| |
| static const struct jz4780_dma_soc_data jz4725b_dma_soc_data = { |
| .nb_channels = 6, |
| .transfer_ord_max = 5, |
| .flags = JZ_SOC_DATA_PER_CHAN_PM | JZ_SOC_DATA_NO_DCKES_DCKEC, |
| }; |
| |
| static const struct jz4780_dma_soc_data jz4770_dma_soc_data = { |
| .nb_channels = 6, |
| .transfer_ord_max = 6, |
| .flags = JZ_SOC_DATA_PER_CHAN_PM, |
| }; |
| |
| static const struct jz4780_dma_soc_data jz4780_dma_soc_data = { |
| .nb_channels = 32, |
| .transfer_ord_max = 7, |
| .flags = JZ_SOC_DATA_ALLOW_LEGACY_DT | JZ_SOC_DATA_PROGRAMMABLE_DMA, |
| }; |
| |
| static const struct of_device_id jz4780_dma_dt_match[] = { |
| { .compatible = "ingenic,jz4740-dma", .data = &jz4740_dma_soc_data }, |
| { .compatible = "ingenic,jz4725b-dma", .data = &jz4725b_dma_soc_data }, |
| { .compatible = "ingenic,jz4770-dma", .data = &jz4770_dma_soc_data }, |
| { .compatible = "ingenic,jz4780-dma", .data = &jz4780_dma_soc_data }, |
| {}, |
| }; |
| MODULE_DEVICE_TABLE(of, jz4780_dma_dt_match); |
| |
| static struct platform_driver jz4780_dma_driver = { |
| .probe = jz4780_dma_probe, |
| .remove = jz4780_dma_remove, |
| .driver = { |
| .name = "jz4780-dma", |
| .of_match_table = of_match_ptr(jz4780_dma_dt_match), |
| }, |
| }; |
| |
| static int __init jz4780_dma_init(void) |
| { |
| return platform_driver_register(&jz4780_dma_driver); |
| } |
| subsys_initcall(jz4780_dma_init); |
| |
| static void __exit jz4780_dma_exit(void) |
| { |
| platform_driver_unregister(&jz4780_dma_driver); |
| } |
| module_exit(jz4780_dma_exit); |
| |
| MODULE_AUTHOR("Alex Smith <alex@alex-smith.me.uk>"); |
| MODULE_DESCRIPTION("Ingenic JZ4780 DMA controller driver"); |
| MODULE_LICENSE("GPL"); |