blob: 4d3f7d5e1473afa1f61b379729f6528eb5702c64 [file] [log] [blame]
/*
* Copyright 2016 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: AMD
*
*/
#include "dm_services.h"
#include "core_types.h"
#include "reg_helper.h"
#include "dcn10_dpp.h"
#include "basics/conversion.h"
#include "dcn10_cm_common.h"
#define NUM_PHASES 64
#define HORZ_MAX_TAPS 8
#define VERT_MAX_TAPS 8
#define BLACK_OFFSET_RGB_Y 0x0
#define BLACK_OFFSET_CBCR 0x8000
#define REG(reg)\
dpp->tf_regs->reg
#define CTX \
dpp->base.ctx
#undef FN
#define FN(reg_name, field_name) \
dpp->tf_shift->field_name, dpp->tf_mask->field_name
#define NUM_ELEMENTS(a) (sizeof(a) / sizeof((a)[0]))
enum dcn10_coef_filter_type_sel {
SCL_COEF_LUMA_VERT_FILTER = 0,
SCL_COEF_LUMA_HORZ_FILTER = 1,
SCL_COEF_CHROMA_VERT_FILTER = 2,
SCL_COEF_CHROMA_HORZ_FILTER = 3,
SCL_COEF_ALPHA_VERT_FILTER = 4,
SCL_COEF_ALPHA_HORZ_FILTER = 5
};
enum dscl_autocal_mode {
AUTOCAL_MODE_OFF = 0,
/* Autocal calculate the scaling ratio and initial phase and the
* DSCL_MODE_SEL must be set to 1
*/
AUTOCAL_MODE_AUTOSCALE = 1,
/* Autocal perform auto centering without replication and the
* DSCL_MODE_SEL must be set to 0
*/
AUTOCAL_MODE_AUTOCENTER = 2,
/* Autocal perform auto centering and auto replication and the
* DSCL_MODE_SEL must be set to 0
*/
AUTOCAL_MODE_AUTOREPLICATE = 3
};
enum dscl_mode_sel {
DSCL_MODE_SCALING_444_BYPASS = 0,
DSCL_MODE_SCALING_444_RGB_ENABLE = 1,
DSCL_MODE_SCALING_444_YCBCR_ENABLE = 2,
DSCL_MODE_SCALING_420_YCBCR_ENABLE = 3,
DSCL_MODE_SCALING_420_LUMA_BYPASS = 4,
DSCL_MODE_SCALING_420_CHROMA_BYPASS = 5,
DSCL_MODE_DSCL_BYPASS = 6
};
static void program_gamut_remap(
struct dcn10_dpp *dpp,
const uint16_t *regval,
enum gamut_remap_select select)
{
uint16_t selection = 0;
struct color_matrices_reg gam_regs;
if (regval == NULL || select == GAMUT_REMAP_BYPASS) {
REG_SET(CM_GAMUT_REMAP_CONTROL, 0,
CM_GAMUT_REMAP_MODE, 0);
return;
}
switch (select) {
case GAMUT_REMAP_COEFF:
selection = 1;
break;
case GAMUT_REMAP_COMA_COEFF:
selection = 2;
break;
case GAMUT_REMAP_COMB_COEFF:
selection = 3;
break;
default:
break;
}
gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_GAMUT_REMAP_C11;
gam_regs.masks.csc_c11 = dpp->tf_mask->CM_GAMUT_REMAP_C11;
gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_GAMUT_REMAP_C12;
gam_regs.masks.csc_c12 = dpp->tf_mask->CM_GAMUT_REMAP_C12;
if (select == GAMUT_REMAP_COEFF) {
gam_regs.csc_c11_c12 = REG(CM_GAMUT_REMAP_C11_C12);
gam_regs.csc_c33_c34 = REG(CM_GAMUT_REMAP_C33_C34);
cm_helper_program_color_matrices(
dpp->base.ctx,
regval,
&gam_regs);
} else if (select == GAMUT_REMAP_COMA_COEFF) {
gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12);
gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34);
cm_helper_program_color_matrices(
dpp->base.ctx,
regval,
&gam_regs);
} else {
gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12);
gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34);
cm_helper_program_color_matrices(
dpp->base.ctx,
regval,
&gam_regs);
}
REG_SET(
CM_GAMUT_REMAP_CONTROL, 0,
CM_GAMUT_REMAP_MODE, selection);
}
void dpp1_cm_set_gamut_remap(
struct dpp *dpp_base,
const struct dpp_grph_csc_adjustment *adjust)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
int i = 0;
if (adjust->gamut_adjust_type != GRAPHICS_GAMUT_ADJUST_TYPE_SW)
/* Bypass if type is bypass or hw */
program_gamut_remap(dpp, NULL, GAMUT_REMAP_BYPASS);
else {
struct fixed31_32 arr_matrix[12];
uint16_t arr_reg_val[12];
for (i = 0; i < 12; i++)
arr_matrix[i] = adjust->temperature_matrix[i];
convert_float_matrix(
arr_reg_val, arr_matrix, 12);
program_gamut_remap(dpp, arr_reg_val, GAMUT_REMAP_COEFF);
}
}
static void dpp1_cm_program_color_matrix(
struct dcn10_dpp *dpp,
const uint16_t *regval)
{
uint32_t ocsc_mode;
uint32_t cur_mode;
struct color_matrices_reg gam_regs;
if (regval == NULL) {
BREAK_TO_DEBUGGER();
return;
}
/* determine which CSC matrix (ocsc or comb) we are using
* currently. select the alternate set to double buffer
* the CSC update so CSC is updated on frame boundary
*/
REG_SET(CM_TEST_DEBUG_INDEX, 0,
CM_TEST_DEBUG_INDEX, 9);
REG_GET(CM_TEST_DEBUG_DATA,
CM_TEST_DEBUG_DATA_ID9_OCSC_MODE, &cur_mode);
if (cur_mode != 4)
ocsc_mode = 4;
else
ocsc_mode = 5;
gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_OCSC_C11;
gam_regs.masks.csc_c11 = dpp->tf_mask->CM_OCSC_C11;
gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_OCSC_C12;
gam_regs.masks.csc_c12 = dpp->tf_mask->CM_OCSC_C12;
if (ocsc_mode == 4) {
gam_regs.csc_c11_c12 = REG(CM_OCSC_C11_C12);
gam_regs.csc_c33_c34 = REG(CM_OCSC_C33_C34);
} else {
gam_regs.csc_c11_c12 = REG(CM_COMB_C11_C12);
gam_regs.csc_c33_c34 = REG(CM_COMB_C33_C34);
}
cm_helper_program_color_matrices(
dpp->base.ctx,
regval,
&gam_regs);
REG_SET(CM_OCSC_CONTROL, 0, CM_OCSC_MODE, ocsc_mode);
}
void dpp1_cm_set_output_csc_default(
struct dpp *dpp_base,
enum dc_color_space colorspace)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
const uint16_t *regval = NULL;
int arr_size;
regval = find_color_matrix(colorspace, &arr_size);
if (regval == NULL) {
BREAK_TO_DEBUGGER();
return;
}
dpp1_cm_program_color_matrix(dpp, regval);
}
static void dpp1_cm_get_reg_field(
struct dcn10_dpp *dpp,
struct xfer_func_reg *reg)
{
reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET;
reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_LUT_OFFSET;
reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET;
reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_LUT_OFFSET;
reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_RGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
reg->shifts.field_region_end = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_B;
reg->masks.field_region_end = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_B;
reg->shifts.field_region_end_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B;
reg->masks.field_region_end_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_SLOPE_B;
reg->shifts.field_region_end_base = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_END_BASE_B;
reg->masks.field_region_end_base = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_END_BASE_B;
reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
reg->masks.field_region_linear_slope = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
reg->shifts.exp_region_start = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_B;
reg->masks.exp_region_start = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_B;
reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B;
reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_RGAM_RAMB_EXP_REGION_START_SEGMENT_B;
}
static void dpp1_cm_get_degamma_reg_field(
struct dcn10_dpp *dpp,
struct xfer_func_reg *reg)
{
reg->shifts.exp_region0_lut_offset = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET;
reg->masks.exp_region0_lut_offset = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION0_LUT_OFFSET;
reg->shifts.exp_region0_num_segments = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
reg->masks.exp_region0_num_segments = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION0_NUM_SEGMENTS;
reg->shifts.exp_region1_lut_offset = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET;
reg->masks.exp_region1_lut_offset = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION1_LUT_OFFSET;
reg->shifts.exp_region1_num_segments = dpp->tf_shift->CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
reg->masks.exp_region1_num_segments = dpp->tf_mask->CM_DGAM_RAMA_EXP_REGION1_NUM_SEGMENTS;
reg->shifts.field_region_end = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_B;
reg->masks.field_region_end = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_B;
reg->shifts.field_region_end_slope = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B;
reg->masks.field_region_end_slope = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_SLOPE_B;
reg->shifts.field_region_end_base = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_END_BASE_B;
reg->masks.field_region_end_base = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_END_BASE_B;
reg->shifts.field_region_linear_slope = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
reg->masks.field_region_linear_slope = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_LINEAR_SLOPE_B;
reg->shifts.exp_region_start = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_START_B;
reg->masks.exp_region_start = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_START_B;
reg->shifts.exp_resion_start_segment = dpp->tf_shift->CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B;
reg->masks.exp_resion_start_segment = dpp->tf_mask->CM_DGAM_RAMB_EXP_REGION_START_SEGMENT_B;
}
void dpp1_cm_set_output_csc_adjustment(
struct dpp *dpp_base,
const uint16_t *regval)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
dpp1_cm_program_color_matrix(dpp, regval);
}
void dpp1_cm_power_on_regamma_lut(struct dpp *dpp_base,
bool power_on)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
REG_SET(CM_MEM_PWR_CTRL, 0,
RGAM_MEM_PWR_FORCE, power_on == true ? 0:1);
}
void dpp1_cm_program_regamma_lut(struct dpp *dpp_base,
const struct pwl_result_data *rgb,
uint32_t num)
{
uint32_t i;
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
REG_SEQ_START();
for (i = 0 ; i < num; i++) {
REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].red_reg);
REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].green_reg);
REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].blue_reg);
REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_red_reg);
REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_green_reg);
REG_SET(CM_RGAM_LUT_DATA, 0, CM_RGAM_LUT_DATA, rgb[i].delta_blue_reg);
}
}
void dpp1_cm_configure_regamma_lut(
struct dpp *dpp_base,
bool is_ram_a)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK,
CM_RGAM_LUT_WRITE_EN_MASK, 7);
REG_UPDATE(CM_RGAM_LUT_WRITE_EN_MASK,
CM_RGAM_LUT_WRITE_SEL, is_ram_a == true ? 0:1);
REG_SET(CM_RGAM_LUT_INDEX, 0, CM_RGAM_LUT_INDEX, 0);
}
/*program re gamma RAM A*/
void dpp1_cm_program_regamma_luta_settings(
struct dpp *dpp_base,
const struct pwl_params *params)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
struct xfer_func_reg gam_regs;
dpp1_cm_get_reg_field(dpp, &gam_regs);
gam_regs.start_cntl_b = REG(CM_RGAM_RAMA_START_CNTL_B);
gam_regs.start_cntl_g = REG(CM_RGAM_RAMA_START_CNTL_G);
gam_regs.start_cntl_r = REG(CM_RGAM_RAMA_START_CNTL_R);
gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMA_SLOPE_CNTL_B);
gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMA_SLOPE_CNTL_G);
gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMA_SLOPE_CNTL_R);
gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMA_END_CNTL1_B);
gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMA_END_CNTL2_B);
gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMA_END_CNTL1_G);
gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMA_END_CNTL2_G);
gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMA_END_CNTL1_R);
gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMA_END_CNTL2_R);
gam_regs.region_start = REG(CM_RGAM_RAMA_REGION_0_1);
gam_regs.region_end = REG(CM_RGAM_RAMA_REGION_32_33);
cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
}
/*program re gamma RAM B*/
void dpp1_cm_program_regamma_lutb_settings(
struct dpp *dpp_base,
const struct pwl_params *params)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
struct xfer_func_reg gam_regs;
dpp1_cm_get_reg_field(dpp, &gam_regs);
gam_regs.start_cntl_b = REG(CM_RGAM_RAMB_START_CNTL_B);
gam_regs.start_cntl_g = REG(CM_RGAM_RAMB_START_CNTL_G);
gam_regs.start_cntl_r = REG(CM_RGAM_RAMB_START_CNTL_R);
gam_regs.start_slope_cntl_b = REG(CM_RGAM_RAMB_SLOPE_CNTL_B);
gam_regs.start_slope_cntl_g = REG(CM_RGAM_RAMB_SLOPE_CNTL_G);
gam_regs.start_slope_cntl_r = REG(CM_RGAM_RAMB_SLOPE_CNTL_R);
gam_regs.start_end_cntl1_b = REG(CM_RGAM_RAMB_END_CNTL1_B);
gam_regs.start_end_cntl2_b = REG(CM_RGAM_RAMB_END_CNTL2_B);
gam_regs.start_end_cntl1_g = REG(CM_RGAM_RAMB_END_CNTL1_G);
gam_regs.start_end_cntl2_g = REG(CM_RGAM_RAMB_END_CNTL2_G);
gam_regs.start_end_cntl1_r = REG(CM_RGAM_RAMB_END_CNTL1_R);
gam_regs.start_end_cntl2_r = REG(CM_RGAM_RAMB_END_CNTL2_R);
gam_regs.region_start = REG(CM_RGAM_RAMB_REGION_0_1);
gam_regs.region_end = REG(CM_RGAM_RAMB_REGION_32_33);
cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
}
void dpp1_program_input_csc(
struct dpp *dpp_base,
enum dc_color_space color_space,
enum dcn10_input_csc_select input_select,
const struct out_csc_color_matrix *tbl_entry)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
int i;
int arr_size = sizeof(dpp_input_csc_matrix)/sizeof(struct dpp_input_csc_matrix);
const uint16_t *regval = NULL;
uint32_t cur_select = 0;
enum dcn10_input_csc_select select;
struct color_matrices_reg gam_regs;
if (input_select == INPUT_CSC_SELECT_BYPASS) {
REG_SET(CM_ICSC_CONTROL, 0, CM_ICSC_MODE, 0);
return;
}
if (tbl_entry == NULL) {
for (i = 0; i < arr_size; i++)
if (dpp_input_csc_matrix[i].color_space == color_space) {
regval = dpp_input_csc_matrix[i].regval;
break;
}
if (regval == NULL) {
BREAK_TO_DEBUGGER();
return;
}
} else {
regval = tbl_entry->regval;
}
/* determine which CSC matrix (icsc or coma) we are using
* currently. select the alternate set to double buffer
* the CSC update so CSC is updated on frame boundary
*/
REG_SET(CM_TEST_DEBUG_INDEX, 0,
CM_TEST_DEBUG_INDEX, 9);
REG_GET(CM_TEST_DEBUG_DATA,
CM_TEST_DEBUG_DATA_ID9_ICSC_MODE, &cur_select);
if (cur_select != INPUT_CSC_SELECT_ICSC)
select = INPUT_CSC_SELECT_ICSC;
else
select = INPUT_CSC_SELECT_COMA;
gam_regs.shifts.csc_c11 = dpp->tf_shift->CM_ICSC_C11;
gam_regs.masks.csc_c11 = dpp->tf_mask->CM_ICSC_C11;
gam_regs.shifts.csc_c12 = dpp->tf_shift->CM_ICSC_C12;
gam_regs.masks.csc_c12 = dpp->tf_mask->CM_ICSC_C12;
if (select == INPUT_CSC_SELECT_ICSC) {
gam_regs.csc_c11_c12 = REG(CM_ICSC_C11_C12);
gam_regs.csc_c33_c34 = REG(CM_ICSC_C33_C34);
} else {
gam_regs.csc_c11_c12 = REG(CM_COMA_C11_C12);
gam_regs.csc_c33_c34 = REG(CM_COMA_C33_C34);
}
cm_helper_program_color_matrices(
dpp->base.ctx,
regval,
&gam_regs);
REG_SET(CM_ICSC_CONTROL, 0,
CM_ICSC_MODE, select);
}
//keep here for now, decide multi dce support later
void dpp1_program_bias_and_scale(
struct dpp *dpp_base,
struct dc_bias_and_scale *params)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
REG_SET_2(CM_BNS_VALUES_R, 0,
CM_BNS_SCALE_R, params->scale_red,
CM_BNS_BIAS_R, params->bias_red);
REG_SET_2(CM_BNS_VALUES_G, 0,
CM_BNS_SCALE_G, params->scale_green,
CM_BNS_BIAS_G, params->bias_green);
REG_SET_2(CM_BNS_VALUES_B, 0,
CM_BNS_SCALE_B, params->scale_blue,
CM_BNS_BIAS_B, params->bias_blue);
}
/*program de gamma RAM B*/
void dpp1_program_degamma_lutb_settings(
struct dpp *dpp_base,
const struct pwl_params *params)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
struct xfer_func_reg gam_regs;
dpp1_cm_get_degamma_reg_field(dpp, &gam_regs);
gam_regs.start_cntl_b = REG(CM_DGAM_RAMB_START_CNTL_B);
gam_regs.start_cntl_g = REG(CM_DGAM_RAMB_START_CNTL_G);
gam_regs.start_cntl_r = REG(CM_DGAM_RAMB_START_CNTL_R);
gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMB_SLOPE_CNTL_B);
gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMB_SLOPE_CNTL_G);
gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMB_SLOPE_CNTL_R);
gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMB_END_CNTL1_B);
gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMB_END_CNTL2_B);
gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMB_END_CNTL1_G);
gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMB_END_CNTL2_G);
gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMB_END_CNTL1_R);
gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMB_END_CNTL2_R);
gam_regs.region_start = REG(CM_DGAM_RAMB_REGION_0_1);
gam_regs.region_end = REG(CM_DGAM_RAMB_REGION_14_15);
cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
}
/*program de gamma RAM A*/
void dpp1_program_degamma_luta_settings(
struct dpp *dpp_base,
const struct pwl_params *params)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
struct xfer_func_reg gam_regs;
dpp1_cm_get_degamma_reg_field(dpp, &gam_regs);
gam_regs.start_cntl_b = REG(CM_DGAM_RAMA_START_CNTL_B);
gam_regs.start_cntl_g = REG(CM_DGAM_RAMA_START_CNTL_G);
gam_regs.start_cntl_r = REG(CM_DGAM_RAMA_START_CNTL_R);
gam_regs.start_slope_cntl_b = REG(CM_DGAM_RAMA_SLOPE_CNTL_B);
gam_regs.start_slope_cntl_g = REG(CM_DGAM_RAMA_SLOPE_CNTL_G);
gam_regs.start_slope_cntl_r = REG(CM_DGAM_RAMA_SLOPE_CNTL_R);
gam_regs.start_end_cntl1_b = REG(CM_DGAM_RAMA_END_CNTL1_B);
gam_regs.start_end_cntl2_b = REG(CM_DGAM_RAMA_END_CNTL2_B);
gam_regs.start_end_cntl1_g = REG(CM_DGAM_RAMA_END_CNTL1_G);
gam_regs.start_end_cntl2_g = REG(CM_DGAM_RAMA_END_CNTL2_G);
gam_regs.start_end_cntl1_r = REG(CM_DGAM_RAMA_END_CNTL1_R);
gam_regs.start_end_cntl2_r = REG(CM_DGAM_RAMA_END_CNTL2_R);
gam_regs.region_start = REG(CM_DGAM_RAMA_REGION_0_1);
gam_regs.region_end = REG(CM_DGAM_RAMA_REGION_14_15);
cm_helper_program_xfer_func(dpp->base.ctx, params, &gam_regs);
}
void dpp1_power_on_degamma_lut(
struct dpp *dpp_base,
bool power_on)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
REG_SET(CM_MEM_PWR_CTRL, 0,
SHARED_MEM_PWR_DIS, power_on == true ? 0:1);
}
static void dpp1_enable_cm_block(
struct dpp *dpp_base)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
REG_UPDATE(CM_CMOUT_CONTROL, CM_CMOUT_ROUND_TRUNC_MODE, 8);
REG_UPDATE(CM_CONTROL, CM_BYPASS_EN, 0);
}
void dpp1_set_degamma(
struct dpp *dpp_base,
enum ipp_degamma_mode mode)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
dpp1_enable_cm_block(dpp_base);
switch (mode) {
case IPP_DEGAMMA_MODE_BYPASS:
/* Setting de gamma bypass for now */
REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 0);
break;
case IPP_DEGAMMA_MODE_HW_sRGB:
REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 1);
break;
case IPP_DEGAMMA_MODE_HW_xvYCC:
REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 2);
break;
case IPP_DEGAMMA_MODE_USER_PWL:
REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3);
break;
default:
BREAK_TO_DEBUGGER();
break;
}
REG_SEQ_SUBMIT();
REG_SEQ_WAIT_DONE();
}
void dpp1_degamma_ram_select(
struct dpp *dpp_base,
bool use_ram_a)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
if (use_ram_a)
REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 3);
else
REG_UPDATE(CM_DGAM_CONTROL, CM_DGAM_LUT_MODE, 4);
}
static bool dpp1_degamma_ram_inuse(
struct dpp *dpp_base,
bool *ram_a_inuse)
{
bool ret = false;
uint32_t status_reg = 0;
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS,
&status_reg);
if (status_reg == 9) {
*ram_a_inuse = true;
ret = true;
} else if (status_reg == 10) {
*ram_a_inuse = false;
ret = true;
}
return ret;
}
void dpp1_program_degamma_lut(
struct dpp *dpp_base,
const struct pwl_result_data *rgb,
uint32_t num,
bool is_ram_a)
{
uint32_t i;
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_HOST_EN, 0);
REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK,
CM_DGAM_LUT_WRITE_EN_MASK, 7);
REG_UPDATE(CM_DGAM_LUT_WRITE_EN_MASK, CM_DGAM_LUT_WRITE_SEL,
is_ram_a == true ? 0:1);
REG_SET(CM_DGAM_LUT_INDEX, 0, CM_DGAM_LUT_INDEX, 0);
for (i = 0 ; i < num; i++) {
REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].red_reg);
REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].green_reg);
REG_SET(CM_DGAM_LUT_DATA, 0, CM_DGAM_LUT_DATA, rgb[i].blue_reg);
REG_SET(CM_DGAM_LUT_DATA, 0,
CM_DGAM_LUT_DATA, rgb[i].delta_red_reg);
REG_SET(CM_DGAM_LUT_DATA, 0,
CM_DGAM_LUT_DATA, rgb[i].delta_green_reg);
REG_SET(CM_DGAM_LUT_DATA, 0,
CM_DGAM_LUT_DATA, rgb[i].delta_blue_reg);
}
}
void dpp1_set_degamma_pwl(struct dpp *dpp_base,
const struct pwl_params *params)
{
bool is_ram_a = true;
dpp1_power_on_degamma_lut(dpp_base, true);
dpp1_enable_cm_block(dpp_base);
dpp1_degamma_ram_inuse(dpp_base, &is_ram_a);
if (is_ram_a == true)
dpp1_program_degamma_lutb_settings(dpp_base, params);
else
dpp1_program_degamma_luta_settings(dpp_base, params);
dpp1_program_degamma_lut(dpp_base, params->rgb_resulted,
params->hw_points_num, !is_ram_a);
dpp1_degamma_ram_select(dpp_base, !is_ram_a);
}
void dpp1_full_bypass(struct dpp *dpp_base)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
/* Input pixel format: ARGB8888 */
REG_SET(CNVC_SURFACE_PIXEL_FORMAT, 0,
CNVC_SURFACE_PIXEL_FORMAT, 0x8);
/* Zero expansion */
REG_SET_3(FORMAT_CONTROL, 0,
CNVC_BYPASS, 0,
FORMAT_CONTROL__ALPHA_EN, 0,
FORMAT_EXPANSION_MODE, 0);
/* COLOR_KEYER_CONTROL.COLOR_KEYER_EN = 0 this should be default */
if (dpp->tf_mask->CM_BYPASS_EN)
REG_SET(CM_CONTROL, 0, CM_BYPASS_EN, 1);
else
REG_SET(CM_CONTROL, 0, CM_BYPASS, 1);
/* Setting degamma bypass for now */
REG_SET(CM_DGAM_CONTROL, 0, CM_DGAM_LUT_MODE, 0);
}
static bool dpp1_ingamma_ram_inuse(struct dpp *dpp_base,
bool *ram_a_inuse)
{
bool in_use = false;
uint32_t status_reg = 0;
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
REG_GET(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_DGAM_CONFIG_STATUS,
&status_reg);
// 1 => IGAM_RAMA, 3 => IGAM_RAMA & DGAM_ROMA, 4 => IGAM_RAMA & DGAM_ROMB
if (status_reg == 1 || status_reg == 3 || status_reg == 4) {
*ram_a_inuse = true;
in_use = true;
// 2 => IGAM_RAMB, 5 => IGAM_RAMB & DGAM_ROMA, 6 => IGAM_RAMB & DGAM_ROMB
} else if (status_reg == 2 || status_reg == 5 || status_reg == 6) {
*ram_a_inuse = false;
in_use = true;
}
return in_use;
}
/*
* Input gamma LUT currently supports 256 values only. This means input color
* can have a maximum of 8 bits per channel (= 256 possible values) in order to
* have a one-to-one mapping with the LUT. Truncation will occur with color
* values greater than 8 bits.
*
* In the future, this function should support additional input gamma methods,
* such as piecewise linear mapping, and input gamma bypass.
*/
void dpp1_program_input_lut(
struct dpp *dpp_base,
const struct dc_gamma *gamma)
{
int i;
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
bool rama_occupied = false;
uint32_t ram_num;
// Power on LUT memory.
REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 1);
dpp1_enable_cm_block(dpp_base);
// Determine whether to use RAM A or RAM B
dpp1_ingamma_ram_inuse(dpp_base, &rama_occupied);
if (!rama_occupied)
REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 0);
else
REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_SEL, 1);
// RW mode is 256-entry LUT
REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_RW_MODE, 0);
// IGAM Input format should be 8 bits per channel.
REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_INPUT_FORMAT, 0);
// Do not mask any R,G,B values
REG_UPDATE(CM_IGAM_LUT_RW_CONTROL, CM_IGAM_LUT_WRITE_EN_MASK, 7);
// LUT-256, unsigned, integer, new u0.12 format
REG_UPDATE_3(
CM_IGAM_CONTROL,
CM_IGAM_LUT_FORMAT_R, 3,
CM_IGAM_LUT_FORMAT_G, 3,
CM_IGAM_LUT_FORMAT_B, 3);
// Start at index 0 of IGAM LUT
REG_UPDATE(CM_IGAM_LUT_RW_INDEX, CM_IGAM_LUT_RW_INDEX, 0);
for (i = 0; i < gamma->num_entries; i++) {
REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
dc_fixpt_round(
gamma->entries.red[i]));
REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
dc_fixpt_round(
gamma->entries.green[i]));
REG_SET(CM_IGAM_LUT_SEQ_COLOR, 0, CM_IGAM_LUT_SEQ_COLOR,
dc_fixpt_round(
gamma->entries.blue[i]));
}
// Power off LUT memory
REG_SET(CM_MEM_PWR_CTRL, 0, SHARED_MEM_PWR_DIS, 0);
// Enable IGAM LUT on ram we just wrote to. 2 => RAMA, 3 => RAMB
REG_UPDATE(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, rama_occupied ? 3 : 2);
REG_GET(CM_IGAM_CONTROL, CM_IGAM_LUT_MODE, &ram_num);
}
void dpp1_set_hdr_multiplier(
struct dpp *dpp_base,
uint32_t multiplier)
{
struct dcn10_dpp *dpp = TO_DCN10_DPP(dpp_base);
REG_UPDATE(CM_HDR_MULT_COEF, CM_HDR_MULT_COEF, multiplier);
}