| // SPDX-License-Identifier: GPL-2.0 |
| /* Copyright (c) 2018, Intel Corporation. */ |
| |
| #include "ice.h" |
| #include "ice_base.h" |
| #include "ice_lib.h" |
| |
| /** |
| * ice_validate_vf_id - helper to check if VF ID is valid |
| * @pf: pointer to the PF structure |
| * @vf_id: the ID of the VF to check |
| */ |
| static int ice_validate_vf_id(struct ice_pf *pf, int vf_id) |
| { |
| if (vf_id >= pf->num_alloc_vfs) { |
| dev_err(ice_pf_to_dev(pf), "Invalid VF ID: %d\n", vf_id); |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_check_vf_init - helper to check if VF init complete |
| * @pf: pointer to the PF structure |
| * @vf: the pointer to the VF to check |
| */ |
| static int ice_check_vf_init(struct ice_pf *pf, struct ice_vf *vf) |
| { |
| if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) { |
| dev_err(ice_pf_to_dev(pf), "VF ID: %d in reset. Try again.\n", |
| vf->vf_id); |
| return -EBUSY; |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_err_to_virt err - translate errors for VF return code |
| * @ice_err: error return code |
| */ |
| static enum virtchnl_status_code ice_err_to_virt_err(enum ice_status ice_err) |
| { |
| switch (ice_err) { |
| case ICE_SUCCESS: |
| return VIRTCHNL_STATUS_SUCCESS; |
| case ICE_ERR_BAD_PTR: |
| case ICE_ERR_INVAL_SIZE: |
| case ICE_ERR_DEVICE_NOT_SUPPORTED: |
| case ICE_ERR_PARAM: |
| case ICE_ERR_CFG: |
| return VIRTCHNL_STATUS_ERR_PARAM; |
| case ICE_ERR_NO_MEMORY: |
| return VIRTCHNL_STATUS_ERR_NO_MEMORY; |
| case ICE_ERR_NOT_READY: |
| case ICE_ERR_RESET_FAILED: |
| case ICE_ERR_FW_API_VER: |
| case ICE_ERR_AQ_ERROR: |
| case ICE_ERR_AQ_TIMEOUT: |
| case ICE_ERR_AQ_FULL: |
| case ICE_ERR_AQ_NO_WORK: |
| case ICE_ERR_AQ_EMPTY: |
| return VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; |
| default: |
| return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED; |
| } |
| } |
| |
| /** |
| * ice_vc_vf_broadcast - Broadcast a message to all VFs on PF |
| * @pf: pointer to the PF structure |
| * @v_opcode: operation code |
| * @v_retval: return value |
| * @msg: pointer to the msg buffer |
| * @msglen: msg length |
| */ |
| static void |
| ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode, |
| enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) |
| { |
| struct ice_hw *hw = &pf->hw; |
| struct ice_vf *vf = pf->vf; |
| int i; |
| |
| for (i = 0; i < pf->num_alloc_vfs; i++, vf++) { |
| /* Not all vfs are enabled so skip the ones that are not */ |
| if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && |
| !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) |
| continue; |
| |
| /* Ignore return value on purpose - a given VF may fail, but |
| * we need to keep going and send to all of them |
| */ |
| ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg, |
| msglen, NULL); |
| } |
| } |
| |
| /** |
| * ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event |
| * @vf: pointer to the VF structure |
| * @pfe: pointer to the virtchnl_pf_event to set link speed/status for |
| * @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_* |
| * @link_up: whether or not to set the link up/down |
| */ |
| static void |
| ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe, |
| int ice_link_speed, bool link_up) |
| { |
| if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) { |
| pfe->event_data.link_event_adv.link_status = link_up; |
| /* Speed in Mbps */ |
| pfe->event_data.link_event_adv.link_speed = |
| ice_conv_link_speed_to_virtchnl(true, ice_link_speed); |
| } else { |
| pfe->event_data.link_event.link_status = link_up; |
| /* Legacy method for virtchnl link speeds */ |
| pfe->event_data.link_event.link_speed = |
| (enum virtchnl_link_speed) |
| ice_conv_link_speed_to_virtchnl(false, ice_link_speed); |
| } |
| } |
| |
| /** |
| * ice_set_pfe_link_forced - Force the virtchnl_pf_event link speed/status |
| * @vf: pointer to the VF structure |
| * @pfe: pointer to the virtchnl_pf_event to set link speed/status for |
| * @link_up: whether or not to set the link up/down |
| */ |
| static void |
| ice_set_pfe_link_forced(struct ice_vf *vf, struct virtchnl_pf_event *pfe, |
| bool link_up) |
| { |
| u16 link_speed; |
| |
| if (link_up) |
| link_speed = ICE_AQ_LINK_SPEED_100GB; |
| else |
| link_speed = ICE_AQ_LINK_SPEED_UNKNOWN; |
| |
| ice_set_pfe_link(vf, pfe, link_speed, link_up); |
| } |
| |
| /** |
| * ice_vc_notify_vf_link_state - Inform a VF of link status |
| * @vf: pointer to the VF structure |
| * |
| * send a link status message to a single VF |
| */ |
| static void ice_vc_notify_vf_link_state(struct ice_vf *vf) |
| { |
| struct virtchnl_pf_event pfe = { 0 }; |
| struct ice_link_status *ls; |
| struct ice_pf *pf = vf->pf; |
| struct ice_hw *hw; |
| |
| hw = &pf->hw; |
| ls = &hw->port_info->phy.link_info; |
| |
| pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; |
| pfe.severity = PF_EVENT_SEVERITY_INFO; |
| |
| /* Always report link is down if the VF queues aren't enabled */ |
| if (!vf->num_qs_ena) |
| ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false); |
| else if (vf->link_forced) |
| ice_set_pfe_link_forced(vf, &pfe, vf->link_up); |
| else |
| ice_set_pfe_link(vf, &pfe, ls->link_speed, ls->link_info & |
| ICE_AQ_LINK_UP); |
| |
| ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, |
| VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, |
| sizeof(pfe), NULL); |
| } |
| |
| /** |
| * ice_free_vf_res - Free a VF's resources |
| * @vf: pointer to the VF info |
| */ |
| static void ice_free_vf_res(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| int i, last_vector_idx; |
| |
| /* First, disable VF's configuration API to prevent OS from |
| * accessing the VF's VSI after it's freed or invalidated. |
| */ |
| clear_bit(ICE_VF_STATE_INIT, vf->vf_states); |
| |
| /* free VSI and disconnect it from the parent uplink */ |
| if (vf->lan_vsi_idx) { |
| ice_vsi_release(pf->vsi[vf->lan_vsi_idx]); |
| vf->lan_vsi_idx = 0; |
| vf->lan_vsi_num = 0; |
| vf->num_mac = 0; |
| } |
| |
| last_vector_idx = vf->first_vector_idx + pf->num_vf_msix - 1; |
| /* Disable interrupts so that VF starts in a known state */ |
| for (i = vf->first_vector_idx; i <= last_vector_idx; i++) { |
| wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M); |
| ice_flush(&pf->hw); |
| } |
| /* reset some of the state variables keeping track of the resources */ |
| clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states); |
| clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states); |
| } |
| |
| /** |
| * ice_dis_vf_mappings |
| * @vf: pointer to the VF structure |
| */ |
| static void ice_dis_vf_mappings(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| struct device *dev; |
| int first, last, v; |
| struct ice_hw *hw; |
| |
| hw = &pf->hw; |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| |
| dev = ice_pf_to_dev(pf); |
| wr32(hw, VPINT_ALLOC(vf->vf_id), 0); |
| wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0); |
| |
| first = vf->first_vector_idx; |
| last = first + pf->num_vf_msix - 1; |
| for (v = first; v <= last; v++) { |
| u32 reg; |
| |
| reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) & |
| GLINT_VECT2FUNC_IS_PF_M) | |
| ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & |
| GLINT_VECT2FUNC_PF_NUM_M)); |
| wr32(hw, GLINT_VECT2FUNC(v), reg); |
| } |
| |
| if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) |
| wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0); |
| else |
| dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); |
| |
| if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) |
| wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0); |
| else |
| dev_err(dev, |
| "Scattered mode for VF Rx queues is not yet implemented\n"); |
| } |
| |
| /** |
| * ice_sriov_free_msix_res - Reset/free any used MSIX resources |
| * @pf: pointer to the PF structure |
| * |
| * If MSIX entries from the pf->irq_tracker were needed then we need to |
| * reset the irq_tracker->end and give back the entries we needed to |
| * num_avail_sw_msix. |
| * |
| * If no MSIX entries were taken from the pf->irq_tracker then just clear |
| * the pf->sriov_base_vector. |
| * |
| * Returns 0 on success, and -EINVAL on error. |
| */ |
| static int ice_sriov_free_msix_res(struct ice_pf *pf) |
| { |
| struct ice_res_tracker *res; |
| |
| if (!pf) |
| return -EINVAL; |
| |
| res = pf->irq_tracker; |
| if (!res) |
| return -EINVAL; |
| |
| /* give back irq_tracker resources used */ |
| if (pf->sriov_base_vector < res->num_entries) { |
| res->end = res->num_entries; |
| pf->num_avail_sw_msix += |
| res->num_entries - pf->sriov_base_vector; |
| } |
| |
| pf->sriov_base_vector = 0; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_set_vf_state_qs_dis - Set VF queues state to disabled |
| * @vf: pointer to the VF structure |
| */ |
| void ice_set_vf_state_qs_dis(struct ice_vf *vf) |
| { |
| /* Clear Rx/Tx enabled queues flag */ |
| bitmap_zero(vf->txq_ena, ICE_MAX_BASE_QS_PER_VF); |
| bitmap_zero(vf->rxq_ena, ICE_MAX_BASE_QS_PER_VF); |
| vf->num_qs_ena = 0; |
| clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); |
| } |
| |
| /** |
| * ice_dis_vf_qs - Disable the VF queues |
| * @vf: pointer to the VF structure |
| */ |
| static void ice_dis_vf_qs(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| |
| ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, vf->vf_id); |
| ice_vsi_stop_rx_rings(vsi); |
| ice_set_vf_state_qs_dis(vf); |
| } |
| |
| /** |
| * ice_free_vfs - Free all VFs |
| * @pf: pointer to the PF structure |
| */ |
| void ice_free_vfs(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| struct ice_hw *hw = &pf->hw; |
| int tmp, i; |
| |
| if (!pf->vf) |
| return; |
| |
| while (test_and_set_bit(__ICE_VF_DIS, pf->state)) |
| usleep_range(1000, 2000); |
| |
| /* Avoid wait time by stopping all VFs at the same time */ |
| for (i = 0; i < pf->num_alloc_vfs; i++) |
| if (test_bit(ICE_VF_STATE_QS_ENA, pf->vf[i].vf_states)) |
| ice_dis_vf_qs(&pf->vf[i]); |
| |
| /* Disable IOV before freeing resources. This lets any VF drivers |
| * running in the host get themselves cleaned up before we yank |
| * the carpet out from underneath their feet. |
| */ |
| if (!pci_vfs_assigned(pf->pdev)) |
| pci_disable_sriov(pf->pdev); |
| else |
| dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n"); |
| |
| tmp = pf->num_alloc_vfs; |
| pf->num_vf_qps = 0; |
| pf->num_alloc_vfs = 0; |
| for (i = 0; i < tmp; i++) { |
| if (test_bit(ICE_VF_STATE_INIT, pf->vf[i].vf_states)) { |
| /* disable VF qp mappings and set VF disable state */ |
| ice_dis_vf_mappings(&pf->vf[i]); |
| set_bit(ICE_VF_STATE_DIS, pf->vf[i].vf_states); |
| ice_free_vf_res(&pf->vf[i]); |
| } |
| } |
| |
| if (ice_sriov_free_msix_res(pf)) |
| dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); |
| |
| devm_kfree(dev, pf->vf); |
| pf->vf = NULL; |
| |
| /* This check is for when the driver is unloaded while VFs are |
| * assigned. Setting the number of VFs to 0 through sysfs is caught |
| * before this function ever gets called. |
| */ |
| if (!pci_vfs_assigned(pf->pdev)) { |
| int vf_id; |
| |
| /* Acknowledge VFLR for all VFs. Without this, VFs will fail to |
| * work correctly when SR-IOV gets re-enabled. |
| */ |
| for (vf_id = 0; vf_id < tmp; vf_id++) { |
| u32 reg_idx, bit_idx; |
| |
| reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32; |
| bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32; |
| wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); |
| } |
| } |
| clear_bit(__ICE_VF_DIS, pf->state); |
| clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags); |
| } |
| |
| /** |
| * ice_trigger_vf_reset - Reset a VF on HW |
| * @vf: pointer to the VF structure |
| * @is_vflr: true if VFLR was issued, false if not |
| * @is_pfr: true if the reset was triggered due to a previous PFR |
| * |
| * Trigger hardware to start a reset for a particular VF. Expects the caller |
| * to wait the proper amount of time to allow hardware to reset the VF before |
| * it cleans up and restores VF functionality. |
| */ |
| static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr, bool is_pfr) |
| { |
| struct ice_pf *pf = vf->pf; |
| u32 reg, reg_idx, bit_idx; |
| struct device *dev; |
| struct ice_hw *hw; |
| int vf_abs_id, i; |
| |
| dev = ice_pf_to_dev(pf); |
| hw = &pf->hw; |
| vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id; |
| |
| /* Inform VF that it is no longer active, as a warning */ |
| clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); |
| |
| /* Disable VF's configuration API during reset. The flag is re-enabled |
| * in ice_alloc_vf_res(), when it's safe again to access VF's VSI. |
| * It's normally disabled in ice_free_vf_res(), but it's safer |
| * to do it earlier to give some time to finish to any VF config |
| * functions that may still be running at this point. |
| */ |
| clear_bit(ICE_VF_STATE_INIT, vf->vf_states); |
| |
| /* VF_MBX_ARQLEN is cleared by PFR, so the driver needs to clear it |
| * in the case of VFR. If this is done for PFR, it can mess up VF |
| * resets because the VF driver may already have started cleanup |
| * by the time we get here. |
| */ |
| if (!is_pfr) |
| wr32(hw, VF_MBX_ARQLEN(vf->vf_id), 0); |
| |
| /* In the case of a VFLR, the HW has already reset the VF and we |
| * just need to clean up, so don't hit the VFRTRIG register. |
| */ |
| if (!is_vflr) { |
| /* reset VF using VPGEN_VFRTRIG reg */ |
| reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); |
| reg |= VPGEN_VFRTRIG_VFSWR_M; |
| wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); |
| } |
| /* clear the VFLR bit in GLGEN_VFLRSTAT */ |
| reg_idx = (vf_abs_id) / 32; |
| bit_idx = (vf_abs_id) % 32; |
| wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx)); |
| ice_flush(hw); |
| |
| wr32(hw, PF_PCI_CIAA, |
| VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S)); |
| for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) { |
| reg = rd32(hw, PF_PCI_CIAD); |
| /* no transactions pending so stop polling */ |
| if ((reg & VF_TRANS_PENDING_M) == 0) |
| break; |
| |
| dev_err(dev, |
| "VF %d PCI transactions stuck\n", vf->vf_id); |
| udelay(ICE_PCI_CIAD_WAIT_DELAY_US); |
| } |
| } |
| |
| /** |
| * ice_vsi_set_pvid_fill_ctxt - Set VSI ctxt for add PVID |
| * @ctxt: the VSI ctxt to fill |
| * @vid: the VLAN ID to set as a PVID |
| */ |
| static void ice_vsi_set_pvid_fill_ctxt(struct ice_vsi_ctx *ctxt, u16 vid) |
| { |
| ctxt->info.vlan_flags = (ICE_AQ_VSI_VLAN_MODE_UNTAGGED | |
| ICE_AQ_VSI_PVLAN_INSERT_PVID | |
| ICE_AQ_VSI_VLAN_EMOD_STR); |
| ctxt->info.pvid = cpu_to_le16(vid); |
| ctxt->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; |
| ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | |
| ICE_AQ_VSI_PROP_SW_VALID); |
| } |
| |
| /** |
| * ice_vsi_kill_pvid_fill_ctxt - Set VSI ctx for remove PVID |
| * @ctxt: the VSI ctxt to fill |
| */ |
| static void ice_vsi_kill_pvid_fill_ctxt(struct ice_vsi_ctx *ctxt) |
| { |
| ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING; |
| ctxt->info.vlan_flags |= ICE_AQ_VSI_VLAN_MODE_ALL; |
| ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA; |
| ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID | |
| ICE_AQ_VSI_PROP_SW_VALID); |
| } |
| |
| /** |
| * ice_vsi_manage_pvid - Enable or disable port VLAN for VSI |
| * @vsi: the VSI to update |
| * @vid: the VLAN ID to set as a PVID |
| * @enable: true for enable PVID false for disable |
| */ |
| static int ice_vsi_manage_pvid(struct ice_vsi *vsi, u16 vid, bool enable) |
| { |
| struct ice_hw *hw = &vsi->back->hw; |
| struct ice_vsi_ctx *ctxt; |
| enum ice_status status; |
| int ret = 0; |
| |
| ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL); |
| if (!ctxt) |
| return -ENOMEM; |
| |
| ctxt->info = vsi->info; |
| if (enable) |
| ice_vsi_set_pvid_fill_ctxt(ctxt, vid); |
| else |
| ice_vsi_kill_pvid_fill_ctxt(ctxt); |
| |
| status = ice_update_vsi(hw, vsi->idx, ctxt, NULL); |
| if (status) { |
| dev_info(&vsi->back->pdev->dev, "update VSI for port VLAN failed, err %d aq_err %d\n", |
| status, hw->adminq.sq_last_status); |
| ret = -EIO; |
| goto out; |
| } |
| |
| vsi->info = ctxt->info; |
| out: |
| kfree(ctxt); |
| return ret; |
| } |
| |
| /** |
| * ice_vf_vsi_setup - Set up a VF VSI |
| * @pf: board private structure |
| * @pi: pointer to the port_info instance |
| * @vf_id: defines VF ID to which this VSI connects. |
| * |
| * Returns pointer to the successfully allocated VSI struct on success, |
| * otherwise returns NULL on failure. |
| */ |
| static struct ice_vsi * |
| ice_vf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi, u16 vf_id) |
| { |
| return ice_vsi_setup(pf, pi, ICE_VSI_VF, vf_id); |
| } |
| |
| /** |
| * ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space |
| * @pf: pointer to PF structure |
| * @vf: pointer to VF that the first MSIX vector index is being calculated for |
| * |
| * This returns the first MSIX vector index in PF space that is used by this VF. |
| * This index is used when accessing PF relative registers such as |
| * GLINT_VECT2FUNC and GLINT_DYN_CTL. |
| * This will always be the OICR index in the AVF driver so any functionality |
| * using vf->first_vector_idx for queue configuration will have to increment by |
| * 1 to avoid meddling with the OICR index. |
| */ |
| static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf) |
| { |
| return pf->sriov_base_vector + vf->vf_id * pf->num_vf_msix; |
| } |
| |
| /** |
| * ice_alloc_vsi_res - Setup VF VSI and its resources |
| * @vf: pointer to the VF structure |
| * |
| * Returns 0 on success, negative value on failure |
| */ |
| static int ice_alloc_vsi_res(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| LIST_HEAD(tmp_add_list); |
| u8 broadcast[ETH_ALEN]; |
| struct ice_vsi *vsi; |
| struct device *dev; |
| int status = 0; |
| |
| dev = ice_pf_to_dev(pf); |
| /* first vector index is the VFs OICR index */ |
| vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf); |
| |
| vsi = ice_vf_vsi_setup(pf, pf->hw.port_info, vf->vf_id); |
| if (!vsi) { |
| dev_err(dev, "Failed to create VF VSI\n"); |
| return -ENOMEM; |
| } |
| |
| vf->lan_vsi_idx = vsi->idx; |
| vf->lan_vsi_num = vsi->vsi_num; |
| |
| /* Check if port VLAN exist before, and restore it accordingly */ |
| if (vf->port_vlan_id) { |
| ice_vsi_manage_pvid(vsi, vf->port_vlan_id, true); |
| ice_vsi_add_vlan(vsi, vf->port_vlan_id & ICE_VLAN_M); |
| } |
| |
| eth_broadcast_addr(broadcast); |
| |
| status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast); |
| if (status) |
| goto ice_alloc_vsi_res_exit; |
| |
| if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) { |
| status = ice_add_mac_to_list(vsi, &tmp_add_list, |
| vf->dflt_lan_addr.addr); |
| if (status) |
| goto ice_alloc_vsi_res_exit; |
| } |
| |
| status = ice_add_mac(&pf->hw, &tmp_add_list); |
| if (status) |
| dev_err(dev, "could not add mac filters error %d\n", status); |
| else |
| vf->num_mac = 1; |
| |
| /* Clear this bit after VF initialization since we shouldn't reclaim |
| * and reassign interrupts for synchronous or asynchronous VFR events. |
| * We don't want to reconfigure interrupts since AVF driver doesn't |
| * expect vector assignment to be changed unless there is a request for |
| * more vectors. |
| */ |
| ice_alloc_vsi_res_exit: |
| ice_free_fltr_list(dev, &tmp_add_list); |
| return status; |
| } |
| |
| /** |
| * ice_alloc_vf_res - Allocate VF resources |
| * @vf: pointer to the VF structure |
| */ |
| static int ice_alloc_vf_res(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| int tx_rx_queue_left; |
| int status; |
| |
| /* Update number of VF queues, in case VF had requested for queue |
| * changes |
| */ |
| tx_rx_queue_left = min_t(int, ice_get_avail_txq_count(pf), |
| ice_get_avail_rxq_count(pf)); |
| tx_rx_queue_left += ICE_DFLT_QS_PER_VF; |
| if (vf->num_req_qs && vf->num_req_qs <= tx_rx_queue_left && |
| vf->num_req_qs != vf->num_vf_qs) |
| vf->num_vf_qs = vf->num_req_qs; |
| |
| /* setup VF VSI and necessary resources */ |
| status = ice_alloc_vsi_res(vf); |
| if (status) |
| goto ice_alloc_vf_res_exit; |
| |
| if (vf->trusted) |
| set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); |
| else |
| clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); |
| |
| /* VF is now completely initialized */ |
| set_bit(ICE_VF_STATE_INIT, vf->vf_states); |
| |
| return status; |
| |
| ice_alloc_vf_res_exit: |
| ice_free_vf_res(vf); |
| return status; |
| } |
| |
| /** |
| * ice_ena_vf_mappings |
| * @vf: pointer to the VF structure |
| * |
| * Enable VF vectors and queues allocation by writing the details into |
| * respective registers. |
| */ |
| static void ice_ena_vf_mappings(struct ice_vf *vf) |
| { |
| int abs_vf_id, abs_first, abs_last; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| struct device *dev; |
| int first, last, v; |
| struct ice_hw *hw; |
| u32 reg; |
| |
| dev = ice_pf_to_dev(pf); |
| hw = &pf->hw; |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| first = vf->first_vector_idx; |
| last = (first + pf->num_vf_msix) - 1; |
| abs_first = first + pf->hw.func_caps.common_cap.msix_vector_first_id; |
| abs_last = (abs_first + pf->num_vf_msix) - 1; |
| abs_vf_id = vf->vf_id + hw->func_caps.vf_base_id; |
| |
| /* VF Vector allocation */ |
| reg = (((abs_first << VPINT_ALLOC_FIRST_S) & VPINT_ALLOC_FIRST_M) | |
| ((abs_last << VPINT_ALLOC_LAST_S) & VPINT_ALLOC_LAST_M) | |
| VPINT_ALLOC_VALID_M); |
| wr32(hw, VPINT_ALLOC(vf->vf_id), reg); |
| |
| reg = (((abs_first << VPINT_ALLOC_PCI_FIRST_S) |
| & VPINT_ALLOC_PCI_FIRST_M) | |
| ((abs_last << VPINT_ALLOC_PCI_LAST_S) & VPINT_ALLOC_PCI_LAST_M) | |
| VPINT_ALLOC_PCI_VALID_M); |
| wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg); |
| /* map the interrupts to its functions */ |
| for (v = first; v <= last; v++) { |
| reg = (((abs_vf_id << GLINT_VECT2FUNC_VF_NUM_S) & |
| GLINT_VECT2FUNC_VF_NUM_M) | |
| ((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) & |
| GLINT_VECT2FUNC_PF_NUM_M)); |
| wr32(hw, GLINT_VECT2FUNC(v), reg); |
| } |
| |
| /* Map mailbox interrupt. We put an explicit 0 here to remind us that |
| * VF admin queue interrupts will go to VF MSI-X vector 0. |
| */ |
| wr32(hw, VPINT_MBX_CTL(abs_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M | 0); |
| /* set regardless of mapping mode */ |
| wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M); |
| |
| /* VF Tx queues allocation */ |
| if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) { |
| /* set the VF PF Tx queue range |
| * VFNUMQ value should be set to (number of queues - 1). A value |
| * of 0 means 1 queue and a value of 255 means 256 queues |
| */ |
| reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) & |
| VPLAN_TX_QBASE_VFFIRSTQ_M) | |
| (((vsi->alloc_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) & |
| VPLAN_TX_QBASE_VFNUMQ_M)); |
| wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg); |
| } else { |
| dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n"); |
| } |
| |
| /* set regardless of mapping mode */ |
| wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M); |
| |
| /* VF Rx queues allocation */ |
| if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) { |
| /* set the VF PF Rx queue range |
| * VFNUMQ value should be set to (number of queues - 1). A value |
| * of 0 means 1 queue and a value of 255 means 256 queues |
| */ |
| reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) & |
| VPLAN_RX_QBASE_VFFIRSTQ_M) | |
| (((vsi->alloc_txq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) & |
| VPLAN_RX_QBASE_VFNUMQ_M)); |
| wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg); |
| } else { |
| dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n"); |
| } |
| } |
| |
| /** |
| * ice_determine_res |
| * @pf: pointer to the PF structure |
| * @avail_res: available resources in the PF structure |
| * @max_res: maximum resources that can be given per VF |
| * @min_res: minimum resources that can be given per VF |
| * |
| * Returns non-zero value if resources (queues/vectors) are available or |
| * returns zero if PF cannot accommodate for all num_alloc_vfs. |
| */ |
| static int |
| ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res) |
| { |
| bool checked_min_res = false; |
| int res; |
| |
| /* start by checking if PF can assign max number of resources for |
| * all num_alloc_vfs. |
| * if yes, return number per VF |
| * If no, divide by 2 and roundup, check again |
| * repeat the loop till we reach a point where even minimum resources |
| * are not available, in that case return 0 |
| */ |
| res = max_res; |
| while ((res >= min_res) && !checked_min_res) { |
| int num_all_res; |
| |
| num_all_res = pf->num_alloc_vfs * res; |
| if (num_all_res <= avail_res) |
| return res; |
| |
| if (res == min_res) |
| checked_min_res = true; |
| |
| res = DIV_ROUND_UP(res, 2); |
| } |
| return 0; |
| } |
| |
| /** |
| * ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space |
| * @vf: VF to calculate the register index for |
| * @q_vector: a q_vector associated to the VF |
| */ |
| int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector) |
| { |
| struct ice_pf *pf; |
| |
| if (!vf || !q_vector) |
| return -EINVAL; |
| |
| pf = vf->pf; |
| |
| /* always add one to account for the OICR being the first MSIX */ |
| return pf->sriov_base_vector + pf->num_vf_msix * vf->vf_id + |
| q_vector->v_idx + 1; |
| } |
| |
| /** |
| * ice_get_max_valid_res_idx - Get the max valid resource index |
| * @res: pointer to the resource to find the max valid index for |
| * |
| * Start from the end of the ice_res_tracker and return right when we find the |
| * first res->list entry with the ICE_RES_VALID_BIT set. This function is only |
| * valid for SR-IOV because it is the only consumer that manipulates the |
| * res->end and this is always called when res->end is set to res->num_entries. |
| */ |
| static int ice_get_max_valid_res_idx(struct ice_res_tracker *res) |
| { |
| int i; |
| |
| if (!res) |
| return -EINVAL; |
| |
| for (i = res->num_entries - 1; i >= 0; i--) |
| if (res->list[i] & ICE_RES_VALID_BIT) |
| return i; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_sriov_set_msix_res - Set any used MSIX resources |
| * @pf: pointer to PF structure |
| * @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs |
| * |
| * This function allows SR-IOV resources to be taken from the end of the PF's |
| * allowed HW MSIX vectors so in many cases the irq_tracker will not |
| * be needed. In these cases we just set the pf->sriov_base_vector and return |
| * success. |
| * |
| * If SR-IOV needs to use any pf->irq_tracker entries it updates the |
| * irq_tracker->end based on the first entry needed for SR-IOV. This makes it |
| * so any calls to ice_get_res() using the irq_tracker will not try to use |
| * resources at or beyond the newly set value. |
| * |
| * Return 0 on success, and -EINVAL when there are not enough MSIX vectors in |
| * in the PF's space available for SR-IOV. |
| */ |
| static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed) |
| { |
| int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker); |
| u16 pf_total_msix_vectors = |
| pf->hw.func_caps.common_cap.num_msix_vectors; |
| struct ice_res_tracker *res = pf->irq_tracker; |
| int sriov_base_vector; |
| |
| if (max_valid_res_idx < 0) |
| return max_valid_res_idx; |
| |
| sriov_base_vector = pf_total_msix_vectors - num_msix_needed; |
| |
| /* make sure we only grab irq_tracker entries from the list end and |
| * that we have enough available MSIX vectors |
| */ |
| if (sriov_base_vector <= max_valid_res_idx) |
| return -EINVAL; |
| |
| pf->sriov_base_vector = sriov_base_vector; |
| |
| /* dip into irq_tracker entries and update used resources */ |
| if (num_msix_needed > (pf_total_msix_vectors - res->num_entries)) { |
| pf->num_avail_sw_msix -= |
| res->num_entries - pf->sriov_base_vector; |
| res->end = pf->sriov_base_vector; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_check_avail_res - check if vectors and queues are available |
| * @pf: pointer to the PF structure |
| * |
| * This function is where we calculate actual number of resources for VF VSIs, |
| * we don't reserve ahead of time during probe. Returns success if vectors and |
| * queues resources are available, otherwise returns error code |
| */ |
| static int ice_check_avail_res(struct ice_pf *pf) |
| { |
| int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker); |
| u16 num_msix, num_txq, num_rxq, num_avail_msix; |
| struct device *dev = ice_pf_to_dev(pf); |
| |
| if (!pf->num_alloc_vfs || max_valid_res_idx < 0) |
| return -EINVAL; |
| |
| /* add 1 to max_valid_res_idx to account for it being 0-based */ |
| num_avail_msix = pf->hw.func_caps.common_cap.num_msix_vectors - |
| (max_valid_res_idx + 1); |
| |
| /* Grab from HW interrupts common pool |
| * Note: By the time the user decides it needs more vectors in a VF |
| * its already too late since one must decide this prior to creating the |
| * VF interface. So the best we can do is take a guess as to what the |
| * user might want. |
| * |
| * We have two policies for vector allocation: |
| * 1. if num_alloc_vfs is from 1 to 16, then we consider this as small |
| * number of NFV VFs used for NFV appliances, since this is a special |
| * case, we try to assign maximum vectors per VF (65) as much as |
| * possible, based on determine_resources algorithm. |
| * 2. if num_alloc_vfs is from 17 to 256, then its large number of |
| * regular VFs which are not used for any special purpose. Hence try to |
| * grab default interrupt vectors (5 as supported by AVF driver). |
| */ |
| if (pf->num_alloc_vfs <= 16) { |
| num_msix = ice_determine_res(pf, num_avail_msix, |
| ICE_MAX_INTR_PER_VF, |
| ICE_MIN_INTR_PER_VF); |
| } else if (pf->num_alloc_vfs <= ICE_MAX_VF_COUNT) { |
| num_msix = ice_determine_res(pf, num_avail_msix, |
| ICE_DFLT_INTR_PER_VF, |
| ICE_MIN_INTR_PER_VF); |
| } else { |
| dev_err(dev, "Number of VFs %d exceeds max VF count %d\n", |
| pf->num_alloc_vfs, ICE_MAX_VF_COUNT); |
| return -EIO; |
| } |
| |
| if (!num_msix) |
| return -EIO; |
| |
| /* Grab from the common pool |
| * start by requesting Default queues (4 as supported by AVF driver), |
| * Note that, the main difference between queues and vectors is, latter |
| * can only be reserved at init time but queues can be requested by VF |
| * at runtime through Virtchnl, that is the reason we start by reserving |
| * few queues. |
| */ |
| num_txq = ice_determine_res(pf, ice_get_avail_txq_count(pf), |
| ICE_DFLT_QS_PER_VF, ICE_MIN_QS_PER_VF); |
| |
| num_rxq = ice_determine_res(pf, ice_get_avail_rxq_count(pf), |
| ICE_DFLT_QS_PER_VF, ICE_MIN_QS_PER_VF); |
| |
| if (!num_txq || !num_rxq) |
| return -EIO; |
| |
| if (ice_sriov_set_msix_res(pf, num_msix * pf->num_alloc_vfs)) |
| return -EINVAL; |
| |
| /* since AVF driver works with only queue pairs which means, it expects |
| * to have equal number of Rx and Tx queues, so take the minimum of |
| * available Tx or Rx queues |
| */ |
| pf->num_vf_qps = min_t(int, num_txq, num_rxq); |
| pf->num_vf_msix = num_msix; |
| |
| return 0; |
| } |
| |
| /** |
| * ice_cleanup_and_realloc_vf - Clean up VF and reallocate resources after reset |
| * @vf: pointer to the VF structure |
| * |
| * Cleanup a VF after the hardware reset is finished. Expects the caller to |
| * have verified whether the reset is finished properly, and ensure the |
| * minimum amount of wait time has passed. Reallocate VF resources back to make |
| * VF state active |
| */ |
| static void ice_cleanup_and_realloc_vf(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_hw *hw; |
| u32 reg; |
| |
| hw = &pf->hw; |
| |
| /* PF software completes the flow by notifying VF that reset flow is |
| * completed. This is done by enabling hardware by clearing the reset |
| * bit in the VPGEN_VFRTRIG reg and setting VFR_STATE in the VFGEN_RSTAT |
| * register to VFR completed (done at the end of this function) |
| * By doing this we allow HW to access VF memory at any point. If we |
| * did it any sooner, HW could access memory while it was being freed |
| * in ice_free_vf_res(), causing an IOMMU fault. |
| * |
| * On the other hand, this needs to be done ASAP, because the VF driver |
| * is waiting for this to happen and may report a timeout. It's |
| * harmless, but it gets logged into Guest OS kernel log, so best avoid |
| * it. |
| */ |
| reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id)); |
| reg &= ~VPGEN_VFRTRIG_VFSWR_M; |
| wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg); |
| |
| /* reallocate VF resources to finish resetting the VSI state */ |
| if (!ice_alloc_vf_res(vf)) { |
| ice_ena_vf_mappings(vf); |
| set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); |
| clear_bit(ICE_VF_STATE_DIS, vf->vf_states); |
| vf->num_vlan = 0; |
| } |
| |
| /* Tell the VF driver the reset is done. This needs to be done only |
| * after VF has been fully initialized, because the VF driver may |
| * request resources immediately after setting this flag. |
| */ |
| wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE); |
| } |
| |
| /** |
| * ice_vf_set_vsi_promisc - set given VF VSI to given promiscuous mode(s) |
| * @vf: pointer to the VF info |
| * @vsi: the VSI being configured |
| * @promisc_m: mask of promiscuous config bits |
| * @rm_promisc: promisc flag request from the VF to remove or add filter |
| * |
| * This function configures VF VSI promiscuous mode, based on the VF requests, |
| * for Unicast, Multicast and VLAN |
| */ |
| static enum ice_status |
| ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m, |
| bool rm_promisc) |
| { |
| struct ice_pf *pf = vf->pf; |
| enum ice_status status = 0; |
| struct ice_hw *hw; |
| |
| hw = &pf->hw; |
| if (vf->num_vlan) { |
| status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m, |
| rm_promisc); |
| } else if (vf->port_vlan_id) { |
| if (rm_promisc) |
| status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, |
| vf->port_vlan_id); |
| else |
| status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, |
| vf->port_vlan_id); |
| } else { |
| if (rm_promisc) |
| status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m, |
| 0); |
| else |
| status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m, |
| 0); |
| } |
| |
| return status; |
| } |
| |
| /** |
| * ice_config_res_vfs - Finalize allocation of VFs resources in one go |
| * @pf: pointer to the PF structure |
| * |
| * This function is being called as last part of resetting all VFs, or when |
| * configuring VFs for the first time, where there is no resource to be freed |
| * Returns true if resources were properly allocated for all VFs, and false |
| * otherwise. |
| */ |
| static bool ice_config_res_vfs(struct ice_pf *pf) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| struct ice_hw *hw = &pf->hw; |
| int v; |
| |
| if (ice_check_avail_res(pf)) { |
| dev_err(dev, "Cannot allocate VF resources, try with fewer number of VFs\n"); |
| return false; |
| } |
| |
| /* rearm global interrupts */ |
| if (test_and_clear_bit(__ICE_OICR_INTR_DIS, pf->state)) |
| ice_irq_dynamic_ena(hw, NULL, NULL); |
| |
| /* Finish resetting each VF and allocate resources */ |
| for (v = 0; v < pf->num_alloc_vfs; v++) { |
| struct ice_vf *vf = &pf->vf[v]; |
| |
| vf->num_vf_qs = pf->num_vf_qps; |
| dev_dbg(dev, "VF-id %d has %d queues configured\n", vf->vf_id, |
| vf->num_vf_qs); |
| ice_cleanup_and_realloc_vf(vf); |
| } |
| |
| ice_flush(hw); |
| clear_bit(__ICE_VF_DIS, pf->state); |
| |
| return true; |
| } |
| |
| /** |
| * ice_reset_all_vfs - reset all allocated VFs in one go |
| * @pf: pointer to the PF structure |
| * @is_vflr: true if VFLR was issued, false if not |
| * |
| * First, tell the hardware to reset each VF, then do all the waiting in one |
| * chunk, and finally finish restoring each VF after the wait. This is useful |
| * during PF routines which need to reset all VFs, as otherwise it must perform |
| * these resets in a serialized fashion. |
| * |
| * Returns true if any VFs were reset, and false otherwise. |
| */ |
| bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| struct ice_hw *hw = &pf->hw; |
| struct ice_vf *vf; |
| int v, i; |
| |
| /* If we don't have any VFs, then there is nothing to reset */ |
| if (!pf->num_alloc_vfs) |
| return false; |
| |
| /* If VFs have been disabled, there is no need to reset */ |
| if (test_and_set_bit(__ICE_VF_DIS, pf->state)) |
| return false; |
| |
| /* Begin reset on all VFs at once */ |
| for (v = 0; v < pf->num_alloc_vfs; v++) |
| ice_trigger_vf_reset(&pf->vf[v], is_vflr, true); |
| |
| for (v = 0; v < pf->num_alloc_vfs; v++) { |
| struct ice_vsi *vsi; |
| |
| vf = &pf->vf[v]; |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) |
| ice_dis_vf_qs(vf); |
| ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL, |
| NULL, ICE_VF_RESET, vf->vf_id, NULL); |
| } |
| |
| /* HW requires some time to make sure it can flush the FIFO for a VF |
| * when it resets it. Poll the VPGEN_VFRSTAT register for each VF in |
| * sequence to make sure that it has completed. We'll keep track of |
| * the VFs using a simple iterator that increments once that VF has |
| * finished resetting. |
| */ |
| for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) { |
| |
| /* Check each VF in sequence */ |
| while (v < pf->num_alloc_vfs) { |
| u32 reg; |
| |
| vf = &pf->vf[v]; |
| reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id)); |
| if (!(reg & VPGEN_VFRSTAT_VFRD_M)) { |
| /* only delay if the check failed */ |
| usleep_range(10, 20); |
| break; |
| } |
| |
| /* If the current VF has finished resetting, move on |
| * to the next VF in sequence. |
| */ |
| v++; |
| } |
| } |
| |
| /* Display a warning if at least one VF didn't manage to reset in |
| * time, but continue on with the operation. |
| */ |
| if (v < pf->num_alloc_vfs) |
| dev_warn(dev, "VF reset check timeout\n"); |
| |
| /* free VF resources to begin resetting the VSI state */ |
| for (v = 0; v < pf->num_alloc_vfs; v++) { |
| vf = &pf->vf[v]; |
| |
| ice_free_vf_res(vf); |
| |
| /* Free VF queues as well, and reallocate later. |
| * If a given VF has different number of queues |
| * configured, the request for update will come |
| * via mailbox communication. |
| */ |
| vf->num_vf_qs = 0; |
| } |
| |
| if (ice_sriov_free_msix_res(pf)) |
| dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n"); |
| |
| if (!ice_config_res_vfs(pf)) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * ice_is_vf_disabled |
| * @vf: pointer to the VF info |
| * |
| * Returns true if the PF or VF is disabled, false otherwise. |
| */ |
| static bool ice_is_vf_disabled(struct ice_vf *vf) |
| { |
| struct ice_pf *pf = vf->pf; |
| |
| /* If the PF has been disabled, there is no need resetting VF until |
| * PF is active again. Similarly, if the VF has been disabled, this |
| * means something else is resetting the VF, so we shouldn't continue. |
| * Otherwise, set disable VF state bit for actual reset, and continue. |
| */ |
| return (test_bit(__ICE_VF_DIS, pf->state) || |
| test_bit(ICE_VF_STATE_DIS, vf->vf_states)); |
| } |
| |
| /** |
| * ice_reset_vf - Reset a particular VF |
| * @vf: pointer to the VF structure |
| * @is_vflr: true if VFLR was issued, false if not |
| * |
| * Returns true if the VF is reset, false otherwise. |
| */ |
| static bool ice_reset_vf(struct ice_vf *vf, bool is_vflr) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| struct device *dev; |
| struct ice_hw *hw; |
| bool rsd = false; |
| u8 promisc_m; |
| u32 reg; |
| int i; |
| |
| dev = ice_pf_to_dev(pf); |
| |
| if (ice_is_vf_disabled(vf)) { |
| dev_dbg(dev, "VF is already disabled, there is no need for resetting it, telling VM, all is fine %d\n", |
| vf->vf_id); |
| return true; |
| } |
| |
| /* Set VF disable bit state here, before triggering reset */ |
| set_bit(ICE_VF_STATE_DIS, vf->vf_states); |
| ice_trigger_vf_reset(vf, is_vflr, false); |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| |
| if (test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) |
| ice_dis_vf_qs(vf); |
| |
| /* Call Disable LAN Tx queue AQ whether or not queues are |
| * enabled. This is needed for successful completion of VFR. |
| */ |
| ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL, |
| NULL, ICE_VF_RESET, vf->vf_id, NULL); |
| |
| hw = &pf->hw; |
| /* poll VPGEN_VFRSTAT reg to make sure |
| * that reset is complete |
| */ |
| for (i = 0; i < 10; i++) { |
| /* VF reset requires driver to first reset the VF and then |
| * poll the status register to make sure that the reset |
| * completed successfully. |
| */ |
| reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id)); |
| if (reg & VPGEN_VFRSTAT_VFRD_M) { |
| rsd = true; |
| break; |
| } |
| |
| /* only sleep if the reset is not done */ |
| usleep_range(10, 20); |
| } |
| |
| /* Display a warning if VF didn't manage to reset in time, but need to |
| * continue on with the operation. |
| */ |
| if (!rsd) |
| dev_warn(dev, "VF reset check timeout on VF %d\n", vf->vf_id); |
| |
| /* disable promiscuous modes in case they were enabled |
| * ignore any error if disabling process failed |
| */ |
| if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || |
| test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) { |
| if (vf->port_vlan_id || vf->num_vlan) |
| promisc_m = ICE_UCAST_VLAN_PROMISC_BITS; |
| else |
| promisc_m = ICE_UCAST_PROMISC_BITS; |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (ice_vf_set_vsi_promisc(vf, vsi, promisc_m, true)) |
| dev_err(dev, "disabling promiscuous mode failed\n"); |
| } |
| |
| /* free VF resources to begin resetting the VSI state */ |
| ice_free_vf_res(vf); |
| |
| ice_cleanup_and_realloc_vf(vf); |
| |
| ice_flush(hw); |
| |
| return true; |
| } |
| |
| /** |
| * ice_vc_notify_link_state - Inform all VFs on a PF of link status |
| * @pf: pointer to the PF structure |
| */ |
| void ice_vc_notify_link_state(struct ice_pf *pf) |
| { |
| int i; |
| |
| for (i = 0; i < pf->num_alloc_vfs; i++) |
| ice_vc_notify_vf_link_state(&pf->vf[i]); |
| } |
| |
| /** |
| * ice_vc_notify_reset - Send pending reset message to all VFs |
| * @pf: pointer to the PF structure |
| * |
| * indicate a pending reset to all VFs on a given PF |
| */ |
| void ice_vc_notify_reset(struct ice_pf *pf) |
| { |
| struct virtchnl_pf_event pfe; |
| |
| if (!pf->num_alloc_vfs) |
| return; |
| |
| pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; |
| pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; |
| ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS, |
| (u8 *)&pfe, sizeof(struct virtchnl_pf_event)); |
| } |
| |
| /** |
| * ice_vc_notify_vf_reset - Notify VF of a reset event |
| * @vf: pointer to the VF structure |
| */ |
| static void ice_vc_notify_vf_reset(struct ice_vf *vf) |
| { |
| struct virtchnl_pf_event pfe; |
| struct ice_pf *pf; |
| |
| if (!vf) |
| return; |
| |
| pf = vf->pf; |
| if (ice_validate_vf_id(pf, vf->vf_id)) |
| return; |
| |
| /* Bail out if VF is in disabled state, neither initialized, nor active |
| * state - otherwise proceed with notifications |
| */ |
| if ((!test_bit(ICE_VF_STATE_INIT, vf->vf_states) && |
| !test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) || |
| test_bit(ICE_VF_STATE_DIS, vf->vf_states)) |
| return; |
| |
| pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING; |
| pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM; |
| ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, VIRTCHNL_OP_EVENT, |
| VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe), |
| NULL); |
| } |
| |
| /** |
| * ice_alloc_vfs - Allocate and set up VFs resources |
| * @pf: pointer to the PF structure |
| * @num_alloc_vfs: number of VFs to allocate |
| */ |
| static int ice_alloc_vfs(struct ice_pf *pf, u16 num_alloc_vfs) |
| { |
| struct device *dev = ice_pf_to_dev(pf); |
| struct ice_hw *hw = &pf->hw; |
| struct ice_vf *vfs; |
| int i, ret; |
| |
| /* Disable global interrupt 0 so we don't try to handle the VFLR. */ |
| wr32(hw, GLINT_DYN_CTL(pf->oicr_idx), |
| ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S); |
| set_bit(__ICE_OICR_INTR_DIS, pf->state); |
| ice_flush(hw); |
| |
| ret = pci_enable_sriov(pf->pdev, num_alloc_vfs); |
| if (ret) { |
| pf->num_alloc_vfs = 0; |
| goto err_unroll_intr; |
| } |
| /* allocate memory */ |
| vfs = devm_kcalloc(dev, num_alloc_vfs, sizeof(*vfs), GFP_KERNEL); |
| if (!vfs) { |
| ret = -ENOMEM; |
| goto err_pci_disable_sriov; |
| } |
| pf->vf = vfs; |
| |
| /* apply default profile */ |
| for (i = 0; i < num_alloc_vfs; i++) { |
| vfs[i].pf = pf; |
| vfs[i].vf_sw_id = pf->first_sw; |
| vfs[i].vf_id = i; |
| |
| /* assign default capabilities */ |
| set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vfs[i].vf_caps); |
| vfs[i].spoofchk = true; |
| } |
| pf->num_alloc_vfs = num_alloc_vfs; |
| |
| /* VF resources get allocated with initialization */ |
| if (!ice_config_res_vfs(pf)) { |
| ret = -EIO; |
| goto err_unroll_sriov; |
| } |
| |
| return ret; |
| |
| err_unroll_sriov: |
| pf->vf = NULL; |
| devm_kfree(dev, vfs); |
| vfs = NULL; |
| pf->num_alloc_vfs = 0; |
| err_pci_disable_sriov: |
| pci_disable_sriov(pf->pdev); |
| err_unroll_intr: |
| /* rearm interrupts here */ |
| ice_irq_dynamic_ena(hw, NULL, NULL); |
| clear_bit(__ICE_OICR_INTR_DIS, pf->state); |
| return ret; |
| } |
| |
| /** |
| * ice_pf_state_is_nominal - checks the PF for nominal state |
| * @pf: pointer to PF to check |
| * |
| * Check the PF's state for a collection of bits that would indicate |
| * the PF is in a state that would inhibit normal operation for |
| * driver functionality. |
| * |
| * Returns true if PF is in a nominal state. |
| * Returns false otherwise |
| */ |
| static bool ice_pf_state_is_nominal(struct ice_pf *pf) |
| { |
| DECLARE_BITMAP(check_bits, __ICE_STATE_NBITS) = { 0 }; |
| |
| if (!pf) |
| return false; |
| |
| bitmap_set(check_bits, 0, __ICE_STATE_NOMINAL_CHECK_BITS); |
| if (bitmap_intersects(pf->state, check_bits, __ICE_STATE_NBITS)) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * ice_pci_sriov_ena - Enable or change number of VFs |
| * @pf: pointer to the PF structure |
| * @num_vfs: number of VFs to allocate |
| */ |
| static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs) |
| { |
| int pre_existing_vfs = pci_num_vf(pf->pdev); |
| struct device *dev = ice_pf_to_dev(pf); |
| int err; |
| |
| if (!ice_pf_state_is_nominal(pf)) { |
| dev_err(dev, "Cannot enable SR-IOV, device not ready\n"); |
| return -EBUSY; |
| } |
| |
| if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) { |
| dev_err(dev, "This device is not capable of SR-IOV\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (pre_existing_vfs && pre_existing_vfs != num_vfs) |
| ice_free_vfs(pf); |
| else if (pre_existing_vfs && pre_existing_vfs == num_vfs) |
| return num_vfs; |
| |
| if (num_vfs > pf->num_vfs_supported) { |
| dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n", |
| num_vfs, pf->num_vfs_supported); |
| return -ENOTSUPP; |
| } |
| |
| dev_info(dev, "Allocating %d VFs\n", num_vfs); |
| err = ice_alloc_vfs(pf, num_vfs); |
| if (err) { |
| dev_err(dev, "Failed to enable SR-IOV: %d\n", err); |
| return err; |
| } |
| |
| set_bit(ICE_FLAG_SRIOV_ENA, pf->flags); |
| return num_vfs; |
| } |
| |
| /** |
| * ice_sriov_configure - Enable or change number of VFs via sysfs |
| * @pdev: pointer to a pci_dev structure |
| * @num_vfs: number of VFs to allocate |
| * |
| * This function is called when the user updates the number of VFs in sysfs. |
| */ |
| int ice_sriov_configure(struct pci_dev *pdev, int num_vfs) |
| { |
| struct ice_pf *pf = pci_get_drvdata(pdev); |
| struct device *dev = ice_pf_to_dev(pf); |
| |
| if (ice_is_safe_mode(pf)) { |
| dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n"); |
| return -EOPNOTSUPP; |
| } |
| |
| if (num_vfs) |
| return ice_pci_sriov_ena(pf, num_vfs); |
| |
| if (!pci_vfs_assigned(pdev)) { |
| ice_free_vfs(pf); |
| } else { |
| dev_err(dev, "can't free VFs because some are assigned to VMs.\n"); |
| return -EBUSY; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_process_vflr_event - Free VF resources via IRQ calls |
| * @pf: pointer to the PF structure |
| * |
| * called from the VFLR IRQ handler to |
| * free up VF resources and state variables |
| */ |
| void ice_process_vflr_event(struct ice_pf *pf) |
| { |
| struct ice_hw *hw = &pf->hw; |
| int vf_id; |
| u32 reg; |
| |
| if (!test_and_clear_bit(__ICE_VFLR_EVENT_PENDING, pf->state) || |
| !pf->num_alloc_vfs) |
| return; |
| |
| for (vf_id = 0; vf_id < pf->num_alloc_vfs; vf_id++) { |
| struct ice_vf *vf = &pf->vf[vf_id]; |
| u32 reg_idx, bit_idx; |
| |
| reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32; |
| bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32; |
| /* read GLGEN_VFLRSTAT register to find out the flr VFs */ |
| reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx)); |
| if (reg & BIT(bit_idx)) |
| /* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */ |
| ice_reset_vf(vf, true); |
| } |
| } |
| |
| /** |
| * ice_vc_reset_vf - Perform software reset on the VF after informing the AVF |
| * @vf: pointer to the VF info |
| */ |
| static void ice_vc_reset_vf(struct ice_vf *vf) |
| { |
| ice_vc_notify_vf_reset(vf); |
| ice_reset_vf(vf, false); |
| } |
| |
| /** |
| * ice_vc_send_msg_to_vf - Send message to VF |
| * @vf: pointer to the VF info |
| * @v_opcode: virtual channel opcode |
| * @v_retval: virtual channel return value |
| * @msg: pointer to the msg buffer |
| * @msglen: msg length |
| * |
| * send msg to VF |
| */ |
| static int |
| ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode, |
| enum virtchnl_status_code v_retval, u8 *msg, u16 msglen) |
| { |
| enum ice_status aq_ret; |
| struct device *dev; |
| struct ice_pf *pf; |
| |
| if (!vf) |
| return -EINVAL; |
| |
| pf = vf->pf; |
| if (ice_validate_vf_id(pf, vf->vf_id)) |
| return -EINVAL; |
| |
| dev = ice_pf_to_dev(pf); |
| |
| /* single place to detect unsuccessful return values */ |
| if (v_retval) { |
| vf->num_inval_msgs++; |
| dev_info(dev, "VF %d failed opcode %d, retval: %d\n", vf->vf_id, |
| v_opcode, v_retval); |
| if (vf->num_inval_msgs > ICE_DFLT_NUM_INVAL_MSGS_ALLOWED) { |
| dev_err(dev, |
| "Number of invalid messages exceeded for VF %d\n", |
| vf->vf_id); |
| dev_err(dev, "Use PF Control I/F to enable the VF\n"); |
| set_bit(ICE_VF_STATE_DIS, vf->vf_states); |
| return -EIO; |
| } |
| } else { |
| vf->num_valid_msgs++; |
| /* reset the invalid counter, if a valid message is received. */ |
| vf->num_inval_msgs = 0; |
| } |
| |
| aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval, |
| msg, msglen, NULL); |
| if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) { |
| dev_info(dev, |
| "Unable to send the message to VF %d ret %d aq_err %d\n", |
| vf->vf_id, aq_ret, pf->hw.mailboxq.sq_last_status); |
| return -EIO; |
| } |
| |
| return 0; |
| } |
| |
| /** |
| * ice_vc_get_ver_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to request the API version used by the PF |
| */ |
| static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg) |
| { |
| struct virtchnl_version_info info = { |
| VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR |
| }; |
| |
| vf->vf_ver = *(struct virtchnl_version_info *)msg; |
| /* VFs running the 1.0 API expect to get 1.0 back or they will cry. */ |
| if (VF_IS_V10(&vf->vf_ver)) |
| info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS; |
| |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION, |
| VIRTCHNL_STATUS_SUCCESS, (u8 *)&info, |
| sizeof(struct virtchnl_version_info)); |
| } |
| |
| /** |
| * ice_vc_get_vf_res_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to request its resources |
| */ |
| static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_vf_resource *vfres = NULL; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| int len = 0; |
| int ret; |
| |
| if (ice_check_vf_init(pf, vf)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto err; |
| } |
| |
| len = sizeof(struct virtchnl_vf_resource); |
| |
| vfres = kzalloc(len, GFP_KERNEL); |
| if (!vfres) { |
| v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY; |
| len = 0; |
| goto err; |
| } |
| if (VF_IS_V11(&vf->vf_ver)) |
| vf->driver_caps = *(u32 *)msg; |
| else |
| vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 | |
| VIRTCHNL_VF_OFFLOAD_RSS_REG | |
| VIRTCHNL_VF_OFFLOAD_VLAN; |
| |
| vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2; |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto err; |
| } |
| |
| if (!vsi->info.pvid) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) { |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF; |
| } else { |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ; |
| else |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG; |
| } |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES; |
| |
| if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) |
| vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED; |
| |
| vfres->num_vsis = 1; |
| /* Tx and Rx queue are equal for VF */ |
| vfres->num_queue_pairs = vsi->num_txq; |
| vfres->max_vectors = pf->num_vf_msix; |
| vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE; |
| vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE; |
| |
| vfres->vsi_res[0].vsi_id = vf->lan_vsi_num; |
| vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV; |
| vfres->vsi_res[0].num_queue_pairs = vsi->num_txq; |
| ether_addr_copy(vfres->vsi_res[0].default_mac_addr, |
| vf->dflt_lan_addr.addr); |
| |
| /* match guest capabilities */ |
| vf->driver_caps = vfres->vf_cap_flags; |
| |
| set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states); |
| |
| err: |
| /* send the response back to the VF */ |
| ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret, |
| (u8 *)vfres, len); |
| |
| kfree(vfres); |
| return ret; |
| } |
| |
| /** |
| * ice_vc_reset_vf_msg |
| * @vf: pointer to the VF info |
| * |
| * called from the VF to reset itself, |
| * unlike other virtchnl messages, PF driver |
| * doesn't send the response back to the VF |
| */ |
| static void ice_vc_reset_vf_msg(struct ice_vf *vf) |
| { |
| if (test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) |
| ice_reset_vf(vf, false); |
| } |
| |
| /** |
| * ice_find_vsi_from_id |
| * @pf: the PF structure to search for the VSI |
| * @id: ID of the VSI it is searching for |
| * |
| * searches for the VSI with the given ID |
| */ |
| static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id) |
| { |
| int i; |
| |
| ice_for_each_vsi(pf, i) |
| if (pf->vsi[i] && pf->vsi[i]->vsi_num == id) |
| return pf->vsi[i]; |
| |
| return NULL; |
| } |
| |
| /** |
| * ice_vc_isvalid_vsi_id |
| * @vf: pointer to the VF info |
| * @vsi_id: VF relative VSI ID |
| * |
| * check for the valid VSI ID |
| */ |
| static bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id) |
| { |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| vsi = ice_find_vsi_from_id(pf, vsi_id); |
| |
| return (vsi && (vsi->vf_id == vf->vf_id)); |
| } |
| |
| /** |
| * ice_vc_isvalid_q_id |
| * @vf: pointer to the VF info |
| * @vsi_id: VSI ID |
| * @qid: VSI relative queue ID |
| * |
| * check for the valid queue ID |
| */ |
| static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid) |
| { |
| struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id); |
| /* allocated Tx and Rx queues should be always equal for VF VSI */ |
| return (vsi && (qid < vsi->alloc_txq)); |
| } |
| |
| /** |
| * ice_vc_isvalid_ring_len |
| * @ring_len: length of ring |
| * |
| * check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE |
| * or zero |
| */ |
| static bool ice_vc_isvalid_ring_len(u16 ring_len) |
| { |
| return ring_len == 0 || |
| (ring_len >= ICE_MIN_NUM_DESC && |
| ring_len <= ICE_MAX_NUM_DESC && |
| !(ring_len % ICE_REQ_DESC_MULTIPLE)); |
| } |
| |
| /** |
| * ice_vc_config_rss_key |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * Configure the VF's RSS key |
| */ |
| static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_rss_key *vrk = |
| (struct virtchnl_rss_key *)msg; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (ice_set_rss(vsi, vrk->key, NULL, 0)) |
| v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; |
| error_param: |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_vc_config_rss_lut |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * Configure the VF's RSS LUT |
| */ |
| static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg) |
| { |
| struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg; |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (ice_set_rss(vsi, NULL, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE)) |
| v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; |
| error_param: |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_vc_get_stats_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to get VSI stats |
| */ |
| static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_queue_select *vqs = |
| (struct virtchnl_queue_select *)msg; |
| struct ice_eth_stats stats = { 0 }; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| ice_update_eth_stats(vsi); |
| |
| stats = vsi->eth_stats; |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret, |
| (u8 *)&stats, sizeof(stats)); |
| } |
| |
| /** |
| * ice_vc_ena_qs_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to enable all or specific queue(s) |
| */ |
| static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_queue_select *vqs = |
| (struct virtchnl_queue_select *)msg; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| unsigned long q_map; |
| u16 vf_q_id; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!vqs->rx_queues && !vqs->tx_queues) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (vqs->rx_queues > ICE_MAX_BASE_QS_PER_VF || |
| vqs->tx_queues > ICE_MAX_BASE_QS_PER_VF) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Enable only Rx rings, Tx rings were enabled by the FW when the |
| * Tx queue group list was configured and the context bits were |
| * programmed using ice_vsi_cfg_txqs |
| */ |
| q_map = vqs->rx_queues; |
| for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) { |
| if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Skip queue if enabled */ |
| if (test_bit(vf_q_id, vf->rxq_ena)) |
| continue; |
| |
| if (ice_vsi_ctrl_rx_ring(vsi, true, vf_q_id)) { |
| dev_err(&vsi->back->pdev->dev, |
| "Failed to enable Rx ring %d on VSI %d\n", |
| vf_q_id, vsi->vsi_num); |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| set_bit(vf_q_id, vf->rxq_ena); |
| vf->num_qs_ena++; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| q_map = vqs->tx_queues; |
| for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) { |
| if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Skip queue if enabled */ |
| if (test_bit(vf_q_id, vf->txq_ena)) |
| continue; |
| |
| set_bit(vf_q_id, vf->txq_ena); |
| vf->num_qs_ena++; |
| } |
| |
| /* Set flag to indicate that queues are enabled */ |
| if (v_ret == VIRTCHNL_STATUS_SUCCESS) |
| set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_vc_dis_qs_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to disable all or specific |
| * queue(s) |
| */ |
| static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_queue_select *vqs = |
| (struct virtchnl_queue_select *)msg; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| unsigned long q_map; |
| u16 vf_q_id; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) && |
| !test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!vqs->rx_queues && !vqs->tx_queues) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (vqs->rx_queues > ICE_MAX_BASE_QS_PER_VF || |
| vqs->tx_queues > ICE_MAX_BASE_QS_PER_VF) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (vqs->tx_queues) { |
| q_map = vqs->tx_queues; |
| |
| for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) { |
| struct ice_ring *ring = vsi->tx_rings[vf_q_id]; |
| struct ice_txq_meta txq_meta = { 0 }; |
| |
| if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Skip queue if not enabled */ |
| if (!test_bit(vf_q_id, vf->txq_ena)) |
| continue; |
| |
| ice_fill_txq_meta(vsi, ring, &txq_meta); |
| |
| if (ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id, |
| ring, &txq_meta)) { |
| dev_err(&vsi->back->pdev->dev, |
| "Failed to stop Tx ring %d on VSI %d\n", |
| vf_q_id, vsi->vsi_num); |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Clear enabled queues flag */ |
| clear_bit(vf_q_id, vf->txq_ena); |
| vf->num_qs_ena--; |
| } |
| } |
| |
| if (vqs->rx_queues) { |
| q_map = vqs->rx_queues; |
| |
| for_each_set_bit(vf_q_id, &q_map, ICE_MAX_BASE_QS_PER_VF) { |
| if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Skip queue if not enabled */ |
| if (!test_bit(vf_q_id, vf->rxq_ena)) |
| continue; |
| |
| if (ice_vsi_ctrl_rx_ring(vsi, false, vf_q_id)) { |
| dev_err(&vsi->back->pdev->dev, |
| "Failed to stop Rx ring %d on VSI %d\n", |
| vf_q_id, vsi->vsi_num); |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* Clear enabled queues flag */ |
| clear_bit(vf_q_id, vf->rxq_ena); |
| vf->num_qs_ena--; |
| } |
| } |
| |
| /* Clear enabled queues flag */ |
| if (v_ret == VIRTCHNL_STATUS_SUCCESS && !vf->num_qs_ena) |
| clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states); |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_vc_cfg_irq_map_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to configure the IRQ to queue map |
| */ |
| static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_irq_map_info *irqmap_info; |
| u16 vsi_id, vsi_q_id, vector_id; |
| struct virtchnl_vector_map *map; |
| struct ice_pf *pf = vf->pf; |
| u16 num_q_vectors_mapped; |
| struct ice_vsi *vsi; |
| unsigned long qmap; |
| int i; |
| |
| irqmap_info = (struct virtchnl_irq_map_info *)msg; |
| num_q_vectors_mapped = irqmap_info->num_vectors; |
| |
| /* Check to make sure number of VF vectors mapped is not greater than |
| * number of VF vectors originally allocated, and check that |
| * there is actually at least a single VF queue vector mapped |
| */ |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || |
| pf->num_vf_msix < num_q_vectors_mapped || |
| !irqmap_info->num_vectors) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| for (i = 0; i < num_q_vectors_mapped; i++) { |
| struct ice_q_vector *q_vector; |
| |
| map = &irqmap_info->vecmap[i]; |
| |
| vector_id = map->vector_id; |
| vsi_id = map->vsi_id; |
| /* vector_id is always 0-based for each VF, and can never be |
| * larger than or equal to the max allowed interrupts per VF |
| */ |
| if (!(vector_id < ICE_MAX_INTR_PER_VF) || |
| !ice_vc_isvalid_vsi_id(vf, vsi_id) || |
| (!vector_id && (map->rxq_map || map->txq_map))) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* No need to map VF miscellaneous or rogue vector */ |
| if (!vector_id) |
| continue; |
| |
| /* Subtract non queue vector from vector_id passed by VF |
| * to get actual number of VSI queue vector array index |
| */ |
| q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF]; |
| if (!q_vector) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| /* lookout for the invalid queue index */ |
| qmap = map->rxq_map; |
| q_vector->num_ring_rx = 0; |
| for_each_set_bit(vsi_q_id, &qmap, ICE_MAX_BASE_QS_PER_VF) { |
| if (!ice_vc_isvalid_q_id(vf, vsi_id, vsi_q_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| q_vector->num_ring_rx++; |
| q_vector->rx.itr_idx = map->rxitr_idx; |
| vsi->rx_rings[vsi_q_id]->q_vector = q_vector; |
| ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id, |
| q_vector->rx.itr_idx); |
| } |
| |
| qmap = map->txq_map; |
| q_vector->num_ring_tx = 0; |
| for_each_set_bit(vsi_q_id, &qmap, ICE_MAX_BASE_QS_PER_VF) { |
| if (!ice_vc_isvalid_q_id(vf, vsi_id, vsi_q_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| q_vector->num_ring_tx++; |
| q_vector->tx.itr_idx = map->txitr_idx; |
| vsi->tx_rings[vsi_q_id]->q_vector = q_vector; |
| ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id, |
| q_vector->tx.itr_idx); |
| } |
| } |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_vc_cfg_qs_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * called from the VF to configure the Rx/Tx queues |
| */ |
| static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_vsi_queue_config_info *qci = |
| (struct virtchnl_vsi_queue_config_info *)msg; |
| struct virtchnl_queue_pair_info *qpi; |
| u16 num_rxq = 0, num_txq = 0; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| int i; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (qci->num_queue_pairs > ICE_MAX_BASE_QS_PER_VF || |
| qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) { |
| dev_err(ice_pf_to_dev(pf), |
| "VF-%d requesting more than supported number of queues: %d\n", |
| vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)); |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| for (i = 0; i < qci->num_queue_pairs; i++) { |
| qpi = &qci->qpair[i]; |
| if (qpi->txq.vsi_id != qci->vsi_id || |
| qpi->rxq.vsi_id != qci->vsi_id || |
| qpi->rxq.queue_id != qpi->txq.queue_id || |
| qpi->txq.headwb_enabled || |
| !ice_vc_isvalid_ring_len(qpi->txq.ring_len) || |
| !ice_vc_isvalid_ring_len(qpi->rxq.ring_len) || |
| !ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| /* copy Tx queue info from VF into VSI */ |
| if (qpi->txq.ring_len > 0) { |
| num_txq++; |
| vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr; |
| vsi->tx_rings[i]->count = qpi->txq.ring_len; |
| } |
| |
| /* copy Rx queue info from VF into VSI */ |
| if (qpi->rxq.ring_len > 0) { |
| num_rxq++; |
| vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr; |
| vsi->rx_rings[i]->count = qpi->rxq.ring_len; |
| |
| if (qpi->rxq.databuffer_size != 0 && |
| (qpi->rxq.databuffer_size > ((16 * 1024) - 128) || |
| qpi->rxq.databuffer_size < 1024)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| vsi->rx_buf_len = qpi->rxq.databuffer_size; |
| vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len; |
| if (qpi->rxq.max_pkt_size >= (16 * 1024) || |
| qpi->rxq.max_pkt_size < 64) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| } |
| |
| vsi->max_frame = qpi->rxq.max_pkt_size; |
| } |
| |
| /* VF can request to configure less than allocated queues |
| * or default allocated queues. So update the VSI with new number |
| */ |
| vsi->num_txq = num_txq; |
| vsi->num_rxq = num_rxq; |
| /* All queues of VF VSI are in TC 0 */ |
| vsi->tc_cfg.tc_info[0].qcount_tx = num_txq; |
| vsi->tc_cfg.tc_info[0].qcount_rx = num_rxq; |
| |
| if (ice_vsi_cfg_lan_txqs(vsi) || ice_vsi_cfg_rxqs(vsi)) |
| v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR; |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_is_vf_trusted |
| * @vf: pointer to the VF info |
| */ |
| static bool ice_is_vf_trusted(struct ice_vf *vf) |
| { |
| return test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps); |
| } |
| |
| /** |
| * ice_can_vf_change_mac |
| * @vf: pointer to the VF info |
| * |
| * Return true if the VF is allowed to change its MAC filters, false otherwise |
| */ |
| static bool ice_can_vf_change_mac(struct ice_vf *vf) |
| { |
| /* If the VF MAC address has been set administratively (via the |
| * ndo_set_vf_mac command), then deny permission to the VF to |
| * add/delete unicast MAC addresses, unless the VF is trusted |
| */ |
| if (vf->pf_set_mac && !ice_is_vf_trusted(vf)) |
| return false; |
| |
| return true; |
| } |
| |
| /** |
| * ice_vc_handle_mac_addr_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * @set: true if MAC filters are being set, false otherwise |
| * |
| * add guest MAC address filter |
| */ |
| static int |
| ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_ether_addr_list *al = |
| (struct virtchnl_ether_addr_list *)msg; |
| struct ice_pf *pf = vf->pf; |
| enum virtchnl_ops vc_op; |
| enum ice_status status; |
| struct ice_vsi *vsi; |
| struct device *dev; |
| int mac_count = 0; |
| int i; |
| |
| dev = ice_pf_to_dev(pf); |
| |
| if (set) |
| vc_op = VIRTCHNL_OP_ADD_ETH_ADDR; |
| else |
| vc_op = VIRTCHNL_OP_DEL_ETH_ADDR; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) || |
| !ice_vc_isvalid_vsi_id(vf, al->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto handle_mac_exit; |
| } |
| |
| if (set && !ice_is_vf_trusted(vf) && |
| (vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) { |
| dev_err(dev, |
| "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n", |
| vf->vf_id); |
| /* There is no need to let VF know about not being trusted |
| * to add more MAC addr, so we can just return success message. |
| */ |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto handle_mac_exit; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto handle_mac_exit; |
| } |
| |
| for (i = 0; i < al->num_elements; i++) { |
| u8 *maddr = al->list[i].addr; |
| |
| if (ether_addr_equal(maddr, vf->dflt_lan_addr.addr) || |
| is_broadcast_ether_addr(maddr)) { |
| if (set) { |
| /* VF is trying to add filters that the PF |
| * already added. Just continue. |
| */ |
| dev_info(dev, |
| "MAC %pM already set for VF %d\n", |
| maddr, vf->vf_id); |
| continue; |
| } else { |
| /* VF can't remove dflt_lan_addr/bcast MAC */ |
| dev_err(dev, |
| "VF can't remove default MAC address or MAC %pM programmed by PF for VF %d\n", |
| maddr, vf->vf_id); |
| continue; |
| } |
| } |
| |
| /* check for the invalid cases and bail if necessary */ |
| if (is_zero_ether_addr(maddr)) { |
| dev_err(dev, |
| "invalid MAC %pM provided for VF %d\n", |
| maddr, vf->vf_id); |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto handle_mac_exit; |
| } |
| |
| if (is_unicast_ether_addr(maddr) && |
| !ice_can_vf_change_mac(vf)) { |
| dev_err(dev, |
| "can't change unicast MAC for untrusted VF %d\n", |
| vf->vf_id); |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto handle_mac_exit; |
| } |
| |
| /* program the updated filter list */ |
| status = ice_vsi_cfg_mac_fltr(vsi, maddr, set); |
| if (status == ICE_ERR_DOES_NOT_EXIST || |
| status == ICE_ERR_ALREADY_EXISTS) { |
| dev_info(dev, |
| "can't %s MAC filters %pM for VF %d, error %d\n", |
| set ? "add" : "remove", maddr, vf->vf_id, |
| status); |
| } else if (status) { |
| dev_err(dev, |
| "can't %s MAC filters for VF %d, error %d\n", |
| set ? "add" : "remove", vf->vf_id, status); |
| v_ret = ice_err_to_virt_err(status); |
| goto handle_mac_exit; |
| } |
| |
| mac_count++; |
| } |
| |
| /* Track number of MAC filters programmed for the VF VSI */ |
| if (set) |
| vf->num_mac += mac_count; |
| else |
| vf->num_mac -= mac_count; |
| |
| handle_mac_exit: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0); |
| } |
| |
| /** |
| * ice_vc_add_mac_addr_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * add guest MAC address filter |
| */ |
| static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg) |
| { |
| return ice_vc_handle_mac_addr_msg(vf, msg, true); |
| } |
| |
| /** |
| * ice_vc_del_mac_addr_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * remove guest MAC address filter |
| */ |
| static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg) |
| { |
| return ice_vc_handle_mac_addr_msg(vf, msg, false); |
| } |
| |
| /** |
| * ice_vc_request_qs_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * VFs get a default number of queues but can use this message to request a |
| * different number. If the request is successful, PF will reset the VF and |
| * return 0. If unsuccessful, PF will send message informing VF of number of |
| * available queue pairs via virtchnl message response to VF. |
| */ |
| static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_vf_res_request *vfres = |
| (struct virtchnl_vf_res_request *)msg; |
| u16 req_queues = vfres->num_queue_pairs; |
| struct ice_pf *pf = vf->pf; |
| u16 max_allowed_vf_queues; |
| u16 tx_rx_queue_left; |
| u16 cur_queues; |
| struct device *dev; |
| |
| dev = ice_pf_to_dev(pf); |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| cur_queues = vf->num_vf_qs; |
| tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf), |
| ice_get_avail_rxq_count(pf)); |
| max_allowed_vf_queues = tx_rx_queue_left + cur_queues; |
| if (!req_queues) { |
| dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n", |
| vf->vf_id); |
| } else if (req_queues > ICE_MAX_BASE_QS_PER_VF) { |
| dev_err(dev, "VF %d tried to request more than %d queues.\n", |
| vf->vf_id, ICE_MAX_BASE_QS_PER_VF); |
| vfres->num_queue_pairs = ICE_MAX_BASE_QS_PER_VF; |
| } else if (req_queues > cur_queues && |
| req_queues - cur_queues > tx_rx_queue_left) { |
| dev_warn(dev, |
| "VF %d requested %u more queues, but only %u left.\n", |
| vf->vf_id, req_queues - cur_queues, tx_rx_queue_left); |
| vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues, |
| ICE_MAX_BASE_QS_PER_VF); |
| } else { |
| /* request is successful, then reset VF */ |
| vf->num_req_qs = req_queues; |
| ice_vc_reset_vf(vf); |
| dev_info(dev, "VF %d granted request of %u queues.\n", |
| vf->vf_id, req_queues); |
| return 0; |
| } |
| |
| error_param: |
| /* send the response to the VF */ |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES, |
| v_ret, (u8 *)vfres, sizeof(*vfres)); |
| } |
| |
| /** |
| * ice_set_vf_port_vlan |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @vlan_id: VLAN ID being set |
| * @qos: priority setting |
| * @vlan_proto: VLAN protocol |
| * |
| * program VF Port VLAN ID and/or QoS |
| */ |
| int |
| ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos, |
| __be16 vlan_proto) |
| { |
| u16 vlanprio = vlan_id | (qos << ICE_VLAN_PRIORITY_S); |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_vsi *vsi; |
| struct device *dev; |
| struct ice_vf *vf; |
| int ret = 0; |
| |
| dev = ice_pf_to_dev(pf); |
| if (ice_validate_vf_id(pf, vf_id)) |
| return -EINVAL; |
| |
| if (vlan_id > ICE_MAX_VLANID || qos > 7) { |
| dev_err(dev, "Invalid VF Parameters\n"); |
| return -EINVAL; |
| } |
| |
| if (vlan_proto != htons(ETH_P_8021Q)) { |
| dev_err(dev, "VF VLAN protocol is not supported\n"); |
| return -EPROTONOSUPPORT; |
| } |
| |
| vf = &pf->vf[vf_id]; |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (ice_check_vf_init(pf, vf)) |
| return -EBUSY; |
| |
| if (le16_to_cpu(vsi->info.pvid) == vlanprio) { |
| /* duplicate request, so just return success */ |
| dev_dbg(dev, "Duplicate pvid %d request\n", vlanprio); |
| return ret; |
| } |
| |
| /* If PVID, then remove all filters on the old VLAN */ |
| if (vsi->info.pvid) |
| ice_vsi_kill_vlan(vsi, (le16_to_cpu(vsi->info.pvid) & |
| VLAN_VID_MASK)); |
| |
| if (vlan_id || qos) { |
| ret = ice_vsi_manage_pvid(vsi, vlanprio, true); |
| if (ret) |
| goto error_set_pvid; |
| } else { |
| ice_vsi_manage_pvid(vsi, 0, false); |
| vsi->info.pvid = 0; |
| } |
| |
| if (vlan_id) { |
| dev_info(dev, "Setting VLAN %d, QoS 0x%x on VF %d\n", |
| vlan_id, qos, vf_id); |
| |
| /* add new VLAN filter for each MAC */ |
| ret = ice_vsi_add_vlan(vsi, vlan_id); |
| if (ret) |
| goto error_set_pvid; |
| } |
| |
| /* The Port VLAN needs to be saved across resets the same as the |
| * default LAN MAC address. |
| */ |
| vf->port_vlan_id = le16_to_cpu(vsi->info.pvid); |
| |
| error_set_pvid: |
| return ret; |
| } |
| |
| /** |
| * ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads |
| * @caps: VF driver negotiated capabilities |
| * |
| * Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false |
| */ |
| static bool ice_vf_vlan_offload_ena(u32 caps) |
| { |
| return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN); |
| } |
| |
| /** |
| * ice_vc_process_vlan_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * @add_v: Add VLAN if true, otherwise delete VLAN |
| * |
| * Process virtchnl op to add or remove programmed guest VLAN ID |
| */ |
| static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct virtchnl_vlan_filter_list *vfl = |
| (struct virtchnl_vlan_filter_list *)msg; |
| struct ice_pf *pf = vf->pf; |
| bool vlan_promisc = false; |
| struct ice_vsi *vsi; |
| struct device *dev; |
| struct ice_hw *hw; |
| int status = 0; |
| u8 promisc_m; |
| int i; |
| |
| dev = ice_pf_to_dev(pf); |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (add_v && !ice_is_vf_trusted(vf) && |
| vf->num_vlan >= ICE_MAX_VLAN_PER_VF) { |
| dev_info(dev, |
| "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", |
| vf->vf_id); |
| /* There is no need to let VF know about being not trusted, |
| * so we can just return success message here |
| */ |
| goto error_param; |
| } |
| |
| for (i = 0; i < vfl->num_elements; i++) { |
| if (vfl->vlan_id[i] > ICE_MAX_VLANID) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| dev_err(dev, |
| "invalid VF VLAN id %d\n", vfl->vlan_id[i]); |
| goto error_param; |
| } |
| } |
| |
| hw = &pf->hw; |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (vsi->info.pvid) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) || |
| test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) |
| vlan_promisc = true; |
| |
| if (add_v) { |
| for (i = 0; i < vfl->num_elements; i++) { |
| u16 vid = vfl->vlan_id[i]; |
| |
| if (!ice_is_vf_trusted(vf) && |
| vf->num_vlan >= ICE_MAX_VLAN_PER_VF) { |
| dev_info(dev, |
| "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n", |
| vf->vf_id); |
| /* There is no need to let VF know about being |
| * not trusted, so we can just return success |
| * message here as well. |
| */ |
| goto error_param; |
| } |
| |
| if (ice_vsi_add_vlan(vsi, vid)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vf->num_vlan++; |
| /* Enable VLAN pruning when VLAN is added */ |
| if (!vlan_promisc) { |
| status = ice_cfg_vlan_pruning(vsi, true, false); |
| if (status) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| dev_err(dev, |
| "Enable VLAN pruning on VLAN ID: %d failed error-%d\n", |
| vid, status); |
| goto error_param; |
| } |
| } else { |
| /* Enable Ucast/Mcast VLAN promiscuous mode */ |
| promisc_m = ICE_PROMISC_VLAN_TX | |
| ICE_PROMISC_VLAN_RX; |
| |
| status = ice_set_vsi_promisc(hw, vsi->idx, |
| promisc_m, vid); |
| if (status) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| dev_err(dev, |
| "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n", |
| vid, status); |
| } |
| } |
| } |
| } else { |
| /* In case of non_trusted VF, number of VLAN elements passed |
| * to PF for removal might be greater than number of VLANs |
| * filter programmed for that VF - So, use actual number of |
| * VLANS added earlier with add VLAN opcode. In order to avoid |
| * removing VLAN that doesn't exist, which result to sending |
| * erroneous failed message back to the VF |
| */ |
| int num_vf_vlan; |
| |
| num_vf_vlan = vf->num_vlan; |
| for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) { |
| u16 vid = vfl->vlan_id[i]; |
| |
| /* Make sure ice_vsi_kill_vlan is successful before |
| * updating VLAN information |
| */ |
| if (ice_vsi_kill_vlan(vsi, vid)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vf->num_vlan--; |
| /* Disable VLAN pruning when the last VLAN is removed */ |
| if (!vf->num_vlan) |
| ice_cfg_vlan_pruning(vsi, false, false); |
| |
| /* Disable Unicast/Multicast VLAN promiscuous mode */ |
| if (vlan_promisc) { |
| promisc_m = ICE_PROMISC_VLAN_TX | |
| ICE_PROMISC_VLAN_RX; |
| |
| ice_clear_vsi_promisc(hw, vsi->idx, |
| promisc_m, vid); |
| } |
| } |
| } |
| |
| error_param: |
| /* send the response to the VF */ |
| if (add_v) |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret, |
| NULL, 0); |
| else |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret, |
| NULL, 0); |
| } |
| |
| /** |
| * ice_vc_add_vlan_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * Add and program guest VLAN ID |
| */ |
| static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg) |
| { |
| return ice_vc_process_vlan_msg(vf, msg, true); |
| } |
| |
| /** |
| * ice_vc_remove_vlan_msg |
| * @vf: pointer to the VF info |
| * @msg: pointer to the msg buffer |
| * |
| * remove programmed guest VLAN ID |
| */ |
| static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg) |
| { |
| return ice_vc_process_vlan_msg(vf, msg, false); |
| } |
| |
| /** |
| * ice_vc_ena_vlan_stripping |
| * @vf: pointer to the VF info |
| * |
| * Enable VLAN header stripping for a given VF |
| */ |
| static int ice_vc_ena_vlan_stripping(struct ice_vf *vf) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (ice_vsi_manage_vlan_stripping(vsi, true)) |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| |
| error_param: |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING, |
| v_ret, NULL, 0); |
| } |
| |
| /** |
| * ice_vc_dis_vlan_stripping |
| * @vf: pointer to the VF info |
| * |
| * Disable VLAN header stripping for a given VF |
| */ |
| static int ice_vc_dis_vlan_stripping(struct ice_vf *vf) |
| { |
| enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS; |
| struct ice_pf *pf = vf->pf; |
| struct ice_vsi *vsi; |
| |
| if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (!ice_vf_vlan_offload_ena(vf->driver_caps)) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) { |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| goto error_param; |
| } |
| |
| if (ice_vsi_manage_vlan_stripping(vsi, false)) |
| v_ret = VIRTCHNL_STATUS_ERR_PARAM; |
| |
| error_param: |
| return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING, |
| v_ret, NULL, 0); |
| } |
| |
| /** |
| * ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization |
| * @vf: VF to enable/disable VLAN stripping for on initialization |
| * |
| * If the VIRTCHNL_VF_OFFLOAD_VLAN flag is set enable VLAN stripping, else if |
| * the flag is cleared then we want to disable stripping. For example, the flag |
| * will be cleared when port VLANs are configured by the administrator before |
| * passing the VF to the guest or if the AVF driver doesn't support VLAN |
| * offloads. |
| */ |
| static int ice_vf_init_vlan_stripping(struct ice_vf *vf) |
| { |
| struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx]; |
| |
| if (!vsi) |
| return -EINVAL; |
| |
| /* don't modify stripping if port VLAN is configured */ |
| if (vsi->info.pvid) |
| return 0; |
| |
| if (ice_vf_vlan_offload_ena(vf->driver_caps)) |
| return ice_vsi_manage_vlan_stripping(vsi, true); |
| else |
| return ice_vsi_manage_vlan_stripping(vsi, false); |
| } |
| |
| /** |
| * ice_vc_process_vf_msg - Process request from VF |
| * @pf: pointer to the PF structure |
| * @event: pointer to the AQ event |
| * |
| * called from the common asq/arq handler to |
| * process request from VF |
| */ |
| void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event) |
| { |
| u32 v_opcode = le32_to_cpu(event->desc.cookie_high); |
| s16 vf_id = le16_to_cpu(event->desc.retval); |
| u16 msglen = event->msg_len; |
| u8 *msg = event->msg_buf; |
| struct ice_vf *vf = NULL; |
| struct device *dev; |
| int err = 0; |
| |
| dev = ice_pf_to_dev(pf); |
| if (ice_validate_vf_id(pf, vf_id)) { |
| err = -EINVAL; |
| goto error_handler; |
| } |
| |
| vf = &pf->vf[vf_id]; |
| |
| /* Check if VF is disabled. */ |
| if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) { |
| err = -EPERM; |
| goto error_handler; |
| } |
| |
| /* Perform basic checks on the msg */ |
| err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen); |
| if (err) { |
| if (err == VIRTCHNL_STATUS_ERR_PARAM) |
| err = -EPERM; |
| else |
| err = -EINVAL; |
| } |
| |
| error_handler: |
| if (err) { |
| ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM, |
| NULL, 0); |
| dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n", |
| vf_id, v_opcode, msglen, err); |
| return; |
| } |
| |
| switch (v_opcode) { |
| case VIRTCHNL_OP_VERSION: |
| err = ice_vc_get_ver_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_GET_VF_RESOURCES: |
| err = ice_vc_get_vf_res_msg(vf, msg); |
| if (ice_vf_init_vlan_stripping(vf)) |
| dev_err(dev, |
| "Failed to initialize VLAN stripping for VF %d\n", |
| vf->vf_id); |
| ice_vc_notify_vf_link_state(vf); |
| break; |
| case VIRTCHNL_OP_RESET_VF: |
| ice_vc_reset_vf_msg(vf); |
| break; |
| case VIRTCHNL_OP_ADD_ETH_ADDR: |
| err = ice_vc_add_mac_addr_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_DEL_ETH_ADDR: |
| err = ice_vc_del_mac_addr_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_CONFIG_VSI_QUEUES: |
| err = ice_vc_cfg_qs_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_ENABLE_QUEUES: |
| err = ice_vc_ena_qs_msg(vf, msg); |
| ice_vc_notify_vf_link_state(vf); |
| break; |
| case VIRTCHNL_OP_DISABLE_QUEUES: |
| err = ice_vc_dis_qs_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_REQUEST_QUEUES: |
| err = ice_vc_request_qs_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_CONFIG_IRQ_MAP: |
| err = ice_vc_cfg_irq_map_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_CONFIG_RSS_KEY: |
| err = ice_vc_config_rss_key(vf, msg); |
| break; |
| case VIRTCHNL_OP_CONFIG_RSS_LUT: |
| err = ice_vc_config_rss_lut(vf, msg); |
| break; |
| case VIRTCHNL_OP_GET_STATS: |
| err = ice_vc_get_stats_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_ADD_VLAN: |
| err = ice_vc_add_vlan_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_DEL_VLAN: |
| err = ice_vc_remove_vlan_msg(vf, msg); |
| break; |
| case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING: |
| err = ice_vc_ena_vlan_stripping(vf); |
| break; |
| case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING: |
| err = ice_vc_dis_vlan_stripping(vf); |
| break; |
| case VIRTCHNL_OP_UNKNOWN: |
| default: |
| dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode, |
| vf_id); |
| err = ice_vc_send_msg_to_vf(vf, v_opcode, |
| VIRTCHNL_STATUS_ERR_NOT_SUPPORTED, |
| NULL, 0); |
| break; |
| } |
| if (err) { |
| /* Helper function cares less about error return values here |
| * as it is busy with pending work. |
| */ |
| dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n", |
| vf_id, v_opcode, err); |
| } |
| } |
| |
| /** |
| * ice_get_vf_cfg |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @ivi: VF configuration structure |
| * |
| * return VF configuration |
| */ |
| int |
| ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_vsi *vsi; |
| struct ice_vf *vf; |
| |
| if (ice_validate_vf_id(pf, vf_id)) |
| return -EINVAL; |
| |
| vf = &pf->vf[vf_id]; |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| |
| if (ice_check_vf_init(pf, vf)) |
| return -EBUSY; |
| |
| ivi->vf = vf_id; |
| ether_addr_copy(ivi->mac, vf->dflt_lan_addr.addr); |
| |
| /* VF configuration for VLAN and applicable QoS */ |
| ivi->vlan = le16_to_cpu(vsi->info.pvid) & ICE_VLAN_M; |
| ivi->qos = (le16_to_cpu(vsi->info.pvid) & ICE_PRIORITY_M) >> |
| ICE_VLAN_PRIORITY_S; |
| |
| ivi->trusted = vf->trusted; |
| ivi->spoofchk = vf->spoofchk; |
| if (!vf->link_forced) |
| ivi->linkstate = IFLA_VF_LINK_STATE_AUTO; |
| else if (vf->link_up) |
| ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE; |
| else |
| ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE; |
| ivi->max_tx_rate = vf->tx_rate; |
| ivi->min_tx_rate = 0; |
| return 0; |
| } |
| |
| /** |
| * ice_set_vf_spoofchk |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @ena: flag to enable or disable feature |
| * |
| * Enable or disable VF spoof checking |
| */ |
| int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_vsi *vsi = pf->vsi[0]; |
| struct ice_vsi_ctx *ctx; |
| enum ice_status status; |
| struct device *dev; |
| struct ice_vf *vf; |
| int ret = 0; |
| |
| dev = ice_pf_to_dev(pf); |
| if (ice_validate_vf_id(pf, vf_id)) |
| return -EINVAL; |
| |
| vf = &pf->vf[vf_id]; |
| if (ice_check_vf_init(pf, vf)) |
| return -EBUSY; |
| |
| if (ena == vf->spoofchk) { |
| dev_dbg(dev, "VF spoofchk already %s\n", |
| ena ? "ON" : "OFF"); |
| return 0; |
| } |
| |
| ctx = kzalloc(sizeof(*ctx), GFP_KERNEL); |
| if (!ctx) |
| return -ENOMEM; |
| |
| ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID); |
| |
| if (ena) { |
| ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF; |
| ctx->info.sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_PRUNE_EN_M; |
| } |
| |
| status = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL); |
| if (status) { |
| dev_dbg(dev, |
| "Error %d, failed to update VSI* parameters\n", status); |
| ret = -EIO; |
| goto out; |
| } |
| |
| vf->spoofchk = ena; |
| vsi->info.sec_flags = ctx->info.sec_flags; |
| vsi->info.sw_flags2 = ctx->info.sw_flags2; |
| out: |
| kfree(ctx); |
| return ret; |
| } |
| |
| /** |
| * ice_wait_on_vf_reset |
| * @vf: The VF being resseting |
| * |
| * Poll to make sure a given VF is ready after reset |
| */ |
| static void ice_wait_on_vf_reset(struct ice_vf *vf) |
| { |
| int i; |
| |
| for (i = 0; i < ICE_MAX_VF_RESET_WAIT; i++) { |
| if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) |
| break; |
| msleep(20); |
| } |
| } |
| |
| /** |
| * ice_set_vf_mac |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @mac: MAC address |
| * |
| * program VF MAC address |
| */ |
| int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_vf *vf; |
| int ret = 0; |
| |
| if (ice_validate_vf_id(pf, vf_id)) |
| return -EINVAL; |
| |
| vf = &pf->vf[vf_id]; |
| /* Don't set MAC on disabled VF */ |
| if (ice_is_vf_disabled(vf)) |
| return -EINVAL; |
| |
| /* In case VF is in reset mode, wait until it is completed. Depending |
| * on factors like queue disabling routine, this could take ~250ms |
| */ |
| ice_wait_on_vf_reset(vf); |
| |
| if (ice_check_vf_init(pf, vf)) |
| return -EBUSY; |
| |
| if (is_zero_ether_addr(mac) || is_multicast_ether_addr(mac)) { |
| netdev_err(netdev, "%pM not a valid unicast address\n", mac); |
| return -EINVAL; |
| } |
| |
| /* copy MAC into dflt_lan_addr and trigger a VF reset. The reset |
| * flow will use the updated dflt_lan_addr and add a MAC filter |
| * using ice_add_mac. Also set pf_set_mac to indicate that the PF has |
| * set the MAC address for this VF. |
| */ |
| ether_addr_copy(vf->dflt_lan_addr.addr, mac); |
| vf->pf_set_mac = true; |
| netdev_info(netdev, |
| "MAC on VF %d set to %pM. VF driver will be reinitialized\n", |
| vf_id, mac); |
| |
| ice_vc_reset_vf(vf); |
| return ret; |
| } |
| |
| /** |
| * ice_set_vf_trust |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @trusted: Boolean value to enable/disable trusted VF |
| * |
| * Enable or disable a given VF as trusted |
| */ |
| int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct device *dev; |
| struct ice_vf *vf; |
| |
| dev = ice_pf_to_dev(pf); |
| if (ice_validate_vf_id(pf, vf_id)) |
| return -EINVAL; |
| |
| vf = &pf->vf[vf_id]; |
| /* Don't set Trusted Mode on disabled VF */ |
| if (ice_is_vf_disabled(vf)) |
| return -EINVAL; |
| |
| /* In case VF is in reset mode, wait until it is completed. Depending |
| * on factors like queue disabling routine, this could take ~250ms |
| */ |
| ice_wait_on_vf_reset(vf); |
| |
| if (ice_check_vf_init(pf, vf)) |
| return -EBUSY; |
| |
| /* Check if already trusted */ |
| if (trusted == vf->trusted) |
| return 0; |
| |
| vf->trusted = trusted; |
| ice_vc_reset_vf(vf); |
| dev_info(dev, "VF %u is now %strusted\n", |
| vf_id, trusted ? "" : "un"); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_set_vf_link_state |
| * @netdev: network interface device structure |
| * @vf_id: VF identifier |
| * @link_state: required link state |
| * |
| * Set VF's link state, irrespective of physical link state status |
| */ |
| int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct virtchnl_pf_event pfe = { 0 }; |
| struct ice_link_status *ls; |
| struct ice_vf *vf; |
| struct ice_hw *hw; |
| |
| if (ice_validate_vf_id(pf, vf_id)) |
| return -EINVAL; |
| |
| vf = &pf->vf[vf_id]; |
| hw = &pf->hw; |
| ls = &pf->hw.port_info->phy.link_info; |
| |
| if (ice_check_vf_init(pf, vf)) |
| return -EBUSY; |
| |
| pfe.event = VIRTCHNL_EVENT_LINK_CHANGE; |
| pfe.severity = PF_EVENT_SEVERITY_INFO; |
| |
| switch (link_state) { |
| case IFLA_VF_LINK_STATE_AUTO: |
| vf->link_forced = false; |
| vf->link_up = ls->link_info & ICE_AQ_LINK_UP; |
| break; |
| case IFLA_VF_LINK_STATE_ENABLE: |
| vf->link_forced = true; |
| vf->link_up = true; |
| break; |
| case IFLA_VF_LINK_STATE_DISABLE: |
| vf->link_forced = true; |
| vf->link_up = false; |
| break; |
| default: |
| return -EINVAL; |
| } |
| |
| if (vf->link_forced) |
| ice_set_pfe_link_forced(vf, &pfe, vf->link_up); |
| else |
| ice_set_pfe_link(vf, &pfe, ls->link_speed, vf->link_up); |
| |
| /* Notify the VF of its new link state */ |
| ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT, |
| VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, |
| sizeof(pfe), NULL); |
| |
| return 0; |
| } |
| |
| /** |
| * ice_get_vf_stats - populate some stats for the VF |
| * @netdev: the netdev of the PF |
| * @vf_id: the host OS identifier (0-255) |
| * @vf_stats: pointer to the OS memory to be initialized |
| */ |
| int ice_get_vf_stats(struct net_device *netdev, int vf_id, |
| struct ifla_vf_stats *vf_stats) |
| { |
| struct ice_pf *pf = ice_netdev_to_pf(netdev); |
| struct ice_eth_stats *stats; |
| struct ice_vsi *vsi; |
| struct ice_vf *vf; |
| |
| if (ice_validate_vf_id(pf, vf_id)) |
| return -EINVAL; |
| |
| vf = &pf->vf[vf_id]; |
| |
| if (ice_check_vf_init(pf, vf)) |
| return -EBUSY; |
| |
| vsi = pf->vsi[vf->lan_vsi_idx]; |
| if (!vsi) |
| return -EINVAL; |
| |
| ice_update_eth_stats(vsi); |
| stats = &vsi->eth_stats; |
| |
| memset(vf_stats, 0, sizeof(*vf_stats)); |
| |
| vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast + |
| stats->rx_multicast; |
| vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast + |
| stats->tx_multicast; |
| vf_stats->rx_bytes = stats->rx_bytes; |
| vf_stats->tx_bytes = stats->tx_bytes; |
| vf_stats->broadcast = stats->rx_broadcast; |
| vf_stats->multicast = stats->rx_multicast; |
| vf_stats->rx_dropped = stats->rx_discards; |
| vf_stats->tx_dropped = stats->tx_discards; |
| |
| return 0; |
| } |