blob: ce04218253dd63cf37b81c449d628ddaf99c17d1 [file] [log] [blame]
/*
* Copyright (c) 2007-2008 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/* */
/* Module Name : ioctl.c */
/* */
/* Abstract */
/* This module contains Linux wireless extension related functons. */
/* */
/* NOTES */
/* Platform dependent. */
/* */
/************************************************************************/
#include <linux/module.h>
#include <linux/if_arp.h>
#include <linux/uaccess.h>
#include "usbdrv.h"
#define ZD_IOCTL_WPA (SIOCDEVPRIVATE + 1)
#define ZD_IOCTL_PARAM (SIOCDEVPRIVATE + 2)
#define ZD_IOCTL_GETWPAIE (SIOCDEVPRIVATE + 3)
#ifdef ZM_ENABLE_CENC
#define ZM_IOCTL_CENC (SIOCDEVPRIVATE + 4)
#endif /* ZM_ENABLE_CENC */
#define ZD_PARAM_ROAMING 0x0001
#define ZD_PARAM_PRIVACY 0x0002
#define ZD_PARAM_WPA 0x0003
#define ZD_PARAM_COUNTERMEASURES 0x0004
#define ZD_PARAM_DROPUNENCRYPTED 0x0005
#define ZD_PARAM_AUTH_ALGS 0x0006
#define ZD_PARAM_WPS_FILTER 0x0007
#ifdef ZM_ENABLE_CENC
#define P80211_PACKET_CENCFLAG 0x0001
#endif /* ZM_ENABLE_CENC */
#define P80211_PACKET_SETKEY 0x0003
#define ZD_CMD_SET_ENCRYPT_KEY 0x0001
#define ZD_CMD_SET_MLME 0x0002
#define ZD_CMD_SCAN_REQ 0x0003
#define ZD_CMD_SET_GENERIC_ELEMENT 0x0004
#define ZD_CMD_GET_TSC 0x0005
#define ZD_CRYPT_ALG_NAME_LEN 16
#define ZD_MAX_KEY_SIZE 32
#define ZD_MAX_GENERIC_SIZE 64
#if WIRELESS_EXT > 12
#include <net/iw_handler.h>
#endif
extern u16_t zfLnxGetVapId(zdev_t *dev);
static const u32_t channel_frequency_11A[] =
{
/* Even element for Channel Number, Odd for Frequency */
36, 5180,
40, 5200,
44, 5220,
48, 5240,
52, 5260,
56, 5280,
60, 5300,
64, 5320,
100, 5500,
104, 5520,
108, 5540,
112, 5560,
116, 5580,
120, 5600,
124, 5620,
128, 5640,
132, 5660,
136, 5680,
140, 5700,
/**/
184, 4920,
188, 4940,
192, 4960,
196, 4980,
8, 5040,
12, 5060,
16, 5080,
34, 5170,
38, 5190,
42, 5210,
46, 5230,
/**/
149, 5745,
153, 5765,
157, 5785,
161, 5805,
165, 5825
/**/
};
int usbdrv_freq2chan(u32_t freq)
{
/* 2.4G Hz */
if (freq > 2400 && freq < 3000) {
return ((freq-2412)/5) + 1;
} else {
u16_t ii;
u16_t num_chan = sizeof(channel_frequency_11A)/sizeof(u32_t);
for (ii = 1; ii < num_chan; ii += 2) {
if (channel_frequency_11A[ii] == freq)
return channel_frequency_11A[ii-1];
}
}
return 0;
}
int usbdrv_chan2freq(int chan)
{
int freq;
/* If channel number is out of range */
if (chan > 165 || chan <= 0)
return -1;
/* 2.4G band */
if (chan >= 1 && chan <= 13) {
freq = (2412 + (chan - 1) * 5);
return freq;
} else if (chan >= 36 && chan <= 165) {
u16_t ii;
u16_t num_chan = sizeof(channel_frequency_11A)/sizeof(u32_t);
for (ii = 0; ii < num_chan; ii += 2) {
if (channel_frequency_11A[ii] == chan)
return channel_frequency_11A[ii+1];
}
/* Can't find desired frequency */
if (ii == num_chan)
return -1;
}
/* Can't find deisred frequency */
return -1;
}
int usbdrv_ioctl_setessid(struct net_device *dev, struct iw_point *erq)
{
#ifdef ZM_HOSTAPD_SUPPORT
/* struct usbdrv_private *macp = dev->ml_priv; */
char essidbuf[IW_ESSID_MAX_SIZE+1];
int i;
if (!netif_running(dev))
return -EINVAL;
memset(essidbuf, 0, sizeof(essidbuf));
printk(KERN_ERR "usbdrv_ioctl_setessid\n");
/* printk("ssidlen=%d\n", erq->length); //for any, it is 1. */
if (erq->flags) {
if (erq->length > (IW_ESSID_MAX_SIZE+1))
return -E2BIG;
if (copy_from_user(essidbuf, erq->pointer, erq->length))
return -EFAULT;
}
/* zd_DisasocAll(2); */
/* wait_ms(100); */
printk(KERN_ERR "essidbuf: ");
for (i = 0; i < erq->length; i++)
printk(KERN_ERR "%02x ", essidbuf[i]);
printk(KERN_ERR "\n");
essidbuf[erq->length] = '\0';
/* memcpy(macp->wd.ws.ssid, essidbuf, erq->length); */
/* macp->wd.ws.ssidLen = strlen(essidbuf)+2; */
/* macp->wd.ws.ssid[1] = strlen(essidbuf); Update ssid length */
zfiWlanSetSSID(dev, essidbuf, erq->length);
#if 0
printk(KERN_ERR "macp->wd.ws.ssid: ");
for (i = 0; i < macp->wd.ws.ssidLen; i++)
printk(KERN_ERR "%02x ", macp->wd.ws.ssid[i]);
printk(KERN_ERR "\n");
#endif
zfiWlanDisable(dev, 0);
zfiWlanEnable(dev);
#endif
return 0;
}
int usbdrv_ioctl_getessid(struct net_device *dev, struct iw_point *erq)
{
/* struct usbdrv_private *macp = dev->ml_priv; */
u8_t essidbuf[IW_ESSID_MAX_SIZE+1];
u8_t len;
u8_t i;
/* len = macp->wd.ws.ssidLen; */
/* memcpy(essidbuf, macp->wd.ws.ssid, macp->wd.ws.ssidLen); */
zfiWlanQuerySSID(dev, essidbuf, &len);
essidbuf[len] = 0;
printk(KERN_ERR "ESSID: ");
for (i = 0; i < len; i++)
printk(KERN_ERR "%c", essidbuf[i]);
printk(KERN_ERR "\n");
erq->flags = 1;
erq->length = strlen(essidbuf) + 1;
if (erq->pointer) {
if (copy_to_user(erq->pointer, essidbuf, erq->length))
return -EFAULT;
}
return 0;
}
int usbdrv_ioctl_setrts(struct net_device *dev, struct iw_param *rrq)
{
return 0;
}
#if WIRELESS_EXT > 14
/*
* Encode a WPA or RSN information element as a custom
* element using the hostap format.
*/
u32 encode_ie(void *buf, u32 bufsize, const u8 *ie, u32 ielen,
const u8 *leader, u32 leader_len)
{
u8 *p;
u32 i;
if (bufsize < leader_len)
return 0;
p = buf;
memcpy(p, leader, leader_len);
bufsize -= leader_len;
p += leader_len;
for (i = 0; i < ielen && bufsize > 2; i++)
p += sprintf(p, "%02x", ie[i]);
return (i == ielen ? p - (u8 *)buf:0);
}
#endif /* WIRELESS_EXT > 14 */
/*
* Translate scan data returned from the card to a card independent
* format that the Wireless Tools will understand
*/
char *usbdrv_translate_scan(struct net_device *dev,
struct iw_request_info *info, char *current_ev,
char *end_buf, struct zsBssInfo *list)
{
struct iw_event iwe; /* Temporary buffer */
u16_t capabilities;
char *current_val; /* For rates */
char *last_ev;
int i;
#if WIRELESS_EXT > 14
char buf[64*2 + 30];
#endif
last_ev = current_ev;
/* First entry *MUST* be the AP MAC address */
iwe.cmd = SIOCGIWAP;
iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
memcpy(iwe.u.ap_addr.sa_data, list->bssid, ETH_ALEN);
current_ev = iwe_stream_add_event(info, current_ev,
end_buf, &iwe, IW_EV_ADDR_LEN);
/* Ran out of buffer */
if (last_ev == current_ev)
return end_buf;
last_ev = current_ev;
/* Other entries will be displayed in the order we give them */
/* Add the ESSID */
iwe.u.data.length = list->ssid[1];
if (iwe.u.data.length > 32)
iwe.u.data.length = 32;
iwe.cmd = SIOCGIWESSID;
iwe.u.data.flags = 1;
current_ev = iwe_stream_add_point(info, current_ev,
end_buf, &iwe, &list->ssid[2]);
/* Ran out of buffer */
if (last_ev == current_ev)
return end_buf;
last_ev = current_ev;
/* Add mode */
iwe.cmd = SIOCGIWMODE;
capabilities = (list->capability[1] << 8) + list->capability[0];
if (capabilities & (0x01 | 0x02)) {
if (capabilities & 0x01)
iwe.u.mode = IW_MODE_MASTER;
else
iwe.u.mode = IW_MODE_ADHOC;
current_ev = iwe_stream_add_event(info, current_ev,
end_buf, &iwe, IW_EV_UINT_LEN);
}
/* Ran out of buffer */
if (last_ev == current_ev)
return end_buf;
last_ev = current_ev;
/* Add frequency */
iwe.cmd = SIOCGIWFREQ;
iwe.u.freq.m = list->channel;
/* Channel frequency in KHz */
if (iwe.u.freq.m > 14) {
if ((184 <= iwe.u.freq.m) && (iwe.u.freq.m <= 196))
iwe.u.freq.m = 4000 + iwe.u.freq.m * 5;
else
iwe.u.freq.m = 5000 + iwe.u.freq.m * 5;
} else {
if (iwe.u.freq.m == 14)
iwe.u.freq.m = 2484;
else
iwe.u.freq.m = 2412 + (iwe.u.freq.m - 1) * 5;
}
iwe.u.freq.e = 6;
current_ev = iwe_stream_add_event(info, current_ev,
end_buf, &iwe, IW_EV_FREQ_LEN);
/* Ran out of buffer */
if (last_ev == current_ev)
return end_buf;
last_ev = current_ev;
/* Add quality statistics */
iwe.cmd = IWEVQUAL;
#if WIRELESS_EXT > 18
iwe.u.qual.updated = IW_QUAL_QUAL_UPDATED | IW_QUAL_LEVEL_UPDATED
| IW_QUAL_NOISE_UPDATED;
#endif
iwe.u.qual.level = list->signalStrength;
iwe.u.qual.noise = 0;
iwe.u.qual.qual = list->signalQuality;
current_ev = iwe_stream_add_event(info, current_ev,
end_buf, &iwe, IW_EV_QUAL_LEN);
/* Ran out of buffer */
if (last_ev == current_ev)
return end_buf;
last_ev = current_ev;
/* Add encryption capability */
iwe.cmd = SIOCGIWENCODE;
if (capabilities & 0x10)
iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
else
iwe.u.data.flags = IW_ENCODE_DISABLED;
iwe.u.data.length = 0;
current_ev = iwe_stream_add_point(info, current_ev,
end_buf, &iwe, list->ssid);
/* Ran out of buffer */
if (last_ev == current_ev)
return end_buf;
last_ev = current_ev;
/* Rate : stuffing multiple values in a single event require a bit
* more of magic
*/
current_val = current_ev + IW_EV_LCP_LEN;
iwe.cmd = SIOCGIWRATE;
/* Those two flags are ignored... */
iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
for (i = 0 ; i < list->supportedRates[1] ; i++) {
/* Bit rate given in 500 kb/s units (+ 0x80) */
iwe.u.bitrate.value = ((list->supportedRates[i+2] & 0x7f)
* 500000);
/* Add new value to event */
current_val = iwe_stream_add_value(info, current_ev,
current_val, end_buf, &iwe, IW_EV_PARAM_LEN);
/* Ran out of buffer */
if (last_ev == current_val)
return end_buf;
last_ev = current_val;
}
for (i = 0 ; i < list->extSupportedRates[1] ; i++) {
/* Bit rate given in 500 kb/s units (+ 0x80) */
iwe.u.bitrate.value = ((list->extSupportedRates[i+2] & 0x7f)
* 500000);
/* Add new value to event */
current_val = iwe_stream_add_value(info, current_ev,
current_val, end_buf, &iwe, IW_EV_PARAM_LEN);
/* Ran out of buffer */
if (last_ev == current_val)
return end_buf;
last_ev = current_ev;
}
/* Check if we added any event */
if ((current_val - current_ev) > IW_EV_LCP_LEN)
current_ev = current_val;
#if WIRELESS_EXT > 14
#define IEEE80211_ELEMID_RSN 0x30
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
snprintf(buf, sizeof(buf), "bcn_int=%d", (list->beaconInterval[1] << 8)
+ list->beaconInterval[0]);
iwe.u.data.length = strlen(buf);
current_ev = iwe_stream_add_point(info, current_ev,
end_buf, &iwe, buf);
/* Ran out of buffer */
if (last_ev == current_ev)
return end_buf;
last_ev = current_ev;
if (list->wpaIe[1] != 0) {
static const char rsn_leader[] = "rsn_ie=";
static const char wpa_leader[] = "wpa_ie=";
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
if (list->wpaIe[0] == IEEE80211_ELEMID_RSN)
iwe.u.data.length = encode_ie(buf, sizeof(buf),
list->wpaIe, list->wpaIe[1]+2,
rsn_leader, sizeof(rsn_leader)-1);
else
iwe.u.data.length = encode_ie(buf, sizeof(buf),
list->wpaIe, list->wpaIe[1]+2,
wpa_leader, sizeof(wpa_leader)-1);
if (iwe.u.data.length != 0)
current_ev = iwe_stream_add_point(info, current_ev,
end_buf, &iwe, buf);
/* Ran out of buffer */
if (last_ev == current_ev)
return end_buf;
last_ev = current_ev;
}
if (list->rsnIe[1] != 0) {
static const char rsn_leader[] = "rsn_ie=";
memset(&iwe, 0, sizeof(iwe));
iwe.cmd = IWEVCUSTOM;
if (list->rsnIe[0] == IEEE80211_ELEMID_RSN) {
iwe.u.data.length = encode_ie(buf, sizeof(buf),
list->rsnIe, list->rsnIe[1]+2,
rsn_leader, sizeof(rsn_leader)-1);
if (iwe.u.data.length != 0)
current_ev = iwe_stream_add_point(info,
current_ev, end_buf, &iwe, buf);
/* Ran out of buffer */
if (last_ev == current_ev)
return end_buf;
last_ev = current_ev;
}
}
#endif
/* The other data in the scan result are not really
* interesting, so for now drop it
*/
return current_ev;
}
int usbdrvwext_giwname(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrq, char *extra)
{
/* struct usbdrv_private *macp = dev->ml_priv; */
strcpy(wrq->name, "IEEE 802.11-MIMO");
return 0;
}
int usbdrvwext_siwfreq(struct net_device *dev,
struct iw_request_info *info,
struct iw_freq *freq, char *extra)
{
u32_t FreqKHz;
struct usbdrv_private *macp = dev->ml_priv;
if (!netif_running(dev))
return -EINVAL;
if (freq->e > 1)
return -EINVAL;
if (freq->e == 1) {
FreqKHz = (freq->m / 100000);
if (FreqKHz > 4000000) {
if (FreqKHz > 5825000)
FreqKHz = 5825000;
else if (FreqKHz < 4920000)
FreqKHz = 4920000;
else if (FreqKHz < 5000000)
FreqKHz = (((FreqKHz - 4000000) / 5000) * 5000)
+ 4000000;
else
FreqKHz = (((FreqKHz - 5000000) / 5000) * 5000)
+ 5000000;
} else {
if (FreqKHz > 2484000)
FreqKHz = 2484000;
else if (FreqKHz < 2412000)
FreqKHz = 2412000;
else
FreqKHz = (((FreqKHz - 2412000) / 5000) * 5000)
+ 2412000;
}
} else {
FreqKHz = usbdrv_chan2freq(freq->m);
if (FreqKHz != -1)
FreqKHz *= 1000;
else
FreqKHz = 2412000;
}
/* printk("freq->m: %d, freq->e: %d\n", freq->m, freq->e); */
/* printk("FreqKHz: %d\n", FreqKHz); */
if (macp->DeviceOpened == 1) {
zfiWlanSetFrequency(dev, FreqKHz, 0); /* Immediate */
/* u8_t wpaieLen,wpaie[50]; */
/* zfiWlanQueryWpaIe(dev, wpaie, &wpaieLen); */
zfiWlanDisable(dev, 0);
zfiWlanEnable(dev);
/* if (wpaieLen > 2) */
/* zfiWlanSetWpaIe(dev, wpaie, wpaieLen); */
}
return 0;
}
int usbdrvwext_giwfreq(struct net_device *dev,
struct iw_request_info *info,
struct iw_freq *freq, char *extra)
{
struct usbdrv_private *macp = dev->ml_priv;
if (macp->DeviceOpened != 1)
return 0;
freq->m = zfiWlanQueryFrequency(dev);
freq->e = 3;
return 0;
}
int usbdrvwext_siwmode(struct net_device *dev,
struct iw_request_info *info,
union iwreq_data *wrq, char *extra)
{
struct usbdrv_private *macp = dev->ml_priv;
u8_t WlanMode;
if (!netif_running(dev))
return -EINVAL;
if (macp->DeviceOpened != 1)
return 0;
switch (wrq->mode) {
case IW_MODE_MASTER:
WlanMode = ZM_MODE_AP;
break;
case IW_MODE_INFRA:
WlanMode = ZM_MODE_INFRASTRUCTURE;
break;
case IW_MODE_ADHOC:
WlanMode = ZM_MODE_IBSS;
break;
default:
WlanMode = ZM_MODE_IBSS;
break;
}
zfiWlanSetWlanMode(dev, WlanMode);
zfiWlanDisable(dev, 1);
zfiWlanEnable(dev);
return 0;
}
int usbdrvwext_giwmode(struct net_device *dev,
struct iw_request_info *info,
__u32 *mode, char *extra)
{
unsigned long irqFlag;
struct usbdrv_private *macp = dev->ml_priv;
if (!netif_running(dev))
return -EINVAL;
if (macp->DeviceOpened != 1)
return 0;
spin_lock_irqsave(&macp->cs_lock, irqFlag);
switch (zfiWlanQueryWlanMode(dev)) {
case ZM_MODE_AP:
*mode = IW_MODE_MASTER;
break;
case ZM_MODE_INFRASTRUCTURE:
*mode = IW_MODE_INFRA;
break;
case ZM_MODE_IBSS:
*mode = IW_MODE_ADHOC;
break;
default:
*mode = IW_MODE_ADHOC;
break;
}
spin_unlock_irqrestore(&macp->cs_lock, irqFlag);
return 0;
}
int usbdrvwext_siwsens(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *sens, char *extra)
{
return 0;
}
int usbdrvwext_giwsens(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *sens, char *extra)
{
sens->value = 0;
sens->fixed = 1;
return 0;
}
int usbdrvwext_giwrange(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *extra)
{
struct iw_range *range = (struct iw_range *) extra;
int i, val;
/* int num_band_a; */
u16_t channels[60];
u16_t channel_num;
if (!netif_running(dev))
return -EINVAL;
#if WIRELESS_EXT > 9
range->txpower_capa = IW_TXPOW_DBM;
/* XXX what about min/max_pmp, min/max_pmt, etc. */
#endif
#if WIRELESS_EXT > 10
range->we_version_compiled = WIRELESS_EXT;
range->we_version_source = 13;
range->retry_capa = IW_RETRY_LIMIT;
range->retry_flags = IW_RETRY_LIMIT;
range->min_retry = 0;
range->max_retry = 255;
#endif /* WIRELESS_EXT > 10 */
channel_num = zfiWlanQueryAllowChannels(dev, channels);
/* Gurantee reported channel numbers is less
* or equal to IW_MAX_FREQUENCIES
*/
if (channel_num > IW_MAX_FREQUENCIES)
channel_num = IW_MAX_FREQUENCIES;
val = 0;
for (i = 0; i < channel_num; i++) {
range->freq[val].i = usbdrv_freq2chan(channels[i]);
range->freq[val].m = channels[i];
range->freq[val].e = 6;
val++;
}
range->num_channels = channel_num;
range->num_frequency = channel_num;
#if 0
range->num_channels = 14; /* Only 2.4G */
/* XXX need to filter against the regulatory domain &| active set */
val = 0;
/* B,G Bands */
for (i = 1; i <= 14; i++) {
range->freq[val].i = i;
if (i == 14)
range->freq[val].m = 2484000;
else
range->freq[val].m = (2412+(i-1)*5)*1000;
range->freq[val].e = 3;
val++;
}
num_band_a = (IW_MAX_FREQUENCIES - val);
/* A Bands */
for (i = 0; i < num_band_a; i++) {
range->freq[val].i = channel_frequency_11A[2 * i];
range->freq[val].m = channel_frequency_11A[2 * i + 1] * 1000;
range->freq[val].e = 3;
val++;
}
/* MIMO Rate Not Defined Now
* For 802.11a, there are too more frequency.
* We can't return them all.
*/
range->num_frequency = val;
#endif
/* Max of /proc/net/wireless */
range->max_qual.qual = 100; /* ?? 92; */
range->max_qual.level = 154; /* ?? */
range->max_qual.noise = 154; /* ?? */
range->sensitivity = 3; /* ?? */
/* XXX these need to be nsd-specific! */
range->min_rts = 0;
range->max_rts = 2347;
range->min_frag = 256;
range->max_frag = 2346;
range->max_encoding_tokens = 4 /* NUM_WEPKEYS ?? */;
range->num_encoding_sizes = 2; /* ?? */
range->encoding_size[0] = 5; /* ?? WEP Key Encoding Size */
range->encoding_size[1] = 13; /* ?? */
/* XXX what about num_bitrates/throughput? */
range->num_bitrates = 0; /* ?? */
/* estimated max throughput
* XXX need to cap it if we're running at ~2Mbps..
*/
range->throughput = 300000000;
return 0;
}
int usbdrvwext_siwap(struct net_device *dev, struct iw_request_info *info,
struct sockaddr *MacAddr, char *extra)
{
struct usbdrv_private *macp = dev->ml_priv;
if (!netif_running(dev))
return -EINVAL;
if (zfiWlanQueryWlanMode(dev) == ZM_MODE_AP) {
/* AP Mode */
zfiWlanSetMacAddress(dev, (u16_t *)&MacAddr->sa_data[0]);
} else {
/* STA Mode */
zfiWlanSetBssid(dev, &MacAddr->sa_data[0]);
}
if (macp->DeviceOpened == 1) {
/* u8_t wpaieLen,wpaie[80]; */
/* zfiWlanQueryWpaIe(dev, wpaie, &wpaieLen); */
zfiWlanDisable(dev, 0);
zfiWlanEnable(dev);
/* if (wpaieLen > 2) */
/* zfiWlanSetWpaIe(dev, wpaie, wpaieLen); */
}
return 0;
}
int usbdrvwext_giwap(struct net_device *dev,
struct iw_request_info *info,
struct sockaddr *MacAddr, char *extra)
{
struct usbdrv_private *macp = dev->ml_priv;
if (macp->DeviceOpened != 1)
return 0;
if (zfiWlanQueryWlanMode(dev) == ZM_MODE_AP) {
/* AP Mode */
zfiWlanQueryMacAddress(dev, &MacAddr->sa_data[0]);
} else {
/* STA Mode */
if (macp->adapterState == ZM_STATUS_MEDIA_CONNECT) {
zfiWlanQueryBssid(dev, &MacAddr->sa_data[0]);
} else {
u8_t zero_addr[6] = { 0x00, 0x00, 0x00, 0x00,
0x00, 0x00 };
memcpy(&MacAddr->sa_data[0], zero_addr,
sizeof(zero_addr));
}
}
return 0;
}
int usbdrvwext_iwaplist(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *extra)
{
/* Don't know how to do yet--CWYang(+) */
return 0;
}
int usbdrvwext_siwscan(struct net_device *dev, struct iw_request_info *info,
struct iw_point *data, char *extra)
{
struct usbdrv_private *macp = dev->ml_priv;
if (macp->DeviceOpened != 1)
return 0;
printk(KERN_WARNING "CWY - usbdrvwext_siwscan\n");
zfiWlanScan(dev);
return 0;
}
int usbdrvwext_giwscan(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *extra)
{
struct usbdrv_private *macp = dev->ml_priv;
/* struct zsWlanDev* wd = (struct zsWlanDev*) zmw_wlan_dev(dev); */
char *current_ev = extra;
char *end_buf;
int i;
/* struct zsBssList BssList; */
struct zsBssListV1 *pBssList = kmalloc(sizeof(struct zsBssListV1),
GFP_KERNEL);
/* BssList = wd->sta.pBssList; */
/* zmw_get_wlan_dev(dev); */
if (macp->DeviceOpened != 1)
return 0;
if (data->length == 0)
end_buf = extra + IW_SCAN_MAX_DATA;
else
end_buf = extra + data->length;
printk(KERN_WARNING "giwscan - Report Scan Results\n");
/* printk("giwscan - BssList Sreucture Len : %d\n", sizeof(BssList));
* printk("giwscan - BssList Count : %d\n",
* wd->sta.pBssList->bssCount);
* printk("giwscan - UpdateBssList Count : %d\n",
* wd->sta.pUpdateBssList->bssCount);
*/
zfiWlanQueryBssListV1(dev, pBssList);
/* zfiWlanQueryBssList(dev, &BssList); */
/* Read and parse all entries */
printk(KERN_WARNING "giwscan - pBssList->bssCount : %d\n",
pBssList->bssCount);
/* printk("giwscan - BssList.bssCount : %d\n", BssList.bssCount); */
for (i = 0; i < pBssList->bssCount; i++) {
/* Translate to WE format this entry
* current_ev = usbdrv_translate_scan(dev, info, current_ev,
* extra + IW_SCAN_MAX_DATA, &pBssList->bssInfo[i]);
*/
current_ev = usbdrv_translate_scan(dev, info, current_ev,
end_buf, &pBssList->bssInfo[i]);
#if WIRELESS_EXT > 16
if (current_ev == end_buf) {
kfree(pBssList);
data->length = current_ev - extra;
return -E2BIG;
}
#endif
}
/* Length of data */
data->length = (current_ev - extra);
data->flags = 0; /* todo */
kfree(pBssList);
return 0;
}
int usbdrvwext_siwessid(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *essid, char *extra)
{
char EssidBuf[IW_ESSID_MAX_SIZE + 1];
struct usbdrv_private *macp = dev->ml_priv;
if (!netif_running(dev))
return -EINVAL;
if (essid->flags == 1) {
if (essid->length > (IW_ESSID_MAX_SIZE + 1))
return -E2BIG;
if (copy_from_user(&EssidBuf, essid->pointer, essid->length))
return -EFAULT;
EssidBuf[essid->length] = '\0';
/* printk("siwessid - Set Essid : %s\n",EssidBuf); */
/* printk("siwessid - Essid Len : %d\n",essid->length); */
/* printk("siwessid - Essid Flag : %x\n",essid->flags); */
if (macp->DeviceOpened == 1) {
zfiWlanSetSSID(dev, EssidBuf, strlen(EssidBuf));
zfiWlanSetFrequency(dev, zfiWlanQueryFrequency(dev),
FALSE);
zfiWlanSetEncryMode(dev, zfiWlanQueryEncryMode(dev));
/* u8_t wpaieLen,wpaie[50]; */
/* zfiWlanQueryWpaIe(dev, wpaie, &wpaieLen); */
zfiWlanDisable(dev, 0);
zfiWlanEnable(dev);
/* if (wpaieLen > 2) */
/* zfiWlanSetWpaIe(dev, wpaie, wpaieLen); */
}
}
return 0;
}
int usbdrvwext_giwessid(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *essid, char *extra)
{
struct usbdrv_private *macp = dev->ml_priv;
u8_t EssidLen;
char EssidBuf[IW_ESSID_MAX_SIZE + 1];
int ssid_len;
if (!netif_running(dev))
return -EINVAL;
if (macp->DeviceOpened != 1)
return 0;
zfiWlanQuerySSID(dev, &EssidBuf[0], &EssidLen);
/* Convert type from unsigned char to char */
ssid_len = (int)EssidLen;
/* Make sure the essid length is not greater than IW_ESSID_MAX_SIZE */
if (ssid_len > IW_ESSID_MAX_SIZE)
ssid_len = IW_ESSID_MAX_SIZE;
EssidBuf[ssid_len] = '\0';
essid->flags = 1;
essid->length = strlen(EssidBuf);
memcpy(extra, EssidBuf, essid->length);
/* wireless.c in Kernel would handle copy_to_user -- line 679 */
/* if (essid->pointer) {
* if (copy_to_user(essid->pointer, EssidBuf, essid->length)) {
* printk("giwessid - copy_to_user Fail\n");
* return -EFAULT;
* }
* }
*/
return 0;
}
int usbdrvwext_siwnickn(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *nickname)
{
/* Exist but junk--CWYang(+) */
return 0;
}
int usbdrvwext_giwnickn(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *data, char *nickname)
{
struct usbdrv_private *macp = dev->ml_priv;
u8_t EssidLen;
char EssidBuf[IW_ESSID_MAX_SIZE + 1];
if (macp->DeviceOpened != 1)
return 0;
zfiWlanQuerySSID(dev, &EssidBuf[0], &EssidLen);
EssidBuf[EssidLen] = 0;
data->flags = 1;
data->length = strlen(EssidBuf);
memcpy(nickname, EssidBuf, data->length);
return 0;
}
int usbdrvwext_siwrate(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *frq, char *extra)
{
struct usbdrv_private *macp = dev->ml_priv;
/* Array to Define Rate Number that Send to Driver */
u16_t zcIndextoRateBG[16] = {1000, 2000, 5500, 11000, 0, 0, 0, 0,
48000, 24000, 12000, 6000, 54000, 36000, 18000, 9000};
u16_t zcRateToMCS[] = {0xff, 0, 1, 2, 3, 0xb, 0xf, 0xa, 0xe, 0x9, 0xd,
0x8, 0xc};
u8_t i, RateIndex = 4;
u16_t RateKbps;
/* printk("frq->disabled : 0x%x\n",frq->disabled); */
/* printk("frq->value : 0x%x\n",frq->value); */
RateKbps = frq->value / 1000;
/* printk("RateKbps : %d\n", RateKbps); */
for (i = 0; i < 16; i++) {
if (RateKbps == zcIndextoRateBG[i])
RateIndex = i;
}
if (zcIndextoRateBG[RateIndex] == 0)
RateIndex = 0xff;
/* printk("RateIndex : %x\n", RateIndex); */
for (i = 0; i < 13; i++)
if (RateIndex == zcRateToMCS[i])
break;
/* printk("Index : %x\n", i); */
if (RateKbps == 65000) {
RateIndex = 20;
printk(KERN_WARNING "RateIndex : %d\n", RateIndex);
}
if (macp->DeviceOpened == 1) {
zfiWlanSetTxRate(dev, i);
/* zfiWlanDisable(dev); */
/* zfiWlanEnable(dev); */
}
return 0;
}
int usbdrvwext_giwrate(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *frq, char *extra)
{
struct usbdrv_private *macp = dev->ml_priv;
if (!netif_running(dev))
return -EINVAL;
if (macp->DeviceOpened != 1)
return 0;
frq->fixed = 0;
frq->disabled = 0;
frq->value = zfiWlanQueryRxRate(dev) * 1000;
return 0;
}
int usbdrvwext_siwrts(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rts, char *extra)
{
struct usbdrv_private *macp = dev->ml_priv;
int val = rts->value;
if (macp->DeviceOpened != 1)
return 0;
if (rts->disabled)
val = 2347;
if ((val < 0) || (val > 2347))
return -EINVAL;
zfiWlanSetRtsThreshold(dev, val);
return 0;
}
int usbdrvwext_giwrts(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rts, char *extra)
{
struct usbdrv_private *macp = dev->ml_priv;
if (!netif_running(dev))
return -EINVAL;
if (macp->DeviceOpened != 1)
return 0;
rts->value = zfiWlanQueryRtsThreshold(dev);
rts->disabled = (rts->value >= 2347);
rts->fixed = 1;
return 0;
}
int usbdrvwext_siwfrag(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *frag, char *extra)
{
struct usbdrv_private *macp = dev->ml_priv;
u16_t fragThreshold;
if (macp->DeviceOpened != 1)
return 0;
if (frag->disabled)
fragThreshold = 0;
else
fragThreshold = frag->value;
zfiWlanSetFragThreshold(dev, fragThreshold);
return 0;
}
int usbdrvwext_giwfrag(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *frag, char *extra)
{
struct usbdrv_private *macp = dev->ml_priv;
u16 val;
unsigned long irqFlag;
if (!netif_running(dev))
return -EINVAL;
if (macp->DeviceOpened != 1)
return 0;
spin_lock_irqsave(&macp->cs_lock, irqFlag);
val = zfiWlanQueryFragThreshold(dev);
frag->value = val;
frag->disabled = (val >= 2346);
frag->fixed = 1;
spin_unlock_irqrestore(&macp->cs_lock, irqFlag);
return 0;
}
int usbdrvwext_siwtxpow(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rrq, char *extra)
{
/* Not support yet--CWYng(+) */
return 0;
}
int usbdrvwext_giwtxpow(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rrq, char *extra)
{
/* Not support yet--CWYng(+) */
return 0;
}
int usbdrvwext_siwretry(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rrq, char *extra)
{
/* Do nothing--CWYang(+) */
return 0;
}
int usbdrvwext_giwretry(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *rrq, char *extra)
{
/* Do nothing--CWYang(+) */
return 0;
}
int usbdrvwext_siwencode(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *erq, char *key)
{
struct zsKeyInfo keyInfo;
int i;
int WepState = ZM_ENCRYPTION_WEP_DISABLED;
struct usbdrv_private *macp = dev->ml_priv;
if (!netif_running(dev))
return -EINVAL;
if ((erq->flags & IW_ENCODE_DISABLED) == 0) {
keyInfo.key = key;
keyInfo.keyLength = erq->length;
keyInfo.keyIndex = (erq->flags & IW_ENCODE_INDEX) - 1;
if (keyInfo.keyIndex >= 4)
keyInfo.keyIndex = 0;
keyInfo.flag = ZM_KEY_FLAG_DEFAULT_KEY;
zfiWlanSetKey(dev, keyInfo);
WepState = ZM_ENCRYPTION_WEP_ENABLED;
} else {
for (i = 1; i < 4; i++)
zfiWlanRemoveKey(dev, 0, i);
WepState = ZM_ENCRYPTION_WEP_DISABLED;
/* zfiWlanSetEncryMode(dev, ZM_NO_WEP); */
}
if (macp->DeviceOpened == 1) {
zfiWlanSetWepStatus(dev, WepState);
zfiWlanSetFrequency(dev, zfiWlanQueryFrequency(dev), FALSE);
/* zfiWlanSetEncryMode(dev, zfiWlanQueryEncryMode(dev)); */
/* u8_t wpaieLen,wpaie[50]; */
/* zfiWlanQueryWpaIe(dev, wpaie, &wpaieLen); */
zfiWlanDisable(dev, 0);
zfiWlanEnable(dev);
/* if (wpaieLen > 2) */
/* zfiWlanSetWpaIe(dev, wpaie, wpaieLen); */
}
return 0;
}
int usbdrvwext_giwencode(struct net_device *dev,
struct iw_request_info *info,
struct iw_point *erq, char *key)
{
struct usbdrv_private *macp = dev->ml_priv;
u8_t EncryptionMode;
u8_t keyLen = 0;
if (macp->DeviceOpened != 1)
return 0;
EncryptionMode = zfiWlanQueryEncryMode(dev);
if (EncryptionMode)
erq->flags = IW_ENCODE_ENABLED;
else
erq->flags = IW_ENCODE_DISABLED;
/* We can't return the key, so set the proper flag and return zero */
erq->flags |= IW_ENCODE_NOKEY;
memset(key, 0, 16);
/* Copy the key to the user buffer */
switch (EncryptionMode) {
case ZM_WEP64:
keyLen = 5;
break;
case ZM_WEP128:
keyLen = 13;
break;
case ZM_WEP256:
keyLen = 29;
break;
case ZM_AES:
keyLen = 16;
break;
case ZM_TKIP:
keyLen = 32;
break;
#ifdef ZM_ENABLE_CENC
case ZM_CENC:
/* ZM_ENABLE_CENC */
keyLen = 32;
break;
#endif
case ZM_NO_WEP:
keyLen = 0;
break;
default:
keyLen = 0;
printk(KERN_ERR "Unknown EncryMode\n");
break;
}
erq->length = keyLen;
return 0;
}
int usbdrvwext_siwpower(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *frq, char *extra)
{
struct usbdrv_private *macp = dev->ml_priv;
u8_t PSMode;
if (macp->DeviceOpened != 1)
return 0;
if (frq->disabled)
PSMode = ZM_STA_PS_NONE;
else
PSMode = ZM_STA_PS_MAX;
zfiWlanSetPowerSaveMode(dev, PSMode);
return 0;
}
int usbdrvwext_giwpower(struct net_device *dev,
struct iw_request_info *info,
struct iw_param *frq, char *extra)
{
unsigned long irqFlag;
struct usbdrv_private *macp = dev->ml_priv;
if (macp->DeviceOpened != 1)
return 0;
spin_lock_irqsave(&macp->cs_lock, irqFlag);
if (zfiWlanQueryPowerSaveMode(dev) == ZM_STA_PS_NONE)
frq->disabled = 1;
else
frq->disabled = 0;
spin_unlock_irqrestore(&macp->cs_lock, irqFlag);
return 0;
}
/*int usbdrvwext_setparam(struct net_device *dev, struct iw_request_info *info,
* void *w, char *extra)
*{
* struct ieee80211vap *vap = dev->ml_priv;
* struct ieee80211com *ic = vap->iv_ic;
* struct ieee80211_rsnparms *rsn = &vap->iv_bss->ni_rsn;
* int *i = (int *) extra;
* int param = i[0]; // parameter id is 1st
* int value = i[1]; // NB: most values are TYPE_INT
* int retv = 0;
* int j, caps;
* const struct ieee80211_authenticator *auth;
* const struct ieee80211_aclator *acl;
*
* switch (param) {
* case IEEE80211_PARAM_AUTHMODE:
* switch (value) {
* case IEEE80211_AUTH_WPA: // WPA
* case IEEE80211_AUTH_8021X: // 802.1x
* case IEEE80211_AUTH_OPEN: // open
* case IEEE80211_AUTH_SHARED: // shared-key
* case IEEE80211_AUTH_AUTO: // auto
* auth = ieee80211_authenticator_get(value);
* if (auth == NULL)
* return -EINVAL;
* break;
* default:
* return -EINVAL;
* }
* switch (value) {
* case IEEE80211_AUTH_WPA: // WPA w/ 802.1x
* vap->iv_flags |= IEEE80211_F_PRIVACY;
* value = IEEE80211_AUTH_8021X;
* break;
* case IEEE80211_AUTH_OPEN: // open
* vap->iv_flags &= ~(IEEE80211_F_WPA | IEEE80211_F_PRIVACY);
* break;
* case IEEE80211_AUTH_SHARED: // shared-key
* case IEEE80211_AUTH_AUTO: // auto
* case IEEE80211_AUTH_8021X: // 802.1x
* vap->iv_flags &= ~IEEE80211_F_WPA;
* // both require a key so mark the PRIVACY capability
* vap->iv_flags |= IEEE80211_F_PRIVACY;
* break;
* }
* // NB: authenticator attach/detach happens on state change
* vap->iv_bss->ni_authmode = value;
* // XXX mixed/mode/usage?
* vap->iv_auth = auth;
* retv = ENETRESET;
* break;
* case IEEE80211_PARAM_PROTMODE:
* if (value > IEEE80211_PROT_RTSCTS)
* return -EINVAL;
* ic->ic_protmode = value;
* // NB: if not operating in 11g this can wait
* if (ic->ic_bsschan != IEEE80211_CHAN_ANYC &&
* IEEE80211_IS_CHAN_ANYG(ic->ic_bsschan))
* retv = ENETRESET;
* break;
* case IEEE80211_PARAM_MCASTCIPHER:
* if ((vap->iv_caps & cipher2cap(value)) == 0 &&
* !ieee80211_crypto_available(value))
* return -EINVAL;
* rsn->rsn_mcastcipher = value;
* if (vap->iv_flags & IEEE80211_F_WPA)
* retv = ENETRESET;
* break;
* case IEEE80211_PARAM_MCASTKEYLEN:
* if (!(0 < value && value < IEEE80211_KEYBUF_SIZE))
* return -EINVAL;
* // XXX no way to verify driver capability
* rsn->rsn_mcastkeylen = value;
* if (vap->iv_flags & IEEE80211_F_WPA)
* retv = ENETRESET;
* break;
* case IEEE80211_PARAM_UCASTCIPHERS:
*
* // Convert cipher set to equivalent capabilities.
* // NB: this logic intentionally ignores unknown and
* // unsupported ciphers so folks can specify 0xff or
* // similar and get all available ciphers.
*
* caps = 0;
* for (j = 1; j < 32; j++) // NB: skip WEP
* if ((value & (1<<j)) &&
* ((vap->iv_caps & cipher2cap(j)) ||
* ieee80211_crypto_available(j)))
* caps |= 1<<j;
* if (caps == 0) // nothing available
* return -EINVAL;
* // XXX verify ciphers ok for unicast use?
* // XXX disallow if running as it'll have no effect
* rsn->rsn_ucastcipherset = caps;
* if (vap->iv_flags & IEEE80211_F_WPA)
* retv = ENETRESET;
* break;
* case IEEE80211_PARAM_UCASTCIPHER:
* if ((rsn->rsn_ucastcipherset & cipher2cap(value)) == 0)
* return -EINVAL;
* rsn->rsn_ucastcipher = value;
* break;
* case IEEE80211_PARAM_UCASTKEYLEN:
* if (!(0 < value && value < IEEE80211_KEYBUF_SIZE))
* return -EINVAL;
* // XXX no way to verify driver capability
* rsn->rsn_ucastkeylen = value;
* break;
* case IEEE80211_PARAM_KEYMGTALGS:
* // XXX check
* rsn->rsn_keymgmtset = value;
* if (vap->iv_flags & IEEE80211_F_WPA)
* retv = ENETRESET;
* break;
* case IEEE80211_PARAM_RSNCAPS:
* // XXX check
* rsn->rsn_caps = value;
* if (vap->iv_flags & IEEE80211_F_WPA)
* retv = ENETRESET;
* break;
* case IEEE80211_PARAM_WPA:
* if (value > 3)
* return -EINVAL;
* // XXX verify ciphers available
* vap->iv_flags &= ~IEEE80211_F_WPA;
* switch (value) {
* case 1:
* vap->iv_flags |= IEEE80211_F_WPA1;
* break;
* case 2:
* vap->iv_flags |= IEEE80211_F_WPA2;
* break;
* case 3:
* vap->iv_flags |= IEEE80211_F_WPA1 | IEEE80211_F_WPA2;
* break;
* }
* retv = ENETRESET; // XXX?
* break;
* case IEEE80211_PARAM_ROAMING:
* if (!(IEEE80211_ROAMING_DEVICE <= value &&
* value <= IEEE80211_ROAMING_MANUAL))
* return -EINVAL;
* ic->ic_roaming = value;
* break;
* case IEEE80211_PARAM_PRIVACY:
* if (value) {
* // XXX check for key state?
* vap->iv_flags |= IEEE80211_F_PRIVACY;
* } else
* vap->iv_flags &= ~IEEE80211_F_PRIVACY;
* break;
* case IEEE80211_PARAM_DROPUNENCRYPTED:
* if (value)
* vap->iv_flags |= IEEE80211_F_DROPUNENC;
* else
* vap->iv_flags &= ~IEEE80211_F_DROPUNENC;
* break;
* case IEEE80211_PARAM_COUNTERMEASURES:
* if (value) {
* if ((vap->iv_flags & IEEE80211_F_WPA) == 0)
* return -EINVAL;
* vap->iv_flags |= IEEE80211_F_COUNTERM;
* } else
* vap->iv_flags &= ~IEEE80211_F_COUNTERM;
* break;
* case IEEE80211_PARAM_DRIVER_CAPS:
* vap->iv_caps = value; // NB: for testing
* break;
* case IEEE80211_PARAM_MACCMD:
* acl = vap->iv_acl;
* switch (value) {
* case IEEE80211_MACCMD_POLICY_OPEN:
* case IEEE80211_MACCMD_POLICY_ALLOW:
* case IEEE80211_MACCMD_POLICY_DENY:
* if (acl == NULL) {
* acl = ieee80211_aclator_get("mac");
* if (acl == NULL || !acl->iac_attach(vap))
* return -EINVAL;
* vap->iv_acl = acl;
* }
* acl->iac_setpolicy(vap, value);
* break;
* case IEEE80211_MACCMD_FLUSH:
* if (acl != NULL)
* acl->iac_flush(vap);
* // NB: silently ignore when not in use
* break;
* case IEEE80211_MACCMD_DETACH:
* if (acl != NULL) {
* vap->iv_acl = NULL;
* acl->iac_detach(vap);
* }
* break;
* }
* break;
* case IEEE80211_PARAM_WMM:
* if (ic->ic_caps & IEEE80211_C_WME){
* if (value) {
* vap->iv_flags |= IEEE80211_F_WME;
* *//* XXX needed by ic_reset *//*
* vap->iv_ic->ic_flags |= IEEE80211_F_WME;
* }
* else {
* *//* XXX needed by ic_reset *//*
* vap->iv_flags &= ~IEEE80211_F_WME;
* vap->iv_ic->ic_flags &= ~IEEE80211_F_WME;
* }
* retv = ENETRESET; // Renegotiate for capabilities
* }
* break;
* case IEEE80211_PARAM_HIDESSID:
* if (value)
* vap->iv_flags |= IEEE80211_F_HIDESSID;
* else
* vap->iv_flags &= ~IEEE80211_F_HIDESSID;
* retv = ENETRESET;
* break;
* case IEEE80211_PARAM_APBRIDGE:
* if (value == 0)
* vap->iv_flags |= IEEE80211_F_NOBRIDGE;
* else
* vap->iv_flags &= ~IEEE80211_F_NOBRIDGE;
* break;
* case IEEE80211_PARAM_INACT:
* vap->iv_inact_run = value / IEEE80211_INACT_WAIT;
* break;
* case IEEE80211_PARAM_INACT_AUTH:
* vap->iv_inact_auth = value / IEEE80211_INACT_WAIT;
* break;
* case IEEE80211_PARAM_INACT_INIT:
* vap->iv_inact_init = value / IEEE80211_INACT_WAIT;
* break;
* case IEEE80211_PARAM_ABOLT:
* caps = 0;
*
* // Map abolt settings to capability bits;
* // this also strips unknown/unwanted bits.
*
* if (value & IEEE80211_ABOLT_TURBO_PRIME)
* caps |= IEEE80211_ATHC_TURBOP;
* if (value & IEEE80211_ABOLT_COMPRESSION)
* caps |= IEEE80211_ATHC_COMP;
* if (value & IEEE80211_ABOLT_FAST_FRAME)
* caps |= IEEE80211_ATHC_FF;
* if (value & IEEE80211_ABOLT_XR)
* caps |= IEEE80211_ATHC_XR;
* if (value & IEEE80211_ABOLT_AR)
* caps |= IEEE80211_ATHC_AR;
* if (value & IEEE80211_ABOLT_BURST)
* caps |= IEEE80211_ATHC_BURST;
* if (value & IEEE80211_ABOLT_WME_ELE)
* caps |= IEEE80211_ATHC_WME;
* // verify requested capabilities are supported
* if ((caps & ic->ic_ath_cap) != caps)
* return -EINVAL;
* if (vap->iv_ath_cap != caps) {
* if ((vap->iv_ath_cap ^ caps) & IEEE80211_ATHC_TURBOP) {
* if (ieee80211_set_turbo(dev,
* caps & IEEE80211_ATHC_TURBOP))
* return -EINVAL;
* ieee80211_scan_flush(ic);
* }
* vap->iv_ath_cap = caps;
* ic->ic_athcapsetup(vap->iv_ic, vap->iv_ath_cap);
* retv = ENETRESET;
* }
* break;
* case IEEE80211_PARAM_DTIM_PERIOD:
* if (vap->iv_opmode != IEEE80211_M_HOSTAP &&
* vap->iv_opmode != IEEE80211_M_IBSS)
* return -EINVAL;
* if (IEEE80211_DTIM_MIN <= value &&
* value <= IEEE80211_DTIM_MAX) {
* vap->iv_dtim_period = value;
* retv = ENETRESET; // requires restart
* } else
* retv = EINVAL;
* break;
* case IEEE80211_PARAM_BEACON_INTERVAL:
* if (vap->iv_opmode != IEEE80211_M_HOSTAP &&
* vap->iv_opmode != IEEE80211_M_IBSS)
* return -EINVAL;
* if (IEEE80211_BINTVAL_MIN <= value &&
* value <= IEEE80211_BINTVAL_MAX) {
* ic->ic_lintval = value; // XXX multi-bss
* retv = ENETRESET; // requires restart
* } else
* retv = EINVAL;
* break;
* case IEEE80211_PARAM_DOTH:
* if (value) {
* ic->ic_flags |= IEEE80211_F_DOTH;
* }
* else
* ic->ic_flags &= ~IEEE80211_F_DOTH;
* retv = ENETRESET; // XXX: need something this drastic?
* break;
* case IEEE80211_PARAM_PWRTARGET:
* ic->ic_curchanmaxpwr = value;
* break;
* case IEEE80211_PARAM_GENREASSOC:
* IEEE80211_SEND_MGMT(vap->iv_bss,
* IEEE80211_FC0_SUBTYPE_REASSOC_REQ, 0);
* break;
* case IEEE80211_PARAM_COMPRESSION:
* retv = ieee80211_setathcap(vap, IEEE80211_ATHC_COMP, value);
* break;
* case IEEE80211_PARAM_WMM_AGGRMODE:
* retv = ieee80211_setathcap(vap, IEEE80211_ATHC_WME, value);
* break;
* case IEEE80211_PARAM_FF:
* retv = ieee80211_setathcap(vap, IEEE80211_ATHC_FF, value);
* break;
* case IEEE80211_PARAM_TURBO:
* retv = ieee80211_setathcap(vap, IEEE80211_ATHC_TURBOP, value);
* if (retv == ENETRESET) {
* if(ieee80211_set_turbo(dev,value))
* return -EINVAL;
* ieee80211_scan_flush(ic);
* }
* break;
* case IEEE80211_PARAM_XR:
* retv = ieee80211_setathcap(vap, IEEE80211_ATHC_XR, value);
* break;
* case IEEE80211_PARAM_BURST:
* retv = ieee80211_setathcap(vap, IEEE80211_ATHC_BURST, value);
* break;
* case IEEE80211_PARAM_AR:
* retv = ieee80211_setathcap(vap, IEEE80211_ATHC_AR, value);
* break;
* case IEEE80211_PARAM_PUREG:
* if (value)
* vap->iv_flags |= IEEE80211_F_PUREG;
* else
* vap->iv_flags &= ~IEEE80211_F_PUREG;
* // NB: reset only if we're operating on an 11g channel
* if (ic->ic_bsschan != IEEE80211_CHAN_ANYC &&
* IEEE80211_IS_CHAN_ANYG(ic->ic_bsschan))
* retv = ENETRESET;
* break;
* case IEEE80211_PARAM_WDS:
* if (value)
* vap->iv_flags_ext |= IEEE80211_FEXT_WDS;
* else
* vap->iv_flags_ext &= ~IEEE80211_FEXT_WDS;
* break;
* case IEEE80211_PARAM_BGSCAN:
* if (value) {
* if ((vap->iv_caps & IEEE80211_C_BGSCAN) == 0)
* return -EINVAL;
* vap->iv_flags |= IEEE80211_F_BGSCAN;
* } else {
* // XXX racey?
* vap->iv_flags &= ~IEEE80211_F_BGSCAN;
* ieee80211_cancel_scan(vap); // anything current
* }
* break;
* case IEEE80211_PARAM_BGSCAN_IDLE:
* if (value >= IEEE80211_BGSCAN_IDLE_MIN)
* vap->iv_bgscanidle = value*HZ/1000;
* else
* retv = EINVAL;
* break;
* case IEEE80211_PARAM_BGSCAN_INTERVAL:
* if (value >= IEEE80211_BGSCAN_INTVAL_MIN)
* vap->iv_bgscanintvl = value*HZ;
* else
* retv = EINVAL;
* break;
* case IEEE80211_PARAM_MCAST_RATE:
* // units are in KILObits per second
* if (value >= 256 && value <= 54000)
* vap->iv_mcast_rate = value;
* else
* retv = EINVAL;
* break;
* case IEEE80211_PARAM_COVERAGE_CLASS:
* if (value >= 0 && value <= IEEE80211_COVERAGE_CLASS_MAX) {
* ic->ic_coverageclass = value;
* if (IS_UP_AUTO(vap))
* ieee80211_new_state(vap, IEEE80211_S_SCAN, 0);
* retv = 0;
* }
* else
* retv = EINVAL;
* break;
* case IEEE80211_PARAM_COUNTRY_IE:
* if (value)
* ic->ic_flags_ext |= IEEE80211_FEXT_COUNTRYIE;
* else
* ic->ic_flags_ext &= ~IEEE80211_FEXT_COUNTRYIE;
* retv = ENETRESET;
* break;
* case IEEE80211_PARAM_REGCLASS:
* if (value)
* ic->ic_flags_ext |= IEEE80211_FEXT_REGCLASS;
* else
* ic->ic_flags_ext &= ~IEEE80211_FEXT_REGCLASS;
* retv = ENETRESET;
* break;
* case IEEE80211_PARAM_SCANVALID:
* vap->iv_scanvalid = value*HZ;
* break;
* case IEEE80211_PARAM_ROAM_RSSI_11A:
* vap->iv_roam.rssi11a = value;
* break;
* case IEEE80211_PARAM_ROAM_RSSI_11B:
* vap->iv_roam.rssi11bOnly = value;
* break;
* case IEEE80211_PARAM_ROAM_RSSI_11G:
* vap->iv_roam.rssi11b = value;
* break;
* case IEEE80211_PARAM_ROAM_RATE_11A:
* vap->iv_roam.rate11a = value;
* break;
* case IEEE80211_PARAM_ROAM_RATE_11B:
* vap->iv_roam.rate11bOnly = value;
* break;
* case IEEE80211_PARAM_ROAM_RATE_11G:
* vap->iv_roam.rate11b = value;
* break;
* case IEEE80211_PARAM_UAPSDINFO:
* if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
* if (ic->ic_caps & IEEE80211_C_UAPSD) {
* if (value)
* IEEE80211_VAP_UAPSD_ENABLE(vap);
* else
* IEEE80211_VAP_UAPSD_DISABLE(vap);
* retv = ENETRESET;
* }
* }
* else if (vap->iv_opmode == IEEE80211_M_STA) {
* vap->iv_uapsdinfo = value;
* IEEE80211_VAP_UAPSD_ENABLE(vap);
* retv = ENETRESET;
* }
* break;
* case IEEE80211_PARAM_SLEEP:
* // XXX: Forced sleep for testing. Does not actually place the
* // HW in sleep mode yet. this only makes sense for STAs.
*
* if (value) {
* // goto sleep
* IEEE80211_VAP_GOTOSLEEP(vap);
* }
* else {
* // wakeup
* IEEE80211_VAP_WAKEUP(vap);
* }
* ieee80211_send_nulldata(ieee80211_ref_node(vap->iv_bss));
* break;
* case IEEE80211_PARAM_QOSNULL:
* // Force a QoS Null for testing.
* ieee80211_send_qosnulldata(vap->iv_bss, value);
* break;
* case IEEE80211_PARAM_PSPOLL:
* // Force a PS-POLL for testing.
* ieee80211_send_pspoll(vap->iv_bss);
* break;
* case IEEE80211_PARAM_EOSPDROP:
* if (vap->iv_opmode == IEEE80211_M_HOSTAP) {
* if (value) IEEE80211_VAP_EOSPDROP_ENABLE(vap);
* else IEEE80211_VAP_EOSPDROP_DISABLE(vap);
* }
* break;
* case IEEE80211_PARAM_MARKDFS:
* if (value)
* ic->ic_flags_ext |= IEEE80211_FEXT_MARKDFS;
* else
* ic->ic_flags_ext &= ~IEEE80211_FEXT_MARKDFS;
* break;
* case IEEE80211_PARAM_CHANBW:
* switch (value) {
* case 0:
* ic->ic_chanbwflag = 0;
* break;
* case 1:
* ic->ic_chanbwflag = IEEE80211_CHAN_HALF;
* break;
* case 2:
* ic->ic_chanbwflag = IEEE80211_CHAN_QUARTER;
* break;
* default:
* retv = EINVAL;
* break;
* }
* break;
* case IEEE80211_PARAM_SHORTPREAMBLE:
* if (value) {
* ic->ic_caps |= IEEE80211_C_SHPREAMBLE;
* } else {
* ic->ic_caps &= ~IEEE80211_C_SHPREAMBLE;
* }
* retv = ENETRESET;
* break;
* default:
* retv = EOPNOTSUPP;
* break;
* }
* // XXX should any of these cause a rescan?
* if (retv == ENETRESET)
* retv = IS_UP_AUTO(vap) ? ieee80211_open(vap->iv_dev) : 0;
* return -retv;
*}
*/
int usbdrvwext_setmode(struct net_device *dev, struct iw_request_info *info,
void *w, char *extra)
{
return 0;
}
int usbdrvwext_getmode(struct net_device *dev, struct iw_request_info *info,
void *w, char *extra)
{
/* struct usbdrv_private *macp = dev->ml_priv; */
struct iw_point *wri = (struct iw_point *)extra;
char mode[8];
strcpy(mode, "11g");
return copy_to_user(wri->pointer, mode, 6) ? -EFAULT : 0;
}
int zfLnxPrivateIoctl(struct net_device *dev, struct zdap_ioctl* zdreq)
{
/* void* regp = macp->regp; */
u16_t cmd;
/* u32_t temp; */
u32_t *p;
u32_t i;
cmd = zdreq->cmd;
switch (cmd) {
case ZM_IOCTL_REG_READ:
zfiDbgReadReg(dev, zdreq->addr);
break;
case ZM_IOCTL_REG_WRITE:
zfiDbgWriteReg(dev, zdreq->addr, zdreq->value);
break;
case ZM_IOCTL_MEM_READ:
p = (u32_t *) bus_to_virt(zdreq->addr);
printk(KERN_WARNING
"usbdrv: read memory addr: 0x%08x value:"
" 0x%08x\n", zdreq->addr, *p);
break;
case ZM_IOCTL_MEM_WRITE:
p = (u32_t *) bus_to_virt(zdreq->addr);
*p = zdreq->value;
printk(KERN_WARNING
"usbdrv : write value : 0x%08x to memory addr :"
" 0x%08x\n", zdreq->value, zdreq->addr);
break;
case ZM_IOCTL_TALLY:
zfiWlanShowTally(dev);
if (zdreq->addr)
zfiWlanResetTally(dev);
break;
case ZM_IOCTL_TEST:
printk(KERN_WARNING
"ZM_IOCTL_TEST:len=%d\n", zdreq->addr);
/* zfiWlanReadReg(dev, 0x10f400); */
/* zfiWlanReadReg(dev, 0x10f404); */
printk(KERN_WARNING "IOCTL TEST\n");
#if 1
/* print packet */
for (i = 0; i < zdreq->addr; i++) {
if ((i&0x7) == 0)
printk(KERN_WARNING "\n");
printk(KERN_WARNING "%02X ",
(unsigned char)zdreq->data[i]);
}
printk(KERN_WARNING "\n");
#endif
/* For Test?? 1 to 0 by CWYang(-) */
#if 0
struct sk_buff *s;
/* Allocate a skb */
s = alloc_skb(2000, GFP_ATOMIC);
/* Copy data to skb */
for (i = 0; i < zdreq->addr; i++)
s->data[i] = zdreq->data[i];
s->len = zdreq->addr;
/* Call zfIdlRecv() */
zfiRecv80211(dev, s, NULL);
#endif
break;
/************************* ZDCONFIG ***************************/
case ZM_IOCTL_FRAG:
zfiWlanSetFragThreshold(dev, zdreq->addr);
break;
case ZM_IOCTL_RTS:
zfiWlanSetRtsThreshold(dev, zdreq->addr);
break;
case ZM_IOCTL_SCAN:
zfiWlanScan(dev);
break;
case ZM_IOCTL_KEY: {
u8_t key[29];
struct zsKeyInfo keyInfo;
u32_t i;
for (i = 0; i < 29; i++)
key[i] = 0;
for (i = 0; i < zdreq->addr; i++)
key[i] = zdreq->data[i];
printk(KERN_WARNING
"key len=%d, key=%02x%02x%02x%02x%02x...\n",
zdreq->addr, key[0], key[1], key[2], key[3], key[4]);
keyInfo.keyLength = zdreq->addr;
keyInfo.keyIndex = 0;
keyInfo.flag = 0;
keyInfo.key = key;
zfiWlanSetKey(dev, keyInfo);
}
break;
case ZM_IOCTL_RATE:
zfiWlanSetTxRate(dev, zdreq->addr);
break;
case ZM_IOCTL_ENCRYPTION_MODE:
zfiWlanSetEncryMode(dev, zdreq->addr);
zfiWlanDisable(dev, 0);
zfiWlanEnable(dev);
break;
/* CWYang(+) */
case ZM_IOCTL_SIGNAL_STRENGTH: {
u8_t buffer[2];
zfiWlanQuerySignalInfo(dev, &buffer[0]);
printk(KERN_WARNING
"Current Signal Strength : %02d\n", buffer[0]);
}
break;
/* CWYang(+) */
case ZM_IOCTL_SIGNAL_QUALITY: {
u8_t buffer[2];
zfiWlanQuerySignalInfo(dev, &buffer[0]);
printk(KERN_WARNING
"Current Signal Quality : %02d\n", buffer[1]);
}
break;
case ZM_IOCTL_SET_PIBSS_MODE:
if (zdreq->addr == 1)
zfiWlanSetWlanMode(dev, ZM_MODE_PSEUDO);
else
zfiWlanSetWlanMode(dev, ZM_MODE_INFRASTRUCTURE);
zfiWlanDisable(dev, 0);
zfiWlanEnable(dev);
break;
/********************* ZDCONFIG ***********************/
default:
printk(KERN_ERR "usbdrv: error command = %x\n", cmd);
break;
}
return 0;
}
int usbdrv_wpa_ioctl(struct net_device *dev, struct athr_wlan_param *zdparm)
{
int ret = 0;
u8_t bc_addr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
u8_t mac_addr[80];
struct zsKeyInfo keyInfo;
struct usbdrv_private *macp = dev->ml_priv;
u16_t vapId = 0;
/* zmw_get_wlan_dev(dev); */
switch (zdparm->cmd) {
case ZD_CMD_SET_ENCRYPT_KEY:
/* Set up key information */
keyInfo.keyLength = zdparm->u.crypt.key_len;
keyInfo.keyIndex = zdparm->u.crypt.idx;
if (zfiWlanQueryWlanMode(dev) == ZM_MODE_AP) {
/* AP Mode */
keyInfo.flag = ZM_KEY_FLAG_AUTHENTICATOR;
} else
keyInfo.flag = 0;
keyInfo.key = zdparm->u.crypt.key;
keyInfo.initIv = zdparm->u.crypt.seq;
keyInfo.macAddr = (u16_t *)zdparm->sta_addr;
/* Identify the MAC address information */
if (memcmp(zdparm->sta_addr, bc_addr, sizeof(bc_addr)) == 0)
keyInfo.flag |= ZM_KEY_FLAG_GK;
else
keyInfo.flag |= ZM_KEY_FLAG_PK;
if (!strcmp(zdparm->u.crypt.alg, "NONE")) {
/* u8_t zero_mac[]={0,0,0,0,0,0}; */
/* Set key length to zero */
keyInfo.keyLength = 0;
/* del group key */
if (zdparm->sta_addr[0] & 1) {
/* if (macp->cardSetting.WPAIeLen==0)
* { 802.1x dynamic WEP
* mDynKeyMode = 0;
* mKeyFormat[0] = 0;
* mPrivacyInvoked[0]=FALSE;
* mCap[0] &= ~CAP_PRIVACY;
* macp->cardSetting.EncryOnOff[0]=0;
* }
* mWpaBcKeyLen = mGkInstalled = 0;
*/
} else {
/* if (memcmp(zero_mac,zdparm->sta_addr, 6)==0)
* {
* mDynKeyMode=0;
* mKeyFormat[0]=0;
* pSetting->DynKeyMode=0;
* pSetting->EncryMode[0]=0;
* mDynKeyMode=0;
* }
*/
}
printk(KERN_ERR "Set Encryption Type NONE\n");
return ret;
} else if (!strcmp(zdparm->u.crypt.alg, "TKIP")) {
zfiWlanSetEncryMode(dev, ZM_TKIP);
/* //Linux Supplicant will inverse Tx/Rx key
* //So we inverse it back, CWYang(+)
* zfMemoryCopy(&temp[0], &keyInfo.key[16], 8);
* zfMemoryCopy(&keyInfo.key[16], keyInfo.key[24], 8);
* zfMemoryCopy(&keyInfo.key[24], &temp[0], 8);
* u8_t temp;
* int k;
* for (k = 0; k < 8; k++)
* {
* temp = keyInfo.key[16 + k];
* keyInfo.key[16 + k] = keyInfo.key[24 + k];
* keyInfo.key[24 + k] = temp;
* }
* CamEncryType = ZM_TKIP;
* if (idx == 0)
* { // Pairwise key
* mKeyFormat[0] = CamEncryType;
* mDynKeyMode = pSetting->DynKeyMode = DYN_KEY_TKIP;
* }
*/
} else if (!strcmp(zdparm->u.crypt.alg, "CCMP")) {
zfiWlanSetEncryMode(dev, ZM_AES);
/* CamEncryType = ZM_AES;
* if (idx == 0)
* { // Pairwise key
* mKeyFormat[0] = CamEncryType;
* mDynKeyMode = pSetting->DynKeyMode = DYN_KEY_AES;
* }
*/
} else if (!strcmp(zdparm->u.crypt.alg, "WEP")) {
if (keyInfo.keyLength == 5) {
/* WEP 64 */
zfiWlanSetEncryMode(dev, ZM_WEP64);
/* CamEncryType = ZM_WEP64; */
/* tmpDynKeyMode=DYN_KEY_WEP64; */
} else if (keyInfo.keyLength == 13) {
/* keylen=13, WEP 128 */
zfiWlanSetEncryMode(dev, ZM_WEP128);
/* CamEncryType = ZM_WEP128; */
/* tmpDynKeyMode=DYN_KEY_WEP128; */
} else {
zfiWlanSetEncryMode(dev, ZM_WEP256);
}
/* For Dynamic WEP key (Non-WPA Radius), the key ID range: 0-3
* In WPA/RSN mode, the key ID range: 1-3, usually, a broadcast key.
* For WEP key setting: we set mDynKeyMode and mKeyFormat in following
* case:
* 1. For 802.1x dynamically generated WEP key method.
* 2. For WPA/RSN mode, but key id == 0.
* (But this is an impossible case)
* So, only check case 1.
* if (macp->cardSetting.WPAIeLen==0)
* {
* mKeyFormat[0] = CamEncryType;
* mDynKeyMode = pSetting->DynKeyMode = tmpDynKeyMode;
* mPrivacyInvoked[0]=TRUE;
* mCap[0] |= CAP_PRIVACY;
* macp->cardSetting.EncryOnOff[0]=1;
* }
*/
}
/* DUMP key context */
/* #ifdef WPA_DEBUG */
if (keyInfo.keyLength > 0) {
int ii;
printk(KERN_WARNING
"Otus: Key Context:\n");
for (ii = 0; ii < keyInfo.keyLength; ) {
printk(KERN_WARNING
"0x%02x ", keyInfo.key[ii]);
if ((++ii % 16) == 0)
printk(KERN_WARNING "\n");
}
printk(KERN_WARNING "\n");
}
/* #endif */
/* Set encrypt mode */
/* zfiWlanSetEncryMode(dev, CamEncryType); */
vapId = zfLnxGetVapId(dev);
if (vapId == 0xffff)
keyInfo.vapId = 0;
else
keyInfo.vapId = vapId + 1;
keyInfo.vapAddr[0] = keyInfo.macAddr[0];
keyInfo.vapAddr[1] = keyInfo.macAddr[1];
keyInfo.vapAddr[2] = keyInfo.macAddr[2];
zfiWlanSetKey(dev, keyInfo);
/* zfiWlanDisable(dev); */
/* zfiWlanEnable(dev); */
break;
case ZD_CMD_SET_MLME:
printk(KERN_ERR "usbdrv_wpa_ioctl: ZD_CMD_SET_MLME\n");
/* Translate STA's address */
sprintf(mac_addr, "%02x:%02x:%02x:%02x:%02x:%02x",
zdparm->sta_addr[0], zdparm->sta_addr[1],
zdparm->sta_addr[2], zdparm->sta_addr[3],
zdparm->sta_addr[4], zdparm->sta_addr[5]);
switch (zdparm->u.mlme.cmd) {
case MLME_STA_DEAUTH:
printk(KERN_WARNING
" -------Call zfiWlanDeauth, reason:%d\n",
zdparm->u.mlme.reason_code);
if (zfiWlanDeauth(dev, (u16_t *) zdparm->sta_addr,
zdparm->u.mlme.reason_code) != 0)
printk(KERN_ERR "Can't deauthencate STA: %s\n",
mac_addr);
else
printk(KERN_ERR "Deauthenticate STA: %s"
"with reason code: %d\n",
mac_addr, zdparm->u.mlme.reason_code);
break;
case MLME_STA_DISASSOC:
printk(KERN_WARNING
" -------Call zfiWlanDeauth, reason:%d\n",
zdparm->u.mlme.reason_code);
if (zfiWlanDeauth(dev, (u16_t *) zdparm->sta_addr,
zdparm->u.mlme.reason_code) != 0)
printk(KERN_ERR "Can't disassociate STA: %s\n",
mac_addr);
else
printk(KERN_ERR "Disassociate STA: %s"
"with reason code: %d\n",
mac_addr, zdparm->u.mlme.reason_code);
break;
default:
printk(KERN_ERR "MLME command: 0x%04x not support\n",
zdparm->u.mlme.cmd);
break;
}
break;
case ZD_CMD_SCAN_REQ:
printk(KERN_ERR "usbdrv_wpa_ioctl: ZD_CMD_SCAN_REQ\n");
break;
case ZD_CMD_SET_GENERIC_ELEMENT:
printk(KERN_ERR "usbdrv_wpa_ioctl:"
" ZD_CMD_SET_GENERIC_ELEMENT\n");
/* Copy the WPA IE
* zm_msg1_mm(ZM_LV_0, "CWY - wpaie Length : ",
* zdparm->u.generic_elem.len);
*/
printk(KERN_ERR "wpaie Length : % d\n",
zdparm->u.generic_elem.len);
if (zfiWlanQueryWlanMode(dev) == ZM_MODE_AP) {
/* AP Mode */
zfiWlanSetWpaIe(dev, zdparm->u.generic_elem.data,
zdparm->u.generic_elem.len);
} else {
macp->supLen = zdparm->u.generic_elem.len;
memcpy(macp->supIe, zdparm->u.generic_elem.data,
zdparm->u.generic_elem.len);
}
zfiWlanSetWpaSupport(dev, 1);
/* zfiWlanSetWpaIe(dev, zdparm->u.generic_elem.data,
* zdparm->u.generic_elem.len);
*/
int ii;
u8_t len = zdparm->u.generic_elem.len;
u8_t *wpaie = (u8_t *)zdparm->u.generic_elem.data;
printk(KERN_ERR "wd->ap.wpaLen : % d\n", len);
/* DUMP WPA IE */
for(ii = 0; ii < len;) {
printk(KERN_ERR "0x%02x ", wpaie[ii]);
if((++ii % 16) == 0)
printk(KERN_ERR "\n");
}
printk(KERN_ERR "\n");
/* #ifdef ZM_HOSTAPD_SUPPORT
* if (wd->wlanMode == ZM_MODE_AP)
* {// Update Beacon FIFO in the next TBTT.
* memcpy(&mWPAIe, pSetting->WPAIe, pSetting->WPAIeLen);
* printk(KERN_ERR "Copy WPA IE into mWPAIe\n");
* }
* #endif
*/
break;
/* #ifdef ZM_HOSTAPD_SUPPORT */
case ZD_CMD_GET_TSC:
printk(KERN_ERR "usbdrv_wpa_ioctl : ZD_CMD_GET_TSC\n");
break;
/* #endif */
default:
printk(KERN_ERR "usbdrv_wpa_ioctl default : 0x%04x\n",
zdparm->cmd);
ret = -EINVAL;
break;
}
return ret;
}
#ifdef ZM_ENABLE_CENC
int usbdrv_cenc_ioctl(struct net_device *dev, struct zydas_cenc_param *zdparm)
{
/* struct usbdrv_private *macp = dev->ml_priv; */
struct zsKeyInfo keyInfo;
u16_t apId;
u8_t bc_addr[6] = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
int ret = 0;
int ii;
/* Get the AP Id */
apId = zfLnxGetVapId(dev);
if (apId == 0xffff) {
apId = 0;
} else {
apId = apId + 1;
}
switch (zdparm->cmd) {
case ZM_CMD_CENC_SETCENC:
printk(KERN_ERR "ZM_CMD_CENC_SETCENC\n");
printk(KERN_ERR "length : % d\n", zdparm->len);
printk(KERN_ERR "policy : % d\n", zdparm->u.info.cenc_policy);
break;
case ZM_CMD_CENC_SETKEY:
/* ret = wai_ioctl_setkey(vap, ioctl_msg); */
printk(KERN_ERR "ZM_CMD_CENC_SETKEY\n");
printk(KERN_ERR "MAC address = ");
for (ii = 0; ii < 6; ii++) {
printk(KERN_ERR "0x%02x ",
zdparm->u.crypt.sta_addr[ii]);
}
printk(KERN_ERR "\n");
printk(KERN_ERR "Key Index : % d\n", zdparm->u.crypt.keyid);
printk(KERN_ERR "Encryption key = ");
for (ii = 0; ii < 16; ii++) {
printk(KERN_ERR "0x%02x ", zdparm->u.crypt.key[ii]);
}
printk(KERN_ERR "\n");
printk(KERN_ERR "MIC key = ");
for(ii = 16; ii < ZM_CENC_KEY_SIZE; ii++) {
printk(KERN_ERR "0x%02x ", zdparm->u.crypt.key[ii]);
}
printk(KERN_ERR "\n");
/* Set up key information */
keyInfo.keyLength = ZM_CENC_KEY_SIZE;
keyInfo.keyIndex = zdparm->u.crypt.keyid;
keyInfo.flag = ZM_KEY_FLAG_AUTHENTICATOR | ZM_KEY_FLAG_CENC;
keyInfo.key = zdparm->u.crypt.key;
keyInfo.macAddr = (u16_t *)zdparm->u.crypt.sta_addr;
/* Identify the MAC address information */
if (memcmp(zdparm->u.crypt.sta_addr, bc_addr,
sizeof(bc_addr)) == 0) {
keyInfo.flag |= ZM_KEY_FLAG_GK;
keyInfo.vapId = apId;
memcpy(keyInfo.vapAddr, dev->dev_addr, ETH_ALEN);
} else {
keyInfo.flag |= ZM_KEY_FLAG_PK;
}
zfiWlanSetKey(dev, keyInfo);
break;
case ZM_CMD_CENC_REKEY:
/* ret = wai_ioctl_rekey(vap, ioctl_msg); */
printk(KERN_ERR "ZM_CMD_CENC_REKEY\n");
break;
default:
ret = -EOPNOTSUPP;
break;
}
/* if (retv == ENETRESET) */
/* retv = IS_UP_AUTO(vap) ? ieee80211_open(vap->iv_dev) : 0; */
return ret;
}
#endif /* ZM_ENABLE_CENC */
int usbdrv_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
/* struct usbdrv_private *macp; */
/* void *regp; */
struct zdap_ioctl zdreq;
struct iwreq *wrq = (struct iwreq *)ifr;
struct athr_wlan_param zdparm;
struct usbdrv_private *macp = dev->ml_priv;
int err = 0;
int changed = 0;
/* regp = macp->regp; */
if (!netif_running(dev))
return -EINVAL;
switch (cmd) {
case SIOCGIWNAME:
strcpy(wrq->u.name, "IEEE 802.11-DS");
break;
case SIOCGIWAP:
err = usbdrvwext_giwap(dev, NULL, &wrq->u.ap_addr, NULL);
break;
case SIOCSIWAP:
err = usbdrvwext_siwap(dev, NULL, &wrq->u.ap_addr, NULL);
break;
case SIOCGIWMODE:
err = usbdrvwext_giwmode(dev, NULL, &wrq->u.mode, NULL);
break;
case SIOCSIWESSID:
printk(KERN_ERR "CWY - usbdrvwext_siwessid\n");
/* err = usbdrv_ioctl_setessid(dev, &wrq->u.essid); */
err = usbdrvwext_siwessid(dev, NULL, &wrq->u.essid, NULL);
if (!err)
changed = 1;
break;
case SIOCGIWESSID:
err = usbdrvwext_giwessid(dev, NULL, &wrq->u.essid, NULL);
break;
case SIOCSIWRTS:
err = usbdrv_ioctl_setrts(dev, &wrq->u.rts);
if (! err)
changed = 1;
break;
/* set_auth */
case SIOCIWFIRSTPRIV + 0x2: {
/* printk("CWY - SIOCIWFIRSTPRIV + 0x2(set_auth)\n"); */
if (!capable(CAP_NET_ADMIN)) {
err = -EPERM;
break;
}
int val = *((int *) wrq->u.name);
if ((val < 0) || (val > 2)) {
err = -EINVAL;
break;
} else {
zfiWlanSetAuthenticationMode(dev, val);
if (macp->DeviceOpened == 1) {
zfiWlanDisable(dev, 0);
zfiWlanEnable(dev);
}
err = 0;
changed = 1;
}
}
break;
/* get_auth */
case SIOCIWFIRSTPRIV + 0x3: {
int AuthMode = ZM_AUTH_MODE_OPEN;
/* printk("CWY - SIOCIWFIRSTPRIV + 0x3(get_auth)\n"); */
if (wrq->u.data.pointer) {
wrq->u.data.flags = 1;
AuthMode = zfiWlanQueryAuthenticationMode(dev, 0);
if (AuthMode == ZM_AUTH_MODE_OPEN) {
wrq->u.data.length = 12;
if (copy_to_user(wrq->u.data.pointer,
"open system", 12)) {
return -EFAULT;
}
} else if (AuthMode == ZM_AUTH_MODE_SHARED_KEY) {
wrq->u.data.length = 11;
if (copy_to_user(wrq->u.data.pointer,
"shared key", 11)) {
return -EFAULT;
}
} else if (AuthMode == ZM_AUTH_MODE_AUTO) {
wrq->u.data.length = 10;
if (copy_to_user(wrq->u.data.pointer,
"auto mode", 10)) {
return -EFAULT;
}
} else {
return -EFAULT;
}
}
}
break;
/* debug command */
case ZDAPIOCTL:
if (copy_from_user(&zdreq, ifr->ifr_data, sizeof(zdreq))) {
printk(KERN_ERR "usbdrv : copy_from_user error\n");
return -EFAULT;
}
/* printk(KERN_WARNING
* "usbdrv : cmd = % 2x, reg = 0x%04lx,
*value = 0x%08lx\n",
* zdreq.cmd, zdreq.addr, zdreq.value);
*/
zfLnxPrivateIoctl(dev, &zdreq);
err = 0;
break;
case ZD_IOCTL_WPA:
if (copy_from_user(&zdparm, ifr->ifr_data,
sizeof(struct athr_wlan_param))) {
printk(KERN_ERR "usbdrv : copy_from_user error\n");
return -EFAULT;
}
usbdrv_wpa_ioctl(dev, &zdparm);
err = 0;
break;
case ZD_IOCTL_PARAM: {
int *p;
int op;
int arg;
/* Point to the name field and retrieve the
* op and arg elements.
*/
p = (int *)wrq->u.name;
op = *p++;
arg = *p;
if (op == ZD_PARAM_ROAMING) {
printk(KERN_ERR
"*************ZD_PARAM_ROAMING : % d\n", arg);
/* macp->cardSetting.ap_scan=(U8)arg; */
}
if (op == ZD_PARAM_PRIVACY) {
printk(KERN_ERR "ZD_IOCTL_PRIVACY : ");
/* Turn on the privacy invoke flag */
if (arg) {
/* mCap[0] |= CAP_PRIVACY; */
/* macp->cardSetting.EncryOnOff[0] = 1; */
printk(KERN_ERR "enable\n");
} else {
/* mCap[0] &= ~CAP_PRIVACY; */
/* macp->cardSetting.EncryOnOff[0] = 0; */
printk(KERN_ERR "disable\n");
}
/* changed=1; */
}
if (op == ZD_PARAM_WPA) {
printk(KERN_ERR "ZD_PARAM_WPA : ");
if (arg) {
printk(KERN_ERR "enable\n");
if (zfiWlanQueryWlanMode(dev) != ZM_MODE_AP) {
printk(KERN_ERR "Station Mode\n");
/* zfiWlanQueryWpaIe(dev, (u8_t *)
&wpaIe, &wpalen); */
/* printk("wpaIe : % 2x, % 2x, % 2x\n",
wpaIe[21], wpaIe[22], wpaIe[23]); */
/* printk("rsnIe : % 2x, % 2x, % 2x\n",
wpaIe[17], wpaIe[18], wpaIe[19]); */
if ((macp->supIe[21] == 0x50) &&
(macp->supIe[22] == 0xf2) &&
(macp->supIe[23] == 0x2)) {
printk(KERN_ERR
"wd->sta.authMode = ZM_AUTH_MODE_WPAPSK\n");
/* wd->sta.authMode = ZM_AUTH_MODE_WPAPSK; */
/* wd->ws.authMode = ZM_AUTH_MODE_WPAPSK; */
zfiWlanSetAuthenticationMode(dev,
ZM_AUTH_MODE_WPAPSK);
} else if ((macp->supIe[21] == 0x50) &&
(macp->supIe[22] == 0xf2) &&
(macp->supIe[23] == 0x1)) {
printk(KERN_ERR
"wd->sta.authMode = ZM_AUTH_MODE_WPA\n");
/* wd->sta.authMode = ZM_AUTH_MODE_WPA; */
/* wd->ws.authMode = ZM_AUTH_MODE_WPA; */
zfiWlanSetAuthenticationMode(dev,
ZM_AUTH_MODE_WPA);
} else if ((macp->supIe[17] == 0xf) &&
(macp->supIe[18] == 0xac) &&
(macp->supIe[19] == 0x2))
{
printk(KERN_ERR
"wd->sta.authMode = ZM_AUTH_MODE_WPA2PSK\n");
/* wd->sta.authMode = ZM_AUTH_MODE_WPA2PSK; */
/* wd->ws.authMode = ZM_AUTH_MODE_WPA2PSK; */
zfiWlanSetAuthenticationMode(dev,
ZM_AUTH_MODE_WPA2PSK);
} else if ((macp->supIe[17] == 0xf) &&
(macp->supIe[18] == 0xac) &&
(macp->supIe[19] == 0x1))
{
printk(KERN_ERR
"wd->sta.authMode = ZM_AUTH_MODE_WPA2\n");
/* wd->sta.authMode = ZM_AUTH_MODE_WPA2; */
/* wd->ws.authMode = ZM_AUTH_MODE_WPA2; */
zfiWlanSetAuthenticationMode(dev,
ZM_AUTH_MODE_WPA2);
}
/* WPA or WPAPSK */
if ((macp->supIe[21] == 0x50) ||
(macp->supIe[22] == 0xf2)) {
if (macp->supIe[11] == 0x2) {
printk(KERN_ERR
"wd->sta.wepStatus = ZM_ENCRYPTION_TKIP\n");
/* wd->sta.wepStatus = ZM_ENCRYPTION_TKIP; */
/* wd->ws.wepStatus = ZM_ENCRYPTION_TKIP; */
zfiWlanSetWepStatus(dev, ZM_ENCRYPTION_TKIP);
} else {
printk(KERN_ERR
"wd->sta.wepStatus = ZM_ENCRYPTION_AES\n");
/* wd->sta.wepStatus = ZM_ENCRYPTION_AES; */
/* wd->ws.wepStatus = ZM_ENCRYPTION_AES; */
zfiWlanSetWepStatus(dev, ZM_ENCRYPTION_AES);
}
}
//WPA2 or WPA2PSK
if ((macp->supIe[17] == 0xf) ||
(macp->supIe[18] == 0xac)) {
if (macp->supIe[13] == 0x2) {
printk(KERN_ERR
"wd->sta.wepStatus = ZM_ENCRYPTION_TKIP\n");
/* wd->sta.wepStatus = ZM_ENCRYPTION_TKIP; */
/* wd->ws.wepStatus = ZM_ENCRYPTION_TKIP; */
zfiWlanSetWepStatus(dev, ZM_ENCRYPTION_TKIP);
} else {
printk(KERN_ERR
"wd->sta.wepStatus = ZM_ENCRYPTION_AES\n");
/* wd->sta.wepStatus = ZM_ENCRYPTION_AES; */
/* wd->ws.wepStatus = ZM_ENCRYPTION_AES; */
zfiWlanSetWepStatus(dev, ZM_ENCRYPTION_AES);
}
}
}
zfiWlanSetWpaSupport(dev, 1);
} else {
/* Reset the WPA related variables */
printk(KERN_ERR "disable\n");
zfiWlanSetWpaSupport(dev, 0);
zfiWlanSetAuthenticationMode(dev, ZM_AUTH_MODE_OPEN);
zfiWlanSetWepStatus(dev, ZM_ENCRYPTION_WEP_DISABLED);
/* Now we only set the length in the WPA IE
* field to zero.
*macp->cardSetting.WPAIe[1] = 0;
*/
}
}
if (op == ZD_PARAM_COUNTERMEASURES) {
printk(KERN_ERR
"****************ZD_PARAM_COUNTERMEASURES : ");
if(arg) {
/* mCounterMeasureState=1; */
printk(KERN_ERR "enable\n");
} else {
/* mCounterMeasureState=0; */
printk(KERN_ERR "disable\n");
}
}
if (op == ZD_PARAM_DROPUNENCRYPTED) {
printk(KERN_ERR "ZD_PARAM_DROPUNENCRYPTED : ");
if(arg) {
printk(KERN_ERR "enable\n");
} else {
printk(KERN_ERR "disable\n");
}
}
if (op == ZD_PARAM_AUTH_ALGS) {
printk(KERN_ERR "ZD_PARAM_AUTH_ALGS : ");
if (arg == 0) {
printk(KERN_ERR "OPEN_SYSTEM\n");
} else {
printk(KERN_ERR "SHARED_KEY\n");
}
}
if (op == ZD_PARAM_WPS_FILTER) {
printk(KERN_ERR "ZD_PARAM_WPS_FILTER : ");
if (arg) {
/* mCounterMeasureState=1; */
macp->forwardMgmt = 1;
printk(KERN_ERR "enable\n");
} else {
/* mCounterMeasureState=0; */
macp->forwardMgmt = 0;
printk(KERN_ERR "disable\n");
}
}
}
err = 0;
break;
case ZD_IOCTL_GETWPAIE: {
struct ieee80211req_wpaie req_wpaie;
u16_t apId, i, j;
/* Get the AP Id */
apId = zfLnxGetVapId(dev);
if (apId == 0xffff) {
apId = 0;
} else {
apId = apId + 1;
}
if (copy_from_user(&req_wpaie, ifr->ifr_data,
sizeof(struct ieee80211req_wpaie))) {
printk(KERN_ERR "usbdrv : copy_from_user error\n");
return -EFAULT;
}
for (i = 0; i < ZM_OAL_MAX_STA_SUPPORT; i++) {
for (j = 0; j < IEEE80211_ADDR_LEN; j++) {
if (macp->stawpaie[i].wpa_macaddr[j] !=
req_wpaie.wpa_macaddr[j])
break;
}
if (j == 6)
break;
}
if (i < ZM_OAL_MAX_STA_SUPPORT) {
/* printk("ZD_IOCTL_GETWPAIE - sta index = % d\n", i); */
memcpy(req_wpaie.wpa_ie, macp->stawpaie[i].wpa_ie,
IEEE80211_MAX_IE_SIZE);
}
if (copy_to_user(wrq->u.data.pointer, &req_wpaie,
sizeof(struct ieee80211req_wpaie))) {
return -EFAULT;
}
}
err = 0;
break;
#ifdef ZM_ENABLE_CENC
case ZM_IOCTL_CENC:
if (copy_from_user(&macp->zd_wpa_req, ifr->ifr_data,
sizeof(struct athr_wlan_param))) {
printk(KERN_ERR "usbdrv : copy_from_user error\n");
return -EFAULT;
}
usbdrv_cenc_ioctl(dev,
(struct zydas_cenc_param *)&macp->zd_wpa_req);
err = 0;
break;
#endif /* ZM_ENABLE_CENC */
default:
err = -EOPNOTSUPP;
break;
}
return err;
}