| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* SCTP kernel implementation |
| * Copyright (c) 1999-2000 Cisco, Inc. |
| * Copyright (c) 1999-2001 Motorola, Inc. |
| * Copyright (c) 2001-2003 International Business Machines, Corp. |
| * Copyright (c) 2001 Intel Corp. |
| * Copyright (c) 2001 Nokia, Inc. |
| * Copyright (c) 2001 La Monte H.P. Yarroll |
| * |
| * This file is part of the SCTP kernel implementation |
| * |
| * These functions handle all input from the IP layer into SCTP. |
| * |
| * Please send any bug reports or fixes you make to the |
| * email address(es): |
| * lksctp developers <linux-sctp@vger.kernel.org> |
| * |
| * Written or modified by: |
| * La Monte H.P. Yarroll <piggy@acm.org> |
| * Karl Knutson <karl@athena.chicago.il.us> |
| * Xingang Guo <xingang.guo@intel.com> |
| * Jon Grimm <jgrimm@us.ibm.com> |
| * Hui Huang <hui.huang@nokia.com> |
| * Daisy Chang <daisyc@us.ibm.com> |
| * Sridhar Samudrala <sri@us.ibm.com> |
| * Ardelle Fan <ardelle.fan@intel.com> |
| */ |
| |
| #include <linux/types.h> |
| #include <linux/list.h> /* For struct list_head */ |
| #include <linux/socket.h> |
| #include <linux/ip.h> |
| #include <linux/time.h> /* For struct timeval */ |
| #include <linux/slab.h> |
| #include <net/ip.h> |
| #include <net/icmp.h> |
| #include <net/snmp.h> |
| #include <net/sock.h> |
| #include <net/xfrm.h> |
| #include <net/sctp/sctp.h> |
| #include <net/sctp/sm.h> |
| #include <net/sctp/checksum.h> |
| #include <net/net_namespace.h> |
| #include <linux/rhashtable.h> |
| #include <net/sock_reuseport.h> |
| |
| /* Forward declarations for internal helpers. */ |
| static int sctp_rcv_ootb(struct sk_buff *); |
| static struct sctp_association *__sctp_rcv_lookup(struct net *net, |
| struct sk_buff *skb, |
| const union sctp_addr *paddr, |
| const union sctp_addr *laddr, |
| struct sctp_transport **transportp, |
| int dif, int sdif); |
| static struct sctp_endpoint *__sctp_rcv_lookup_endpoint( |
| struct net *net, struct sk_buff *skb, |
| const union sctp_addr *laddr, |
| const union sctp_addr *daddr, |
| int dif, int sdif); |
| static struct sctp_association *__sctp_lookup_association( |
| struct net *net, |
| const union sctp_addr *local, |
| const union sctp_addr *peer, |
| struct sctp_transport **pt, |
| int dif, int sdif); |
| |
| static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb); |
| |
| |
| /* Calculate the SCTP checksum of an SCTP packet. */ |
| static inline int sctp_rcv_checksum(struct net *net, struct sk_buff *skb) |
| { |
| struct sctphdr *sh = sctp_hdr(skb); |
| __le32 cmp = sh->checksum; |
| __le32 val = sctp_compute_cksum(skb, 0); |
| |
| if (val != cmp) { |
| /* CRC failure, dump it. */ |
| __SCTP_INC_STATS(net, SCTP_MIB_CHECKSUMERRORS); |
| return -1; |
| } |
| return 0; |
| } |
| |
| /* |
| * This is the routine which IP calls when receiving an SCTP packet. |
| */ |
| int sctp_rcv(struct sk_buff *skb) |
| { |
| struct sock *sk; |
| struct sctp_association *asoc; |
| struct sctp_endpoint *ep = NULL; |
| struct sctp_ep_common *rcvr; |
| struct sctp_transport *transport = NULL; |
| struct sctp_chunk *chunk; |
| union sctp_addr src; |
| union sctp_addr dest; |
| int family; |
| struct sctp_af *af; |
| struct net *net = dev_net(skb->dev); |
| bool is_gso = skb_is_gso(skb) && skb_is_gso_sctp(skb); |
| int dif, sdif; |
| |
| if (skb->pkt_type != PACKET_HOST) |
| goto discard_it; |
| |
| __SCTP_INC_STATS(net, SCTP_MIB_INSCTPPACKS); |
| |
| /* If packet is too small to contain a single chunk, let's not |
| * waste time on it anymore. |
| */ |
| if (skb->len < sizeof(struct sctphdr) + sizeof(struct sctp_chunkhdr) + |
| skb_transport_offset(skb)) |
| goto discard_it; |
| |
| /* If the packet is fragmented and we need to do crc checking, |
| * it's better to just linearize it otherwise crc computing |
| * takes longer. |
| */ |
| if ((!is_gso && skb_linearize(skb)) || |
| !pskb_may_pull(skb, sizeof(struct sctphdr))) |
| goto discard_it; |
| |
| /* Pull up the IP header. */ |
| __skb_pull(skb, skb_transport_offset(skb)); |
| |
| skb->csum_valid = 0; /* Previous value not applicable */ |
| if (skb_csum_unnecessary(skb)) |
| __skb_decr_checksum_unnecessary(skb); |
| else if (!sctp_checksum_disable && |
| !is_gso && |
| sctp_rcv_checksum(net, skb) < 0) |
| goto discard_it; |
| skb->csum_valid = 1; |
| |
| __skb_pull(skb, sizeof(struct sctphdr)); |
| |
| family = ipver2af(ip_hdr(skb)->version); |
| af = sctp_get_af_specific(family); |
| if (unlikely(!af)) |
| goto discard_it; |
| SCTP_INPUT_CB(skb)->af = af; |
| |
| /* Initialize local addresses for lookups. */ |
| af->from_skb(&src, skb, 1); |
| af->from_skb(&dest, skb, 0); |
| dif = af->skb_iif(skb); |
| sdif = af->skb_sdif(skb); |
| |
| /* If the packet is to or from a non-unicast address, |
| * silently discard the packet. |
| * |
| * This is not clearly defined in the RFC except in section |
| * 8.4 - OOTB handling. However, based on the book "Stream Control |
| * Transmission Protocol" 2.1, "It is important to note that the |
| * IP address of an SCTP transport address must be a routable |
| * unicast address. In other words, IP multicast addresses and |
| * IP broadcast addresses cannot be used in an SCTP transport |
| * address." |
| */ |
| if (!af->addr_valid(&src, NULL, skb) || |
| !af->addr_valid(&dest, NULL, skb)) |
| goto discard_it; |
| |
| asoc = __sctp_rcv_lookup(net, skb, &src, &dest, &transport, dif, sdif); |
| |
| if (!asoc) |
| ep = __sctp_rcv_lookup_endpoint(net, skb, &dest, &src, dif, sdif); |
| |
| /* Retrieve the common input handling substructure. */ |
| rcvr = asoc ? &asoc->base : &ep->base; |
| sk = rcvr->sk; |
| |
| /* |
| * RFC 2960, 8.4 - Handle "Out of the blue" Packets. |
| * An SCTP packet is called an "out of the blue" (OOTB) |
| * packet if it is correctly formed, i.e., passed the |
| * receiver's checksum check, but the receiver is not |
| * able to identify the association to which this |
| * packet belongs. |
| */ |
| if (!asoc) { |
| if (sctp_rcv_ootb(skb)) { |
| __SCTP_INC_STATS(net, SCTP_MIB_OUTOFBLUES); |
| goto discard_release; |
| } |
| } |
| |
| if (!xfrm_policy_check(sk, XFRM_POLICY_IN, skb, family)) |
| goto discard_release; |
| nf_reset_ct(skb); |
| |
| if (sk_filter(sk, skb)) |
| goto discard_release; |
| |
| /* Create an SCTP packet structure. */ |
| chunk = sctp_chunkify(skb, asoc, sk, GFP_ATOMIC); |
| if (!chunk) |
| goto discard_release; |
| SCTP_INPUT_CB(skb)->chunk = chunk; |
| |
| /* Remember what endpoint is to handle this packet. */ |
| chunk->rcvr = rcvr; |
| |
| /* Remember the SCTP header. */ |
| chunk->sctp_hdr = sctp_hdr(skb); |
| |
| /* Set the source and destination addresses of the incoming chunk. */ |
| sctp_init_addrs(chunk, &src, &dest); |
| |
| /* Remember where we came from. */ |
| chunk->transport = transport; |
| |
| /* Acquire access to the sock lock. Note: We are safe from other |
| * bottom halves on this lock, but a user may be in the lock too, |
| * so check if it is busy. |
| */ |
| bh_lock_sock(sk); |
| |
| if (sk != rcvr->sk) { |
| /* Our cached sk is different from the rcvr->sk. This is |
| * because migrate()/accept() may have moved the association |
| * to a new socket and released all the sockets. So now we |
| * are holding a lock on the old socket while the user may |
| * be doing something with the new socket. Switch our veiw |
| * of the current sk. |
| */ |
| bh_unlock_sock(sk); |
| sk = rcvr->sk; |
| bh_lock_sock(sk); |
| } |
| |
| if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) { |
| if (sctp_add_backlog(sk, skb)) { |
| bh_unlock_sock(sk); |
| sctp_chunk_free(chunk); |
| skb = NULL; /* sctp_chunk_free already freed the skb */ |
| goto discard_release; |
| } |
| __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_BACKLOG); |
| } else { |
| __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_SOFTIRQ); |
| sctp_inq_push(&chunk->rcvr->inqueue, chunk); |
| } |
| |
| bh_unlock_sock(sk); |
| |
| /* Release the asoc/ep ref we took in the lookup calls. */ |
| if (transport) |
| sctp_transport_put(transport); |
| else |
| sctp_endpoint_put(ep); |
| |
| return 0; |
| |
| discard_it: |
| __SCTP_INC_STATS(net, SCTP_MIB_IN_PKT_DISCARDS); |
| kfree_skb(skb); |
| return 0; |
| |
| discard_release: |
| /* Release the asoc/ep ref we took in the lookup calls. */ |
| if (transport) |
| sctp_transport_put(transport); |
| else |
| sctp_endpoint_put(ep); |
| |
| goto discard_it; |
| } |
| |
| /* Process the backlog queue of the socket. Every skb on |
| * the backlog holds a ref on an association or endpoint. |
| * We hold this ref throughout the state machine to make |
| * sure that the structure we need is still around. |
| */ |
| int sctp_backlog_rcv(struct sock *sk, struct sk_buff *skb) |
| { |
| struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; |
| struct sctp_inq *inqueue = &chunk->rcvr->inqueue; |
| struct sctp_transport *t = chunk->transport; |
| struct sctp_ep_common *rcvr = NULL; |
| int backloged = 0; |
| |
| rcvr = chunk->rcvr; |
| |
| /* If the rcvr is dead then the association or endpoint |
| * has been deleted and we can safely drop the chunk |
| * and refs that we are holding. |
| */ |
| if (rcvr->dead) { |
| sctp_chunk_free(chunk); |
| goto done; |
| } |
| |
| if (unlikely(rcvr->sk != sk)) { |
| /* In this case, the association moved from one socket to |
| * another. We are currently sitting on the backlog of the |
| * old socket, so we need to move. |
| * However, since we are here in the process context we |
| * need to take make sure that the user doesn't own |
| * the new socket when we process the packet. |
| * If the new socket is user-owned, queue the chunk to the |
| * backlog of the new socket without dropping any refs. |
| * Otherwise, we can safely push the chunk on the inqueue. |
| */ |
| |
| sk = rcvr->sk; |
| local_bh_disable(); |
| bh_lock_sock(sk); |
| |
| if (sock_owned_by_user(sk) || !sctp_newsk_ready(sk)) { |
| if (sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) |
| sctp_chunk_free(chunk); |
| else |
| backloged = 1; |
| } else |
| sctp_inq_push(inqueue, chunk); |
| |
| bh_unlock_sock(sk); |
| local_bh_enable(); |
| |
| /* If the chunk was backloged again, don't drop refs */ |
| if (backloged) |
| return 0; |
| } else { |
| if (!sctp_newsk_ready(sk)) { |
| if (!sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf))) |
| return 0; |
| sctp_chunk_free(chunk); |
| } else { |
| sctp_inq_push(inqueue, chunk); |
| } |
| } |
| |
| done: |
| /* Release the refs we took in sctp_add_backlog */ |
| if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) |
| sctp_transport_put(t); |
| else if (SCTP_EP_TYPE_SOCKET == rcvr->type) |
| sctp_endpoint_put(sctp_ep(rcvr)); |
| else |
| BUG(); |
| |
| return 0; |
| } |
| |
| static int sctp_add_backlog(struct sock *sk, struct sk_buff *skb) |
| { |
| struct sctp_chunk *chunk = SCTP_INPUT_CB(skb)->chunk; |
| struct sctp_transport *t = chunk->transport; |
| struct sctp_ep_common *rcvr = chunk->rcvr; |
| int ret; |
| |
| ret = sk_add_backlog(sk, skb, READ_ONCE(sk->sk_rcvbuf)); |
| if (!ret) { |
| /* Hold the assoc/ep while hanging on the backlog queue. |
| * This way, we know structures we need will not disappear |
| * from us |
| */ |
| if (SCTP_EP_TYPE_ASSOCIATION == rcvr->type) |
| sctp_transport_hold(t); |
| else if (SCTP_EP_TYPE_SOCKET == rcvr->type) |
| sctp_endpoint_hold(sctp_ep(rcvr)); |
| else |
| BUG(); |
| } |
| return ret; |
| |
| } |
| |
| /* Handle icmp frag needed error. */ |
| void sctp_icmp_frag_needed(struct sock *sk, struct sctp_association *asoc, |
| struct sctp_transport *t, __u32 pmtu) |
| { |
| if (!t || |
| (t->pathmtu <= pmtu && |
| t->pl.probe_size + sctp_transport_pl_hlen(t) <= pmtu)) |
| return; |
| |
| if (sock_owned_by_user(sk)) { |
| atomic_set(&t->mtu_info, pmtu); |
| asoc->pmtu_pending = 1; |
| t->pmtu_pending = 1; |
| return; |
| } |
| |
| if (!(t->param_flags & SPP_PMTUD_ENABLE)) |
| /* We can't allow retransmitting in such case, as the |
| * retransmission would be sized just as before, and thus we |
| * would get another icmp, and retransmit again. |
| */ |
| return; |
| |
| /* Update transports view of the MTU. Return if no update was needed. |
| * If an update wasn't needed/possible, it also doesn't make sense to |
| * try to retransmit now. |
| */ |
| if (!sctp_transport_update_pmtu(t, pmtu)) |
| return; |
| |
| /* Update association pmtu. */ |
| sctp_assoc_sync_pmtu(asoc); |
| |
| /* Retransmit with the new pmtu setting. */ |
| sctp_retransmit(&asoc->outqueue, t, SCTP_RTXR_PMTUD); |
| } |
| |
| void sctp_icmp_redirect(struct sock *sk, struct sctp_transport *t, |
| struct sk_buff *skb) |
| { |
| struct dst_entry *dst; |
| |
| if (sock_owned_by_user(sk) || !t) |
| return; |
| dst = sctp_transport_dst_check(t); |
| if (dst) |
| dst->ops->redirect(dst, sk, skb); |
| } |
| |
| /* |
| * SCTP Implementer's Guide, 2.37 ICMP handling procedures |
| * |
| * ICMP8) If the ICMP code is a "Unrecognized next header type encountered" |
| * or a "Protocol Unreachable" treat this message as an abort |
| * with the T bit set. |
| * |
| * This function sends an event to the state machine, which will abort the |
| * association. |
| * |
| */ |
| void sctp_icmp_proto_unreachable(struct sock *sk, |
| struct sctp_association *asoc, |
| struct sctp_transport *t) |
| { |
| if (sock_owned_by_user(sk)) { |
| if (timer_pending(&t->proto_unreach_timer)) |
| return; |
| else { |
| if (!mod_timer(&t->proto_unreach_timer, |
| jiffies + (HZ/20))) |
| sctp_transport_hold(t); |
| } |
| } else { |
| struct net *net = sock_net(sk); |
| |
| pr_debug("%s: unrecognized next header type " |
| "encountered!\n", __func__); |
| |
| if (del_timer(&t->proto_unreach_timer)) |
| sctp_transport_put(t); |
| |
| sctp_do_sm(net, SCTP_EVENT_T_OTHER, |
| SCTP_ST_OTHER(SCTP_EVENT_ICMP_PROTO_UNREACH), |
| asoc->state, asoc->ep, asoc, t, |
| GFP_ATOMIC); |
| } |
| } |
| |
| /* Common lookup code for icmp/icmpv6 error handler. */ |
| struct sock *sctp_err_lookup(struct net *net, int family, struct sk_buff *skb, |
| struct sctphdr *sctphdr, |
| struct sctp_association **app, |
| struct sctp_transport **tpp) |
| { |
| struct sctp_init_chunk *chunkhdr, _chunkhdr; |
| union sctp_addr saddr; |
| union sctp_addr daddr; |
| struct sctp_af *af; |
| struct sock *sk = NULL; |
| struct sctp_association *asoc; |
| struct sctp_transport *transport = NULL; |
| __u32 vtag = ntohl(sctphdr->vtag); |
| int sdif = inet_sdif(skb); |
| int dif = inet_iif(skb); |
| |
| *app = NULL; *tpp = NULL; |
| |
| af = sctp_get_af_specific(family); |
| if (unlikely(!af)) { |
| return NULL; |
| } |
| |
| /* Initialize local addresses for lookups. */ |
| af->from_skb(&saddr, skb, 1); |
| af->from_skb(&daddr, skb, 0); |
| |
| /* Look for an association that matches the incoming ICMP error |
| * packet. |
| */ |
| asoc = __sctp_lookup_association(net, &saddr, &daddr, &transport, dif, sdif); |
| if (!asoc) |
| return NULL; |
| |
| sk = asoc->base.sk; |
| |
| /* RFC 4960, Appendix C. ICMP Handling |
| * |
| * ICMP6) An implementation MUST validate that the Verification Tag |
| * contained in the ICMP message matches the Verification Tag of |
| * the peer. If the Verification Tag is not 0 and does NOT |
| * match, discard the ICMP message. If it is 0 and the ICMP |
| * message contains enough bytes to verify that the chunk type is |
| * an INIT chunk and that the Initiate Tag matches the tag of the |
| * peer, continue with ICMP7. If the ICMP message is too short |
| * or the chunk type or the Initiate Tag does not match, silently |
| * discard the packet. |
| */ |
| if (vtag == 0) { |
| /* chunk header + first 4 octects of init header */ |
| chunkhdr = skb_header_pointer(skb, skb_transport_offset(skb) + |
| sizeof(struct sctphdr), |
| sizeof(struct sctp_chunkhdr) + |
| sizeof(__be32), &_chunkhdr); |
| if (!chunkhdr || |
| chunkhdr->chunk_hdr.type != SCTP_CID_INIT || |
| ntohl(chunkhdr->init_hdr.init_tag) != asoc->c.my_vtag) |
| goto out; |
| |
| } else if (vtag != asoc->c.peer_vtag) { |
| goto out; |
| } |
| |
| bh_lock_sock(sk); |
| |
| /* If too many ICMPs get dropped on busy |
| * servers this needs to be solved differently. |
| */ |
| if (sock_owned_by_user(sk)) |
| __NET_INC_STATS(net, LINUX_MIB_LOCKDROPPEDICMPS); |
| |
| *app = asoc; |
| *tpp = transport; |
| return sk; |
| |
| out: |
| sctp_transport_put(transport); |
| return NULL; |
| } |
| |
| /* Common cleanup code for icmp/icmpv6 error handler. */ |
| void sctp_err_finish(struct sock *sk, struct sctp_transport *t) |
| __releases(&((__sk)->sk_lock.slock)) |
| { |
| bh_unlock_sock(sk); |
| sctp_transport_put(t); |
| } |
| |
| static void sctp_v4_err_handle(struct sctp_transport *t, struct sk_buff *skb, |
| __u8 type, __u8 code, __u32 info) |
| { |
| struct sctp_association *asoc = t->asoc; |
| struct sock *sk = asoc->base.sk; |
| int err = 0; |
| |
| switch (type) { |
| case ICMP_PARAMETERPROB: |
| err = EPROTO; |
| break; |
| case ICMP_DEST_UNREACH: |
| if (code > NR_ICMP_UNREACH) |
| return; |
| if (code == ICMP_FRAG_NEEDED) { |
| sctp_icmp_frag_needed(sk, asoc, t, SCTP_TRUNC4(info)); |
| return; |
| } |
| if (code == ICMP_PROT_UNREACH) { |
| sctp_icmp_proto_unreachable(sk, asoc, t); |
| return; |
| } |
| err = icmp_err_convert[code].errno; |
| break; |
| case ICMP_TIME_EXCEEDED: |
| if (code == ICMP_EXC_FRAGTIME) |
| return; |
| |
| err = EHOSTUNREACH; |
| break; |
| case ICMP_REDIRECT: |
| sctp_icmp_redirect(sk, t, skb); |
| return; |
| default: |
| return; |
| } |
| if (!sock_owned_by_user(sk) && inet_sk(sk)->recverr) { |
| sk->sk_err = err; |
| sk_error_report(sk); |
| } else { /* Only an error on timeout */ |
| WRITE_ONCE(sk->sk_err_soft, err); |
| } |
| } |
| |
| /* |
| * This routine is called by the ICMP module when it gets some |
| * sort of error condition. If err < 0 then the socket should |
| * be closed and the error returned to the user. If err > 0 |
| * it's just the icmp type << 8 | icmp code. After adjustment |
| * header points to the first 8 bytes of the sctp header. We need |
| * to find the appropriate port. |
| * |
| * The locking strategy used here is very "optimistic". When |
| * someone else accesses the socket the ICMP is just dropped |
| * and for some paths there is no check at all. |
| * A more general error queue to queue errors for later handling |
| * is probably better. |
| * |
| */ |
| int sctp_v4_err(struct sk_buff *skb, __u32 info) |
| { |
| const struct iphdr *iph = (const struct iphdr *)skb->data; |
| const int type = icmp_hdr(skb)->type; |
| const int code = icmp_hdr(skb)->code; |
| struct net *net = dev_net(skb->dev); |
| struct sctp_transport *transport; |
| struct sctp_association *asoc; |
| __u16 saveip, savesctp; |
| struct sock *sk; |
| |
| /* Fix up skb to look at the embedded net header. */ |
| saveip = skb->network_header; |
| savesctp = skb->transport_header; |
| skb_reset_network_header(skb); |
| skb_set_transport_header(skb, iph->ihl * 4); |
| sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &transport); |
| /* Put back, the original values. */ |
| skb->network_header = saveip; |
| skb->transport_header = savesctp; |
| if (!sk) { |
| __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); |
| return -ENOENT; |
| } |
| |
| sctp_v4_err_handle(transport, skb, type, code, info); |
| sctp_err_finish(sk, transport); |
| |
| return 0; |
| } |
| |
| int sctp_udp_v4_err(struct sock *sk, struct sk_buff *skb) |
| { |
| struct net *net = dev_net(skb->dev); |
| struct sctp_association *asoc; |
| struct sctp_transport *t; |
| struct icmphdr *hdr; |
| __u32 info = 0; |
| |
| skb->transport_header += sizeof(struct udphdr); |
| sk = sctp_err_lookup(net, AF_INET, skb, sctp_hdr(skb), &asoc, &t); |
| if (!sk) { |
| __ICMP_INC_STATS(net, ICMP_MIB_INERRORS); |
| return -ENOENT; |
| } |
| |
| skb->transport_header -= sizeof(struct udphdr); |
| hdr = (struct icmphdr *)(skb_network_header(skb) - sizeof(struct icmphdr)); |
| if (hdr->type == ICMP_REDIRECT) { |
| /* can't be handled without outer iphdr known, leave it to udp_err */ |
| sctp_err_finish(sk, t); |
| return 0; |
| } |
| if (hdr->type == ICMP_DEST_UNREACH && hdr->code == ICMP_FRAG_NEEDED) |
| info = ntohs(hdr->un.frag.mtu); |
| sctp_v4_err_handle(t, skb, hdr->type, hdr->code, info); |
| |
| sctp_err_finish(sk, t); |
| return 1; |
| } |
| |
| /* |
| * RFC 2960, 8.4 - Handle "Out of the blue" Packets. |
| * |
| * This function scans all the chunks in the OOTB packet to determine if |
| * the packet should be discarded right away. If a response might be needed |
| * for this packet, or, if further processing is possible, the packet will |
| * be queued to a proper inqueue for the next phase of handling. |
| * |
| * Output: |
| * Return 0 - If further processing is needed. |
| * Return 1 - If the packet can be discarded right away. |
| */ |
| static int sctp_rcv_ootb(struct sk_buff *skb) |
| { |
| struct sctp_chunkhdr *ch, _ch; |
| int ch_end, offset = 0; |
| |
| /* Scan through all the chunks in the packet. */ |
| do { |
| /* Make sure we have at least the header there */ |
| if (offset + sizeof(_ch) > skb->len) |
| break; |
| |
| ch = skb_header_pointer(skb, offset, sizeof(*ch), &_ch); |
| |
| /* Break out if chunk length is less then minimal. */ |
| if (!ch || ntohs(ch->length) < sizeof(_ch)) |
| break; |
| |
| ch_end = offset + SCTP_PAD4(ntohs(ch->length)); |
| if (ch_end > skb->len) |
| break; |
| |
| /* RFC 8.4, 2) If the OOTB packet contains an ABORT chunk, the |
| * receiver MUST silently discard the OOTB packet and take no |
| * further action. |
| */ |
| if (SCTP_CID_ABORT == ch->type) |
| goto discard; |
| |
| /* RFC 8.4, 6) If the packet contains a SHUTDOWN COMPLETE |
| * chunk, the receiver should silently discard the packet |
| * and take no further action. |
| */ |
| if (SCTP_CID_SHUTDOWN_COMPLETE == ch->type) |
| goto discard; |
| |
| /* RFC 4460, 2.11.2 |
| * This will discard packets with INIT chunk bundled as |
| * subsequent chunks in the packet. When INIT is first, |
| * the normal INIT processing will discard the chunk. |
| */ |
| if (SCTP_CID_INIT == ch->type && (void *)ch != skb->data) |
| goto discard; |
| |
| offset = ch_end; |
| } while (ch_end < skb->len); |
| |
| return 0; |
| |
| discard: |
| return 1; |
| } |
| |
| /* Insert endpoint into the hash table. */ |
| static int __sctp_hash_endpoint(struct sctp_endpoint *ep) |
| { |
| struct sock *sk = ep->base.sk; |
| struct net *net = sock_net(sk); |
| struct sctp_hashbucket *head; |
| |
| ep->hashent = sctp_ep_hashfn(net, ep->base.bind_addr.port); |
| head = &sctp_ep_hashtable[ep->hashent]; |
| |
| if (sk->sk_reuseport) { |
| bool any = sctp_is_ep_boundall(sk); |
| struct sctp_endpoint *ep2; |
| struct list_head *list; |
| int cnt = 0, err = 1; |
| |
| list_for_each(list, &ep->base.bind_addr.address_list) |
| cnt++; |
| |
| sctp_for_each_hentry(ep2, &head->chain) { |
| struct sock *sk2 = ep2->base.sk; |
| |
| if (!net_eq(sock_net(sk2), net) || sk2 == sk || |
| !uid_eq(sock_i_uid(sk2), sock_i_uid(sk)) || |
| !sk2->sk_reuseport) |
| continue; |
| |
| err = sctp_bind_addrs_check(sctp_sk(sk2), |
| sctp_sk(sk), cnt); |
| if (!err) { |
| err = reuseport_add_sock(sk, sk2, any); |
| if (err) |
| return err; |
| break; |
| } else if (err < 0) { |
| return err; |
| } |
| } |
| |
| if (err) { |
| err = reuseport_alloc(sk, any); |
| if (err) |
| return err; |
| } |
| } |
| |
| write_lock(&head->lock); |
| hlist_add_head(&ep->node, &head->chain); |
| write_unlock(&head->lock); |
| return 0; |
| } |
| |
| /* Add an endpoint to the hash. Local BH-safe. */ |
| int sctp_hash_endpoint(struct sctp_endpoint *ep) |
| { |
| int err; |
| |
| local_bh_disable(); |
| err = __sctp_hash_endpoint(ep); |
| local_bh_enable(); |
| |
| return err; |
| } |
| |
| /* Remove endpoint from the hash table. */ |
| static void __sctp_unhash_endpoint(struct sctp_endpoint *ep) |
| { |
| struct sock *sk = ep->base.sk; |
| struct sctp_hashbucket *head; |
| |
| ep->hashent = sctp_ep_hashfn(sock_net(sk), ep->base.bind_addr.port); |
| |
| head = &sctp_ep_hashtable[ep->hashent]; |
| |
| if (rcu_access_pointer(sk->sk_reuseport_cb)) |
| reuseport_detach_sock(sk); |
| |
| write_lock(&head->lock); |
| hlist_del_init(&ep->node); |
| write_unlock(&head->lock); |
| } |
| |
| /* Remove endpoint from the hash. Local BH-safe. */ |
| void sctp_unhash_endpoint(struct sctp_endpoint *ep) |
| { |
| local_bh_disable(); |
| __sctp_unhash_endpoint(ep); |
| local_bh_enable(); |
| } |
| |
| static inline __u32 sctp_hashfn(const struct net *net, __be16 lport, |
| const union sctp_addr *paddr, __u32 seed) |
| { |
| __u32 addr; |
| |
| if (paddr->sa.sa_family == AF_INET6) |
| addr = jhash(&paddr->v6.sin6_addr, 16, seed); |
| else |
| addr = (__force __u32)paddr->v4.sin_addr.s_addr; |
| |
| return jhash_3words(addr, ((__force __u32)paddr->v4.sin_port) << 16 | |
| (__force __u32)lport, net_hash_mix(net), seed); |
| } |
| |
| /* Look up an endpoint. */ |
| static struct sctp_endpoint *__sctp_rcv_lookup_endpoint( |
| struct net *net, struct sk_buff *skb, |
| const union sctp_addr *laddr, |
| const union sctp_addr *paddr, |
| int dif, int sdif) |
| { |
| struct sctp_hashbucket *head; |
| struct sctp_endpoint *ep; |
| struct sock *sk; |
| __be16 lport; |
| int hash; |
| |
| lport = laddr->v4.sin_port; |
| hash = sctp_ep_hashfn(net, ntohs(lport)); |
| head = &sctp_ep_hashtable[hash]; |
| read_lock(&head->lock); |
| sctp_for_each_hentry(ep, &head->chain) { |
| if (sctp_endpoint_is_match(ep, net, laddr, dif, sdif)) |
| goto hit; |
| } |
| |
| ep = sctp_sk(net->sctp.ctl_sock)->ep; |
| |
| hit: |
| sk = ep->base.sk; |
| if (sk->sk_reuseport) { |
| __u32 phash = sctp_hashfn(net, lport, paddr, 0); |
| |
| sk = reuseport_select_sock(sk, phash, skb, |
| sizeof(struct sctphdr)); |
| if (sk) |
| ep = sctp_sk(sk)->ep; |
| } |
| sctp_endpoint_hold(ep); |
| read_unlock(&head->lock); |
| return ep; |
| } |
| |
| /* rhashtable for transport */ |
| struct sctp_hash_cmp_arg { |
| const union sctp_addr *paddr; |
| const struct net *net; |
| __be16 lport; |
| }; |
| |
| static inline int sctp_hash_cmp(struct rhashtable_compare_arg *arg, |
| const void *ptr) |
| { |
| struct sctp_transport *t = (struct sctp_transport *)ptr; |
| const struct sctp_hash_cmp_arg *x = arg->key; |
| int err = 1; |
| |
| if (!sctp_cmp_addr_exact(&t->ipaddr, x->paddr)) |
| return err; |
| if (!sctp_transport_hold(t)) |
| return err; |
| |
| if (!net_eq(t->asoc->base.net, x->net)) |
| goto out; |
| if (x->lport != htons(t->asoc->base.bind_addr.port)) |
| goto out; |
| |
| err = 0; |
| out: |
| sctp_transport_put(t); |
| return err; |
| } |
| |
| static inline __u32 sctp_hash_obj(const void *data, u32 len, u32 seed) |
| { |
| const struct sctp_transport *t = data; |
| |
| return sctp_hashfn(t->asoc->base.net, |
| htons(t->asoc->base.bind_addr.port), |
| &t->ipaddr, seed); |
| } |
| |
| static inline __u32 sctp_hash_key(const void *data, u32 len, u32 seed) |
| { |
| const struct sctp_hash_cmp_arg *x = data; |
| |
| return sctp_hashfn(x->net, x->lport, x->paddr, seed); |
| } |
| |
| static const struct rhashtable_params sctp_hash_params = { |
| .head_offset = offsetof(struct sctp_transport, node), |
| .hashfn = sctp_hash_key, |
| .obj_hashfn = sctp_hash_obj, |
| .obj_cmpfn = sctp_hash_cmp, |
| .automatic_shrinking = true, |
| }; |
| |
| int sctp_transport_hashtable_init(void) |
| { |
| return rhltable_init(&sctp_transport_hashtable, &sctp_hash_params); |
| } |
| |
| void sctp_transport_hashtable_destroy(void) |
| { |
| rhltable_destroy(&sctp_transport_hashtable); |
| } |
| |
| int sctp_hash_transport(struct sctp_transport *t) |
| { |
| struct sctp_transport *transport; |
| struct rhlist_head *tmp, *list; |
| struct sctp_hash_cmp_arg arg; |
| int err; |
| |
| if (t->asoc->temp) |
| return 0; |
| |
| arg.net = t->asoc->base.net; |
| arg.paddr = &t->ipaddr; |
| arg.lport = htons(t->asoc->base.bind_addr.port); |
| |
| rcu_read_lock(); |
| list = rhltable_lookup(&sctp_transport_hashtable, &arg, |
| sctp_hash_params); |
| |
| rhl_for_each_entry_rcu(transport, tmp, list, node) |
| if (transport->asoc->ep == t->asoc->ep) { |
| rcu_read_unlock(); |
| return -EEXIST; |
| } |
| rcu_read_unlock(); |
| |
| err = rhltable_insert_key(&sctp_transport_hashtable, &arg, |
| &t->node, sctp_hash_params); |
| if (err) |
| pr_err_once("insert transport fail, errno %d\n", err); |
| |
| return err; |
| } |
| |
| void sctp_unhash_transport(struct sctp_transport *t) |
| { |
| if (t->asoc->temp) |
| return; |
| |
| rhltable_remove(&sctp_transport_hashtable, &t->node, |
| sctp_hash_params); |
| } |
| |
| bool sctp_sk_bound_dev_eq(struct net *net, int bound_dev_if, int dif, int sdif) |
| { |
| bool l3mdev_accept = true; |
| |
| #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV) |
| l3mdev_accept = !!READ_ONCE(net->sctp.l3mdev_accept); |
| #endif |
| return inet_bound_dev_eq(l3mdev_accept, bound_dev_if, dif, sdif); |
| } |
| |
| /* return a transport with holding it */ |
| struct sctp_transport *sctp_addrs_lookup_transport( |
| struct net *net, |
| const union sctp_addr *laddr, |
| const union sctp_addr *paddr, |
| int dif, int sdif) |
| { |
| struct rhlist_head *tmp, *list; |
| struct sctp_transport *t; |
| int bound_dev_if; |
| struct sctp_hash_cmp_arg arg = { |
| .paddr = paddr, |
| .net = net, |
| .lport = laddr->v4.sin_port, |
| }; |
| |
| list = rhltable_lookup(&sctp_transport_hashtable, &arg, |
| sctp_hash_params); |
| |
| rhl_for_each_entry_rcu(t, tmp, list, node) { |
| if (!sctp_transport_hold(t)) |
| continue; |
| |
| bound_dev_if = READ_ONCE(t->asoc->base.sk->sk_bound_dev_if); |
| if (sctp_sk_bound_dev_eq(net, bound_dev_if, dif, sdif) && |
| sctp_bind_addr_match(&t->asoc->base.bind_addr, |
| laddr, sctp_sk(t->asoc->base.sk))) |
| return t; |
| sctp_transport_put(t); |
| } |
| |
| return NULL; |
| } |
| |
| /* return a transport without holding it, as it's only used under sock lock */ |
| struct sctp_transport *sctp_epaddr_lookup_transport( |
| const struct sctp_endpoint *ep, |
| const union sctp_addr *paddr) |
| { |
| struct rhlist_head *tmp, *list; |
| struct sctp_transport *t; |
| struct sctp_hash_cmp_arg arg = { |
| .paddr = paddr, |
| .net = ep->base.net, |
| .lport = htons(ep->base.bind_addr.port), |
| }; |
| |
| list = rhltable_lookup(&sctp_transport_hashtable, &arg, |
| sctp_hash_params); |
| |
| rhl_for_each_entry_rcu(t, tmp, list, node) |
| if (ep == t->asoc->ep) |
| return t; |
| |
| return NULL; |
| } |
| |
| /* Look up an association. */ |
| static struct sctp_association *__sctp_lookup_association( |
| struct net *net, |
| const union sctp_addr *local, |
| const union sctp_addr *peer, |
| struct sctp_transport **pt, |
| int dif, int sdif) |
| { |
| struct sctp_transport *t; |
| struct sctp_association *asoc = NULL; |
| |
| t = sctp_addrs_lookup_transport(net, local, peer, dif, sdif); |
| if (!t) |
| goto out; |
| |
| asoc = t->asoc; |
| *pt = t; |
| |
| out: |
| return asoc; |
| } |
| |
| /* Look up an association. protected by RCU read lock */ |
| static |
| struct sctp_association *sctp_lookup_association(struct net *net, |
| const union sctp_addr *laddr, |
| const union sctp_addr *paddr, |
| struct sctp_transport **transportp, |
| int dif, int sdif) |
| { |
| struct sctp_association *asoc; |
| |
| rcu_read_lock(); |
| asoc = __sctp_lookup_association(net, laddr, paddr, transportp, dif, sdif); |
| rcu_read_unlock(); |
| |
| return asoc; |
| } |
| |
| /* Is there an association matching the given local and peer addresses? */ |
| bool sctp_has_association(struct net *net, |
| const union sctp_addr *laddr, |
| const union sctp_addr *paddr, |
| int dif, int sdif) |
| { |
| struct sctp_transport *transport; |
| |
| if (sctp_lookup_association(net, laddr, paddr, &transport, dif, sdif)) { |
| sctp_transport_put(transport); |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /* |
| * SCTP Implementors Guide, 2.18 Handling of address |
| * parameters within the INIT or INIT-ACK. |
| * |
| * D) When searching for a matching TCB upon reception of an INIT |
| * or INIT-ACK chunk the receiver SHOULD use not only the |
| * source address of the packet (containing the INIT or |
| * INIT-ACK) but the receiver SHOULD also use all valid |
| * address parameters contained within the chunk. |
| * |
| * 2.18.3 Solution description |
| * |
| * This new text clearly specifies to an implementor the need |
| * to look within the INIT or INIT-ACK. Any implementation that |
| * does not do this, may not be able to establish associations |
| * in certain circumstances. |
| * |
| */ |
| static struct sctp_association *__sctp_rcv_init_lookup(struct net *net, |
| struct sk_buff *skb, |
| const union sctp_addr *laddr, struct sctp_transport **transportp, |
| int dif, int sdif) |
| { |
| struct sctp_association *asoc; |
| union sctp_addr addr; |
| union sctp_addr *paddr = &addr; |
| struct sctphdr *sh = sctp_hdr(skb); |
| union sctp_params params; |
| struct sctp_init_chunk *init; |
| struct sctp_af *af; |
| |
| /* |
| * This code will NOT touch anything inside the chunk--it is |
| * strictly READ-ONLY. |
| * |
| * RFC 2960 3 SCTP packet Format |
| * |
| * Multiple chunks can be bundled into one SCTP packet up to |
| * the MTU size, except for the INIT, INIT ACK, and SHUTDOWN |
| * COMPLETE chunks. These chunks MUST NOT be bundled with any |
| * other chunk in a packet. See Section 6.10 for more details |
| * on chunk bundling. |
| */ |
| |
| /* Find the start of the TLVs and the end of the chunk. This is |
| * the region we search for address parameters. |
| */ |
| init = (struct sctp_init_chunk *)skb->data; |
| |
| /* Walk the parameters looking for embedded addresses. */ |
| sctp_walk_params(params, init, init_hdr.params) { |
| |
| /* Note: Ignoring hostname addresses. */ |
| af = sctp_get_af_specific(param_type2af(params.p->type)); |
| if (!af) |
| continue; |
| |
| if (!af->from_addr_param(paddr, params.addr, sh->source, 0)) |
| continue; |
| |
| asoc = __sctp_lookup_association(net, laddr, paddr, transportp, dif, sdif); |
| if (asoc) |
| return asoc; |
| } |
| |
| return NULL; |
| } |
| |
| /* ADD-IP, Section 5.2 |
| * When an endpoint receives an ASCONF Chunk from the remote peer |
| * special procedures may be needed to identify the association the |
| * ASCONF Chunk is associated with. To properly find the association |
| * the following procedures SHOULD be followed: |
| * |
| * D2) If the association is not found, use the address found in the |
| * Address Parameter TLV combined with the port number found in the |
| * SCTP common header. If found proceed to rule D4. |
| * |
| * D2-ext) If more than one ASCONF Chunks are packed together, use the |
| * address found in the ASCONF Address Parameter TLV of each of the |
| * subsequent ASCONF Chunks. If found, proceed to rule D4. |
| */ |
| static struct sctp_association *__sctp_rcv_asconf_lookup( |
| struct net *net, |
| struct sctp_chunkhdr *ch, |
| const union sctp_addr *laddr, |
| __be16 peer_port, |
| struct sctp_transport **transportp, |
| int dif, int sdif) |
| { |
| struct sctp_addip_chunk *asconf = (struct sctp_addip_chunk *)ch; |
| struct sctp_af *af; |
| union sctp_addr_param *param; |
| union sctp_addr paddr; |
| |
| if (ntohs(ch->length) < sizeof(*asconf) + sizeof(struct sctp_paramhdr)) |
| return NULL; |
| |
| /* Skip over the ADDIP header and find the Address parameter */ |
| param = (union sctp_addr_param *)(asconf + 1); |
| |
| af = sctp_get_af_specific(param_type2af(param->p.type)); |
| if (unlikely(!af)) |
| return NULL; |
| |
| if (!af->from_addr_param(&paddr, param, peer_port, 0)) |
| return NULL; |
| |
| return __sctp_lookup_association(net, laddr, &paddr, transportp, dif, sdif); |
| } |
| |
| |
| /* SCTP-AUTH, Section 6.3: |
| * If the receiver does not find a STCB for a packet containing an AUTH |
| * chunk as the first chunk and not a COOKIE-ECHO chunk as the second |
| * chunk, it MUST use the chunks after the AUTH chunk to look up an existing |
| * association. |
| * |
| * This means that any chunks that can help us identify the association need |
| * to be looked at to find this association. |
| */ |
| static struct sctp_association *__sctp_rcv_walk_lookup(struct net *net, |
| struct sk_buff *skb, |
| const union sctp_addr *laddr, |
| struct sctp_transport **transportp, |
| int dif, int sdif) |
| { |
| struct sctp_association *asoc = NULL; |
| struct sctp_chunkhdr *ch; |
| int have_auth = 0; |
| unsigned int chunk_num = 1; |
| __u8 *ch_end; |
| |
| /* Walk through the chunks looking for AUTH or ASCONF chunks |
| * to help us find the association. |
| */ |
| ch = (struct sctp_chunkhdr *)skb->data; |
| do { |
| /* Break out if chunk length is less then minimal. */ |
| if (ntohs(ch->length) < sizeof(*ch)) |
| break; |
| |
| ch_end = ((__u8 *)ch) + SCTP_PAD4(ntohs(ch->length)); |
| if (ch_end > skb_tail_pointer(skb)) |
| break; |
| |
| switch (ch->type) { |
| case SCTP_CID_AUTH: |
| have_auth = chunk_num; |
| break; |
| |
| case SCTP_CID_COOKIE_ECHO: |
| /* If a packet arrives containing an AUTH chunk as |
| * a first chunk, a COOKIE-ECHO chunk as the second |
| * chunk, and possibly more chunks after them, and |
| * the receiver does not have an STCB for that |
| * packet, then authentication is based on |
| * the contents of the COOKIE- ECHO chunk. |
| */ |
| if (have_auth == 1 && chunk_num == 2) |
| return NULL; |
| break; |
| |
| case SCTP_CID_ASCONF: |
| if (have_auth || net->sctp.addip_noauth) |
| asoc = __sctp_rcv_asconf_lookup( |
| net, ch, laddr, |
| sctp_hdr(skb)->source, |
| transportp, dif, sdif); |
| break; |
| default: |
| break; |
| } |
| |
| if (asoc) |
| break; |
| |
| ch = (struct sctp_chunkhdr *)ch_end; |
| chunk_num++; |
| } while (ch_end + sizeof(*ch) < skb_tail_pointer(skb)); |
| |
| return asoc; |
| } |
| |
| /* |
| * There are circumstances when we need to look inside the SCTP packet |
| * for information to help us find the association. Examples |
| * include looking inside of INIT/INIT-ACK chunks or after the AUTH |
| * chunks. |
| */ |
| static struct sctp_association *__sctp_rcv_lookup_harder(struct net *net, |
| struct sk_buff *skb, |
| const union sctp_addr *laddr, |
| struct sctp_transport **transportp, |
| int dif, int sdif) |
| { |
| struct sctp_chunkhdr *ch; |
| |
| /* We do not allow GSO frames here as we need to linearize and |
| * then cannot guarantee frame boundaries. This shouldn't be an |
| * issue as packets hitting this are mostly INIT or INIT-ACK and |
| * those cannot be on GSO-style anyway. |
| */ |
| if (skb_is_gso(skb) && skb_is_gso_sctp(skb)) |
| return NULL; |
| |
| ch = (struct sctp_chunkhdr *)skb->data; |
| |
| /* The code below will attempt to walk the chunk and extract |
| * parameter information. Before we do that, we need to verify |
| * that the chunk length doesn't cause overflow. Otherwise, we'll |
| * walk off the end. |
| */ |
| if (SCTP_PAD4(ntohs(ch->length)) > skb->len) |
| return NULL; |
| |
| /* If this is INIT/INIT-ACK look inside the chunk too. */ |
| if (ch->type == SCTP_CID_INIT || ch->type == SCTP_CID_INIT_ACK) |
| return __sctp_rcv_init_lookup(net, skb, laddr, transportp, dif, sdif); |
| |
| return __sctp_rcv_walk_lookup(net, skb, laddr, transportp, dif, sdif); |
| } |
| |
| /* Lookup an association for an inbound skb. */ |
| static struct sctp_association *__sctp_rcv_lookup(struct net *net, |
| struct sk_buff *skb, |
| const union sctp_addr *paddr, |
| const union sctp_addr *laddr, |
| struct sctp_transport **transportp, |
| int dif, int sdif) |
| { |
| struct sctp_association *asoc; |
| |
| asoc = __sctp_lookup_association(net, laddr, paddr, transportp, dif, sdif); |
| if (asoc) |
| goto out; |
| |
| /* Further lookup for INIT/INIT-ACK packets. |
| * SCTP Implementors Guide, 2.18 Handling of address |
| * parameters within the INIT or INIT-ACK. |
| */ |
| asoc = __sctp_rcv_lookup_harder(net, skb, laddr, transportp, dif, sdif); |
| if (asoc) |
| goto out; |
| |
| if (paddr->sa.sa_family == AF_INET) |
| pr_debug("sctp: asoc not found for src:%pI4:%d dst:%pI4:%d\n", |
| &laddr->v4.sin_addr, ntohs(laddr->v4.sin_port), |
| &paddr->v4.sin_addr, ntohs(paddr->v4.sin_port)); |
| else |
| pr_debug("sctp: asoc not found for src:%pI6:%d dst:%pI6:%d\n", |
| &laddr->v6.sin6_addr, ntohs(laddr->v6.sin6_port), |
| &paddr->v6.sin6_addr, ntohs(paddr->v6.sin6_port)); |
| |
| out: |
| return asoc; |
| } |