| // SPDX-License-Identifier: (GPL-2.0 OR MIT) |
| /* Microsemi Ocelot Switch driver |
| * Copyright (c) 2019 Microsemi Corporation |
| */ |
| |
| #include <linux/iopoll.h> |
| #include <linux/proc_fs.h> |
| |
| #include "ocelot_ace.h" |
| #include "ocelot_vcap.h" |
| #include "ocelot_s2.h" |
| |
| #define OCELOT_POLICER_DISCARD 0x17f |
| |
| static struct ocelot_acl_block *acl_block; |
| |
| struct vcap_props { |
| const char *name; /* Symbolic name */ |
| u16 tg_width; /* Type-group width (in bits) */ |
| u16 sw_count; /* Sub word count */ |
| u16 entry_count; /* Entry count */ |
| u16 entry_words; /* Number of entry words */ |
| u16 entry_width; /* Entry width (in bits) */ |
| u16 action_count; /* Action count */ |
| u16 action_words; /* Number of action words */ |
| u16 action_width; /* Action width (in bits) */ |
| u16 action_type_width; /* Action type width (in bits) */ |
| struct { |
| u16 width; /* Action type width (in bits) */ |
| u16 count; /* Action type sub word count */ |
| } action_table[2]; |
| u16 counter_words; /* Number of counter words */ |
| u16 counter_width; /* Counter width (in bits) */ |
| }; |
| |
| #define ENTRY_WIDTH 32 |
| #define BITS_TO_32BIT(x) (1 + (((x) - 1) / ENTRY_WIDTH)) |
| |
| static const struct vcap_props vcap_is2 = { |
| .name = "IS2", |
| .tg_width = 2, |
| .sw_count = 4, |
| .entry_count = VCAP_IS2_CNT, |
| .entry_words = BITS_TO_32BIT(VCAP_IS2_ENTRY_WIDTH), |
| .entry_width = VCAP_IS2_ENTRY_WIDTH, |
| .action_count = (VCAP_IS2_CNT + VCAP_PORT_CNT + 2), |
| .action_words = BITS_TO_32BIT(VCAP_IS2_ACTION_WIDTH), |
| .action_width = (VCAP_IS2_ACTION_WIDTH), |
| .action_type_width = 1, |
| .action_table = { |
| { |
| .width = (IS2_AO_ACL_ID + IS2_AL_ACL_ID), |
| .count = 2 |
| }, |
| { |
| .width = 6, |
| .count = 4 |
| }, |
| }, |
| .counter_words = BITS_TO_32BIT(4 * ENTRY_WIDTH), |
| .counter_width = ENTRY_WIDTH, |
| }; |
| |
| enum vcap_sel { |
| VCAP_SEL_ENTRY = 0x1, |
| VCAP_SEL_ACTION = 0x2, |
| VCAP_SEL_COUNTER = 0x4, |
| VCAP_SEL_ALL = 0x7, |
| }; |
| |
| enum vcap_cmd { |
| VCAP_CMD_WRITE = 0, /* Copy from Cache to TCAM */ |
| VCAP_CMD_READ = 1, /* Copy from TCAM to Cache */ |
| VCAP_CMD_MOVE_UP = 2, /* Move <count> up */ |
| VCAP_CMD_MOVE_DOWN = 3, /* Move <count> down */ |
| VCAP_CMD_INITIALIZE = 4, /* Write all (from cache) */ |
| }; |
| |
| #define VCAP_ENTRY_WIDTH 12 /* Max entry width (32bit words) */ |
| #define VCAP_COUNTER_WIDTH 4 /* Max counter width (32bit words) */ |
| |
| struct vcap_data { |
| u32 entry[VCAP_ENTRY_WIDTH]; /* ENTRY_DAT */ |
| u32 mask[VCAP_ENTRY_WIDTH]; /* MASK_DAT */ |
| u32 action[VCAP_ENTRY_WIDTH]; /* ACTION_DAT */ |
| u32 counter[VCAP_COUNTER_WIDTH]; /* CNT_DAT */ |
| u32 tg; /* TG_DAT */ |
| u32 type; /* Action type */ |
| u32 tg_sw; /* Current type-group */ |
| u32 cnt; /* Current counter */ |
| u32 key_offset; /* Current entry offset */ |
| u32 action_offset; /* Current action offset */ |
| u32 counter_offset; /* Current counter offset */ |
| u32 tg_value; /* Current type-group value */ |
| u32 tg_mask; /* Current type-group mask */ |
| }; |
| |
| static u32 vcap_s2_read_update_ctrl(struct ocelot *oc) |
| { |
| return ocelot_read(oc, S2_CORE_UPDATE_CTRL); |
| } |
| |
| static void vcap_cmd(struct ocelot *oc, u16 ix, int cmd, int sel) |
| { |
| u32 value = (S2_CORE_UPDATE_CTRL_UPDATE_CMD(cmd) | |
| S2_CORE_UPDATE_CTRL_UPDATE_ADDR(ix) | |
| S2_CORE_UPDATE_CTRL_UPDATE_SHOT); |
| |
| if ((sel & VCAP_SEL_ENTRY) && ix >= vcap_is2.entry_count) |
| return; |
| |
| if (!(sel & VCAP_SEL_ENTRY)) |
| value |= S2_CORE_UPDATE_CTRL_UPDATE_ENTRY_DIS; |
| |
| if (!(sel & VCAP_SEL_ACTION)) |
| value |= S2_CORE_UPDATE_CTRL_UPDATE_ACTION_DIS; |
| |
| if (!(sel & VCAP_SEL_COUNTER)) |
| value |= S2_CORE_UPDATE_CTRL_UPDATE_CNT_DIS; |
| |
| ocelot_write(oc, value, S2_CORE_UPDATE_CTRL); |
| readx_poll_timeout(vcap_s2_read_update_ctrl, oc, value, |
| (value & S2_CORE_UPDATE_CTRL_UPDATE_SHOT) == 0, |
| 10, 100000); |
| } |
| |
| /* Convert from 0-based row to VCAP entry row and run command */ |
| static void vcap_row_cmd(struct ocelot *oc, u32 row, int cmd, int sel) |
| { |
| vcap_cmd(oc, vcap_is2.entry_count - row - 1, cmd, sel); |
| } |
| |
| static void vcap_entry2cache(struct ocelot *oc, struct vcap_data *data) |
| { |
| u32 i; |
| |
| for (i = 0; i < vcap_is2.entry_words; i++) { |
| ocelot_write_rix(oc, data->entry[i], S2_CACHE_ENTRY_DAT, i); |
| ocelot_write_rix(oc, ~data->mask[i], S2_CACHE_MASK_DAT, i); |
| } |
| ocelot_write(oc, data->tg, S2_CACHE_TG_DAT); |
| } |
| |
| static void vcap_cache2entry(struct ocelot *oc, struct vcap_data *data) |
| { |
| u32 i; |
| |
| for (i = 0; i < vcap_is2.entry_words; i++) { |
| data->entry[i] = ocelot_read_rix(oc, S2_CACHE_ENTRY_DAT, i); |
| // Invert mask |
| data->mask[i] = ~ocelot_read_rix(oc, S2_CACHE_MASK_DAT, i); |
| } |
| data->tg = ocelot_read(oc, S2_CACHE_TG_DAT); |
| } |
| |
| static void vcap_action2cache(struct ocelot *oc, struct vcap_data *data) |
| { |
| u32 i, width, mask; |
| |
| /* Encode action type */ |
| width = vcap_is2.action_type_width; |
| if (width) { |
| mask = GENMASK(width, 0); |
| data->action[0] = ((data->action[0] & ~mask) | data->type); |
| } |
| |
| for (i = 0; i < vcap_is2.action_words; i++) |
| ocelot_write_rix(oc, data->action[i], S2_CACHE_ACTION_DAT, i); |
| |
| for (i = 0; i < vcap_is2.counter_words; i++) |
| ocelot_write_rix(oc, data->counter[i], S2_CACHE_CNT_DAT, i); |
| } |
| |
| static void vcap_cache2action(struct ocelot *oc, struct vcap_data *data) |
| { |
| u32 i, width; |
| |
| for (i = 0; i < vcap_is2.action_words; i++) |
| data->action[i] = ocelot_read_rix(oc, S2_CACHE_ACTION_DAT, i); |
| |
| for (i = 0; i < vcap_is2.counter_words; i++) |
| data->counter[i] = ocelot_read_rix(oc, S2_CACHE_CNT_DAT, i); |
| |
| /* Extract action type */ |
| width = vcap_is2.action_type_width; |
| data->type = (width ? (data->action[0] & GENMASK(width, 0)) : 0); |
| } |
| |
| /* Calculate offsets for entry */ |
| static void is2_data_get(struct vcap_data *data, int ix) |
| { |
| u32 i, col, offset, count, cnt, base, width = vcap_is2.tg_width; |
| |
| count = (data->tg_sw == VCAP_TG_HALF ? 2 : 4); |
| col = (ix % 2); |
| cnt = (vcap_is2.sw_count / count); |
| base = (vcap_is2.sw_count - col * cnt - cnt); |
| data->tg_value = 0; |
| data->tg_mask = 0; |
| for (i = 0; i < cnt; i++) { |
| offset = ((base + i) * width); |
| data->tg_value |= (data->tg_sw << offset); |
| data->tg_mask |= GENMASK(offset + width - 1, offset); |
| } |
| |
| /* Calculate key/action/counter offsets */ |
| col = (count - col - 1); |
| data->key_offset = (base * vcap_is2.entry_width) / vcap_is2.sw_count; |
| data->counter_offset = (cnt * col * vcap_is2.counter_width); |
| i = data->type; |
| width = vcap_is2.action_table[i].width; |
| cnt = vcap_is2.action_table[i].count; |
| data->action_offset = |
| (((cnt * col * width) / count) + vcap_is2.action_type_width); |
| } |
| |
| static void vcap_data_set(u32 *data, u32 offset, u32 len, u32 value) |
| { |
| u32 i, v, m; |
| |
| for (i = 0; i < len; i++, offset++) { |
| v = data[offset / ENTRY_WIDTH]; |
| m = (1 << (offset % ENTRY_WIDTH)); |
| if (value & (1 << i)) |
| v |= m; |
| else |
| v &= ~m; |
| data[offset / ENTRY_WIDTH] = v; |
| } |
| } |
| |
| static u32 vcap_data_get(u32 *data, u32 offset, u32 len) |
| { |
| u32 i, v, m, value = 0; |
| |
| for (i = 0; i < len; i++, offset++) { |
| v = data[offset / ENTRY_WIDTH]; |
| m = (1 << (offset % ENTRY_WIDTH)); |
| if (v & m) |
| value |= (1 << i); |
| } |
| return value; |
| } |
| |
| static void vcap_key_set(struct vcap_data *data, u32 offset, u32 width, |
| u32 value, u32 mask) |
| { |
| vcap_data_set(data->entry, offset + data->key_offset, width, value); |
| vcap_data_set(data->mask, offset + data->key_offset, width, mask); |
| } |
| |
| static void vcap_key_bytes_set(struct vcap_data *data, u32 offset, u8 *val, |
| u8 *msk, u32 count) |
| { |
| u32 i, j, n = 0, value = 0, mask = 0; |
| |
| /* Data wider than 32 bits are split up in chunks of maximum 32 bits. |
| * The 32 LSB of the data are written to the 32 MSB of the TCAM. |
| */ |
| offset += (count * 8); |
| for (i = 0; i < count; i++) { |
| j = (count - i - 1); |
| value += (val[j] << n); |
| mask += (msk[j] << n); |
| n += 8; |
| if (n == ENTRY_WIDTH || (i + 1) == count) { |
| offset -= n; |
| vcap_key_set(data, offset, n, value, mask); |
| n = 0; |
| value = 0; |
| mask = 0; |
| } |
| } |
| } |
| |
| static void vcap_key_l4_port_set(struct vcap_data *data, u32 offset, |
| struct ocelot_vcap_udp_tcp *port) |
| { |
| vcap_key_set(data, offset, 16, port->value, port->mask); |
| } |
| |
| static void vcap_key_bit_set(struct vcap_data *data, u32 offset, |
| enum ocelot_vcap_bit val) |
| { |
| vcap_key_set(data, offset, 1, val == OCELOT_VCAP_BIT_1 ? 1 : 0, |
| val == OCELOT_VCAP_BIT_ANY ? 0 : 1); |
| } |
| |
| #define VCAP_KEY_SET(fld, val, msk) \ |
| vcap_key_set(&data, IS2_HKO_##fld, IS2_HKL_##fld, val, msk) |
| #define VCAP_KEY_ANY_SET(fld) \ |
| vcap_key_set(&data, IS2_HKO_##fld, IS2_HKL_##fld, 0, 0) |
| #define VCAP_KEY_BIT_SET(fld, val) vcap_key_bit_set(&data, IS2_HKO_##fld, val) |
| #define VCAP_KEY_BYTES_SET(fld, val, msk) \ |
| vcap_key_bytes_set(&data, IS2_HKO_##fld, val, msk, IS2_HKL_##fld / 8) |
| |
| static void vcap_action_set(struct vcap_data *data, u32 offset, u32 width, |
| u32 value) |
| { |
| vcap_data_set(data->action, offset + data->action_offset, width, value); |
| } |
| |
| #define VCAP_ACT_SET(fld, val) \ |
| vcap_action_set(data, IS2_AO_##fld, IS2_AL_##fld, val) |
| |
| static void is2_action_set(struct vcap_data *data, |
| enum ocelot_ace_action action) |
| { |
| switch (action) { |
| case OCELOT_ACL_ACTION_DROP: |
| VCAP_ACT_SET(PORT_MASK, 0x0); |
| VCAP_ACT_SET(MASK_MODE, 0x1); |
| VCAP_ACT_SET(POLICE_ENA, 0x1); |
| VCAP_ACT_SET(POLICE_IDX, OCELOT_POLICER_DISCARD); |
| VCAP_ACT_SET(CPU_QU_NUM, 0x0); |
| VCAP_ACT_SET(CPU_COPY_ENA, 0x0); |
| break; |
| case OCELOT_ACL_ACTION_TRAP: |
| VCAP_ACT_SET(PORT_MASK, 0x0); |
| VCAP_ACT_SET(MASK_MODE, 0x1); |
| VCAP_ACT_SET(POLICE_ENA, 0x0); |
| VCAP_ACT_SET(POLICE_IDX, 0x0); |
| VCAP_ACT_SET(CPU_QU_NUM, 0x0); |
| VCAP_ACT_SET(CPU_COPY_ENA, 0x1); |
| break; |
| } |
| } |
| |
| static void is2_entry_set(struct ocelot *ocelot, int ix, |
| struct ocelot_ace_rule *ace) |
| { |
| u32 val, msk, type, type_mask = 0xf, i, count; |
| struct ocelot_ace_vlan *tag = &ace->vlan; |
| struct ocelot_vcap_u64 payload; |
| struct vcap_data data; |
| int row = (ix / 2); |
| |
| memset(&payload, 0, sizeof(payload)); |
| memset(&data, 0, sizeof(data)); |
| |
| /* Read row */ |
| vcap_row_cmd(ocelot, row, VCAP_CMD_READ, VCAP_SEL_ALL); |
| vcap_cache2entry(ocelot, &data); |
| vcap_cache2action(ocelot, &data); |
| |
| data.tg_sw = VCAP_TG_HALF; |
| is2_data_get(&data, ix); |
| data.tg = (data.tg & ~data.tg_mask); |
| if (ace->prio != 0) |
| data.tg |= data.tg_value; |
| |
| data.type = IS2_ACTION_TYPE_NORMAL; |
| |
| VCAP_KEY_ANY_SET(PAG); |
| VCAP_KEY_SET(IGR_PORT_MASK, 0, ~BIT(ace->chip_port)); |
| VCAP_KEY_BIT_SET(FIRST, OCELOT_VCAP_BIT_1); |
| VCAP_KEY_BIT_SET(HOST_MATCH, OCELOT_VCAP_BIT_ANY); |
| VCAP_KEY_BIT_SET(L2_MC, ace->dmac_mc); |
| VCAP_KEY_BIT_SET(L2_BC, ace->dmac_bc); |
| VCAP_KEY_BIT_SET(VLAN_TAGGED, tag->tagged); |
| VCAP_KEY_SET(VID, tag->vid.value, tag->vid.mask); |
| VCAP_KEY_SET(PCP, tag->pcp.value[0], tag->pcp.mask[0]); |
| VCAP_KEY_BIT_SET(DEI, tag->dei); |
| |
| switch (ace->type) { |
| case OCELOT_ACE_TYPE_ETYPE: { |
| struct ocelot_ace_frame_etype *etype = &ace->frame.etype; |
| |
| type = IS2_TYPE_ETYPE; |
| VCAP_KEY_BYTES_SET(L2_DMAC, etype->dmac.value, |
| etype->dmac.mask); |
| VCAP_KEY_BYTES_SET(L2_SMAC, etype->smac.value, |
| etype->smac.mask); |
| VCAP_KEY_BYTES_SET(MAC_ETYPE_ETYPE, etype->etype.value, |
| etype->etype.mask); |
| VCAP_KEY_ANY_SET(MAC_ETYPE_L2_PAYLOAD); // Clear unused bits |
| vcap_key_bytes_set(&data, IS2_HKO_MAC_ETYPE_L2_PAYLOAD, |
| etype->data.value, etype->data.mask, 2); |
| break; |
| } |
| case OCELOT_ACE_TYPE_LLC: { |
| struct ocelot_ace_frame_llc *llc = &ace->frame.llc; |
| |
| type = IS2_TYPE_LLC; |
| VCAP_KEY_BYTES_SET(L2_DMAC, llc->dmac.value, llc->dmac.mask); |
| VCAP_KEY_BYTES_SET(L2_SMAC, llc->smac.value, llc->smac.mask); |
| for (i = 0; i < 4; i++) { |
| payload.value[i] = llc->llc.value[i]; |
| payload.mask[i] = llc->llc.mask[i]; |
| } |
| VCAP_KEY_BYTES_SET(MAC_LLC_L2_LLC, payload.value, payload.mask); |
| break; |
| } |
| case OCELOT_ACE_TYPE_SNAP: { |
| struct ocelot_ace_frame_snap *snap = &ace->frame.snap; |
| |
| type = IS2_TYPE_SNAP; |
| VCAP_KEY_BYTES_SET(L2_DMAC, snap->dmac.value, snap->dmac.mask); |
| VCAP_KEY_BYTES_SET(L2_SMAC, snap->smac.value, snap->smac.mask); |
| VCAP_KEY_BYTES_SET(MAC_SNAP_L2_SNAP, |
| ace->frame.snap.snap.value, |
| ace->frame.snap.snap.mask); |
| break; |
| } |
| case OCELOT_ACE_TYPE_ARP: { |
| struct ocelot_ace_frame_arp *arp = &ace->frame.arp; |
| |
| type = IS2_TYPE_ARP; |
| VCAP_KEY_BYTES_SET(MAC_ARP_L2_SMAC, arp->smac.value, |
| arp->smac.mask); |
| VCAP_KEY_BIT_SET(MAC_ARP_ARP_ADDR_SPACE_OK, arp->ethernet); |
| VCAP_KEY_BIT_SET(MAC_ARP_ARP_PROTO_SPACE_OK, arp->ip); |
| VCAP_KEY_BIT_SET(MAC_ARP_ARP_LEN_OK, arp->length); |
| VCAP_KEY_BIT_SET(MAC_ARP_ARP_TGT_MATCH, arp->dmac_match); |
| VCAP_KEY_BIT_SET(MAC_ARP_ARP_SENDER_MATCH, arp->smac_match); |
| VCAP_KEY_BIT_SET(MAC_ARP_ARP_OPCODE_UNKNOWN, arp->unknown); |
| |
| /* OPCODE is inverse, bit 0 is reply flag, bit 1 is RARP flag */ |
| val = ((arp->req == OCELOT_VCAP_BIT_0 ? 1 : 0) | |
| (arp->arp == OCELOT_VCAP_BIT_0 ? 2 : 0)); |
| msk = ((arp->req == OCELOT_VCAP_BIT_ANY ? 0 : 1) | |
| (arp->arp == OCELOT_VCAP_BIT_ANY ? 0 : 2)); |
| VCAP_KEY_SET(MAC_ARP_ARP_OPCODE, val, msk); |
| vcap_key_bytes_set(&data, IS2_HKO_MAC_ARP_L3_IP4_DIP, |
| arp->dip.value.addr, arp->dip.mask.addr, 4); |
| vcap_key_bytes_set(&data, IS2_HKO_MAC_ARP_L3_IP4_SIP, |
| arp->sip.value.addr, arp->sip.mask.addr, 4); |
| VCAP_KEY_ANY_SET(MAC_ARP_DIP_EQ_SIP); |
| break; |
| } |
| case OCELOT_ACE_TYPE_IPV4: |
| case OCELOT_ACE_TYPE_IPV6: { |
| enum ocelot_vcap_bit sip_eq_dip, sport_eq_dport, seq_zero, tcp; |
| enum ocelot_vcap_bit ttl, fragment, options, tcp_ack, tcp_urg; |
| enum ocelot_vcap_bit tcp_fin, tcp_syn, tcp_rst, tcp_psh; |
| struct ocelot_ace_frame_ipv4 *ipv4 = NULL; |
| struct ocelot_ace_frame_ipv6 *ipv6 = NULL; |
| struct ocelot_vcap_udp_tcp *sport, *dport; |
| struct ocelot_vcap_ipv4 sip, dip; |
| struct ocelot_vcap_u8 proto, ds; |
| struct ocelot_vcap_u48 *ip_data; |
| |
| if (ace->type == OCELOT_ACE_TYPE_IPV4) { |
| ipv4 = &ace->frame.ipv4; |
| ttl = ipv4->ttl; |
| fragment = ipv4->fragment; |
| options = ipv4->options; |
| proto = ipv4->proto; |
| ds = ipv4->ds; |
| ip_data = &ipv4->data; |
| sip = ipv4->sip; |
| dip = ipv4->dip; |
| sport = &ipv4->sport; |
| dport = &ipv4->dport; |
| tcp_fin = ipv4->tcp_fin; |
| tcp_syn = ipv4->tcp_syn; |
| tcp_rst = ipv4->tcp_rst; |
| tcp_psh = ipv4->tcp_psh; |
| tcp_ack = ipv4->tcp_ack; |
| tcp_urg = ipv4->tcp_urg; |
| sip_eq_dip = ipv4->sip_eq_dip; |
| sport_eq_dport = ipv4->sport_eq_dport; |
| seq_zero = ipv4->seq_zero; |
| } else { |
| ipv6 = &ace->frame.ipv6; |
| ttl = ipv6->ttl; |
| fragment = OCELOT_VCAP_BIT_ANY; |
| options = OCELOT_VCAP_BIT_ANY; |
| proto = ipv6->proto; |
| ds = ipv6->ds; |
| ip_data = &ipv6->data; |
| for (i = 0; i < 8; i++) { |
| val = ipv6->sip.value[i + 8]; |
| msk = ipv6->sip.mask[i + 8]; |
| if (i < 4) { |
| dip.value.addr[i] = val; |
| dip.mask.addr[i] = msk; |
| } else { |
| sip.value.addr[i - 4] = val; |
| sip.mask.addr[i - 4] = msk; |
| } |
| } |
| sport = &ipv6->sport; |
| dport = &ipv6->dport; |
| tcp_fin = ipv6->tcp_fin; |
| tcp_syn = ipv6->tcp_syn; |
| tcp_rst = ipv6->tcp_rst; |
| tcp_psh = ipv6->tcp_psh; |
| tcp_ack = ipv6->tcp_ack; |
| tcp_urg = ipv6->tcp_urg; |
| sip_eq_dip = ipv6->sip_eq_dip; |
| sport_eq_dport = ipv6->sport_eq_dport; |
| seq_zero = ipv6->seq_zero; |
| } |
| |
| VCAP_KEY_BIT_SET(IP4, |
| ipv4 ? OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0); |
| VCAP_KEY_BIT_SET(L3_FRAGMENT, fragment); |
| VCAP_KEY_ANY_SET(L3_FRAG_OFS_GT0); |
| VCAP_KEY_BIT_SET(L3_OPTIONS, options); |
| VCAP_KEY_BIT_SET(L3_TTL_GT0, ttl); |
| VCAP_KEY_BYTES_SET(L3_TOS, ds.value, ds.mask); |
| vcap_key_bytes_set(&data, IS2_HKO_L3_IP4_DIP, dip.value.addr, |
| dip.mask.addr, 4); |
| vcap_key_bytes_set(&data, IS2_HKO_L3_IP4_SIP, sip.value.addr, |
| sip.mask.addr, 4); |
| VCAP_KEY_BIT_SET(DIP_EQ_SIP, sip_eq_dip); |
| val = proto.value[0]; |
| msk = proto.mask[0]; |
| type = IS2_TYPE_IP_UDP_TCP; |
| if (msk == 0xff && (val == 6 || val == 17)) { |
| /* UDP/TCP protocol match */ |
| tcp = (val == 6 ? |
| OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0); |
| VCAP_KEY_BIT_SET(IP4_TCP_UDP_TCP, tcp); |
| vcap_key_l4_port_set(&data, |
| IS2_HKO_IP4_TCP_UDP_L4_DPORT, |
| dport); |
| vcap_key_l4_port_set(&data, |
| IS2_HKO_IP4_TCP_UDP_L4_SPORT, |
| sport); |
| VCAP_KEY_ANY_SET(IP4_TCP_UDP_L4_RNG); |
| VCAP_KEY_BIT_SET(IP4_TCP_UDP_SPORT_EQ_DPORT, |
| sport_eq_dport); |
| VCAP_KEY_BIT_SET(IP4_TCP_UDP_SEQUENCE_EQ0, seq_zero); |
| VCAP_KEY_BIT_SET(IP4_TCP_UDP_L4_FIN, tcp_fin); |
| VCAP_KEY_BIT_SET(IP4_TCP_UDP_L4_SYN, tcp_syn); |
| VCAP_KEY_BIT_SET(IP4_TCP_UDP_L4_RST, tcp_rst); |
| VCAP_KEY_BIT_SET(IP4_TCP_UDP_L4_PSH, tcp_psh); |
| VCAP_KEY_BIT_SET(IP4_TCP_UDP_L4_ACK, tcp_ack); |
| VCAP_KEY_BIT_SET(IP4_TCP_UDP_L4_URG, tcp_urg); |
| VCAP_KEY_ANY_SET(IP4_TCP_UDP_L4_1588_DOM); |
| VCAP_KEY_ANY_SET(IP4_TCP_UDP_L4_1588_VER); |
| } else { |
| if (msk == 0) { |
| /* Any IP protocol match */ |
| type_mask = IS2_TYPE_MASK_IP_ANY; |
| } else { |
| /* Non-UDP/TCP protocol match */ |
| type = IS2_TYPE_IP_OTHER; |
| for (i = 0; i < 6; i++) { |
| payload.value[i] = ip_data->value[i]; |
| payload.mask[i] = ip_data->mask[i]; |
| } |
| } |
| VCAP_KEY_BYTES_SET(IP4_OTHER_L3_PROTO, proto.value, |
| proto.mask); |
| VCAP_KEY_BYTES_SET(IP4_OTHER_L3_PAYLOAD, payload.value, |
| payload.mask); |
| } |
| break; |
| } |
| case OCELOT_ACE_TYPE_ANY: |
| default: |
| type = 0; |
| type_mask = 0; |
| count = (vcap_is2.entry_width / 2); |
| for (i = (IS2_HKO_PCP + IS2_HKL_PCP); i < count; |
| i += ENTRY_WIDTH) { |
| /* Clear entry data */ |
| vcap_key_set(&data, i, min(32u, count - i), 0, 0); |
| } |
| break; |
| } |
| |
| VCAP_KEY_SET(TYPE, type, type_mask); |
| is2_action_set(&data, ace->action); |
| vcap_data_set(data.counter, data.counter_offset, vcap_is2.counter_width, |
| ace->stats.pkts); |
| |
| /* Write row */ |
| vcap_entry2cache(ocelot, &data); |
| vcap_action2cache(ocelot, &data); |
| vcap_row_cmd(ocelot, row, VCAP_CMD_WRITE, VCAP_SEL_ALL); |
| } |
| |
| static void is2_entry_get(struct ocelot_ace_rule *rule, int ix) |
| { |
| struct ocelot *op = rule->port->ocelot; |
| struct vcap_data data; |
| int row = (ix / 2); |
| u32 cnt; |
| |
| vcap_row_cmd(op, row, VCAP_CMD_READ, VCAP_SEL_COUNTER); |
| vcap_cache2action(op, &data); |
| data.tg_sw = VCAP_TG_HALF; |
| is2_data_get(&data, ix); |
| cnt = vcap_data_get(data.counter, data.counter_offset, |
| vcap_is2.counter_width); |
| |
| rule->stats.pkts = cnt; |
| } |
| |
| static void ocelot_ace_rule_add(struct ocelot_acl_block *block, |
| struct ocelot_ace_rule *rule) |
| { |
| struct ocelot_ace_rule *tmp; |
| struct list_head *pos, *n; |
| |
| block->count++; |
| |
| if (list_empty(&block->rules)) { |
| list_add(&rule->list, &block->rules); |
| return; |
| } |
| |
| list_for_each_safe(pos, n, &block->rules) { |
| tmp = list_entry(pos, struct ocelot_ace_rule, list); |
| if (rule->prio < tmp->prio) |
| break; |
| } |
| list_add(&rule->list, pos->prev); |
| } |
| |
| static int ocelot_ace_rule_get_index_id(struct ocelot_acl_block *block, |
| struct ocelot_ace_rule *rule) |
| { |
| struct ocelot_ace_rule *tmp; |
| int index = -1; |
| |
| list_for_each_entry(tmp, &block->rules, list) { |
| ++index; |
| if (rule->id == tmp->id) |
| break; |
| } |
| return index; |
| } |
| |
| static struct ocelot_ace_rule* |
| ocelot_ace_rule_get_rule_index(struct ocelot_acl_block *block, int index) |
| { |
| struct ocelot_ace_rule *tmp; |
| int i = 0; |
| |
| list_for_each_entry(tmp, &block->rules, list) { |
| if (i == index) |
| return tmp; |
| ++i; |
| } |
| |
| return NULL; |
| } |
| |
| int ocelot_ace_rule_offload_add(struct ocelot_ace_rule *rule) |
| { |
| struct ocelot_ace_rule *ace; |
| int i, index; |
| |
| /* Add rule to the linked list */ |
| ocelot_ace_rule_add(acl_block, rule); |
| |
| /* Get the index of the inserted rule */ |
| index = ocelot_ace_rule_get_index_id(acl_block, rule); |
| |
| /* Move down the rules to make place for the new rule */ |
| for (i = acl_block->count - 1; i > index; i--) { |
| ace = ocelot_ace_rule_get_rule_index(acl_block, i); |
| is2_entry_set(rule->port->ocelot, i, ace); |
| } |
| |
| /* Now insert the new rule */ |
| is2_entry_set(rule->port->ocelot, index, rule); |
| return 0; |
| } |
| |
| static void ocelot_ace_rule_del(struct ocelot_acl_block *block, |
| struct ocelot_ace_rule *rule) |
| { |
| struct ocelot_ace_rule *tmp; |
| struct list_head *pos, *q; |
| |
| list_for_each_safe(pos, q, &block->rules) { |
| tmp = list_entry(pos, struct ocelot_ace_rule, list); |
| if (tmp->id == rule->id) { |
| list_del(pos); |
| kfree(tmp); |
| } |
| } |
| |
| block->count--; |
| } |
| |
| int ocelot_ace_rule_offload_del(struct ocelot_ace_rule *rule) |
| { |
| struct ocelot_ace_rule del_ace; |
| struct ocelot_ace_rule *ace; |
| int i, index; |
| |
| memset(&del_ace, 0, sizeof(del_ace)); |
| |
| /* Gets index of the rule */ |
| index = ocelot_ace_rule_get_index_id(acl_block, rule); |
| |
| /* Delete rule */ |
| ocelot_ace_rule_del(acl_block, rule); |
| |
| /* Move up all the blocks over the deleted rule */ |
| for (i = index; i < acl_block->count; i++) { |
| ace = ocelot_ace_rule_get_rule_index(acl_block, i); |
| is2_entry_set(rule->port->ocelot, i, ace); |
| } |
| |
| /* Now delete the last rule, because it is duplicated */ |
| is2_entry_set(rule->port->ocelot, acl_block->count, &del_ace); |
| |
| return 0; |
| } |
| |
| int ocelot_ace_rule_stats_update(struct ocelot_ace_rule *rule) |
| { |
| struct ocelot_ace_rule *tmp; |
| int index; |
| |
| index = ocelot_ace_rule_get_index_id(acl_block, rule); |
| is2_entry_get(rule, index); |
| |
| /* After we get the result we need to clear the counters */ |
| tmp = ocelot_ace_rule_get_rule_index(acl_block, index); |
| tmp->stats.pkts = 0; |
| is2_entry_set(rule->port->ocelot, index, tmp); |
| |
| return 0; |
| } |
| |
| static struct ocelot_acl_block *ocelot_acl_block_create(struct ocelot *ocelot) |
| { |
| struct ocelot_acl_block *block; |
| |
| block = kzalloc(sizeof(*block), GFP_KERNEL); |
| if (!block) |
| return NULL; |
| |
| INIT_LIST_HEAD(&block->rules); |
| block->count = 0; |
| block->ocelot = ocelot; |
| |
| return block; |
| } |
| |
| static void ocelot_acl_block_destroy(struct ocelot_acl_block *block) |
| { |
| kfree(block); |
| } |
| |
| int ocelot_ace_init(struct ocelot *ocelot) |
| { |
| struct vcap_data data; |
| |
| memset(&data, 0, sizeof(data)); |
| vcap_entry2cache(ocelot, &data); |
| ocelot_write(ocelot, vcap_is2.entry_count, S2_CORE_MV_CFG); |
| vcap_cmd(ocelot, 0, VCAP_CMD_INITIALIZE, VCAP_SEL_ENTRY); |
| |
| vcap_action2cache(ocelot, &data); |
| ocelot_write(ocelot, vcap_is2.action_count, S2_CORE_MV_CFG); |
| vcap_cmd(ocelot, 0, VCAP_CMD_INITIALIZE, |
| VCAP_SEL_ACTION | VCAP_SEL_COUNTER); |
| |
| /* Create a policer that will drop the frames for the cpu. |
| * This policer will be used as action in the acl rules to drop |
| * frames. |
| */ |
| ocelot_write_gix(ocelot, 0x299, ANA_POL_MODE_CFG, |
| OCELOT_POLICER_DISCARD); |
| ocelot_write_gix(ocelot, 0x1, ANA_POL_PIR_CFG, |
| OCELOT_POLICER_DISCARD); |
| ocelot_write_gix(ocelot, 0x3fffff, ANA_POL_PIR_STATE, |
| OCELOT_POLICER_DISCARD); |
| ocelot_write_gix(ocelot, 0x0, ANA_POL_CIR_CFG, |
| OCELOT_POLICER_DISCARD); |
| ocelot_write_gix(ocelot, 0x3fffff, ANA_POL_CIR_STATE, |
| OCELOT_POLICER_DISCARD); |
| |
| acl_block = ocelot_acl_block_create(ocelot); |
| |
| return 0; |
| } |
| |
| void ocelot_ace_deinit(void) |
| { |
| ocelot_acl_block_destroy(acl_block); |
| } |