| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * linux/arch/arm64/crypto/aes-glue.c - wrapper code for ARMv8 AES |
| * |
| * Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org> |
| */ |
| |
| #include <asm/neon.h> |
| #include <asm/hwcap.h> |
| #include <asm/simd.h> |
| #include <crypto/aes.h> |
| #include <crypto/ctr.h> |
| #include <crypto/sha2.h> |
| #include <crypto/internal/hash.h> |
| #include <crypto/internal/simd.h> |
| #include <crypto/internal/skcipher.h> |
| #include <crypto/scatterwalk.h> |
| #include <linux/module.h> |
| #include <linux/cpufeature.h> |
| #include <crypto/xts.h> |
| |
| #include "aes-ce-setkey.h" |
| |
| #ifdef USE_V8_CRYPTO_EXTENSIONS |
| #define MODE "ce" |
| #define PRIO 300 |
| #define STRIDE 5 |
| #define aes_expandkey ce_aes_expandkey |
| #define aes_ecb_encrypt ce_aes_ecb_encrypt |
| #define aes_ecb_decrypt ce_aes_ecb_decrypt |
| #define aes_cbc_encrypt ce_aes_cbc_encrypt |
| #define aes_cbc_decrypt ce_aes_cbc_decrypt |
| #define aes_cbc_cts_encrypt ce_aes_cbc_cts_encrypt |
| #define aes_cbc_cts_decrypt ce_aes_cbc_cts_decrypt |
| #define aes_essiv_cbc_encrypt ce_aes_essiv_cbc_encrypt |
| #define aes_essiv_cbc_decrypt ce_aes_essiv_cbc_decrypt |
| #define aes_ctr_encrypt ce_aes_ctr_encrypt |
| #define aes_xts_encrypt ce_aes_xts_encrypt |
| #define aes_xts_decrypt ce_aes_xts_decrypt |
| #define aes_mac_update ce_aes_mac_update |
| MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 Crypto Extensions"); |
| #else |
| #define MODE "neon" |
| #define PRIO 200 |
| #define STRIDE 4 |
| #define aes_ecb_encrypt neon_aes_ecb_encrypt |
| #define aes_ecb_decrypt neon_aes_ecb_decrypt |
| #define aes_cbc_encrypt neon_aes_cbc_encrypt |
| #define aes_cbc_decrypt neon_aes_cbc_decrypt |
| #define aes_cbc_cts_encrypt neon_aes_cbc_cts_encrypt |
| #define aes_cbc_cts_decrypt neon_aes_cbc_cts_decrypt |
| #define aes_essiv_cbc_encrypt neon_aes_essiv_cbc_encrypt |
| #define aes_essiv_cbc_decrypt neon_aes_essiv_cbc_decrypt |
| #define aes_ctr_encrypt neon_aes_ctr_encrypt |
| #define aes_xts_encrypt neon_aes_xts_encrypt |
| #define aes_xts_decrypt neon_aes_xts_decrypt |
| #define aes_mac_update neon_aes_mac_update |
| MODULE_DESCRIPTION("AES-ECB/CBC/CTR/XTS using ARMv8 NEON"); |
| #endif |
| #if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS) |
| MODULE_ALIAS_CRYPTO("ecb(aes)"); |
| MODULE_ALIAS_CRYPTO("cbc(aes)"); |
| MODULE_ALIAS_CRYPTO("ctr(aes)"); |
| MODULE_ALIAS_CRYPTO("xts(aes)"); |
| #endif |
| MODULE_ALIAS_CRYPTO("cts(cbc(aes))"); |
| MODULE_ALIAS_CRYPTO("essiv(cbc(aes),sha256)"); |
| MODULE_ALIAS_CRYPTO("cmac(aes)"); |
| MODULE_ALIAS_CRYPTO("xcbc(aes)"); |
| MODULE_ALIAS_CRYPTO("cbcmac(aes)"); |
| |
| MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); |
| MODULE_LICENSE("GPL v2"); |
| |
| /* defined in aes-modes.S */ |
| asmlinkage void aes_ecb_encrypt(u8 out[], u8 const in[], u32 const rk[], |
| int rounds, int blocks); |
| asmlinkage void aes_ecb_decrypt(u8 out[], u8 const in[], u32 const rk[], |
| int rounds, int blocks); |
| |
| asmlinkage void aes_cbc_encrypt(u8 out[], u8 const in[], u32 const rk[], |
| int rounds, int blocks, u8 iv[]); |
| asmlinkage void aes_cbc_decrypt(u8 out[], u8 const in[], u32 const rk[], |
| int rounds, int blocks, u8 iv[]); |
| |
| asmlinkage void aes_cbc_cts_encrypt(u8 out[], u8 const in[], u32 const rk[], |
| int rounds, int bytes, u8 const iv[]); |
| asmlinkage void aes_cbc_cts_decrypt(u8 out[], u8 const in[], u32 const rk[], |
| int rounds, int bytes, u8 const iv[]); |
| |
| asmlinkage void aes_ctr_encrypt(u8 out[], u8 const in[], u32 const rk[], |
| int rounds, int bytes, u8 ctr[], u8 finalbuf[]); |
| |
| asmlinkage void aes_xts_encrypt(u8 out[], u8 const in[], u32 const rk1[], |
| int rounds, int bytes, u32 const rk2[], u8 iv[], |
| int first); |
| asmlinkage void aes_xts_decrypt(u8 out[], u8 const in[], u32 const rk1[], |
| int rounds, int bytes, u32 const rk2[], u8 iv[], |
| int first); |
| |
| asmlinkage void aes_essiv_cbc_encrypt(u8 out[], u8 const in[], u32 const rk1[], |
| int rounds, int blocks, u8 iv[], |
| u32 const rk2[]); |
| asmlinkage void aes_essiv_cbc_decrypt(u8 out[], u8 const in[], u32 const rk1[], |
| int rounds, int blocks, u8 iv[], |
| u32 const rk2[]); |
| |
| asmlinkage int aes_mac_update(u8 const in[], u32 const rk[], int rounds, |
| int blocks, u8 dg[], int enc_before, |
| int enc_after); |
| |
| struct crypto_aes_xts_ctx { |
| struct crypto_aes_ctx key1; |
| struct crypto_aes_ctx __aligned(8) key2; |
| }; |
| |
| struct crypto_aes_essiv_cbc_ctx { |
| struct crypto_aes_ctx key1; |
| struct crypto_aes_ctx __aligned(8) key2; |
| struct crypto_shash *hash; |
| }; |
| |
| struct mac_tfm_ctx { |
| struct crypto_aes_ctx key; |
| u8 __aligned(8) consts[]; |
| }; |
| |
| struct mac_desc_ctx { |
| unsigned int len; |
| u8 dg[AES_BLOCK_SIZE]; |
| }; |
| |
| static int skcipher_aes_setkey(struct crypto_skcipher *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| return aes_expandkey(ctx, in_key, key_len); |
| } |
| |
| static int __maybe_unused xts_set_key(struct crypto_skcipher *tfm, |
| const u8 *in_key, unsigned int key_len) |
| { |
| struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int ret; |
| |
| ret = xts_verify_key(tfm, in_key, key_len); |
| if (ret) |
| return ret; |
| |
| ret = aes_expandkey(&ctx->key1, in_key, key_len / 2); |
| if (!ret) |
| ret = aes_expandkey(&ctx->key2, &in_key[key_len / 2], |
| key_len / 2); |
| return ret; |
| } |
| |
| static int __maybe_unused essiv_cbc_set_key(struct crypto_skcipher *tfm, |
| const u8 *in_key, |
| unsigned int key_len) |
| { |
| struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); |
| u8 digest[SHA256_DIGEST_SIZE]; |
| int ret; |
| |
| ret = aes_expandkey(&ctx->key1, in_key, key_len); |
| if (ret) |
| return ret; |
| |
| crypto_shash_tfm_digest(ctx->hash, in_key, key_len, digest); |
| |
| return aes_expandkey(&ctx->key2, digest, sizeof(digest)); |
| } |
| |
| static int __maybe_unused ecb_encrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int err, rounds = 6 + ctx->key_length / 4; |
| struct skcipher_walk walk; |
| unsigned int blocks; |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) { |
| kernel_neon_begin(); |
| aes_ecb_encrypt(walk.dst.virt.addr, walk.src.virt.addr, |
| ctx->key_enc, rounds, blocks); |
| kernel_neon_end(); |
| err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); |
| } |
| return err; |
| } |
| |
| static int __maybe_unused ecb_decrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int err, rounds = 6 + ctx->key_length / 4; |
| struct skcipher_walk walk; |
| unsigned int blocks; |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| while ((blocks = (walk.nbytes / AES_BLOCK_SIZE))) { |
| kernel_neon_begin(); |
| aes_ecb_decrypt(walk.dst.virt.addr, walk.src.virt.addr, |
| ctx->key_dec, rounds, blocks); |
| kernel_neon_end(); |
| err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); |
| } |
| return err; |
| } |
| |
| static int cbc_encrypt_walk(struct skcipher_request *req, |
| struct skcipher_walk *walk) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int err = 0, rounds = 6 + ctx->key_length / 4; |
| unsigned int blocks; |
| |
| while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) { |
| kernel_neon_begin(); |
| aes_cbc_encrypt(walk->dst.virt.addr, walk->src.virt.addr, |
| ctx->key_enc, rounds, blocks, walk->iv); |
| kernel_neon_end(); |
| err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE); |
| } |
| return err; |
| } |
| |
| static int __maybe_unused cbc_encrypt(struct skcipher_request *req) |
| { |
| struct skcipher_walk walk; |
| int err; |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| if (err) |
| return err; |
| return cbc_encrypt_walk(req, &walk); |
| } |
| |
| static int cbc_decrypt_walk(struct skcipher_request *req, |
| struct skcipher_walk *walk) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int err = 0, rounds = 6 + ctx->key_length / 4; |
| unsigned int blocks; |
| |
| while ((blocks = (walk->nbytes / AES_BLOCK_SIZE))) { |
| kernel_neon_begin(); |
| aes_cbc_decrypt(walk->dst.virt.addr, walk->src.virt.addr, |
| ctx->key_dec, rounds, blocks, walk->iv); |
| kernel_neon_end(); |
| err = skcipher_walk_done(walk, walk->nbytes % AES_BLOCK_SIZE); |
| } |
| return err; |
| } |
| |
| static int __maybe_unused cbc_decrypt(struct skcipher_request *req) |
| { |
| struct skcipher_walk walk; |
| int err; |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| if (err) |
| return err; |
| return cbc_decrypt_walk(req, &walk); |
| } |
| |
| static int cts_cbc_encrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int err, rounds = 6 + ctx->key_length / 4; |
| int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2; |
| struct scatterlist *src = req->src, *dst = req->dst; |
| struct scatterlist sg_src[2], sg_dst[2]; |
| struct skcipher_request subreq; |
| struct skcipher_walk walk; |
| |
| skcipher_request_set_tfm(&subreq, tfm); |
| skcipher_request_set_callback(&subreq, skcipher_request_flags(req), |
| NULL, NULL); |
| |
| if (req->cryptlen <= AES_BLOCK_SIZE) { |
| if (req->cryptlen < AES_BLOCK_SIZE) |
| return -EINVAL; |
| cbc_blocks = 1; |
| } |
| |
| if (cbc_blocks > 0) { |
| skcipher_request_set_crypt(&subreq, req->src, req->dst, |
| cbc_blocks * AES_BLOCK_SIZE, |
| req->iv); |
| |
| err = skcipher_walk_virt(&walk, &subreq, false) ?: |
| cbc_encrypt_walk(&subreq, &walk); |
| if (err) |
| return err; |
| |
| if (req->cryptlen == AES_BLOCK_SIZE) |
| return 0; |
| |
| dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen); |
| if (req->dst != req->src) |
| dst = scatterwalk_ffwd(sg_dst, req->dst, |
| subreq.cryptlen); |
| } |
| |
| /* handle ciphertext stealing */ |
| skcipher_request_set_crypt(&subreq, src, dst, |
| req->cryptlen - cbc_blocks * AES_BLOCK_SIZE, |
| req->iv); |
| |
| err = skcipher_walk_virt(&walk, &subreq, false); |
| if (err) |
| return err; |
| |
| kernel_neon_begin(); |
| aes_cbc_cts_encrypt(walk.dst.virt.addr, walk.src.virt.addr, |
| ctx->key_enc, rounds, walk.nbytes, walk.iv); |
| kernel_neon_end(); |
| |
| return skcipher_walk_done(&walk, 0); |
| } |
| |
| static int cts_cbc_decrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int err, rounds = 6 + ctx->key_length / 4; |
| int cbc_blocks = DIV_ROUND_UP(req->cryptlen, AES_BLOCK_SIZE) - 2; |
| struct scatterlist *src = req->src, *dst = req->dst; |
| struct scatterlist sg_src[2], sg_dst[2]; |
| struct skcipher_request subreq; |
| struct skcipher_walk walk; |
| |
| skcipher_request_set_tfm(&subreq, tfm); |
| skcipher_request_set_callback(&subreq, skcipher_request_flags(req), |
| NULL, NULL); |
| |
| if (req->cryptlen <= AES_BLOCK_SIZE) { |
| if (req->cryptlen < AES_BLOCK_SIZE) |
| return -EINVAL; |
| cbc_blocks = 1; |
| } |
| |
| if (cbc_blocks > 0) { |
| skcipher_request_set_crypt(&subreq, req->src, req->dst, |
| cbc_blocks * AES_BLOCK_SIZE, |
| req->iv); |
| |
| err = skcipher_walk_virt(&walk, &subreq, false) ?: |
| cbc_decrypt_walk(&subreq, &walk); |
| if (err) |
| return err; |
| |
| if (req->cryptlen == AES_BLOCK_SIZE) |
| return 0; |
| |
| dst = src = scatterwalk_ffwd(sg_src, req->src, subreq.cryptlen); |
| if (req->dst != req->src) |
| dst = scatterwalk_ffwd(sg_dst, req->dst, |
| subreq.cryptlen); |
| } |
| |
| /* handle ciphertext stealing */ |
| skcipher_request_set_crypt(&subreq, src, dst, |
| req->cryptlen - cbc_blocks * AES_BLOCK_SIZE, |
| req->iv); |
| |
| err = skcipher_walk_virt(&walk, &subreq, false); |
| if (err) |
| return err; |
| |
| kernel_neon_begin(); |
| aes_cbc_cts_decrypt(walk.dst.virt.addr, walk.src.virt.addr, |
| ctx->key_dec, rounds, walk.nbytes, walk.iv); |
| kernel_neon_end(); |
| |
| return skcipher_walk_done(&walk, 0); |
| } |
| |
| static int __maybe_unused essiv_cbc_init_tfm(struct crypto_skcipher *tfm) |
| { |
| struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| ctx->hash = crypto_alloc_shash("sha256", 0, 0); |
| |
| return PTR_ERR_OR_ZERO(ctx->hash); |
| } |
| |
| static void __maybe_unused essiv_cbc_exit_tfm(struct crypto_skcipher *tfm) |
| { |
| struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); |
| |
| crypto_free_shash(ctx->hash); |
| } |
| |
| static int __maybe_unused essiv_cbc_encrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int err, rounds = 6 + ctx->key1.key_length / 4; |
| struct skcipher_walk walk; |
| unsigned int blocks; |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| blocks = walk.nbytes / AES_BLOCK_SIZE; |
| if (blocks) { |
| kernel_neon_begin(); |
| aes_essiv_cbc_encrypt(walk.dst.virt.addr, walk.src.virt.addr, |
| ctx->key1.key_enc, rounds, blocks, |
| req->iv, ctx->key2.key_enc); |
| kernel_neon_end(); |
| err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); |
| } |
| return err ?: cbc_encrypt_walk(req, &walk); |
| } |
| |
| static int __maybe_unused essiv_cbc_decrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_essiv_cbc_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int err, rounds = 6 + ctx->key1.key_length / 4; |
| struct skcipher_walk walk; |
| unsigned int blocks; |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| blocks = walk.nbytes / AES_BLOCK_SIZE; |
| if (blocks) { |
| kernel_neon_begin(); |
| aes_essiv_cbc_decrypt(walk.dst.virt.addr, walk.src.virt.addr, |
| ctx->key1.key_dec, rounds, blocks, |
| req->iv, ctx->key2.key_enc); |
| kernel_neon_end(); |
| err = skcipher_walk_done(&walk, walk.nbytes % AES_BLOCK_SIZE); |
| } |
| return err ?: cbc_decrypt_walk(req, &walk); |
| } |
| |
| static int __maybe_unused ctr_encrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int err, rounds = 6 + ctx->key_length / 4; |
| struct skcipher_walk walk; |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| while (walk.nbytes > 0) { |
| const u8 *src = walk.src.virt.addr; |
| unsigned int nbytes = walk.nbytes; |
| u8 *dst = walk.dst.virt.addr; |
| u8 buf[AES_BLOCK_SIZE]; |
| unsigned int tail; |
| |
| if (unlikely(nbytes < AES_BLOCK_SIZE)) |
| src = memcpy(buf, src, nbytes); |
| else if (nbytes < walk.total) |
| nbytes &= ~(AES_BLOCK_SIZE - 1); |
| |
| kernel_neon_begin(); |
| aes_ctr_encrypt(dst, src, ctx->key_enc, rounds, nbytes, |
| walk.iv, buf); |
| kernel_neon_end(); |
| |
| tail = nbytes % (STRIDE * AES_BLOCK_SIZE); |
| if (tail > 0 && tail < AES_BLOCK_SIZE) |
| /* |
| * The final partial block could not be returned using |
| * an overlapping store, so it was passed via buf[] |
| * instead. |
| */ |
| memcpy(dst + nbytes - tail, buf, tail); |
| |
| err = skcipher_walk_done(&walk, walk.nbytes - nbytes); |
| } |
| |
| return err; |
| } |
| |
| static int __maybe_unused xts_encrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int err, first, rounds = 6 + ctx->key1.key_length / 4; |
| int tail = req->cryptlen % AES_BLOCK_SIZE; |
| struct scatterlist sg_src[2], sg_dst[2]; |
| struct skcipher_request subreq; |
| struct scatterlist *src, *dst; |
| struct skcipher_walk walk; |
| |
| if (req->cryptlen < AES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| if (unlikely(tail > 0 && walk.nbytes < walk.total)) { |
| int xts_blocks = DIV_ROUND_UP(req->cryptlen, |
| AES_BLOCK_SIZE) - 2; |
| |
| skcipher_walk_abort(&walk); |
| |
| skcipher_request_set_tfm(&subreq, tfm); |
| skcipher_request_set_callback(&subreq, |
| skcipher_request_flags(req), |
| NULL, NULL); |
| skcipher_request_set_crypt(&subreq, req->src, req->dst, |
| xts_blocks * AES_BLOCK_SIZE, |
| req->iv); |
| req = &subreq; |
| err = skcipher_walk_virt(&walk, req, false); |
| } else { |
| tail = 0; |
| } |
| |
| for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) { |
| int nbytes = walk.nbytes; |
| |
| if (walk.nbytes < walk.total) |
| nbytes &= ~(AES_BLOCK_SIZE - 1); |
| |
| kernel_neon_begin(); |
| aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr, |
| ctx->key1.key_enc, rounds, nbytes, |
| ctx->key2.key_enc, walk.iv, first); |
| kernel_neon_end(); |
| err = skcipher_walk_done(&walk, walk.nbytes - nbytes); |
| } |
| |
| if (err || likely(!tail)) |
| return err; |
| |
| dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen); |
| if (req->dst != req->src) |
| dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen); |
| |
| skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail, |
| req->iv); |
| |
| err = skcipher_walk_virt(&walk, &subreq, false); |
| if (err) |
| return err; |
| |
| kernel_neon_begin(); |
| aes_xts_encrypt(walk.dst.virt.addr, walk.src.virt.addr, |
| ctx->key1.key_enc, rounds, walk.nbytes, |
| ctx->key2.key_enc, walk.iv, first); |
| kernel_neon_end(); |
| |
| return skcipher_walk_done(&walk, 0); |
| } |
| |
| static int __maybe_unused xts_decrypt(struct skcipher_request *req) |
| { |
| struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); |
| struct crypto_aes_xts_ctx *ctx = crypto_skcipher_ctx(tfm); |
| int err, first, rounds = 6 + ctx->key1.key_length / 4; |
| int tail = req->cryptlen % AES_BLOCK_SIZE; |
| struct scatterlist sg_src[2], sg_dst[2]; |
| struct skcipher_request subreq; |
| struct scatterlist *src, *dst; |
| struct skcipher_walk walk; |
| |
| if (req->cryptlen < AES_BLOCK_SIZE) |
| return -EINVAL; |
| |
| err = skcipher_walk_virt(&walk, req, false); |
| |
| if (unlikely(tail > 0 && walk.nbytes < walk.total)) { |
| int xts_blocks = DIV_ROUND_UP(req->cryptlen, |
| AES_BLOCK_SIZE) - 2; |
| |
| skcipher_walk_abort(&walk); |
| |
| skcipher_request_set_tfm(&subreq, tfm); |
| skcipher_request_set_callback(&subreq, |
| skcipher_request_flags(req), |
| NULL, NULL); |
| skcipher_request_set_crypt(&subreq, req->src, req->dst, |
| xts_blocks * AES_BLOCK_SIZE, |
| req->iv); |
| req = &subreq; |
| err = skcipher_walk_virt(&walk, req, false); |
| } else { |
| tail = 0; |
| } |
| |
| for (first = 1; walk.nbytes >= AES_BLOCK_SIZE; first = 0) { |
| int nbytes = walk.nbytes; |
| |
| if (walk.nbytes < walk.total) |
| nbytes &= ~(AES_BLOCK_SIZE - 1); |
| |
| kernel_neon_begin(); |
| aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr, |
| ctx->key1.key_dec, rounds, nbytes, |
| ctx->key2.key_enc, walk.iv, first); |
| kernel_neon_end(); |
| err = skcipher_walk_done(&walk, walk.nbytes - nbytes); |
| } |
| |
| if (err || likely(!tail)) |
| return err; |
| |
| dst = src = scatterwalk_ffwd(sg_src, req->src, req->cryptlen); |
| if (req->dst != req->src) |
| dst = scatterwalk_ffwd(sg_dst, req->dst, req->cryptlen); |
| |
| skcipher_request_set_crypt(req, src, dst, AES_BLOCK_SIZE + tail, |
| req->iv); |
| |
| err = skcipher_walk_virt(&walk, &subreq, false); |
| if (err) |
| return err; |
| |
| |
| kernel_neon_begin(); |
| aes_xts_decrypt(walk.dst.virt.addr, walk.src.virt.addr, |
| ctx->key1.key_dec, rounds, walk.nbytes, |
| ctx->key2.key_enc, walk.iv, first); |
| kernel_neon_end(); |
| |
| return skcipher_walk_done(&walk, 0); |
| } |
| |
| static struct skcipher_alg aes_algs[] = { { |
| #if defined(USE_V8_CRYPTO_EXTENSIONS) || !IS_ENABLED(CONFIG_CRYPTO_AES_ARM64_BS) |
| .base = { |
| .cra_name = "ecb(aes)", |
| .cra_driver_name = "ecb-aes-" MODE, |
| .cra_priority = PRIO, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct crypto_aes_ctx), |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .setkey = skcipher_aes_setkey, |
| .encrypt = ecb_encrypt, |
| .decrypt = ecb_decrypt, |
| }, { |
| .base = { |
| .cra_name = "cbc(aes)", |
| .cra_driver_name = "cbc-aes-" MODE, |
| .cra_priority = PRIO, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct crypto_aes_ctx), |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = skcipher_aes_setkey, |
| .encrypt = cbc_encrypt, |
| .decrypt = cbc_decrypt, |
| }, { |
| .base = { |
| .cra_name = "ctr(aes)", |
| .cra_driver_name = "ctr-aes-" MODE, |
| .cra_priority = PRIO, |
| .cra_blocksize = 1, |
| .cra_ctxsize = sizeof(struct crypto_aes_ctx), |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .chunksize = AES_BLOCK_SIZE, |
| .setkey = skcipher_aes_setkey, |
| .encrypt = ctr_encrypt, |
| .decrypt = ctr_encrypt, |
| }, { |
| .base = { |
| .cra_name = "xts(aes)", |
| .cra_driver_name = "xts-aes-" MODE, |
| .cra_priority = PRIO, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct crypto_aes_xts_ctx), |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = 2 * AES_MIN_KEY_SIZE, |
| .max_keysize = 2 * AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .walksize = 2 * AES_BLOCK_SIZE, |
| .setkey = xts_set_key, |
| .encrypt = xts_encrypt, |
| .decrypt = xts_decrypt, |
| }, { |
| #endif |
| .base = { |
| .cra_name = "cts(cbc(aes))", |
| .cra_driver_name = "cts-cbc-aes-" MODE, |
| .cra_priority = PRIO, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct crypto_aes_ctx), |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .walksize = 2 * AES_BLOCK_SIZE, |
| .setkey = skcipher_aes_setkey, |
| .encrypt = cts_cbc_encrypt, |
| .decrypt = cts_cbc_decrypt, |
| }, { |
| .base = { |
| .cra_name = "essiv(cbc(aes),sha256)", |
| .cra_driver_name = "essiv-cbc-aes-sha256-" MODE, |
| .cra_priority = PRIO + 1, |
| .cra_blocksize = AES_BLOCK_SIZE, |
| .cra_ctxsize = sizeof(struct crypto_aes_essiv_cbc_ctx), |
| .cra_module = THIS_MODULE, |
| }, |
| .min_keysize = AES_MIN_KEY_SIZE, |
| .max_keysize = AES_MAX_KEY_SIZE, |
| .ivsize = AES_BLOCK_SIZE, |
| .setkey = essiv_cbc_set_key, |
| .encrypt = essiv_cbc_encrypt, |
| .decrypt = essiv_cbc_decrypt, |
| .init = essiv_cbc_init_tfm, |
| .exit = essiv_cbc_exit_tfm, |
| } }; |
| |
| static int cbcmac_setkey(struct crypto_shash *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm); |
| |
| return aes_expandkey(&ctx->key, in_key, key_len); |
| } |
| |
| static void cmac_gf128_mul_by_x(be128 *y, const be128 *x) |
| { |
| u64 a = be64_to_cpu(x->a); |
| u64 b = be64_to_cpu(x->b); |
| |
| y->a = cpu_to_be64((a << 1) | (b >> 63)); |
| y->b = cpu_to_be64((b << 1) ^ ((a >> 63) ? 0x87 : 0)); |
| } |
| |
| static int cmac_setkey(struct crypto_shash *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm); |
| be128 *consts = (be128 *)ctx->consts; |
| int rounds = 6 + key_len / 4; |
| int err; |
| |
| err = cbcmac_setkey(tfm, in_key, key_len); |
| if (err) |
| return err; |
| |
| /* encrypt the zero vector */ |
| kernel_neon_begin(); |
| aes_ecb_encrypt(ctx->consts, (u8[AES_BLOCK_SIZE]){}, ctx->key.key_enc, |
| rounds, 1); |
| kernel_neon_end(); |
| |
| cmac_gf128_mul_by_x(consts, consts); |
| cmac_gf128_mul_by_x(consts + 1, consts); |
| |
| return 0; |
| } |
| |
| static int xcbc_setkey(struct crypto_shash *tfm, const u8 *in_key, |
| unsigned int key_len) |
| { |
| static u8 const ks[3][AES_BLOCK_SIZE] = { |
| { [0 ... AES_BLOCK_SIZE - 1] = 0x1 }, |
| { [0 ... AES_BLOCK_SIZE - 1] = 0x2 }, |
| { [0 ... AES_BLOCK_SIZE - 1] = 0x3 }, |
| }; |
| |
| struct mac_tfm_ctx *ctx = crypto_shash_ctx(tfm); |
| int rounds = 6 + key_len / 4; |
| u8 key[AES_BLOCK_SIZE]; |
| int err; |
| |
| err = cbcmac_setkey(tfm, in_key, key_len); |
| if (err) |
| return err; |
| |
| kernel_neon_begin(); |
| aes_ecb_encrypt(key, ks[0], ctx->key.key_enc, rounds, 1); |
| aes_ecb_encrypt(ctx->consts, ks[1], ctx->key.key_enc, rounds, 2); |
| kernel_neon_end(); |
| |
| return cbcmac_setkey(tfm, key, sizeof(key)); |
| } |
| |
| static int mac_init(struct shash_desc *desc) |
| { |
| struct mac_desc_ctx *ctx = shash_desc_ctx(desc); |
| |
| memset(ctx->dg, 0, AES_BLOCK_SIZE); |
| ctx->len = 0; |
| |
| return 0; |
| } |
| |
| static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks, |
| u8 dg[], int enc_before, int enc_after) |
| { |
| int rounds = 6 + ctx->key_length / 4; |
| |
| if (crypto_simd_usable()) { |
| int rem; |
| |
| do { |
| kernel_neon_begin(); |
| rem = aes_mac_update(in, ctx->key_enc, rounds, blocks, |
| dg, enc_before, enc_after); |
| kernel_neon_end(); |
| in += (blocks - rem) * AES_BLOCK_SIZE; |
| blocks = rem; |
| enc_before = 0; |
| } while (blocks); |
| } else { |
| if (enc_before) |
| aes_encrypt(ctx, dg, dg); |
| |
| while (blocks--) { |
| crypto_xor(dg, in, AES_BLOCK_SIZE); |
| in += AES_BLOCK_SIZE; |
| |
| if (blocks || enc_after) |
| aes_encrypt(ctx, dg, dg); |
| } |
| } |
| } |
| |
| static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len) |
| { |
| struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); |
| struct mac_desc_ctx *ctx = shash_desc_ctx(desc); |
| |
| while (len > 0) { |
| unsigned int l; |
| |
| if ((ctx->len % AES_BLOCK_SIZE) == 0 && |
| (ctx->len + len) > AES_BLOCK_SIZE) { |
| |
| int blocks = len / AES_BLOCK_SIZE; |
| |
| len %= AES_BLOCK_SIZE; |
| |
| mac_do_update(&tctx->key, p, blocks, ctx->dg, |
| (ctx->len != 0), (len != 0)); |
| |
| p += blocks * AES_BLOCK_SIZE; |
| |
| if (!len) { |
| ctx->len = AES_BLOCK_SIZE; |
| break; |
| } |
| ctx->len = 0; |
| } |
| |
| l = min(len, AES_BLOCK_SIZE - ctx->len); |
| |
| if (l <= AES_BLOCK_SIZE) { |
| crypto_xor(ctx->dg + ctx->len, p, l); |
| ctx->len += l; |
| len -= l; |
| p += l; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int cbcmac_final(struct shash_desc *desc, u8 *out) |
| { |
| struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); |
| struct mac_desc_ctx *ctx = shash_desc_ctx(desc); |
| |
| mac_do_update(&tctx->key, NULL, 0, ctx->dg, (ctx->len != 0), 0); |
| |
| memcpy(out, ctx->dg, AES_BLOCK_SIZE); |
| |
| return 0; |
| } |
| |
| static int cmac_final(struct shash_desc *desc, u8 *out) |
| { |
| struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm); |
| struct mac_desc_ctx *ctx = shash_desc_ctx(desc); |
| u8 *consts = tctx->consts; |
| |
| if (ctx->len != AES_BLOCK_SIZE) { |
| ctx->dg[ctx->len] ^= 0x80; |
| consts += AES_BLOCK_SIZE; |
| } |
| |
| mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1); |
| |
| memcpy(out, ctx->dg, AES_BLOCK_SIZE); |
| |
| return 0; |
| } |
| |
| static struct shash_alg mac_algs[] = { { |
| .base.cra_name = "cmac(aes)", |
| .base.cra_driver_name = "cmac-aes-" MODE, |
| .base.cra_priority = PRIO, |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) + |
| 2 * AES_BLOCK_SIZE, |
| .base.cra_module = THIS_MODULE, |
| |
| .digestsize = AES_BLOCK_SIZE, |
| .init = mac_init, |
| .update = mac_update, |
| .final = cmac_final, |
| .setkey = cmac_setkey, |
| .descsize = sizeof(struct mac_desc_ctx), |
| }, { |
| .base.cra_name = "xcbc(aes)", |
| .base.cra_driver_name = "xcbc-aes-" MODE, |
| .base.cra_priority = PRIO, |
| .base.cra_blocksize = AES_BLOCK_SIZE, |
| .base.cra_ctxsize = sizeof(struct mac_tfm_ctx) + |
| 2 * AES_BLOCK_SIZE, |
| .base.cra_module = THIS_MODULE, |
| |
| .digestsize = AES_BLOCK_SIZE, |
| .init = mac_init, |
| .update = mac_update, |
| .final = cmac_final, |
| .setkey = xcbc_setkey, |
| .descsize = sizeof(struct mac_desc_ctx), |
| }, { |
| .base.cra_name = "cbcmac(aes)", |
| .base.cra_driver_name = "cbcmac-aes-" MODE, |
| .base.cra_priority = PRIO, |
| .base.cra_blocksize = 1, |
| .base.cra_ctxsize = sizeof(struct mac_tfm_ctx), |
| .base.cra_module = THIS_MODULE, |
| |
| .digestsize = AES_BLOCK_SIZE, |
| .init = mac_init, |
| .update = mac_update, |
| .final = cbcmac_final, |
| .setkey = cbcmac_setkey, |
| .descsize = sizeof(struct mac_desc_ctx), |
| } }; |
| |
| static void aes_exit(void) |
| { |
| crypto_unregister_shashes(mac_algs, ARRAY_SIZE(mac_algs)); |
| crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); |
| } |
| |
| static int __init aes_init(void) |
| { |
| int err; |
| |
| err = crypto_register_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); |
| if (err) |
| return err; |
| |
| err = crypto_register_shashes(mac_algs, ARRAY_SIZE(mac_algs)); |
| if (err) |
| goto unregister_ciphers; |
| |
| return 0; |
| |
| unregister_ciphers: |
| crypto_unregister_skciphers(aes_algs, ARRAY_SIZE(aes_algs)); |
| return err; |
| } |
| |
| #ifdef USE_V8_CRYPTO_EXTENSIONS |
| module_cpu_feature_match(AES, aes_init); |
| #else |
| module_init(aes_init); |
| EXPORT_SYMBOL(neon_aes_ecb_encrypt); |
| EXPORT_SYMBOL(neon_aes_cbc_encrypt); |
| EXPORT_SYMBOL(neon_aes_xts_encrypt); |
| EXPORT_SYMBOL(neon_aes_xts_decrypt); |
| #endif |
| module_exit(aes_exit); |