| // SPDX-License-Identifier: GPL-2.0+ |
| /* |
| * 2002-10-15 Posix Clocks & timers |
| * by George Anzinger george@mvista.com |
| * Copyright (C) 2002 2003 by MontaVista Software. |
| * |
| * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug. |
| * Copyright (C) 2004 Boris Hu |
| * |
| * These are all the functions necessary to implement POSIX clocks & timers |
| */ |
| #include <linux/mm.h> |
| #include <linux/interrupt.h> |
| #include <linux/slab.h> |
| #include <linux/time.h> |
| #include <linux/mutex.h> |
| #include <linux/sched/task.h> |
| |
| #include <linux/uaccess.h> |
| #include <linux/list.h> |
| #include <linux/init.h> |
| #include <linux/compiler.h> |
| #include <linux/hash.h> |
| #include <linux/posix-clock.h> |
| #include <linux/posix-timers.h> |
| #include <linux/syscalls.h> |
| #include <linux/wait.h> |
| #include <linux/workqueue.h> |
| #include <linux/export.h> |
| #include <linux/hashtable.h> |
| #include <linux/compat.h> |
| #include <linux/nospec.h> |
| #include <linux/time_namespace.h> |
| |
| #include "timekeeping.h" |
| #include "posix-timers.h" |
| |
| /* |
| * Management arrays for POSIX timers. Timers are now kept in static hash table |
| * with 512 entries. |
| * Timer ids are allocated by local routine, which selects proper hash head by |
| * key, constructed from current->signal address and per signal struct counter. |
| * This keeps timer ids unique per process, but now they can intersect between |
| * processes. |
| */ |
| |
| /* |
| * Lets keep our timers in a slab cache :-) |
| */ |
| static struct kmem_cache *posix_timers_cache; |
| |
| static DEFINE_HASHTABLE(posix_timers_hashtable, 9); |
| static DEFINE_SPINLOCK(hash_lock); |
| |
| static const struct k_clock * const posix_clocks[]; |
| static const struct k_clock *clockid_to_kclock(const clockid_t id); |
| static const struct k_clock clock_realtime, clock_monotonic; |
| |
| /* |
| * we assume that the new SIGEV_THREAD_ID shares no bits with the other |
| * SIGEV values. Here we put out an error if this assumption fails. |
| */ |
| #if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \ |
| ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD)) |
| #error "SIGEV_THREAD_ID must not share bit with other SIGEV values!" |
| #endif |
| |
| /* |
| * The timer ID is turned into a timer address by idr_find(). |
| * Verifying a valid ID consists of: |
| * |
| * a) checking that idr_find() returns other than -1. |
| * b) checking that the timer id matches the one in the timer itself. |
| * c) that the timer owner is in the callers thread group. |
| */ |
| |
| /* |
| * CLOCKs: The POSIX standard calls for a couple of clocks and allows us |
| * to implement others. This structure defines the various |
| * clocks. |
| * |
| * RESOLUTION: Clock resolution is used to round up timer and interval |
| * times, NOT to report clock times, which are reported with as |
| * much resolution as the system can muster. In some cases this |
| * resolution may depend on the underlying clock hardware and |
| * may not be quantifiable until run time, and only then is the |
| * necessary code is written. The standard says we should say |
| * something about this issue in the documentation... |
| * |
| * FUNCTIONS: The CLOCKs structure defines possible functions to |
| * handle various clock functions. |
| * |
| * The standard POSIX timer management code assumes the |
| * following: 1.) The k_itimer struct (sched.h) is used for |
| * the timer. 2.) The list, it_lock, it_clock, it_id and |
| * it_pid fields are not modified by timer code. |
| * |
| * Permissions: It is assumed that the clock_settime() function defined |
| * for each clock will take care of permission checks. Some |
| * clocks may be set able by any user (i.e. local process |
| * clocks) others not. Currently the only set able clock we |
| * have is CLOCK_REALTIME and its high res counter part, both of |
| * which we beg off on and pass to do_sys_settimeofday(). |
| */ |
| static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags); |
| |
| #define lock_timer(tid, flags) \ |
| ({ struct k_itimer *__timr; \ |
| __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \ |
| __timr; \ |
| }) |
| |
| static int hash(struct signal_struct *sig, unsigned int nr) |
| { |
| return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable)); |
| } |
| |
| static struct k_itimer *__posix_timers_find(struct hlist_head *head, |
| struct signal_struct *sig, |
| timer_t id) |
| { |
| struct k_itimer *timer; |
| |
| hlist_for_each_entry_rcu(timer, head, t_hash, |
| lockdep_is_held(&hash_lock)) { |
| if ((timer->it_signal == sig) && (timer->it_id == id)) |
| return timer; |
| } |
| return NULL; |
| } |
| |
| static struct k_itimer *posix_timer_by_id(timer_t id) |
| { |
| struct signal_struct *sig = current->signal; |
| struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)]; |
| |
| return __posix_timers_find(head, sig, id); |
| } |
| |
| static int posix_timer_add(struct k_itimer *timer) |
| { |
| struct signal_struct *sig = current->signal; |
| int first_free_id = sig->posix_timer_id; |
| struct hlist_head *head; |
| int ret = -ENOENT; |
| |
| do { |
| spin_lock(&hash_lock); |
| head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)]; |
| if (!__posix_timers_find(head, sig, sig->posix_timer_id)) { |
| hlist_add_head_rcu(&timer->t_hash, head); |
| ret = sig->posix_timer_id; |
| } |
| if (++sig->posix_timer_id < 0) |
| sig->posix_timer_id = 0; |
| if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT)) |
| /* Loop over all possible ids completed */ |
| ret = -EAGAIN; |
| spin_unlock(&hash_lock); |
| } while (ret == -ENOENT); |
| return ret; |
| } |
| |
| static inline void unlock_timer(struct k_itimer *timr, unsigned long flags) |
| { |
| spin_unlock_irqrestore(&timr->it_lock, flags); |
| } |
| |
| /* Get clock_realtime */ |
| static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp) |
| { |
| ktime_get_real_ts64(tp); |
| return 0; |
| } |
| |
| static ktime_t posix_get_realtime_ktime(clockid_t which_clock) |
| { |
| return ktime_get_real(); |
| } |
| |
| /* Set clock_realtime */ |
| static int posix_clock_realtime_set(const clockid_t which_clock, |
| const struct timespec64 *tp) |
| { |
| return do_sys_settimeofday64(tp, NULL); |
| } |
| |
| static int posix_clock_realtime_adj(const clockid_t which_clock, |
| struct __kernel_timex *t) |
| { |
| return do_adjtimex(t); |
| } |
| |
| /* |
| * Get monotonic time for posix timers |
| */ |
| static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp) |
| { |
| ktime_get_ts64(tp); |
| timens_add_monotonic(tp); |
| return 0; |
| } |
| |
| static ktime_t posix_get_monotonic_ktime(clockid_t which_clock) |
| { |
| return ktime_get(); |
| } |
| |
| /* |
| * Get monotonic-raw time for posix timers |
| */ |
| static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp) |
| { |
| ktime_get_raw_ts64(tp); |
| timens_add_monotonic(tp); |
| return 0; |
| } |
| |
| |
| static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp) |
| { |
| ktime_get_coarse_real_ts64(tp); |
| return 0; |
| } |
| |
| static int posix_get_monotonic_coarse(clockid_t which_clock, |
| struct timespec64 *tp) |
| { |
| ktime_get_coarse_ts64(tp); |
| timens_add_monotonic(tp); |
| return 0; |
| } |
| |
| static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp) |
| { |
| *tp = ktime_to_timespec64(KTIME_LOW_RES); |
| return 0; |
| } |
| |
| static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp) |
| { |
| ktime_get_boottime_ts64(tp); |
| timens_add_boottime(tp); |
| return 0; |
| } |
| |
| static ktime_t posix_get_boottime_ktime(const clockid_t which_clock) |
| { |
| return ktime_get_boottime(); |
| } |
| |
| static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp) |
| { |
| ktime_get_clocktai_ts64(tp); |
| return 0; |
| } |
| |
| static ktime_t posix_get_tai_ktime(clockid_t which_clock) |
| { |
| return ktime_get_clocktai(); |
| } |
| |
| static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp) |
| { |
| tp->tv_sec = 0; |
| tp->tv_nsec = hrtimer_resolution; |
| return 0; |
| } |
| |
| /* |
| * Initialize everything, well, just everything in Posix clocks/timers ;) |
| */ |
| static __init int init_posix_timers(void) |
| { |
| posix_timers_cache = kmem_cache_create("posix_timers_cache", |
| sizeof (struct k_itimer), 0, SLAB_PANIC, |
| NULL); |
| return 0; |
| } |
| __initcall(init_posix_timers); |
| |
| /* |
| * The siginfo si_overrun field and the return value of timer_getoverrun(2) |
| * are of type int. Clamp the overrun value to INT_MAX |
| */ |
| static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval) |
| { |
| s64 sum = timr->it_overrun_last + (s64)baseval; |
| |
| return sum > (s64)INT_MAX ? INT_MAX : (int)sum; |
| } |
| |
| static void common_hrtimer_rearm(struct k_itimer *timr) |
| { |
| struct hrtimer *timer = &timr->it.real.timer; |
| |
| timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(), |
| timr->it_interval); |
| hrtimer_restart(timer); |
| } |
| |
| /* |
| * This function is exported for use by the signal deliver code. It is |
| * called just prior to the info block being released and passes that |
| * block to us. It's function is to update the overrun entry AND to |
| * restart the timer. It should only be called if the timer is to be |
| * restarted (i.e. we have flagged this in the sys_private entry of the |
| * info block). |
| * |
| * To protect against the timer going away while the interrupt is queued, |
| * we require that the it_requeue_pending flag be set. |
| */ |
| void posixtimer_rearm(struct kernel_siginfo *info) |
| { |
| struct k_itimer *timr; |
| unsigned long flags; |
| |
| timr = lock_timer(info->si_tid, &flags); |
| if (!timr) |
| return; |
| |
| if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) { |
| timr->kclock->timer_rearm(timr); |
| |
| timr->it_active = 1; |
| timr->it_overrun_last = timr->it_overrun; |
| timr->it_overrun = -1LL; |
| ++timr->it_requeue_pending; |
| |
| info->si_overrun = timer_overrun_to_int(timr, info->si_overrun); |
| } |
| |
| unlock_timer(timr, flags); |
| } |
| |
| int posix_timer_event(struct k_itimer *timr, int si_private) |
| { |
| enum pid_type type; |
| int ret; |
| /* |
| * FIXME: if ->sigq is queued we can race with |
| * dequeue_signal()->posixtimer_rearm(). |
| * |
| * If dequeue_signal() sees the "right" value of |
| * si_sys_private it calls posixtimer_rearm(). |
| * We re-queue ->sigq and drop ->it_lock(). |
| * posixtimer_rearm() locks the timer |
| * and re-schedules it while ->sigq is pending. |
| * Not really bad, but not that we want. |
| */ |
| timr->sigq->info.si_sys_private = si_private; |
| |
| type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID; |
| ret = send_sigqueue(timr->sigq, timr->it_pid, type); |
| /* If we failed to send the signal the timer stops. */ |
| return ret > 0; |
| } |
| |
| /* |
| * This function gets called when a POSIX.1b interval timer expires. It |
| * is used as a callback from the kernel internal timer. The |
| * run_timer_list code ALWAYS calls with interrupts on. |
| |
| * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers. |
| */ |
| static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer) |
| { |
| struct k_itimer *timr; |
| unsigned long flags; |
| int si_private = 0; |
| enum hrtimer_restart ret = HRTIMER_NORESTART; |
| |
| timr = container_of(timer, struct k_itimer, it.real.timer); |
| spin_lock_irqsave(&timr->it_lock, flags); |
| |
| timr->it_active = 0; |
| if (timr->it_interval != 0) |
| si_private = ++timr->it_requeue_pending; |
| |
| if (posix_timer_event(timr, si_private)) { |
| /* |
| * signal was not sent because of sig_ignor |
| * we will not get a call back to restart it AND |
| * it should be restarted. |
| */ |
| if (timr->it_interval != 0) { |
| ktime_t now = hrtimer_cb_get_time(timer); |
| |
| /* |
| * FIXME: What we really want, is to stop this |
| * timer completely and restart it in case the |
| * SIG_IGN is removed. This is a non trivial |
| * change which involves sighand locking |
| * (sigh !), which we don't want to do late in |
| * the release cycle. |
| * |
| * For now we just let timers with an interval |
| * less than a jiffie expire every jiffie to |
| * avoid softirq starvation in case of SIG_IGN |
| * and a very small interval, which would put |
| * the timer right back on the softirq pending |
| * list. By moving now ahead of time we trick |
| * hrtimer_forward() to expire the timer |
| * later, while we still maintain the overrun |
| * accuracy, but have some inconsistency in |
| * the timer_gettime() case. This is at least |
| * better than a starved softirq. A more |
| * complex fix which solves also another related |
| * inconsistency is already in the pipeline. |
| */ |
| #ifdef CONFIG_HIGH_RES_TIMERS |
| { |
| ktime_t kj = NSEC_PER_SEC / HZ; |
| |
| if (timr->it_interval < kj) |
| now = ktime_add(now, kj); |
| } |
| #endif |
| timr->it_overrun += hrtimer_forward(timer, now, |
| timr->it_interval); |
| ret = HRTIMER_RESTART; |
| ++timr->it_requeue_pending; |
| timr->it_active = 1; |
| } |
| } |
| |
| unlock_timer(timr, flags); |
| return ret; |
| } |
| |
| static struct pid *good_sigevent(sigevent_t * event) |
| { |
| struct pid *pid = task_tgid(current); |
| struct task_struct *rtn; |
| |
| switch (event->sigev_notify) { |
| case SIGEV_SIGNAL | SIGEV_THREAD_ID: |
| pid = find_vpid(event->sigev_notify_thread_id); |
| rtn = pid_task(pid, PIDTYPE_PID); |
| if (!rtn || !same_thread_group(rtn, current)) |
| return NULL; |
| fallthrough; |
| case SIGEV_SIGNAL: |
| case SIGEV_THREAD: |
| if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX) |
| return NULL; |
| fallthrough; |
| case SIGEV_NONE: |
| return pid; |
| default: |
| return NULL; |
| } |
| } |
| |
| static struct k_itimer * alloc_posix_timer(void) |
| { |
| struct k_itimer *tmr; |
| tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL); |
| if (!tmr) |
| return tmr; |
| if (unlikely(!(tmr->sigq = sigqueue_alloc()))) { |
| kmem_cache_free(posix_timers_cache, tmr); |
| return NULL; |
| } |
| clear_siginfo(&tmr->sigq->info); |
| return tmr; |
| } |
| |
| static void k_itimer_rcu_free(struct rcu_head *head) |
| { |
| struct k_itimer *tmr = container_of(head, struct k_itimer, rcu); |
| |
| kmem_cache_free(posix_timers_cache, tmr); |
| } |
| |
| #define IT_ID_SET 1 |
| #define IT_ID_NOT_SET 0 |
| static void release_posix_timer(struct k_itimer *tmr, int it_id_set) |
| { |
| if (it_id_set) { |
| unsigned long flags; |
| spin_lock_irqsave(&hash_lock, flags); |
| hlist_del_rcu(&tmr->t_hash); |
| spin_unlock_irqrestore(&hash_lock, flags); |
| } |
| put_pid(tmr->it_pid); |
| sigqueue_free(tmr->sigq); |
| call_rcu(&tmr->rcu, k_itimer_rcu_free); |
| } |
| |
| static int common_timer_create(struct k_itimer *new_timer) |
| { |
| hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0); |
| return 0; |
| } |
| |
| /* Create a POSIX.1b interval timer. */ |
| static int do_timer_create(clockid_t which_clock, struct sigevent *event, |
| timer_t __user *created_timer_id) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct k_itimer *new_timer; |
| int error, new_timer_id; |
| int it_id_set = IT_ID_NOT_SET; |
| |
| if (!kc) |
| return -EINVAL; |
| if (!kc->timer_create) |
| return -EOPNOTSUPP; |
| |
| new_timer = alloc_posix_timer(); |
| if (unlikely(!new_timer)) |
| return -EAGAIN; |
| |
| spin_lock_init(&new_timer->it_lock); |
| new_timer_id = posix_timer_add(new_timer); |
| if (new_timer_id < 0) { |
| error = new_timer_id; |
| goto out; |
| } |
| |
| it_id_set = IT_ID_SET; |
| new_timer->it_id = (timer_t) new_timer_id; |
| new_timer->it_clock = which_clock; |
| new_timer->kclock = kc; |
| new_timer->it_overrun = -1LL; |
| |
| if (event) { |
| rcu_read_lock(); |
| new_timer->it_pid = get_pid(good_sigevent(event)); |
| rcu_read_unlock(); |
| if (!new_timer->it_pid) { |
| error = -EINVAL; |
| goto out; |
| } |
| new_timer->it_sigev_notify = event->sigev_notify; |
| new_timer->sigq->info.si_signo = event->sigev_signo; |
| new_timer->sigq->info.si_value = event->sigev_value; |
| } else { |
| new_timer->it_sigev_notify = SIGEV_SIGNAL; |
| new_timer->sigq->info.si_signo = SIGALRM; |
| memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t)); |
| new_timer->sigq->info.si_value.sival_int = new_timer->it_id; |
| new_timer->it_pid = get_pid(task_tgid(current)); |
| } |
| |
| new_timer->sigq->info.si_tid = new_timer->it_id; |
| new_timer->sigq->info.si_code = SI_TIMER; |
| |
| if (copy_to_user(created_timer_id, |
| &new_timer_id, sizeof (new_timer_id))) { |
| error = -EFAULT; |
| goto out; |
| } |
| |
| error = kc->timer_create(new_timer); |
| if (error) |
| goto out; |
| |
| spin_lock_irq(¤t->sighand->siglock); |
| new_timer->it_signal = current->signal; |
| list_add(&new_timer->list, ¤t->signal->posix_timers); |
| spin_unlock_irq(¤t->sighand->siglock); |
| |
| return 0; |
| /* |
| * In the case of the timer belonging to another task, after |
| * the task is unlocked, the timer is owned by the other task |
| * and may cease to exist at any time. Don't use or modify |
| * new_timer after the unlock call. |
| */ |
| out: |
| release_posix_timer(new_timer, it_id_set); |
| return error; |
| } |
| |
| SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock, |
| struct sigevent __user *, timer_event_spec, |
| timer_t __user *, created_timer_id) |
| { |
| if (timer_event_spec) { |
| sigevent_t event; |
| |
| if (copy_from_user(&event, timer_event_spec, sizeof (event))) |
| return -EFAULT; |
| return do_timer_create(which_clock, &event, created_timer_id); |
| } |
| return do_timer_create(which_clock, NULL, created_timer_id); |
| } |
| |
| #ifdef CONFIG_COMPAT |
| COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock, |
| struct compat_sigevent __user *, timer_event_spec, |
| timer_t __user *, created_timer_id) |
| { |
| if (timer_event_spec) { |
| sigevent_t event; |
| |
| if (get_compat_sigevent(&event, timer_event_spec)) |
| return -EFAULT; |
| return do_timer_create(which_clock, &event, created_timer_id); |
| } |
| return do_timer_create(which_clock, NULL, created_timer_id); |
| } |
| #endif |
| |
| /* |
| * Locking issues: We need to protect the result of the id look up until |
| * we get the timer locked down so it is not deleted under us. The |
| * removal is done under the idr spinlock so we use that here to bridge |
| * the find to the timer lock. To avoid a dead lock, the timer id MUST |
| * be release with out holding the timer lock. |
| */ |
| static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags) |
| { |
| struct k_itimer *timr; |
| |
| /* |
| * timer_t could be any type >= int and we want to make sure any |
| * @timer_id outside positive int range fails lookup. |
| */ |
| if ((unsigned long long)timer_id > INT_MAX) |
| return NULL; |
| |
| rcu_read_lock(); |
| timr = posix_timer_by_id(timer_id); |
| if (timr) { |
| spin_lock_irqsave(&timr->it_lock, *flags); |
| if (timr->it_signal == current->signal) { |
| rcu_read_unlock(); |
| return timr; |
| } |
| spin_unlock_irqrestore(&timr->it_lock, *flags); |
| } |
| rcu_read_unlock(); |
| |
| return NULL; |
| } |
| |
| static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now) |
| { |
| struct hrtimer *timer = &timr->it.real.timer; |
| |
| return __hrtimer_expires_remaining_adjusted(timer, now); |
| } |
| |
| static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now) |
| { |
| struct hrtimer *timer = &timr->it.real.timer; |
| |
| return hrtimer_forward(timer, now, timr->it_interval); |
| } |
| |
| /* |
| * Get the time remaining on a POSIX.1b interval timer. This function |
| * is ALWAYS called with spin_lock_irq on the timer, thus it must not |
| * mess with irq. |
| * |
| * We have a couple of messes to clean up here. First there is the case |
| * of a timer that has a requeue pending. These timers should appear to |
| * be in the timer list with an expiry as if we were to requeue them |
| * now. |
| * |
| * The second issue is the SIGEV_NONE timer which may be active but is |
| * not really ever put in the timer list (to save system resources). |
| * This timer may be expired, and if so, we will do it here. Otherwise |
| * it is the same as a requeue pending timer WRT to what we should |
| * report. |
| */ |
| void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting) |
| { |
| const struct k_clock *kc = timr->kclock; |
| ktime_t now, remaining, iv; |
| bool sig_none; |
| |
| sig_none = timr->it_sigev_notify == SIGEV_NONE; |
| iv = timr->it_interval; |
| |
| /* interval timer ? */ |
| if (iv) { |
| cur_setting->it_interval = ktime_to_timespec64(iv); |
| } else if (!timr->it_active) { |
| /* |
| * SIGEV_NONE oneshot timers are never queued. Check them |
| * below. |
| */ |
| if (!sig_none) |
| return; |
| } |
| |
| now = kc->clock_get_ktime(timr->it_clock); |
| |
| /* |
| * When a requeue is pending or this is a SIGEV_NONE timer move the |
| * expiry time forward by intervals, so expiry is > now. |
| */ |
| if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none)) |
| timr->it_overrun += kc->timer_forward(timr, now); |
| |
| remaining = kc->timer_remaining(timr, now); |
| /* Return 0 only, when the timer is expired and not pending */ |
| if (remaining <= 0) { |
| /* |
| * A single shot SIGEV_NONE timer must return 0, when |
| * it is expired ! |
| */ |
| if (!sig_none) |
| cur_setting->it_value.tv_nsec = 1; |
| } else { |
| cur_setting->it_value = ktime_to_timespec64(remaining); |
| } |
| } |
| |
| /* Get the time remaining on a POSIX.1b interval timer. */ |
| static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting) |
| { |
| struct k_itimer *timr; |
| const struct k_clock *kc; |
| unsigned long flags; |
| int ret = 0; |
| |
| timr = lock_timer(timer_id, &flags); |
| if (!timr) |
| return -EINVAL; |
| |
| memset(setting, 0, sizeof(*setting)); |
| kc = timr->kclock; |
| if (WARN_ON_ONCE(!kc || !kc->timer_get)) |
| ret = -EINVAL; |
| else |
| kc->timer_get(timr, setting); |
| |
| unlock_timer(timr, flags); |
| return ret; |
| } |
| |
| /* Get the time remaining on a POSIX.1b interval timer. */ |
| SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id, |
| struct __kernel_itimerspec __user *, setting) |
| { |
| struct itimerspec64 cur_setting; |
| |
| int ret = do_timer_gettime(timer_id, &cur_setting); |
| if (!ret) { |
| if (put_itimerspec64(&cur_setting, setting)) |
| ret = -EFAULT; |
| } |
| return ret; |
| } |
| |
| #ifdef CONFIG_COMPAT_32BIT_TIME |
| |
| SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id, |
| struct old_itimerspec32 __user *, setting) |
| { |
| struct itimerspec64 cur_setting; |
| |
| int ret = do_timer_gettime(timer_id, &cur_setting); |
| if (!ret) { |
| if (put_old_itimerspec32(&cur_setting, setting)) |
| ret = -EFAULT; |
| } |
| return ret; |
| } |
| |
| #endif |
| |
| /* |
| * Get the number of overruns of a POSIX.1b interval timer. This is to |
| * be the overrun of the timer last delivered. At the same time we are |
| * accumulating overruns on the next timer. The overrun is frozen when |
| * the signal is delivered, either at the notify time (if the info block |
| * is not queued) or at the actual delivery time (as we are informed by |
| * the call back to posixtimer_rearm(). So all we need to do is |
| * to pick up the frozen overrun. |
| */ |
| SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id) |
| { |
| struct k_itimer *timr; |
| int overrun; |
| unsigned long flags; |
| |
| timr = lock_timer(timer_id, &flags); |
| if (!timr) |
| return -EINVAL; |
| |
| overrun = timer_overrun_to_int(timr, 0); |
| unlock_timer(timr, flags); |
| |
| return overrun; |
| } |
| |
| static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires, |
| bool absolute, bool sigev_none) |
| { |
| struct hrtimer *timer = &timr->it.real.timer; |
| enum hrtimer_mode mode; |
| |
| mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL; |
| /* |
| * Posix magic: Relative CLOCK_REALTIME timers are not affected by |
| * clock modifications, so they become CLOCK_MONOTONIC based under the |
| * hood. See hrtimer_init(). Update timr->kclock, so the generic |
| * functions which use timr->kclock->clock_get_*() work. |
| * |
| * Note: it_clock stays unmodified, because the next timer_set() might |
| * use ABSTIME, so it needs to switch back. |
| */ |
| if (timr->it_clock == CLOCK_REALTIME) |
| timr->kclock = absolute ? &clock_realtime : &clock_monotonic; |
| |
| hrtimer_init(&timr->it.real.timer, timr->it_clock, mode); |
| timr->it.real.timer.function = posix_timer_fn; |
| |
| if (!absolute) |
| expires = ktime_add_safe(expires, timer->base->get_time()); |
| hrtimer_set_expires(timer, expires); |
| |
| if (!sigev_none) |
| hrtimer_start_expires(timer, HRTIMER_MODE_ABS); |
| } |
| |
| static int common_hrtimer_try_to_cancel(struct k_itimer *timr) |
| { |
| return hrtimer_try_to_cancel(&timr->it.real.timer); |
| } |
| |
| static void common_timer_wait_running(struct k_itimer *timer) |
| { |
| hrtimer_cancel_wait_running(&timer->it.real.timer); |
| } |
| |
| /* |
| * On PREEMPT_RT this prevent priority inversion against softirq kthread in |
| * case it gets preempted while executing a timer callback. See comments in |
| * hrtimer_cancel_wait_running. For PREEMPT_RT=n this just results in a |
| * cpu_relax(). |
| */ |
| static struct k_itimer *timer_wait_running(struct k_itimer *timer, |
| unsigned long *flags) |
| { |
| const struct k_clock *kc = READ_ONCE(timer->kclock); |
| timer_t timer_id = READ_ONCE(timer->it_id); |
| |
| /* Prevent kfree(timer) after dropping the lock */ |
| rcu_read_lock(); |
| unlock_timer(timer, *flags); |
| |
| if (!WARN_ON_ONCE(!kc->timer_wait_running)) |
| kc->timer_wait_running(timer); |
| |
| rcu_read_unlock(); |
| /* Relock the timer. It might be not longer hashed. */ |
| return lock_timer(timer_id, flags); |
| } |
| |
| /* Set a POSIX.1b interval timer. */ |
| int common_timer_set(struct k_itimer *timr, int flags, |
| struct itimerspec64 *new_setting, |
| struct itimerspec64 *old_setting) |
| { |
| const struct k_clock *kc = timr->kclock; |
| bool sigev_none; |
| ktime_t expires; |
| |
| if (old_setting) |
| common_timer_get(timr, old_setting); |
| |
| /* Prevent rearming by clearing the interval */ |
| timr->it_interval = 0; |
| /* |
| * Careful here. On SMP systems the timer expiry function could be |
| * active and spinning on timr->it_lock. |
| */ |
| if (kc->timer_try_to_cancel(timr) < 0) |
| return TIMER_RETRY; |
| |
| timr->it_active = 0; |
| timr->it_requeue_pending = (timr->it_requeue_pending + 2) & |
| ~REQUEUE_PENDING; |
| timr->it_overrun_last = 0; |
| |
| /* Switch off the timer when it_value is zero */ |
| if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec) |
| return 0; |
| |
| timr->it_interval = timespec64_to_ktime(new_setting->it_interval); |
| expires = timespec64_to_ktime(new_setting->it_value); |
| if (flags & TIMER_ABSTIME) |
| expires = timens_ktime_to_host(timr->it_clock, expires); |
| sigev_none = timr->it_sigev_notify == SIGEV_NONE; |
| |
| kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none); |
| timr->it_active = !sigev_none; |
| return 0; |
| } |
| |
| static int do_timer_settime(timer_t timer_id, int tmr_flags, |
| struct itimerspec64 *new_spec64, |
| struct itimerspec64 *old_spec64) |
| { |
| const struct k_clock *kc; |
| struct k_itimer *timr; |
| unsigned long flags; |
| int error = 0; |
| |
| if (!timespec64_valid(&new_spec64->it_interval) || |
| !timespec64_valid(&new_spec64->it_value)) |
| return -EINVAL; |
| |
| if (old_spec64) |
| memset(old_spec64, 0, sizeof(*old_spec64)); |
| |
| timr = lock_timer(timer_id, &flags); |
| retry: |
| if (!timr) |
| return -EINVAL; |
| |
| kc = timr->kclock; |
| if (WARN_ON_ONCE(!kc || !kc->timer_set)) |
| error = -EINVAL; |
| else |
| error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64); |
| |
| if (error == TIMER_RETRY) { |
| // We already got the old time... |
| old_spec64 = NULL; |
| /* Unlocks and relocks the timer if it still exists */ |
| timr = timer_wait_running(timr, &flags); |
| goto retry; |
| } |
| unlock_timer(timr, flags); |
| |
| return error; |
| } |
| |
| /* Set a POSIX.1b interval timer */ |
| SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags, |
| const struct __kernel_itimerspec __user *, new_setting, |
| struct __kernel_itimerspec __user *, old_setting) |
| { |
| struct itimerspec64 new_spec, old_spec; |
| struct itimerspec64 *rtn = old_setting ? &old_spec : NULL; |
| int error = 0; |
| |
| if (!new_setting) |
| return -EINVAL; |
| |
| if (get_itimerspec64(&new_spec, new_setting)) |
| return -EFAULT; |
| |
| error = do_timer_settime(timer_id, flags, &new_spec, rtn); |
| if (!error && old_setting) { |
| if (put_itimerspec64(&old_spec, old_setting)) |
| error = -EFAULT; |
| } |
| return error; |
| } |
| |
| #ifdef CONFIG_COMPAT_32BIT_TIME |
| SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags, |
| struct old_itimerspec32 __user *, new, |
| struct old_itimerspec32 __user *, old) |
| { |
| struct itimerspec64 new_spec, old_spec; |
| struct itimerspec64 *rtn = old ? &old_spec : NULL; |
| int error = 0; |
| |
| if (!new) |
| return -EINVAL; |
| if (get_old_itimerspec32(&new_spec, new)) |
| return -EFAULT; |
| |
| error = do_timer_settime(timer_id, flags, &new_spec, rtn); |
| if (!error && old) { |
| if (put_old_itimerspec32(&old_spec, old)) |
| error = -EFAULT; |
| } |
| return error; |
| } |
| #endif |
| |
| int common_timer_del(struct k_itimer *timer) |
| { |
| const struct k_clock *kc = timer->kclock; |
| |
| timer->it_interval = 0; |
| if (kc->timer_try_to_cancel(timer) < 0) |
| return TIMER_RETRY; |
| timer->it_active = 0; |
| return 0; |
| } |
| |
| static inline int timer_delete_hook(struct k_itimer *timer) |
| { |
| const struct k_clock *kc = timer->kclock; |
| |
| if (WARN_ON_ONCE(!kc || !kc->timer_del)) |
| return -EINVAL; |
| return kc->timer_del(timer); |
| } |
| |
| /* Delete a POSIX.1b interval timer. */ |
| SYSCALL_DEFINE1(timer_delete, timer_t, timer_id) |
| { |
| struct k_itimer *timer; |
| unsigned long flags; |
| |
| timer = lock_timer(timer_id, &flags); |
| |
| retry_delete: |
| if (!timer) |
| return -EINVAL; |
| |
| if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) { |
| /* Unlocks and relocks the timer if it still exists */ |
| timer = timer_wait_running(timer, &flags); |
| goto retry_delete; |
| } |
| |
| spin_lock(¤t->sighand->siglock); |
| list_del(&timer->list); |
| spin_unlock(¤t->sighand->siglock); |
| /* |
| * This keeps any tasks waiting on the spin lock from thinking |
| * they got something (see the lock code above). |
| */ |
| timer->it_signal = NULL; |
| |
| unlock_timer(timer, flags); |
| release_posix_timer(timer, IT_ID_SET); |
| return 0; |
| } |
| |
| /* |
| * return timer owned by the process, used by exit_itimers |
| */ |
| static void itimer_delete(struct k_itimer *timer) |
| { |
| retry_delete: |
| spin_lock_irq(&timer->it_lock); |
| |
| if (timer_delete_hook(timer) == TIMER_RETRY) { |
| spin_unlock_irq(&timer->it_lock); |
| goto retry_delete; |
| } |
| list_del(&timer->list); |
| |
| spin_unlock_irq(&timer->it_lock); |
| release_posix_timer(timer, IT_ID_SET); |
| } |
| |
| /* |
| * This is called by do_exit or de_thread, only when there are no more |
| * references to the shared signal_struct. |
| */ |
| void exit_itimers(struct signal_struct *sig) |
| { |
| struct k_itimer *tmr; |
| |
| while (!list_empty(&sig->posix_timers)) { |
| tmr = list_entry(sig->posix_timers.next, struct k_itimer, list); |
| itimer_delete(tmr); |
| } |
| } |
| |
| SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock, |
| const struct __kernel_timespec __user *, tp) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct timespec64 new_tp; |
| |
| if (!kc || !kc->clock_set) |
| return -EINVAL; |
| |
| if (get_timespec64(&new_tp, tp)) |
| return -EFAULT; |
| |
| return kc->clock_set(which_clock, &new_tp); |
| } |
| |
| SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock, |
| struct __kernel_timespec __user *, tp) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct timespec64 kernel_tp; |
| int error; |
| |
| if (!kc) |
| return -EINVAL; |
| |
| error = kc->clock_get_timespec(which_clock, &kernel_tp); |
| |
| if (!error && put_timespec64(&kernel_tp, tp)) |
| error = -EFAULT; |
| |
| return error; |
| } |
| |
| int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| |
| if (!kc) |
| return -EINVAL; |
| if (!kc->clock_adj) |
| return -EOPNOTSUPP; |
| |
| return kc->clock_adj(which_clock, ktx); |
| } |
| |
| SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock, |
| struct __kernel_timex __user *, utx) |
| { |
| struct __kernel_timex ktx; |
| int err; |
| |
| if (copy_from_user(&ktx, utx, sizeof(ktx))) |
| return -EFAULT; |
| |
| err = do_clock_adjtime(which_clock, &ktx); |
| |
| if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx))) |
| return -EFAULT; |
| |
| return err; |
| } |
| |
| SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock, |
| struct __kernel_timespec __user *, tp) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct timespec64 rtn_tp; |
| int error; |
| |
| if (!kc) |
| return -EINVAL; |
| |
| error = kc->clock_getres(which_clock, &rtn_tp); |
| |
| if (!error && tp && put_timespec64(&rtn_tp, tp)) |
| error = -EFAULT; |
| |
| return error; |
| } |
| |
| #ifdef CONFIG_COMPAT_32BIT_TIME |
| |
| SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock, |
| struct old_timespec32 __user *, tp) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct timespec64 ts; |
| |
| if (!kc || !kc->clock_set) |
| return -EINVAL; |
| |
| if (get_old_timespec32(&ts, tp)) |
| return -EFAULT; |
| |
| return kc->clock_set(which_clock, &ts); |
| } |
| |
| SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock, |
| struct old_timespec32 __user *, tp) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct timespec64 ts; |
| int err; |
| |
| if (!kc) |
| return -EINVAL; |
| |
| err = kc->clock_get_timespec(which_clock, &ts); |
| |
| if (!err && put_old_timespec32(&ts, tp)) |
| err = -EFAULT; |
| |
| return err; |
| } |
| |
| SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock, |
| struct old_timex32 __user *, utp) |
| { |
| struct __kernel_timex ktx; |
| int err; |
| |
| err = get_old_timex32(&ktx, utp); |
| if (err) |
| return err; |
| |
| err = do_clock_adjtime(which_clock, &ktx); |
| |
| if (err >= 0 && put_old_timex32(utp, &ktx)) |
| return -EFAULT; |
| |
| return err; |
| } |
| |
| SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock, |
| struct old_timespec32 __user *, tp) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct timespec64 ts; |
| int err; |
| |
| if (!kc) |
| return -EINVAL; |
| |
| err = kc->clock_getres(which_clock, &ts); |
| if (!err && tp && put_old_timespec32(&ts, tp)) |
| return -EFAULT; |
| |
| return err; |
| } |
| |
| #endif |
| |
| /* |
| * nanosleep for monotonic and realtime clocks |
| */ |
| static int common_nsleep(const clockid_t which_clock, int flags, |
| const struct timespec64 *rqtp) |
| { |
| ktime_t texp = timespec64_to_ktime(*rqtp); |
| |
| return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ? |
| HRTIMER_MODE_ABS : HRTIMER_MODE_REL, |
| which_clock); |
| } |
| |
| static int common_nsleep_timens(const clockid_t which_clock, int flags, |
| const struct timespec64 *rqtp) |
| { |
| ktime_t texp = timespec64_to_ktime(*rqtp); |
| |
| if (flags & TIMER_ABSTIME) |
| texp = timens_ktime_to_host(which_clock, texp); |
| |
| return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ? |
| HRTIMER_MODE_ABS : HRTIMER_MODE_REL, |
| which_clock); |
| } |
| |
| SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags, |
| const struct __kernel_timespec __user *, rqtp, |
| struct __kernel_timespec __user *, rmtp) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct timespec64 t; |
| |
| if (!kc) |
| return -EINVAL; |
| if (!kc->nsleep) |
| return -EOPNOTSUPP; |
| |
| if (get_timespec64(&t, rqtp)) |
| return -EFAULT; |
| |
| if (!timespec64_valid(&t)) |
| return -EINVAL; |
| if (flags & TIMER_ABSTIME) |
| rmtp = NULL; |
| current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; |
| current->restart_block.nanosleep.rmtp = rmtp; |
| |
| return kc->nsleep(which_clock, flags, &t); |
| } |
| |
| #ifdef CONFIG_COMPAT_32BIT_TIME |
| |
| SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags, |
| struct old_timespec32 __user *, rqtp, |
| struct old_timespec32 __user *, rmtp) |
| { |
| const struct k_clock *kc = clockid_to_kclock(which_clock); |
| struct timespec64 t; |
| |
| if (!kc) |
| return -EINVAL; |
| if (!kc->nsleep) |
| return -EOPNOTSUPP; |
| |
| if (get_old_timespec32(&t, rqtp)) |
| return -EFAULT; |
| |
| if (!timespec64_valid(&t)) |
| return -EINVAL; |
| if (flags & TIMER_ABSTIME) |
| rmtp = NULL; |
| current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; |
| current->restart_block.nanosleep.compat_rmtp = rmtp; |
| |
| return kc->nsleep(which_clock, flags, &t); |
| } |
| |
| #endif |
| |
| static const struct k_clock clock_realtime = { |
| .clock_getres = posix_get_hrtimer_res, |
| .clock_get_timespec = posix_get_realtime_timespec, |
| .clock_get_ktime = posix_get_realtime_ktime, |
| .clock_set = posix_clock_realtime_set, |
| .clock_adj = posix_clock_realtime_adj, |
| .nsleep = common_nsleep, |
| .timer_create = common_timer_create, |
| .timer_set = common_timer_set, |
| .timer_get = common_timer_get, |
| .timer_del = common_timer_del, |
| .timer_rearm = common_hrtimer_rearm, |
| .timer_forward = common_hrtimer_forward, |
| .timer_remaining = common_hrtimer_remaining, |
| .timer_try_to_cancel = common_hrtimer_try_to_cancel, |
| .timer_wait_running = common_timer_wait_running, |
| .timer_arm = common_hrtimer_arm, |
| }; |
| |
| static const struct k_clock clock_monotonic = { |
| .clock_getres = posix_get_hrtimer_res, |
| .clock_get_timespec = posix_get_monotonic_timespec, |
| .clock_get_ktime = posix_get_monotonic_ktime, |
| .nsleep = common_nsleep_timens, |
| .timer_create = common_timer_create, |
| .timer_set = common_timer_set, |
| .timer_get = common_timer_get, |
| .timer_del = common_timer_del, |
| .timer_rearm = common_hrtimer_rearm, |
| .timer_forward = common_hrtimer_forward, |
| .timer_remaining = common_hrtimer_remaining, |
| .timer_try_to_cancel = common_hrtimer_try_to_cancel, |
| .timer_wait_running = common_timer_wait_running, |
| .timer_arm = common_hrtimer_arm, |
| }; |
| |
| static const struct k_clock clock_monotonic_raw = { |
| .clock_getres = posix_get_hrtimer_res, |
| .clock_get_timespec = posix_get_monotonic_raw, |
| }; |
| |
| static const struct k_clock clock_realtime_coarse = { |
| .clock_getres = posix_get_coarse_res, |
| .clock_get_timespec = posix_get_realtime_coarse, |
| }; |
| |
| static const struct k_clock clock_monotonic_coarse = { |
| .clock_getres = posix_get_coarse_res, |
| .clock_get_timespec = posix_get_monotonic_coarse, |
| }; |
| |
| static const struct k_clock clock_tai = { |
| .clock_getres = posix_get_hrtimer_res, |
| .clock_get_ktime = posix_get_tai_ktime, |
| .clock_get_timespec = posix_get_tai_timespec, |
| .nsleep = common_nsleep, |
| .timer_create = common_timer_create, |
| .timer_set = common_timer_set, |
| .timer_get = common_timer_get, |
| .timer_del = common_timer_del, |
| .timer_rearm = common_hrtimer_rearm, |
| .timer_forward = common_hrtimer_forward, |
| .timer_remaining = common_hrtimer_remaining, |
| .timer_try_to_cancel = common_hrtimer_try_to_cancel, |
| .timer_wait_running = common_timer_wait_running, |
| .timer_arm = common_hrtimer_arm, |
| }; |
| |
| static const struct k_clock clock_boottime = { |
| .clock_getres = posix_get_hrtimer_res, |
| .clock_get_ktime = posix_get_boottime_ktime, |
| .clock_get_timespec = posix_get_boottime_timespec, |
| .nsleep = common_nsleep_timens, |
| .timer_create = common_timer_create, |
| .timer_set = common_timer_set, |
| .timer_get = common_timer_get, |
| .timer_del = common_timer_del, |
| .timer_rearm = common_hrtimer_rearm, |
| .timer_forward = common_hrtimer_forward, |
| .timer_remaining = common_hrtimer_remaining, |
| .timer_try_to_cancel = common_hrtimer_try_to_cancel, |
| .timer_wait_running = common_timer_wait_running, |
| .timer_arm = common_hrtimer_arm, |
| }; |
| |
| static const struct k_clock * const posix_clocks[] = { |
| [CLOCK_REALTIME] = &clock_realtime, |
| [CLOCK_MONOTONIC] = &clock_monotonic, |
| [CLOCK_PROCESS_CPUTIME_ID] = &clock_process, |
| [CLOCK_THREAD_CPUTIME_ID] = &clock_thread, |
| [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw, |
| [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse, |
| [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse, |
| [CLOCK_BOOTTIME] = &clock_boottime, |
| [CLOCK_REALTIME_ALARM] = &alarm_clock, |
| [CLOCK_BOOTTIME_ALARM] = &alarm_clock, |
| [CLOCK_TAI] = &clock_tai, |
| }; |
| |
| static const struct k_clock *clockid_to_kclock(const clockid_t id) |
| { |
| clockid_t idx = id; |
| |
| if (id < 0) { |
| return (id & CLOCKFD_MASK) == CLOCKFD ? |
| &clock_posix_dynamic : &clock_posix_cpu; |
| } |
| |
| if (id >= ARRAY_SIZE(posix_clocks)) |
| return NULL; |
| |
| return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))]; |
| } |