| /* |
| * Read-Copy Update mechanism for mutual exclusion |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, you can access it online at |
| * http://www.gnu.org/licenses/gpl-2.0.html. |
| * |
| * Copyright IBM Corporation, 2001 |
| * |
| * Authors: Dipankar Sarma <dipankar@in.ibm.com> |
| * Manfred Spraul <manfred@colorfullife.com> |
| * |
| * Based on the original work by Paul McKenney <paulmck@us.ibm.com> |
| * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen. |
| * Papers: |
| * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf |
| * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001) |
| * |
| * For detailed explanation of Read-Copy Update mechanism see - |
| * http://lse.sourceforge.net/locking/rcupdate.html |
| * |
| */ |
| #include <linux/types.h> |
| #include <linux/kernel.h> |
| #include <linux/init.h> |
| #include <linux/spinlock.h> |
| #include <linux/smp.h> |
| #include <linux/interrupt.h> |
| #include <linux/sched.h> |
| #include <linux/atomic.h> |
| #include <linux/bitops.h> |
| #include <linux/percpu.h> |
| #include <linux/notifier.h> |
| #include <linux/cpu.h> |
| #include <linux/mutex.h> |
| #include <linux/export.h> |
| #include <linux/hardirq.h> |
| #include <linux/delay.h> |
| #include <linux/module.h> |
| #include <linux/kthread.h> |
| #include <linux/tick.h> |
| |
| #define CREATE_TRACE_POINTS |
| |
| #include "rcu.h" |
| |
| MODULE_ALIAS("rcupdate"); |
| #ifdef MODULE_PARAM_PREFIX |
| #undef MODULE_PARAM_PREFIX |
| #endif |
| #define MODULE_PARAM_PREFIX "rcupdate." |
| |
| module_param(rcu_expedited, int, 0); |
| |
| #ifdef CONFIG_PREEMPT_RCU |
| |
| /* |
| * Preemptible RCU implementation for rcu_read_lock(). |
| * Just increment ->rcu_read_lock_nesting, shared state will be updated |
| * if we block. |
| */ |
| void __rcu_read_lock(void) |
| { |
| current->rcu_read_lock_nesting++; |
| barrier(); /* critical section after entry code. */ |
| } |
| EXPORT_SYMBOL_GPL(__rcu_read_lock); |
| |
| /* |
| * Preemptible RCU implementation for rcu_read_unlock(). |
| * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost |
| * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then |
| * invoke rcu_read_unlock_special() to clean up after a context switch |
| * in an RCU read-side critical section and other special cases. |
| */ |
| void __rcu_read_unlock(void) |
| { |
| struct task_struct *t = current; |
| |
| if (t->rcu_read_lock_nesting != 1) { |
| --t->rcu_read_lock_nesting; |
| } else { |
| barrier(); /* critical section before exit code. */ |
| t->rcu_read_lock_nesting = INT_MIN; |
| barrier(); /* assign before ->rcu_read_unlock_special load */ |
| if (unlikely(ACCESS_ONCE(t->rcu_read_unlock_special.s))) |
| rcu_read_unlock_special(t); |
| barrier(); /* ->rcu_read_unlock_special load before assign */ |
| t->rcu_read_lock_nesting = 0; |
| } |
| #ifdef CONFIG_PROVE_LOCKING |
| { |
| int rrln = ACCESS_ONCE(t->rcu_read_lock_nesting); |
| |
| WARN_ON_ONCE(rrln < 0 && rrln > INT_MIN / 2); |
| } |
| #endif /* #ifdef CONFIG_PROVE_LOCKING */ |
| } |
| EXPORT_SYMBOL_GPL(__rcu_read_unlock); |
| |
| #endif /* #ifdef CONFIG_PREEMPT_RCU */ |
| |
| #ifdef CONFIG_DEBUG_LOCK_ALLOC |
| static struct lock_class_key rcu_lock_key; |
| struct lockdep_map rcu_lock_map = |
| STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key); |
| EXPORT_SYMBOL_GPL(rcu_lock_map); |
| |
| static struct lock_class_key rcu_bh_lock_key; |
| struct lockdep_map rcu_bh_lock_map = |
| STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_bh", &rcu_bh_lock_key); |
| EXPORT_SYMBOL_GPL(rcu_bh_lock_map); |
| |
| static struct lock_class_key rcu_sched_lock_key; |
| struct lockdep_map rcu_sched_lock_map = |
| STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_sched", &rcu_sched_lock_key); |
| EXPORT_SYMBOL_GPL(rcu_sched_lock_map); |
| |
| static struct lock_class_key rcu_callback_key; |
| struct lockdep_map rcu_callback_map = |
| STATIC_LOCKDEP_MAP_INIT("rcu_callback", &rcu_callback_key); |
| EXPORT_SYMBOL_GPL(rcu_callback_map); |
| |
| int notrace debug_lockdep_rcu_enabled(void) |
| { |
| return rcu_scheduler_active && debug_locks && |
| current->lockdep_recursion == 0; |
| } |
| EXPORT_SYMBOL_GPL(debug_lockdep_rcu_enabled); |
| |
| /** |
| * rcu_read_lock_held() - might we be in RCU read-side critical section? |
| * |
| * If CONFIG_DEBUG_LOCK_ALLOC is selected, returns nonzero iff in an RCU |
| * read-side critical section. In absence of CONFIG_DEBUG_LOCK_ALLOC, |
| * this assumes we are in an RCU read-side critical section unless it can |
| * prove otherwise. This is useful for debug checks in functions that |
| * require that they be called within an RCU read-side critical section. |
| * |
| * Checks debug_lockdep_rcu_enabled() to prevent false positives during boot |
| * and while lockdep is disabled. |
| * |
| * Note that rcu_read_lock() and the matching rcu_read_unlock() must |
| * occur in the same context, for example, it is illegal to invoke |
| * rcu_read_unlock() in process context if the matching rcu_read_lock() |
| * was invoked from within an irq handler. |
| * |
| * Note that rcu_read_lock() is disallowed if the CPU is either idle or |
| * offline from an RCU perspective, so check for those as well. |
| */ |
| int rcu_read_lock_held(void) |
| { |
| if (!debug_lockdep_rcu_enabled()) |
| return 1; |
| if (!rcu_is_watching()) |
| return 0; |
| if (!rcu_lockdep_current_cpu_online()) |
| return 0; |
| return lock_is_held(&rcu_lock_map); |
| } |
| EXPORT_SYMBOL_GPL(rcu_read_lock_held); |
| |
| /** |
| * rcu_read_lock_bh_held() - might we be in RCU-bh read-side critical section? |
| * |
| * Check for bottom half being disabled, which covers both the |
| * CONFIG_PROVE_RCU and not cases. Note that if someone uses |
| * rcu_read_lock_bh(), but then later enables BH, lockdep (if enabled) |
| * will show the situation. This is useful for debug checks in functions |
| * that require that they be called within an RCU read-side critical |
| * section. |
| * |
| * Check debug_lockdep_rcu_enabled() to prevent false positives during boot. |
| * |
| * Note that rcu_read_lock() is disallowed if the CPU is either idle or |
| * offline from an RCU perspective, so check for those as well. |
| */ |
| int rcu_read_lock_bh_held(void) |
| { |
| if (!debug_lockdep_rcu_enabled()) |
| return 1; |
| if (!rcu_is_watching()) |
| return 0; |
| if (!rcu_lockdep_current_cpu_online()) |
| return 0; |
| return in_softirq() || irqs_disabled(); |
| } |
| EXPORT_SYMBOL_GPL(rcu_read_lock_bh_held); |
| |
| #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */ |
| |
| struct rcu_synchronize { |
| struct rcu_head head; |
| struct completion completion; |
| }; |
| |
| /* |
| * Awaken the corresponding synchronize_rcu() instance now that a |
| * grace period has elapsed. |
| */ |
| static void wakeme_after_rcu(struct rcu_head *head) |
| { |
| struct rcu_synchronize *rcu; |
| |
| rcu = container_of(head, struct rcu_synchronize, head); |
| complete(&rcu->completion); |
| } |
| |
| void wait_rcu_gp(call_rcu_func_t crf) |
| { |
| struct rcu_synchronize rcu; |
| |
| init_rcu_head_on_stack(&rcu.head); |
| init_completion(&rcu.completion); |
| /* Will wake me after RCU finished. */ |
| crf(&rcu.head, wakeme_after_rcu); |
| /* Wait for it. */ |
| wait_for_completion(&rcu.completion); |
| destroy_rcu_head_on_stack(&rcu.head); |
| } |
| EXPORT_SYMBOL_GPL(wait_rcu_gp); |
| |
| #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD |
| void init_rcu_head(struct rcu_head *head) |
| { |
| debug_object_init(head, &rcuhead_debug_descr); |
| } |
| |
| void destroy_rcu_head(struct rcu_head *head) |
| { |
| debug_object_free(head, &rcuhead_debug_descr); |
| } |
| |
| /* |
| * fixup_activate is called when: |
| * - an active object is activated |
| * - an unknown object is activated (might be a statically initialized object) |
| * Activation is performed internally by call_rcu(). |
| */ |
| static int rcuhead_fixup_activate(void *addr, enum debug_obj_state state) |
| { |
| struct rcu_head *head = addr; |
| |
| switch (state) { |
| |
| case ODEBUG_STATE_NOTAVAILABLE: |
| /* |
| * This is not really a fixup. We just make sure that it is |
| * tracked in the object tracker. |
| */ |
| debug_object_init(head, &rcuhead_debug_descr); |
| debug_object_activate(head, &rcuhead_debug_descr); |
| return 0; |
| default: |
| return 1; |
| } |
| } |
| |
| /** |
| * init_rcu_head_on_stack() - initialize on-stack rcu_head for debugobjects |
| * @head: pointer to rcu_head structure to be initialized |
| * |
| * This function informs debugobjects of a new rcu_head structure that |
| * has been allocated as an auto variable on the stack. This function |
| * is not required for rcu_head structures that are statically defined or |
| * that are dynamically allocated on the heap. This function has no |
| * effect for !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. |
| */ |
| void init_rcu_head_on_stack(struct rcu_head *head) |
| { |
| debug_object_init_on_stack(head, &rcuhead_debug_descr); |
| } |
| EXPORT_SYMBOL_GPL(init_rcu_head_on_stack); |
| |
| /** |
| * destroy_rcu_head_on_stack() - destroy on-stack rcu_head for debugobjects |
| * @head: pointer to rcu_head structure to be initialized |
| * |
| * This function informs debugobjects that an on-stack rcu_head structure |
| * is about to go out of scope. As with init_rcu_head_on_stack(), this |
| * function is not required for rcu_head structures that are statically |
| * defined or that are dynamically allocated on the heap. Also as with |
| * init_rcu_head_on_stack(), this function has no effect for |
| * !CONFIG_DEBUG_OBJECTS_RCU_HEAD kernel builds. |
| */ |
| void destroy_rcu_head_on_stack(struct rcu_head *head) |
| { |
| debug_object_free(head, &rcuhead_debug_descr); |
| } |
| EXPORT_SYMBOL_GPL(destroy_rcu_head_on_stack); |
| |
| struct debug_obj_descr rcuhead_debug_descr = { |
| .name = "rcu_head", |
| .fixup_activate = rcuhead_fixup_activate, |
| }; |
| EXPORT_SYMBOL_GPL(rcuhead_debug_descr); |
| #endif /* #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD */ |
| |
| #if defined(CONFIG_TREE_RCU) || defined(CONFIG_PREEMPT_RCU) || defined(CONFIG_RCU_TRACE) |
| void do_trace_rcu_torture_read(const char *rcutorturename, struct rcu_head *rhp, |
| unsigned long secs, |
| unsigned long c_old, unsigned long c) |
| { |
| trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c); |
| } |
| EXPORT_SYMBOL_GPL(do_trace_rcu_torture_read); |
| #else |
| #define do_trace_rcu_torture_read(rcutorturename, rhp, secs, c_old, c) \ |
| do { } while (0) |
| #endif |
| |
| #ifdef CONFIG_RCU_STALL_COMMON |
| |
| #ifdef CONFIG_PROVE_RCU |
| #define RCU_STALL_DELAY_DELTA (5 * HZ) |
| #else |
| #define RCU_STALL_DELAY_DELTA 0 |
| #endif |
| |
| int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */ |
| static int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT; |
| |
| module_param(rcu_cpu_stall_suppress, int, 0644); |
| module_param(rcu_cpu_stall_timeout, int, 0644); |
| |
| int rcu_jiffies_till_stall_check(void) |
| { |
| int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout); |
| |
| /* |
| * Limit check must be consistent with the Kconfig limits |
| * for CONFIG_RCU_CPU_STALL_TIMEOUT. |
| */ |
| if (till_stall_check < 3) { |
| ACCESS_ONCE(rcu_cpu_stall_timeout) = 3; |
| till_stall_check = 3; |
| } else if (till_stall_check > 300) { |
| ACCESS_ONCE(rcu_cpu_stall_timeout) = 300; |
| till_stall_check = 300; |
| } |
| return till_stall_check * HZ + RCU_STALL_DELAY_DELTA; |
| } |
| |
| void rcu_sysrq_start(void) |
| { |
| if (!rcu_cpu_stall_suppress) |
| rcu_cpu_stall_suppress = 2; |
| } |
| |
| void rcu_sysrq_end(void) |
| { |
| if (rcu_cpu_stall_suppress == 2) |
| rcu_cpu_stall_suppress = 0; |
| } |
| |
| static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr) |
| { |
| rcu_cpu_stall_suppress = 1; |
| return NOTIFY_DONE; |
| } |
| |
| static struct notifier_block rcu_panic_block = { |
| .notifier_call = rcu_panic, |
| }; |
| |
| static int __init check_cpu_stall_init(void) |
| { |
| atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block); |
| return 0; |
| } |
| early_initcall(check_cpu_stall_init); |
| |
| #endif /* #ifdef CONFIG_RCU_STALL_COMMON */ |
| |
| #ifdef CONFIG_TASKS_RCU |
| |
| /* |
| * Simple variant of RCU whose quiescent states are voluntary context switch, |
| * user-space execution, and idle. As such, grace periods can take one good |
| * long time. There are no read-side primitives similar to rcu_read_lock() |
| * and rcu_read_unlock() because this implementation is intended to get |
| * the system into a safe state for some of the manipulations involved in |
| * tracing and the like. Finally, this implementation does not support |
| * high call_rcu_tasks() rates from multiple CPUs. If this is required, |
| * per-CPU callback lists will be needed. |
| */ |
| |
| /* Global list of callbacks and associated lock. */ |
| static struct rcu_head *rcu_tasks_cbs_head; |
| static struct rcu_head **rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; |
| static DECLARE_WAIT_QUEUE_HEAD(rcu_tasks_cbs_wq); |
| static DEFINE_RAW_SPINLOCK(rcu_tasks_cbs_lock); |
| |
| /* Track exiting tasks in order to allow them to be waited for. */ |
| DEFINE_SRCU(tasks_rcu_exit_srcu); |
| |
| /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */ |
| static int rcu_task_stall_timeout __read_mostly = HZ * 60 * 10; |
| module_param(rcu_task_stall_timeout, int, 0644); |
| |
| static void rcu_spawn_tasks_kthread(void); |
| |
| /* |
| * Post an RCU-tasks callback. First call must be from process context |
| * after the scheduler if fully operational. |
| */ |
| void call_rcu_tasks(struct rcu_head *rhp, void (*func)(struct rcu_head *rhp)) |
| { |
| unsigned long flags; |
| bool needwake; |
| |
| rhp->next = NULL; |
| rhp->func = func; |
| raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); |
| needwake = !rcu_tasks_cbs_head; |
| *rcu_tasks_cbs_tail = rhp; |
| rcu_tasks_cbs_tail = &rhp->next; |
| raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); |
| if (needwake) { |
| rcu_spawn_tasks_kthread(); |
| wake_up(&rcu_tasks_cbs_wq); |
| } |
| } |
| EXPORT_SYMBOL_GPL(call_rcu_tasks); |
| |
| /** |
| * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed. |
| * |
| * Control will return to the caller some time after a full rcu-tasks |
| * grace period has elapsed, in other words after all currently |
| * executing rcu-tasks read-side critical sections have elapsed. These |
| * read-side critical sections are delimited by calls to schedule(), |
| * cond_resched_rcu_qs(), idle execution, userspace execution, calls |
| * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched(). |
| * |
| * This is a very specialized primitive, intended only for a few uses in |
| * tracing and other situations requiring manipulation of function |
| * preambles and profiling hooks. The synchronize_rcu_tasks() function |
| * is not (yet) intended for heavy use from multiple CPUs. |
| * |
| * Note that this guarantee implies further memory-ordering guarantees. |
| * On systems with more than one CPU, when synchronize_rcu_tasks() returns, |
| * each CPU is guaranteed to have executed a full memory barrier since the |
| * end of its last RCU-tasks read-side critical section whose beginning |
| * preceded the call to synchronize_rcu_tasks(). In addition, each CPU |
| * having an RCU-tasks read-side critical section that extends beyond |
| * the return from synchronize_rcu_tasks() is guaranteed to have executed |
| * a full memory barrier after the beginning of synchronize_rcu_tasks() |
| * and before the beginning of that RCU-tasks read-side critical section. |
| * Note that these guarantees include CPUs that are offline, idle, or |
| * executing in user mode, as well as CPUs that are executing in the kernel. |
| * |
| * Furthermore, if CPU A invoked synchronize_rcu_tasks(), which returned |
| * to its caller on CPU B, then both CPU A and CPU B are guaranteed |
| * to have executed a full memory barrier during the execution of |
| * synchronize_rcu_tasks() -- even if CPU A and CPU B are the same CPU |
| * (but again only if the system has more than one CPU). |
| */ |
| void synchronize_rcu_tasks(void) |
| { |
| /* Complain if the scheduler has not started. */ |
| rcu_lockdep_assert(!rcu_scheduler_active, |
| "synchronize_rcu_tasks called too soon"); |
| |
| /* Wait for the grace period. */ |
| wait_rcu_gp(call_rcu_tasks); |
| } |
| EXPORT_SYMBOL_GPL(synchronize_rcu_tasks); |
| |
| /** |
| * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks. |
| * |
| * Although the current implementation is guaranteed to wait, it is not |
| * obligated to, for example, if there are no pending callbacks. |
| */ |
| void rcu_barrier_tasks(void) |
| { |
| /* There is only one callback queue, so this is easy. ;-) */ |
| synchronize_rcu_tasks(); |
| } |
| EXPORT_SYMBOL_GPL(rcu_barrier_tasks); |
| |
| /* See if tasks are still holding out, complain if so. */ |
| static void check_holdout_task(struct task_struct *t, |
| bool needreport, bool *firstreport) |
| { |
| int cpu; |
| |
| if (!ACCESS_ONCE(t->rcu_tasks_holdout) || |
| t->rcu_tasks_nvcsw != ACCESS_ONCE(t->nvcsw) || |
| !ACCESS_ONCE(t->on_rq) || |
| (IS_ENABLED(CONFIG_NO_HZ_FULL) && |
| !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) { |
| ACCESS_ONCE(t->rcu_tasks_holdout) = false; |
| list_del_init(&t->rcu_tasks_holdout_list); |
| put_task_struct(t); |
| return; |
| } |
| if (!needreport) |
| return; |
| if (*firstreport) { |
| pr_err("INFO: rcu_tasks detected stalls on tasks:\n"); |
| *firstreport = false; |
| } |
| cpu = task_cpu(t); |
| pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n", |
| t, ".I"[is_idle_task(t)], |
| "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)], |
| t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout, |
| t->rcu_tasks_idle_cpu, cpu); |
| sched_show_task(t); |
| } |
| |
| /* RCU-tasks kthread that detects grace periods and invokes callbacks. */ |
| static int __noreturn rcu_tasks_kthread(void *arg) |
| { |
| unsigned long flags; |
| struct task_struct *g, *t; |
| unsigned long lastreport; |
| struct rcu_head *list; |
| struct rcu_head *next; |
| LIST_HEAD(rcu_tasks_holdouts); |
| |
| /* Run on housekeeping CPUs by default. Sysadm can move if desired. */ |
| housekeeping_affine(current); |
| |
| /* |
| * Each pass through the following loop makes one check for |
| * newly arrived callbacks, and, if there are some, waits for |
| * one RCU-tasks grace period and then invokes the callbacks. |
| * This loop is terminated by the system going down. ;-) |
| */ |
| for (;;) { |
| |
| /* Pick up any new callbacks. */ |
| raw_spin_lock_irqsave(&rcu_tasks_cbs_lock, flags); |
| list = rcu_tasks_cbs_head; |
| rcu_tasks_cbs_head = NULL; |
| rcu_tasks_cbs_tail = &rcu_tasks_cbs_head; |
| raw_spin_unlock_irqrestore(&rcu_tasks_cbs_lock, flags); |
| |
| /* If there were none, wait a bit and start over. */ |
| if (!list) { |
| wait_event_interruptible(rcu_tasks_cbs_wq, |
| rcu_tasks_cbs_head); |
| if (!rcu_tasks_cbs_head) { |
| WARN_ON(signal_pending(current)); |
| schedule_timeout_interruptible(HZ/10); |
| } |
| continue; |
| } |
| |
| /* |
| * Wait for all pre-existing t->on_rq and t->nvcsw |
| * transitions to complete. Invoking synchronize_sched() |
| * suffices because all these transitions occur with |
| * interrupts disabled. Without this synchronize_sched(), |
| * a read-side critical section that started before the |
| * grace period might be incorrectly seen as having started |
| * after the grace period. |
| * |
| * This synchronize_sched() also dispenses with the |
| * need for a memory barrier on the first store to |
| * ->rcu_tasks_holdout, as it forces the store to happen |
| * after the beginning of the grace period. |
| */ |
| synchronize_sched(); |
| |
| /* |
| * There were callbacks, so we need to wait for an |
| * RCU-tasks grace period. Start off by scanning |
| * the task list for tasks that are not already |
| * voluntarily blocked. Mark these tasks and make |
| * a list of them in rcu_tasks_holdouts. |
| */ |
| rcu_read_lock(); |
| for_each_process_thread(g, t) { |
| if (t != current && ACCESS_ONCE(t->on_rq) && |
| !is_idle_task(t)) { |
| get_task_struct(t); |
| t->rcu_tasks_nvcsw = ACCESS_ONCE(t->nvcsw); |
| ACCESS_ONCE(t->rcu_tasks_holdout) = true; |
| list_add(&t->rcu_tasks_holdout_list, |
| &rcu_tasks_holdouts); |
| } |
| } |
| rcu_read_unlock(); |
| |
| /* |
| * Wait for tasks that are in the process of exiting. |
| * This does only part of the job, ensuring that all |
| * tasks that were previously exiting reach the point |
| * where they have disabled preemption, allowing the |
| * later synchronize_sched() to finish the job. |
| */ |
| synchronize_srcu(&tasks_rcu_exit_srcu); |
| |
| /* |
| * Each pass through the following loop scans the list |
| * of holdout tasks, removing any that are no longer |
| * holdouts. When the list is empty, we are done. |
| */ |
| lastreport = jiffies; |
| while (!list_empty(&rcu_tasks_holdouts)) { |
| bool firstreport; |
| bool needreport; |
| int rtst; |
| struct task_struct *t1; |
| |
| schedule_timeout_interruptible(HZ); |
| rtst = ACCESS_ONCE(rcu_task_stall_timeout); |
| needreport = rtst > 0 && |
| time_after(jiffies, lastreport + rtst); |
| if (needreport) |
| lastreport = jiffies; |
| firstreport = true; |
| WARN_ON(signal_pending(current)); |
| list_for_each_entry_safe(t, t1, &rcu_tasks_holdouts, |
| rcu_tasks_holdout_list) { |
| check_holdout_task(t, needreport, &firstreport); |
| cond_resched(); |
| } |
| } |
| |
| /* |
| * Because ->on_rq and ->nvcsw are not guaranteed |
| * to have a full memory barriers prior to them in the |
| * schedule() path, memory reordering on other CPUs could |
| * cause their RCU-tasks read-side critical sections to |
| * extend past the end of the grace period. However, |
| * because these ->nvcsw updates are carried out with |
| * interrupts disabled, we can use synchronize_sched() |
| * to force the needed ordering on all such CPUs. |
| * |
| * This synchronize_sched() also confines all |
| * ->rcu_tasks_holdout accesses to be within the grace |
| * period, avoiding the need for memory barriers for |
| * ->rcu_tasks_holdout accesses. |
| * |
| * In addition, this synchronize_sched() waits for exiting |
| * tasks to complete their final preempt_disable() region |
| * of execution, cleaning up after the synchronize_srcu() |
| * above. |
| */ |
| synchronize_sched(); |
| |
| /* Invoke the callbacks. */ |
| while (list) { |
| next = list->next; |
| local_bh_disable(); |
| list->func(list); |
| local_bh_enable(); |
| list = next; |
| cond_resched(); |
| } |
| schedule_timeout_uninterruptible(HZ/10); |
| } |
| } |
| |
| /* Spawn rcu_tasks_kthread() at first call to call_rcu_tasks(). */ |
| static void rcu_spawn_tasks_kthread(void) |
| { |
| static DEFINE_MUTEX(rcu_tasks_kthread_mutex); |
| static struct task_struct *rcu_tasks_kthread_ptr; |
| struct task_struct *t; |
| |
| if (ACCESS_ONCE(rcu_tasks_kthread_ptr)) { |
| smp_mb(); /* Ensure caller sees full kthread. */ |
| return; |
| } |
| mutex_lock(&rcu_tasks_kthread_mutex); |
| if (rcu_tasks_kthread_ptr) { |
| mutex_unlock(&rcu_tasks_kthread_mutex); |
| return; |
| } |
| t = kthread_run(rcu_tasks_kthread, NULL, "rcu_tasks_kthread"); |
| BUG_ON(IS_ERR(t)); |
| smp_mb(); /* Ensure others see full kthread. */ |
| ACCESS_ONCE(rcu_tasks_kthread_ptr) = t; |
| mutex_unlock(&rcu_tasks_kthread_mutex); |
| } |
| |
| #endif /* #ifdef CONFIG_TASKS_RCU */ |
| |
| #ifdef CONFIG_PROVE_RCU |
| |
| /* |
| * Early boot self test parameters, one for each flavor |
| */ |
| static bool rcu_self_test; |
| static bool rcu_self_test_bh; |
| static bool rcu_self_test_sched; |
| |
| module_param(rcu_self_test, bool, 0444); |
| module_param(rcu_self_test_bh, bool, 0444); |
| module_param(rcu_self_test_sched, bool, 0444); |
| |
| static int rcu_self_test_counter; |
| |
| static void test_callback(struct rcu_head *r) |
| { |
| rcu_self_test_counter++; |
| pr_info("RCU test callback executed %d\n", rcu_self_test_counter); |
| } |
| |
| static void early_boot_test_call_rcu(void) |
| { |
| static struct rcu_head head; |
| |
| call_rcu(&head, test_callback); |
| } |
| |
| static void early_boot_test_call_rcu_bh(void) |
| { |
| static struct rcu_head head; |
| |
| call_rcu_bh(&head, test_callback); |
| } |
| |
| static void early_boot_test_call_rcu_sched(void) |
| { |
| static struct rcu_head head; |
| |
| call_rcu_sched(&head, test_callback); |
| } |
| |
| void rcu_early_boot_tests(void) |
| { |
| pr_info("Running RCU self tests\n"); |
| |
| if (rcu_self_test) |
| early_boot_test_call_rcu(); |
| if (rcu_self_test_bh) |
| early_boot_test_call_rcu_bh(); |
| if (rcu_self_test_sched) |
| early_boot_test_call_rcu_sched(); |
| } |
| |
| static int rcu_verify_early_boot_tests(void) |
| { |
| int ret = 0; |
| int early_boot_test_counter = 0; |
| |
| if (rcu_self_test) { |
| early_boot_test_counter++; |
| rcu_barrier(); |
| } |
| if (rcu_self_test_bh) { |
| early_boot_test_counter++; |
| rcu_barrier_bh(); |
| } |
| if (rcu_self_test_sched) { |
| early_boot_test_counter++; |
| rcu_barrier_sched(); |
| } |
| |
| if (rcu_self_test_counter != early_boot_test_counter) { |
| WARN_ON(1); |
| ret = -1; |
| } |
| |
| return ret; |
| } |
| late_initcall(rcu_verify_early_boot_tests); |
| #else |
| void rcu_early_boot_tests(void) {} |
| #endif /* CONFIG_PROVE_RCU */ |