blob: 014daa8c542d6635356dd8ff0bef7e7552a290e2 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* Copyright (c) 2013 Red Hat, Inc.
* All Rights Reserved.
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_shared.h"
#include "xfs_format.h"
#include "xfs_log_format.h"
#include "xfs_trans_resv.h"
#include "xfs_sb.h"
#include "xfs_mount.h"
#include "xfs_da_format.h"
#include "xfs_da_btree.h"
#include "xfs_inode.h"
#include "xfs_trans.h"
#include "xfs_bmap_btree.h"
#include "xfs_bmap.h"
#include "xfs_attr_sf.h"
#include "xfs_attr.h"
#include "xfs_attr_remote.h"
#include "xfs_attr_leaf.h"
#include "xfs_error.h"
#include "xfs_trace.h"
#include "xfs_buf_item.h"
#include "xfs_dir2.h"
#include "xfs_log.h"
#include "xfs_ag.h"
/*
* xfs_attr_leaf.c
*
* Routines to implement leaf blocks of attributes as Btrees of hashed names.
*/
/*========================================================================
* Function prototypes for the kernel.
*========================================================================*/
/*
* Routines used for growing the Btree.
*/
STATIC int xfs_attr3_leaf_create(struct xfs_da_args *args,
xfs_dablk_t which_block, struct xfs_buf **bpp);
STATIC int xfs_attr3_leaf_add_work(struct xfs_buf *leaf_buffer,
struct xfs_attr3_icleaf_hdr *ichdr,
struct xfs_da_args *args, int freemap_index);
STATIC void xfs_attr3_leaf_compact(struct xfs_da_args *args,
struct xfs_attr3_icleaf_hdr *ichdr,
struct xfs_buf *leaf_buffer);
STATIC void xfs_attr3_leaf_rebalance(xfs_da_state_t *state,
xfs_da_state_blk_t *blk1,
xfs_da_state_blk_t *blk2);
STATIC int xfs_attr3_leaf_figure_balance(xfs_da_state_t *state,
xfs_da_state_blk_t *leaf_blk_1,
struct xfs_attr3_icleaf_hdr *ichdr1,
xfs_da_state_blk_t *leaf_blk_2,
struct xfs_attr3_icleaf_hdr *ichdr2,
int *number_entries_in_blk1,
int *number_usedbytes_in_blk1);
/*
* Utility routines.
*/
STATIC void xfs_attr3_leaf_moveents(struct xfs_da_args *args,
struct xfs_attr_leafblock *src_leaf,
struct xfs_attr3_icleaf_hdr *src_ichdr, int src_start,
struct xfs_attr_leafblock *dst_leaf,
struct xfs_attr3_icleaf_hdr *dst_ichdr, int dst_start,
int move_count);
STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
/*
* attr3 block 'firstused' conversion helpers.
*
* firstused refers to the offset of the first used byte of the nameval region
* of an attr leaf block. The region starts at the tail of the block and expands
* backwards towards the middle. As such, firstused is initialized to the block
* size for an empty leaf block and is reduced from there.
*
* The attr3 block size is pegged to the fsb size and the maximum fsb is 64k.
* The in-core firstused field is 32-bit and thus supports the maximum fsb size.
* The on-disk field is only 16-bit, however, and overflows at 64k. Since this
* only occurs at exactly 64k, we use zero as a magic on-disk value to represent
* the attr block size. The following helpers manage the conversion between the
* in-core and on-disk formats.
*/
static void
xfs_attr3_leaf_firstused_from_disk(
struct xfs_da_geometry *geo,
struct xfs_attr3_icleaf_hdr *to,
struct xfs_attr_leafblock *from)
{
struct xfs_attr3_leaf_hdr *hdr3;
if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
hdr3 = (struct xfs_attr3_leaf_hdr *) from;
to->firstused = be16_to_cpu(hdr3->firstused);
} else {
to->firstused = be16_to_cpu(from->hdr.firstused);
}
/*
* Convert from the magic fsb size value to actual blocksize. This
* should only occur for empty blocks when the block size overflows
* 16-bits.
*/
if (to->firstused == XFS_ATTR3_LEAF_NULLOFF) {
ASSERT(!to->count && !to->usedbytes);
ASSERT(geo->blksize > USHRT_MAX);
to->firstused = geo->blksize;
}
}
static void
xfs_attr3_leaf_firstused_to_disk(
struct xfs_da_geometry *geo,
struct xfs_attr_leafblock *to,
struct xfs_attr3_icleaf_hdr *from)
{
struct xfs_attr3_leaf_hdr *hdr3;
uint32_t firstused;
/* magic value should only be seen on disk */
ASSERT(from->firstused != XFS_ATTR3_LEAF_NULLOFF);
/*
* Scale down the 32-bit in-core firstused value to the 16-bit on-disk
* value. This only overflows at the max supported value of 64k. Use the
* magic on-disk value to represent block size in this case.
*/
firstused = from->firstused;
if (firstused > USHRT_MAX) {
ASSERT(from->firstused == geo->blksize);
firstused = XFS_ATTR3_LEAF_NULLOFF;
}
if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
hdr3 = (struct xfs_attr3_leaf_hdr *) to;
hdr3->firstused = cpu_to_be16(firstused);
} else {
to->hdr.firstused = cpu_to_be16(firstused);
}
}
void
xfs_attr3_leaf_hdr_from_disk(
struct xfs_da_geometry *geo,
struct xfs_attr3_icleaf_hdr *to,
struct xfs_attr_leafblock *from)
{
int i;
ASSERT(from->hdr.info.magic == cpu_to_be16(XFS_ATTR_LEAF_MAGIC) ||
from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC));
if (from->hdr.info.magic == cpu_to_be16(XFS_ATTR3_LEAF_MAGIC)) {
struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)from;
to->forw = be32_to_cpu(hdr3->info.hdr.forw);
to->back = be32_to_cpu(hdr3->info.hdr.back);
to->magic = be16_to_cpu(hdr3->info.hdr.magic);
to->count = be16_to_cpu(hdr3->count);
to->usedbytes = be16_to_cpu(hdr3->usedbytes);
xfs_attr3_leaf_firstused_from_disk(geo, to, from);
to->holes = hdr3->holes;
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
to->freemap[i].base = be16_to_cpu(hdr3->freemap[i].base);
to->freemap[i].size = be16_to_cpu(hdr3->freemap[i].size);
}
return;
}
to->forw = be32_to_cpu(from->hdr.info.forw);
to->back = be32_to_cpu(from->hdr.info.back);
to->magic = be16_to_cpu(from->hdr.info.magic);
to->count = be16_to_cpu(from->hdr.count);
to->usedbytes = be16_to_cpu(from->hdr.usedbytes);
xfs_attr3_leaf_firstused_from_disk(geo, to, from);
to->holes = from->hdr.holes;
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
to->freemap[i].base = be16_to_cpu(from->hdr.freemap[i].base);
to->freemap[i].size = be16_to_cpu(from->hdr.freemap[i].size);
}
}
void
xfs_attr3_leaf_hdr_to_disk(
struct xfs_da_geometry *geo,
struct xfs_attr_leafblock *to,
struct xfs_attr3_icleaf_hdr *from)
{
int i;
ASSERT(from->magic == XFS_ATTR_LEAF_MAGIC ||
from->magic == XFS_ATTR3_LEAF_MAGIC);
if (from->magic == XFS_ATTR3_LEAF_MAGIC) {
struct xfs_attr3_leaf_hdr *hdr3 = (struct xfs_attr3_leaf_hdr *)to;
hdr3->info.hdr.forw = cpu_to_be32(from->forw);
hdr3->info.hdr.back = cpu_to_be32(from->back);
hdr3->info.hdr.magic = cpu_to_be16(from->magic);
hdr3->count = cpu_to_be16(from->count);
hdr3->usedbytes = cpu_to_be16(from->usedbytes);
xfs_attr3_leaf_firstused_to_disk(geo, to, from);
hdr3->holes = from->holes;
hdr3->pad1 = 0;
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
hdr3->freemap[i].base = cpu_to_be16(from->freemap[i].base);
hdr3->freemap[i].size = cpu_to_be16(from->freemap[i].size);
}
return;
}
to->hdr.info.forw = cpu_to_be32(from->forw);
to->hdr.info.back = cpu_to_be32(from->back);
to->hdr.info.magic = cpu_to_be16(from->magic);
to->hdr.count = cpu_to_be16(from->count);
to->hdr.usedbytes = cpu_to_be16(from->usedbytes);
xfs_attr3_leaf_firstused_to_disk(geo, to, from);
to->hdr.holes = from->holes;
to->hdr.pad1 = 0;
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
to->hdr.freemap[i].base = cpu_to_be16(from->freemap[i].base);
to->hdr.freemap[i].size = cpu_to_be16(from->freemap[i].size);
}
}
static xfs_failaddr_t
xfs_attr3_leaf_verify_entry(
struct xfs_mount *mp,
char *buf_end,
struct xfs_attr_leafblock *leaf,
struct xfs_attr3_icleaf_hdr *leafhdr,
struct xfs_attr_leaf_entry *ent,
int idx,
__u32 *last_hashval)
{
struct xfs_attr_leaf_name_local *lentry;
struct xfs_attr_leaf_name_remote *rentry;
char *name_end;
unsigned int nameidx;
unsigned int namesize;
__u32 hashval;
/* hash order check */
hashval = be32_to_cpu(ent->hashval);
if (hashval < *last_hashval)
return __this_address;
*last_hashval = hashval;
nameidx = be16_to_cpu(ent->nameidx);
if (nameidx < leafhdr->firstused || nameidx >= mp->m_attr_geo->blksize)
return __this_address;
/*
* Check the name information. The namelen fields are u8 so we can't
* possibly exceed the maximum name length of 255 bytes.
*/
if (ent->flags & XFS_ATTR_LOCAL) {
lentry = xfs_attr3_leaf_name_local(leaf, idx);
namesize = xfs_attr_leaf_entsize_local(lentry->namelen,
be16_to_cpu(lentry->valuelen));
name_end = (char *)lentry + namesize;
if (lentry->namelen == 0)
return __this_address;
} else {
rentry = xfs_attr3_leaf_name_remote(leaf, idx);
namesize = xfs_attr_leaf_entsize_remote(rentry->namelen);
name_end = (char *)rentry + namesize;
if (rentry->namelen == 0)
return __this_address;
if (!(ent->flags & XFS_ATTR_INCOMPLETE) &&
rentry->valueblk == 0)
return __this_address;
}
if (name_end > buf_end)
return __this_address;
return NULL;
}
static xfs_failaddr_t
xfs_attr3_leaf_verify(
struct xfs_buf *bp)
{
struct xfs_attr3_icleaf_hdr ichdr;
struct xfs_mount *mp = bp->b_mount;
struct xfs_attr_leafblock *leaf = bp->b_addr;
struct xfs_attr_leaf_entry *entries;
struct xfs_attr_leaf_entry *ent;
char *buf_end;
uint32_t end; /* must be 32bit - see below */
__u32 last_hashval = 0;
int i;
xfs_failaddr_t fa;
xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, leaf);
fa = xfs_da3_blkinfo_verify(bp, bp->b_addr);
if (fa)
return fa;
/*
* firstused is the block offset of the first name info structure.
* Make sure it doesn't go off the block or crash into the header.
*/
if (ichdr.firstused > mp->m_attr_geo->blksize)
return __this_address;
if (ichdr.firstused < xfs_attr3_leaf_hdr_size(leaf))
return __this_address;
/* Make sure the entries array doesn't crash into the name info. */
entries = xfs_attr3_leaf_entryp(bp->b_addr);
if ((char *)&entries[ichdr.count] >
(char *)bp->b_addr + ichdr.firstused)
return __this_address;
/*
* NOTE: This verifier historically failed empty leaf buffers because
* we expect the fork to be in another format. Empty attr fork format
* conversions are possible during xattr set, however, and format
* conversion is not atomic with the xattr set that triggers it. We
* cannot assume leaf blocks are non-empty until that is addressed.
*/
buf_end = (char *)bp->b_addr + mp->m_attr_geo->blksize;
for (i = 0, ent = entries; i < ichdr.count; ent++, i++) {
fa = xfs_attr3_leaf_verify_entry(mp, buf_end, leaf, &ichdr,
ent, i, &last_hashval);
if (fa)
return fa;
}
/*
* Quickly check the freemap information. Attribute data has to be
* aligned to 4-byte boundaries, and likewise for the free space.
*
* Note that for 64k block size filesystems, the freemap entries cannot
* overflow as they are only be16 fields. However, when checking end
* pointer of the freemap, we have to be careful to detect overflows and
* so use uint32_t for those checks.
*/
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
if (ichdr.freemap[i].base > mp->m_attr_geo->blksize)
return __this_address;
if (ichdr.freemap[i].base & 0x3)
return __this_address;
if (ichdr.freemap[i].size > mp->m_attr_geo->blksize)
return __this_address;
if (ichdr.freemap[i].size & 0x3)
return __this_address;
/* be care of 16 bit overflows here */
end = (uint32_t)ichdr.freemap[i].base + ichdr.freemap[i].size;
if (end < ichdr.freemap[i].base)
return __this_address;
if (end > mp->m_attr_geo->blksize)
return __this_address;
}
return NULL;
}
static void
xfs_attr3_leaf_write_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
struct xfs_buf_log_item *bip = bp->b_log_item;
struct xfs_attr3_leaf_hdr *hdr3 = bp->b_addr;
xfs_failaddr_t fa;
fa = xfs_attr3_leaf_verify(bp);
if (fa) {
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
return;
}
if (!xfs_has_crc(mp))
return;
if (bip)
hdr3->info.lsn = cpu_to_be64(bip->bli_item.li_lsn);
xfs_buf_update_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF);
}
/*
* leaf/node format detection on trees is sketchy, so a node read can be done on
* leaf level blocks when detection identifies the tree as a node format tree
* incorrectly. In this case, we need to swap the verifier to match the correct
* format of the block being read.
*/
static void
xfs_attr3_leaf_read_verify(
struct xfs_buf *bp)
{
struct xfs_mount *mp = bp->b_mount;
xfs_failaddr_t fa;
if (xfs_has_crc(mp) &&
!xfs_buf_verify_cksum(bp, XFS_ATTR3_LEAF_CRC_OFF))
xfs_verifier_error(bp, -EFSBADCRC, __this_address);
else {
fa = xfs_attr3_leaf_verify(bp);
if (fa)
xfs_verifier_error(bp, -EFSCORRUPTED, fa);
}
}
const struct xfs_buf_ops xfs_attr3_leaf_buf_ops = {
.name = "xfs_attr3_leaf",
.magic16 = { cpu_to_be16(XFS_ATTR_LEAF_MAGIC),
cpu_to_be16(XFS_ATTR3_LEAF_MAGIC) },
.verify_read = xfs_attr3_leaf_read_verify,
.verify_write = xfs_attr3_leaf_write_verify,
.verify_struct = xfs_attr3_leaf_verify,
};
int
xfs_attr3_leaf_read(
struct xfs_trans *tp,
struct xfs_inode *dp,
xfs_dablk_t bno,
struct xfs_buf **bpp)
{
int err;
err = xfs_da_read_buf(tp, dp, bno, 0, bpp, XFS_ATTR_FORK,
&xfs_attr3_leaf_buf_ops);
if (!err && tp && *bpp)
xfs_trans_buf_set_type(tp, *bpp, XFS_BLFT_ATTR_LEAF_BUF);
return err;
}
/*========================================================================
* Namespace helper routines
*========================================================================*/
static bool
xfs_attr_match(
struct xfs_da_args *args,
uint8_t namelen,
unsigned char *name,
int flags)
{
if (args->namelen != namelen)
return false;
if (memcmp(args->name, name, namelen) != 0)
return false;
/*
* If we are looking for incomplete entries, show only those, else only
* show complete entries.
*/
if (args->attr_filter !=
(flags & (XFS_ATTR_NSP_ONDISK_MASK | XFS_ATTR_INCOMPLETE)))
return false;
return true;
}
static int
xfs_attr_copy_value(
struct xfs_da_args *args,
unsigned char *value,
int valuelen)
{
/*
* No copy if all we have to do is get the length
*/
if (!args->valuelen) {
args->valuelen = valuelen;
return 0;
}
/*
* No copy if the length of the existing buffer is too small
*/
if (args->valuelen < valuelen) {
args->valuelen = valuelen;
return -ERANGE;
}
if (!args->value) {
args->value = kvmalloc(valuelen, GFP_KERNEL | __GFP_NOLOCKDEP);
if (!args->value)
return -ENOMEM;
}
args->valuelen = valuelen;
/* remote block xattr requires IO for copy-in */
if (args->rmtblkno)
return xfs_attr_rmtval_get(args);
/*
* This is to prevent a GCC warning because the remote xattr case
* doesn't have a value to pass in. In that case, we never reach here,
* but GCC can't work that out and so throws a "passing NULL to
* memcpy" warning.
*/
if (!value)
return -EINVAL;
memcpy(args->value, value, valuelen);
return 0;
}
/*========================================================================
* External routines when attribute fork size < XFS_LITINO(mp).
*========================================================================*/
/*
* Query whether the total requested number of attr fork bytes of extended
* attribute space will be able to fit inline.
*
* Returns zero if not, else the i_forkoff fork offset to be used in the
* literal area for attribute data once the new bytes have been added.
*
* i_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
* special case for dev/uuid inodes, they have fixed size data forks.
*/
int
xfs_attr_shortform_bytesfit(
struct xfs_inode *dp,
int bytes)
{
struct xfs_mount *mp = dp->i_mount;
int64_t dsize;
int minforkoff;
int maxforkoff;
int offset;
/*
* Check if the new size could fit at all first:
*/
if (bytes > XFS_LITINO(mp))
return 0;
/* rounded down */
offset = (XFS_LITINO(mp) - bytes) >> 3;
if (dp->i_df.if_format == XFS_DINODE_FMT_DEV) {
minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
return (offset >= minforkoff) ? minforkoff : 0;
}
/*
* If the requested numbers of bytes is smaller or equal to the
* current attribute fork size we can always proceed.
*
* Note that if_bytes in the data fork might actually be larger than
* the current data fork size is due to delalloc extents. In that
* case either the extent count will go down when they are converted
* to real extents, or the delalloc conversion will take care of the
* literal area rebalancing.
*/
if (bytes <= XFS_IFORK_ASIZE(dp))
return dp->i_forkoff;
/*
* For attr2 we can try to move the forkoff if there is space in the
* literal area, but for the old format we are done if there is no
* space in the fixed attribute fork.
*/
if (!xfs_has_attr2(mp))
return 0;
dsize = dp->i_df.if_bytes;
switch (dp->i_df.if_format) {
case XFS_DINODE_FMT_EXTENTS:
/*
* If there is no attr fork and the data fork is extents,
* determine if creating the default attr fork will result
* in the extents form migrating to btree. If so, the
* minimum offset only needs to be the space required for
* the btree root.
*/
if (!dp->i_forkoff && dp->i_df.if_bytes >
xfs_default_attroffset(dp))
dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
break;
case XFS_DINODE_FMT_BTREE:
/*
* If we have a data btree then keep forkoff if we have one,
* otherwise we are adding a new attr, so then we set
* minforkoff to where the btree root can finish so we have
* plenty of room for attrs
*/
if (dp->i_forkoff) {
if (offset < dp->i_forkoff)
return 0;
return dp->i_forkoff;
}
dsize = XFS_BMAP_BROOT_SPACE(mp, dp->i_df.if_broot);
break;
}
/*
* A data fork btree root must have space for at least
* MINDBTPTRS key/ptr pairs if the data fork is small or empty.
*/
minforkoff = max_t(int64_t, dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
minforkoff = roundup(minforkoff, 8) >> 3;
/* attr fork btree root can have at least this many key/ptr pairs */
maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS);
maxforkoff = maxforkoff >> 3; /* rounded down */
if (offset >= maxforkoff)
return maxforkoff;
if (offset >= minforkoff)
return offset;
return 0;
}
/*
* Switch on the ATTR2 superblock bit (implies also FEATURES2) unless:
* - noattr2 mount option is set,
* - on-disk version bit says it is already set, or
* - the attr2 mount option is not set to enable automatic upgrade from attr1.
*/
STATIC void
xfs_sbversion_add_attr2(
struct xfs_mount *mp,
struct xfs_trans *tp)
{
if (xfs_has_noattr2(mp))
return;
if (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)
return;
if (!xfs_has_attr2(mp))
return;
spin_lock(&mp->m_sb_lock);
xfs_add_attr2(mp);
spin_unlock(&mp->m_sb_lock);
xfs_log_sb(tp);
}
/*
* Create the initial contents of a shortform attribute list.
*/
void
xfs_attr_shortform_create(
struct xfs_da_args *args)
{
struct xfs_inode *dp = args->dp;
struct xfs_ifork *ifp = dp->i_afp;
struct xfs_attr_sf_hdr *hdr;
trace_xfs_attr_sf_create(args);
ASSERT(ifp->if_bytes == 0);
if (ifp->if_format == XFS_DINODE_FMT_EXTENTS)
ifp->if_format = XFS_DINODE_FMT_LOCAL;
xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
hdr = (struct xfs_attr_sf_hdr *)ifp->if_u1.if_data;
memset(hdr, 0, sizeof(*hdr));
hdr->totsize = cpu_to_be16(sizeof(*hdr));
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
}
/*
* Return -EEXIST if attr is found, or -ENOATTR if not
* args: args containing attribute name and namelen
* sfep: If not null, pointer will be set to the last attr entry found on
-EEXIST. On -ENOATTR pointer is left at the last entry in the list
* basep: If not null, pointer is set to the byte offset of the entry in the
* list on -EEXIST. On -ENOATTR, pointer is left at the byte offset of
* the last entry in the list
*/
int
xfs_attr_sf_findname(
struct xfs_da_args *args,
struct xfs_attr_sf_entry **sfep,
unsigned int *basep)
{
struct xfs_attr_shortform *sf;
struct xfs_attr_sf_entry *sfe;
unsigned int base = sizeof(struct xfs_attr_sf_hdr);
int size = 0;
int end;
int i;
sf = (struct xfs_attr_shortform *)args->dp->i_afp->if_u1.if_data;
sfe = &sf->list[0];
end = sf->hdr.count;
for (i = 0; i < end; sfe = xfs_attr_sf_nextentry(sfe),
base += size, i++) {
size = xfs_attr_sf_entsize(sfe);
if (!xfs_attr_match(args, sfe->namelen, sfe->nameval,
sfe->flags))
continue;
break;
}
if (sfep != NULL)
*sfep = sfe;
if (basep != NULL)
*basep = base;
if (i == end)
return -ENOATTR;
return -EEXIST;
}
/*
* Add a name/value pair to the shortform attribute list.
* Overflow from the inode has already been checked for.
*/
void
xfs_attr_shortform_add(
struct xfs_da_args *args,
int forkoff)
{
struct xfs_attr_shortform *sf;
struct xfs_attr_sf_entry *sfe;
int offset, size;
struct xfs_mount *mp;
struct xfs_inode *dp;
struct xfs_ifork *ifp;
trace_xfs_attr_sf_add(args);
dp = args->dp;
mp = dp->i_mount;
dp->i_forkoff = forkoff;
ifp = dp->i_afp;
ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
if (xfs_attr_sf_findname(args, &sfe, NULL) == -EEXIST)
ASSERT(0);
offset = (char *)sfe - (char *)sf;
size = xfs_attr_sf_entsize_byname(args->namelen, args->valuelen);
xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
sfe = (struct xfs_attr_sf_entry *)((char *)sf + offset);
sfe->namelen = args->namelen;
sfe->valuelen = args->valuelen;
sfe->flags = args->attr_filter;
memcpy(sfe->nameval, args->name, args->namelen);
memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
sf->hdr.count++;
be16_add_cpu(&sf->hdr.totsize, size);
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
xfs_sbversion_add_attr2(mp, args->trans);
}
/*
* After the last attribute is removed revert to original inode format,
* making all literal area available to the data fork once more.
*/
void
xfs_attr_fork_remove(
struct xfs_inode *ip,
struct xfs_trans *tp)
{
ASSERT(ip->i_afp->if_nextents == 0);
xfs_idestroy_fork(ip->i_afp);
kmem_cache_free(xfs_ifork_cache, ip->i_afp);
ip->i_afp = NULL;
ip->i_forkoff = 0;
xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
}
/*
* Remove an attribute from the shortform attribute list structure.
*/
int
xfs_attr_sf_removename(
struct xfs_da_args *args)
{
struct xfs_attr_shortform *sf;
struct xfs_attr_sf_entry *sfe;
int size = 0, end, totsize;
unsigned int base;
struct xfs_mount *mp;
struct xfs_inode *dp;
int error;
trace_xfs_attr_sf_remove(args);
dp = args->dp;
mp = dp->i_mount;
sf = (struct xfs_attr_shortform *)dp->i_afp->if_u1.if_data;
error = xfs_attr_sf_findname(args, &sfe, &base);
if (error != -EEXIST)
return error;
size = xfs_attr_sf_entsize(sfe);
/*
* Fix up the attribute fork data, covering the hole
*/
end = base + size;
totsize = be16_to_cpu(sf->hdr.totsize);
if (end != totsize)
memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
sf->hdr.count--;
be16_add_cpu(&sf->hdr.totsize, -size);
/*
* Fix up the start offset of the attribute fork
*/
totsize -= size;
if (totsize == sizeof(xfs_attr_sf_hdr_t) && xfs_has_attr2(mp) &&
(dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
!(args->op_flags & XFS_DA_OP_ADDNAME)) {
xfs_attr_fork_remove(dp, args->trans);
} else {
xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
dp->i_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
ASSERT(dp->i_forkoff);
ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) ||
(args->op_flags & XFS_DA_OP_ADDNAME) ||
!xfs_has_attr2(mp) ||
dp->i_df.if_format == XFS_DINODE_FMT_BTREE);
xfs_trans_log_inode(args->trans, dp,
XFS_ILOG_CORE | XFS_ILOG_ADATA);
}
xfs_sbversion_add_attr2(mp, args->trans);
return 0;
}
/*
* Look up a name in a shortform attribute list structure.
*/
/*ARGSUSED*/
int
xfs_attr_shortform_lookup(xfs_da_args_t *args)
{
struct xfs_attr_shortform *sf;
struct xfs_attr_sf_entry *sfe;
int i;
struct xfs_ifork *ifp;
trace_xfs_attr_sf_lookup(args);
ifp = args->dp->i_afp;
ASSERT(ifp->if_format == XFS_DINODE_FMT_LOCAL);
sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count;
sfe = xfs_attr_sf_nextentry(sfe), i++) {
if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
sfe->flags))
return -EEXIST;
}
return -ENOATTR;
}
/*
* Retrieve the attribute value and length.
*
* If args->valuelen is zero, only the length needs to be returned. Unlike a
* lookup, we only return an error if the attribute does not exist or we can't
* retrieve the value.
*/
int
xfs_attr_shortform_getvalue(
struct xfs_da_args *args)
{
struct xfs_attr_shortform *sf;
struct xfs_attr_sf_entry *sfe;
int i;
ASSERT(args->dp->i_afp->if_format == XFS_DINODE_FMT_LOCAL);
sf = (struct xfs_attr_shortform *)args->dp->i_afp->if_u1.if_data;
sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count;
sfe = xfs_attr_sf_nextentry(sfe), i++) {
if (xfs_attr_match(args, sfe->namelen, sfe->nameval,
sfe->flags))
return xfs_attr_copy_value(args,
&sfe->nameval[args->namelen], sfe->valuelen);
}
return -ENOATTR;
}
/*
* Convert from using the shortform to the leaf. On success, return the
* buffer so that we can keep it locked until we're totally done with it.
*/
int
xfs_attr_shortform_to_leaf(
struct xfs_da_args *args,
struct xfs_buf **leaf_bp)
{
struct xfs_inode *dp;
struct xfs_attr_shortform *sf;
struct xfs_attr_sf_entry *sfe;
struct xfs_da_args nargs;
char *tmpbuffer;
int error, i, size;
xfs_dablk_t blkno;
struct xfs_buf *bp;
struct xfs_ifork *ifp;
trace_xfs_attr_sf_to_leaf(args);
dp = args->dp;
ifp = dp->i_afp;
sf = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
size = be16_to_cpu(sf->hdr.totsize);
tmpbuffer = kmem_alloc(size, 0);
ASSERT(tmpbuffer != NULL);
memcpy(tmpbuffer, ifp->if_u1.if_data, size);
sf = (struct xfs_attr_shortform *)tmpbuffer;
xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
xfs_bmap_local_to_extents_empty(args->trans, dp, XFS_ATTR_FORK);
bp = NULL;
error = xfs_da_grow_inode(args, &blkno);
if (error)
goto out;
ASSERT(blkno == 0);
error = xfs_attr3_leaf_create(args, blkno, &bp);
if (error)
goto out;
memset((char *)&nargs, 0, sizeof(nargs));
nargs.dp = dp;
nargs.geo = args->geo;
nargs.total = args->total;
nargs.whichfork = XFS_ATTR_FORK;
nargs.trans = args->trans;
nargs.op_flags = XFS_DA_OP_OKNOENT;
sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count; i++) {
nargs.name = sfe->nameval;
nargs.namelen = sfe->namelen;
nargs.value = &sfe->nameval[nargs.namelen];
nargs.valuelen = sfe->valuelen;
nargs.hashval = xfs_da_hashname(sfe->nameval,
sfe->namelen);
nargs.attr_filter = sfe->flags & XFS_ATTR_NSP_ONDISK_MASK;
error = xfs_attr3_leaf_lookup_int(bp, &nargs); /* set a->index */
ASSERT(error == -ENOATTR);
error = xfs_attr3_leaf_add(bp, &nargs);
ASSERT(error != -ENOSPC);
if (error)
goto out;
sfe = xfs_attr_sf_nextentry(sfe);
}
error = 0;
*leaf_bp = bp;
out:
kmem_free(tmpbuffer);
return error;
}
/*
* Check a leaf attribute block to see if all the entries would fit into
* a shortform attribute list.
*/
int
xfs_attr_shortform_allfit(
struct xfs_buf *bp,
struct xfs_inode *dp)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr_leaf_entry *entry;
xfs_attr_leaf_name_local_t *name_loc;
struct xfs_attr3_icleaf_hdr leafhdr;
int bytes;
int i;
struct xfs_mount *mp = bp->b_mount;
leaf = bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &leafhdr, leaf);
entry = xfs_attr3_leaf_entryp(leaf);
bytes = sizeof(struct xfs_attr_sf_hdr);
for (i = 0; i < leafhdr.count; entry++, i++) {
if (entry->flags & XFS_ATTR_INCOMPLETE)
continue; /* don't copy partial entries */
if (!(entry->flags & XFS_ATTR_LOCAL))
return 0;
name_loc = xfs_attr3_leaf_name_local(leaf, i);
if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
return 0;
if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
return 0;
bytes += xfs_attr_sf_entsize_byname(name_loc->namelen,
be16_to_cpu(name_loc->valuelen));
}
if (xfs_has_attr2(dp->i_mount) &&
(dp->i_df.if_format != XFS_DINODE_FMT_BTREE) &&
(bytes == sizeof(struct xfs_attr_sf_hdr)))
return -1;
return xfs_attr_shortform_bytesfit(dp, bytes);
}
/* Verify the consistency of an inline attribute fork. */
xfs_failaddr_t
xfs_attr_shortform_verify(
struct xfs_inode *ip)
{
struct xfs_attr_shortform *sfp;
struct xfs_attr_sf_entry *sfep;
struct xfs_attr_sf_entry *next_sfep;
char *endp;
struct xfs_ifork *ifp;
int i;
int64_t size;
ASSERT(ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL);
ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
sfp = (struct xfs_attr_shortform *)ifp->if_u1.if_data;
size = ifp->if_bytes;
/*
* Give up if the attribute is way too short.
*/
if (size < sizeof(struct xfs_attr_sf_hdr))
return __this_address;
endp = (char *)sfp + size;
/* Check all reported entries */
sfep = &sfp->list[0];
for (i = 0; i < sfp->hdr.count; i++) {
/*
* struct xfs_attr_sf_entry has a variable length.
* Check the fixed-offset parts of the structure are
* within the data buffer.
* xfs_attr_sf_entry is defined with a 1-byte variable
* array at the end, so we must subtract that off.
*/
if (((char *)sfep + sizeof(*sfep)) >= endp)
return __this_address;
/* Don't allow names with known bad length. */
if (sfep->namelen == 0)
return __this_address;
/*
* Check that the variable-length part of the structure is
* within the data buffer. The next entry starts after the
* name component, so nextentry is an acceptable test.
*/
next_sfep = xfs_attr_sf_nextentry(sfep);
if ((char *)next_sfep > endp)
return __this_address;
/*
* Check for unknown flags. Short form doesn't support
* the incomplete or local bits, so we can use the namespace
* mask here.
*/
if (sfep->flags & ~XFS_ATTR_NSP_ONDISK_MASK)
return __this_address;
/*
* Check for invalid namespace combinations. We only allow
* one namespace flag per xattr, so we can just count the
* bits (i.e. hweight) here.
*/
if (hweight8(sfep->flags & XFS_ATTR_NSP_ONDISK_MASK) > 1)
return __this_address;
sfep = next_sfep;
}
if ((void *)sfep != (void *)endp)
return __this_address;
return NULL;
}
/*
* Convert a leaf attribute list to shortform attribute list
*/
int
xfs_attr3_leaf_to_shortform(
struct xfs_buf *bp,
struct xfs_da_args *args,
int forkoff)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr3_icleaf_hdr ichdr;
struct xfs_attr_leaf_entry *entry;
struct xfs_attr_leaf_name_local *name_loc;
struct xfs_da_args nargs;
struct xfs_inode *dp = args->dp;
char *tmpbuffer;
int error;
int i;
trace_xfs_attr_leaf_to_sf(args);
tmpbuffer = kmem_alloc(args->geo->blksize, 0);
if (!tmpbuffer)
return -ENOMEM;
memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
leaf = (xfs_attr_leafblock_t *)tmpbuffer;
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
entry = xfs_attr3_leaf_entryp(leaf);
/* XXX (dgc): buffer is about to be marked stale - why zero it? */
memset(bp->b_addr, 0, args->geo->blksize);
/*
* Clean out the prior contents of the attribute list.
*/
error = xfs_da_shrink_inode(args, 0, bp);
if (error)
goto out;
if (forkoff == -1) {
ASSERT(xfs_has_attr2(dp->i_mount));
ASSERT(dp->i_df.if_format != XFS_DINODE_FMT_BTREE);
xfs_attr_fork_remove(dp, args->trans);
goto out;
}
xfs_attr_shortform_create(args);
/*
* Copy the attributes
*/
memset((char *)&nargs, 0, sizeof(nargs));
nargs.geo = args->geo;
nargs.dp = dp;
nargs.total = args->total;
nargs.whichfork = XFS_ATTR_FORK;
nargs.trans = args->trans;
nargs.op_flags = XFS_DA_OP_OKNOENT;
for (i = 0; i < ichdr.count; entry++, i++) {
if (entry->flags & XFS_ATTR_INCOMPLETE)
continue; /* don't copy partial entries */
if (!entry->nameidx)
continue;
ASSERT(entry->flags & XFS_ATTR_LOCAL);
name_loc = xfs_attr3_leaf_name_local(leaf, i);
nargs.name = name_loc->nameval;
nargs.namelen = name_loc->namelen;
nargs.value = &name_loc->nameval[nargs.namelen];
nargs.valuelen = be16_to_cpu(name_loc->valuelen);
nargs.hashval = be32_to_cpu(entry->hashval);
nargs.attr_filter = entry->flags & XFS_ATTR_NSP_ONDISK_MASK;
xfs_attr_shortform_add(&nargs, forkoff);
}
error = 0;
out:
kmem_free(tmpbuffer);
return error;
}
/*
* Convert from using a single leaf to a root node and a leaf.
*/
int
xfs_attr3_leaf_to_node(
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr3_icleaf_hdr icleafhdr;
struct xfs_attr_leaf_entry *entries;
struct xfs_da3_icnode_hdr icnodehdr;
struct xfs_da_intnode *node;
struct xfs_inode *dp = args->dp;
struct xfs_mount *mp = dp->i_mount;
struct xfs_buf *bp1 = NULL;
struct xfs_buf *bp2 = NULL;
xfs_dablk_t blkno;
int error;
trace_xfs_attr_leaf_to_node(args);
error = xfs_da_grow_inode(args, &blkno);
if (error)
goto out;
error = xfs_attr3_leaf_read(args->trans, dp, 0, &bp1);
if (error)
goto out;
error = xfs_da_get_buf(args->trans, dp, blkno, &bp2, XFS_ATTR_FORK);
if (error)
goto out;
/* copy leaf to new buffer, update identifiers */
xfs_trans_buf_set_type(args->trans, bp2, XFS_BLFT_ATTR_LEAF_BUF);
bp2->b_ops = bp1->b_ops;
memcpy(bp2->b_addr, bp1->b_addr, args->geo->blksize);
if (xfs_has_crc(mp)) {
struct xfs_da3_blkinfo *hdr3 = bp2->b_addr;
hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp2));
}
xfs_trans_log_buf(args->trans, bp2, 0, args->geo->blksize - 1);
/*
* Set up the new root node.
*/
error = xfs_da3_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
if (error)
goto out;
node = bp1->b_addr;
xfs_da3_node_hdr_from_disk(mp, &icnodehdr, node);
leaf = bp2->b_addr;
xfs_attr3_leaf_hdr_from_disk(args->geo, &icleafhdr, leaf);
entries = xfs_attr3_leaf_entryp(leaf);
/* both on-disk, don't endian-flip twice */
icnodehdr.btree[0].hashval = entries[icleafhdr.count - 1].hashval;
icnodehdr.btree[0].before = cpu_to_be32(blkno);
icnodehdr.count = 1;
xfs_da3_node_hdr_to_disk(dp->i_mount, node, &icnodehdr);
xfs_trans_log_buf(args->trans, bp1, 0, args->geo->blksize - 1);
error = 0;
out:
return error;
}
/*========================================================================
* Routines used for growing the Btree.
*========================================================================*/
/*
* Create the initial contents of a leaf attribute list
* or a leaf in a node attribute list.
*/
STATIC int
xfs_attr3_leaf_create(
struct xfs_da_args *args,
xfs_dablk_t blkno,
struct xfs_buf **bpp)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr3_icleaf_hdr ichdr;
struct xfs_inode *dp = args->dp;
struct xfs_mount *mp = dp->i_mount;
struct xfs_buf *bp;
int error;
trace_xfs_attr_leaf_create(args);
error = xfs_da_get_buf(args->trans, args->dp, blkno, &bp,
XFS_ATTR_FORK);
if (error)
return error;
bp->b_ops = &xfs_attr3_leaf_buf_ops;
xfs_trans_buf_set_type(args->trans, bp, XFS_BLFT_ATTR_LEAF_BUF);
leaf = bp->b_addr;
memset(leaf, 0, args->geo->blksize);
memset(&ichdr, 0, sizeof(ichdr));
ichdr.firstused = args->geo->blksize;
if (xfs_has_crc(mp)) {
struct xfs_da3_blkinfo *hdr3 = bp->b_addr;
ichdr.magic = XFS_ATTR3_LEAF_MAGIC;
hdr3->blkno = cpu_to_be64(xfs_buf_daddr(bp));
hdr3->owner = cpu_to_be64(dp->i_ino);
uuid_copy(&hdr3->uuid, &mp->m_sb.sb_meta_uuid);
ichdr.freemap[0].base = sizeof(struct xfs_attr3_leaf_hdr);
} else {
ichdr.magic = XFS_ATTR_LEAF_MAGIC;
ichdr.freemap[0].base = sizeof(struct xfs_attr_leaf_hdr);
}
ichdr.freemap[0].size = ichdr.firstused - ichdr.freemap[0].base;
xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
xfs_trans_log_buf(args->trans, bp, 0, args->geo->blksize - 1);
*bpp = bp;
return 0;
}
/*
* Split the leaf node, rebalance, then add the new entry.
*/
int
xfs_attr3_leaf_split(
struct xfs_da_state *state,
struct xfs_da_state_blk *oldblk,
struct xfs_da_state_blk *newblk)
{
xfs_dablk_t blkno;
int error;
trace_xfs_attr_leaf_split(state->args);
/*
* Allocate space for a new leaf node.
*/
ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
error = xfs_da_grow_inode(state->args, &blkno);
if (error)
return error;
error = xfs_attr3_leaf_create(state->args, blkno, &newblk->bp);
if (error)
return error;
newblk->blkno = blkno;
newblk->magic = XFS_ATTR_LEAF_MAGIC;
/*
* Rebalance the entries across the two leaves.
* NOTE: rebalance() currently depends on the 2nd block being empty.
*/
xfs_attr3_leaf_rebalance(state, oldblk, newblk);
error = xfs_da3_blk_link(state, oldblk, newblk);
if (error)
return error;
/*
* Save info on "old" attribute for "atomic rename" ops, leaf_add()
* modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
* "new" attrs info. Will need the "old" info to remove it later.
*
* Insert the "new" entry in the correct block.
*/
if (state->inleaf) {
trace_xfs_attr_leaf_add_old(state->args);
error = xfs_attr3_leaf_add(oldblk->bp, state->args);
} else {
trace_xfs_attr_leaf_add_new(state->args);
error = xfs_attr3_leaf_add(newblk->bp, state->args);
}
/*
* Update last hashval in each block since we added the name.
*/
oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
return error;
}
/*
* Add a name to the leaf attribute list structure.
*/
int
xfs_attr3_leaf_add(
struct xfs_buf *bp,
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr3_icleaf_hdr ichdr;
int tablesize;
int entsize;
int sum;
int tmp;
int i;
trace_xfs_attr_leaf_add(args);
leaf = bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
ASSERT(args->index >= 0 && args->index <= ichdr.count);
entsize = xfs_attr_leaf_newentsize(args, NULL);
/*
* Search through freemap for first-fit on new name length.
* (may need to figure in size of entry struct too)
*/
tablesize = (ichdr.count + 1) * sizeof(xfs_attr_leaf_entry_t)
+ xfs_attr3_leaf_hdr_size(leaf);
for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE - 1; i >= 0; i--) {
if (tablesize > ichdr.firstused) {
sum += ichdr.freemap[i].size;
continue;
}
if (!ichdr.freemap[i].size)
continue; /* no space in this map */
tmp = entsize;
if (ichdr.freemap[i].base < ichdr.firstused)
tmp += sizeof(xfs_attr_leaf_entry_t);
if (ichdr.freemap[i].size >= tmp) {
tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, i);
goto out_log_hdr;
}
sum += ichdr.freemap[i].size;
}
/*
* If there are no holes in the address space of the block,
* and we don't have enough freespace, then compaction will do us
* no good and we should just give up.
*/
if (!ichdr.holes && sum < entsize)
return -ENOSPC;
/*
* Compact the entries to coalesce free space.
* This may change the hdr->count via dropping INCOMPLETE entries.
*/
xfs_attr3_leaf_compact(args, &ichdr, bp);
/*
* After compaction, the block is guaranteed to have only one
* free region, in freemap[0]. If it is not big enough, give up.
*/
if (ichdr.freemap[0].size < (entsize + sizeof(xfs_attr_leaf_entry_t))) {
tmp = -ENOSPC;
goto out_log_hdr;
}
tmp = xfs_attr3_leaf_add_work(bp, &ichdr, args, 0);
out_log_hdr:
xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, &leaf->hdr,
xfs_attr3_leaf_hdr_size(leaf)));
return tmp;
}
/*
* Add a name to a leaf attribute list structure.
*/
STATIC int
xfs_attr3_leaf_add_work(
struct xfs_buf *bp,
struct xfs_attr3_icleaf_hdr *ichdr,
struct xfs_da_args *args,
int mapindex)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr_leaf_entry *entry;
struct xfs_attr_leaf_name_local *name_loc;
struct xfs_attr_leaf_name_remote *name_rmt;
struct xfs_mount *mp;
int tmp;
int i;
trace_xfs_attr_leaf_add_work(args);
leaf = bp->b_addr;
ASSERT(mapindex >= 0 && mapindex < XFS_ATTR_LEAF_MAPSIZE);
ASSERT(args->index >= 0 && args->index <= ichdr->count);
/*
* Force open some space in the entry array and fill it in.
*/
entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
if (args->index < ichdr->count) {
tmp = ichdr->count - args->index;
tmp *= sizeof(xfs_attr_leaf_entry_t);
memmove(entry + 1, entry, tmp);
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
}
ichdr->count++;
/*
* Allocate space for the new string (at the end of the run).
*/
mp = args->trans->t_mountp;
ASSERT(ichdr->freemap[mapindex].base < args->geo->blksize);
ASSERT((ichdr->freemap[mapindex].base & 0x3) == 0);
ASSERT(ichdr->freemap[mapindex].size >=
xfs_attr_leaf_newentsize(args, NULL));
ASSERT(ichdr->freemap[mapindex].size < args->geo->blksize);
ASSERT((ichdr->freemap[mapindex].size & 0x3) == 0);
ichdr->freemap[mapindex].size -= xfs_attr_leaf_newentsize(args, &tmp);
entry->nameidx = cpu_to_be16(ichdr->freemap[mapindex].base +
ichdr->freemap[mapindex].size);
entry->hashval = cpu_to_be32(args->hashval);
entry->flags = args->attr_filter;
if (tmp)
entry->flags |= XFS_ATTR_LOCAL;
if (args->op_flags & XFS_DA_OP_RENAME) {
entry->flags |= XFS_ATTR_INCOMPLETE;
if ((args->blkno2 == args->blkno) &&
(args->index2 <= args->index)) {
args->index2++;
}
}
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
ASSERT((args->index == 0) ||
(be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
ASSERT((args->index == ichdr->count - 1) ||
(be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
/*
* For "remote" attribute values, simply note that we need to
* allocate space for the "remote" value. We can't actually
* allocate the extents in this transaction, and we can't decide
* which blocks they should be as we might allocate more blocks
* as part of this transaction (a split operation for example).
*/
if (entry->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
name_loc->namelen = args->namelen;
name_loc->valuelen = cpu_to_be16(args->valuelen);
memcpy((char *)name_loc->nameval, args->name, args->namelen);
memcpy((char *)&name_loc->nameval[args->namelen], args->value,
be16_to_cpu(name_loc->valuelen));
} else {
name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
name_rmt->namelen = args->namelen;
memcpy((char *)name_rmt->name, args->name, args->namelen);
entry->flags |= XFS_ATTR_INCOMPLETE;
/* just in case */
name_rmt->valuelen = 0;
name_rmt->valueblk = 0;
args->rmtblkno = 1;
args->rmtblkcnt = xfs_attr3_rmt_blocks(mp, args->valuelen);
args->rmtvaluelen = args->valuelen;
}
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
xfs_attr_leaf_entsize(leaf, args->index)));
/*
* Update the control info for this leaf node
*/
if (be16_to_cpu(entry->nameidx) < ichdr->firstused)
ichdr->firstused = be16_to_cpu(entry->nameidx);
ASSERT(ichdr->firstused >= ichdr->count * sizeof(xfs_attr_leaf_entry_t)
+ xfs_attr3_leaf_hdr_size(leaf));
tmp = (ichdr->count - 1) * sizeof(xfs_attr_leaf_entry_t)
+ xfs_attr3_leaf_hdr_size(leaf);
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
if (ichdr->freemap[i].base == tmp) {
ichdr->freemap[i].base += sizeof(xfs_attr_leaf_entry_t);
ichdr->freemap[i].size -=
min_t(uint16_t, ichdr->freemap[i].size,
sizeof(xfs_attr_leaf_entry_t));
}
}
ichdr->usedbytes += xfs_attr_leaf_entsize(leaf, args->index);
return 0;
}
/*
* Garbage collect a leaf attribute list block by copying it to a new buffer.
*/
STATIC void
xfs_attr3_leaf_compact(
struct xfs_da_args *args,
struct xfs_attr3_icleaf_hdr *ichdr_dst,
struct xfs_buf *bp)
{
struct xfs_attr_leafblock *leaf_src;
struct xfs_attr_leafblock *leaf_dst;
struct xfs_attr3_icleaf_hdr ichdr_src;
struct xfs_trans *trans = args->trans;
char *tmpbuffer;
trace_xfs_attr_leaf_compact(args);
tmpbuffer = kmem_alloc(args->geo->blksize, 0);
memcpy(tmpbuffer, bp->b_addr, args->geo->blksize);
memset(bp->b_addr, 0, args->geo->blksize);
leaf_src = (xfs_attr_leafblock_t *)tmpbuffer;
leaf_dst = bp->b_addr;
/*
* Copy the on-disk header back into the destination buffer to ensure
* all the information in the header that is not part of the incore
* header structure is preserved.
*/
memcpy(bp->b_addr, tmpbuffer, xfs_attr3_leaf_hdr_size(leaf_src));
/* Initialise the incore headers */
ichdr_src = *ichdr_dst; /* struct copy */
ichdr_dst->firstused = args->geo->blksize;
ichdr_dst->usedbytes = 0;
ichdr_dst->count = 0;
ichdr_dst->holes = 0;
ichdr_dst->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_src);
ichdr_dst->freemap[0].size = ichdr_dst->firstused -
ichdr_dst->freemap[0].base;
/* write the header back to initialise the underlying buffer */
xfs_attr3_leaf_hdr_to_disk(args->geo, leaf_dst, ichdr_dst);
/*
* Copy all entry's in the same (sorted) order,
* but allocate name/value pairs packed and in sequence.
*/
xfs_attr3_leaf_moveents(args, leaf_src, &ichdr_src, 0,
leaf_dst, ichdr_dst, 0, ichdr_src.count);
/*
* this logs the entire buffer, but the caller must write the header
* back to the buffer when it is finished modifying it.
*/
xfs_trans_log_buf(trans, bp, 0, args->geo->blksize - 1);
kmem_free(tmpbuffer);
}
/*
* Compare two leaf blocks "order".
* Return 0 unless leaf2 should go before leaf1.
*/
static int
xfs_attr3_leaf_order(
struct xfs_buf *leaf1_bp,
struct xfs_attr3_icleaf_hdr *leaf1hdr,
struct xfs_buf *leaf2_bp,
struct xfs_attr3_icleaf_hdr *leaf2hdr)
{
struct xfs_attr_leaf_entry *entries1;
struct xfs_attr_leaf_entry *entries2;
entries1 = xfs_attr3_leaf_entryp(leaf1_bp->b_addr);
entries2 = xfs_attr3_leaf_entryp(leaf2_bp->b_addr);
if (leaf1hdr->count > 0 && leaf2hdr->count > 0 &&
((be32_to_cpu(entries2[0].hashval) <
be32_to_cpu(entries1[0].hashval)) ||
(be32_to_cpu(entries2[leaf2hdr->count - 1].hashval) <
be32_to_cpu(entries1[leaf1hdr->count - 1].hashval)))) {
return 1;
}
return 0;
}
int
xfs_attr_leaf_order(
struct xfs_buf *leaf1_bp,
struct xfs_buf *leaf2_bp)
{
struct xfs_attr3_icleaf_hdr ichdr1;
struct xfs_attr3_icleaf_hdr ichdr2;
struct xfs_mount *mp = leaf1_bp->b_mount;
xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr1, leaf1_bp->b_addr);
xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr2, leaf2_bp->b_addr);
return xfs_attr3_leaf_order(leaf1_bp, &ichdr1, leaf2_bp, &ichdr2);
}
/*
* Redistribute the attribute list entries between two leaf nodes,
* taking into account the size of the new entry.
*
* NOTE: if new block is empty, then it will get the upper half of the
* old block. At present, all (one) callers pass in an empty second block.
*
* This code adjusts the args->index/blkno and args->index2/blkno2 fields
* to match what it is doing in splitting the attribute leaf block. Those
* values are used in "atomic rename" operations on attributes. Note that
* the "new" and "old" values can end up in different blocks.
*/
STATIC void
xfs_attr3_leaf_rebalance(
struct xfs_da_state *state,
struct xfs_da_state_blk *blk1,
struct xfs_da_state_blk *blk2)
{
struct xfs_da_args *args;
struct xfs_attr_leafblock *leaf1;
struct xfs_attr_leafblock *leaf2;
struct xfs_attr3_icleaf_hdr ichdr1;
struct xfs_attr3_icleaf_hdr ichdr2;
struct xfs_attr_leaf_entry *entries1;
struct xfs_attr_leaf_entry *entries2;
int count;
int totallen;
int max;
int space;
int swap;
/*
* Set up environment.
*/
ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
leaf1 = blk1->bp->b_addr;
leaf2 = blk2->bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr1, leaf1);
xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, leaf2);
ASSERT(ichdr2.count == 0);
args = state->args;
trace_xfs_attr_leaf_rebalance(args);
/*
* Check ordering of blocks, reverse if it makes things simpler.
*
* NOTE: Given that all (current) callers pass in an empty
* second block, this code should never set "swap".
*/
swap = 0;
if (xfs_attr3_leaf_order(blk1->bp, &ichdr1, blk2->bp, &ichdr2)) {
swap(blk1, blk2);
/* swap structures rather than reconverting them */
swap(ichdr1, ichdr2);
leaf1 = blk1->bp->b_addr;
leaf2 = blk2->bp->b_addr;
swap = 1;
}
/*
* Examine entries until we reduce the absolute difference in
* byte usage between the two blocks to a minimum. Then get
* the direction to copy and the number of elements to move.
*
* "inleaf" is true if the new entry should be inserted into blk1.
* If "swap" is also true, then reverse the sense of "inleaf".
*/
state->inleaf = xfs_attr3_leaf_figure_balance(state, blk1, &ichdr1,
blk2, &ichdr2,
&count, &totallen);
if (swap)
state->inleaf = !state->inleaf;
/*
* Move any entries required from leaf to leaf:
*/
if (count < ichdr1.count) {
/*
* Figure the total bytes to be added to the destination leaf.
*/
/* number entries being moved */
count = ichdr1.count - count;
space = ichdr1.usedbytes - totallen;
space += count * sizeof(xfs_attr_leaf_entry_t);
/*
* leaf2 is the destination, compact it if it looks tight.
*/
max = ichdr2.firstused - xfs_attr3_leaf_hdr_size(leaf1);
max -= ichdr2.count * sizeof(xfs_attr_leaf_entry_t);
if (space > max)
xfs_attr3_leaf_compact(args, &ichdr2, blk2->bp);
/*
* Move high entries from leaf1 to low end of leaf2.
*/
xfs_attr3_leaf_moveents(args, leaf1, &ichdr1,
ichdr1.count - count, leaf2, &ichdr2, 0, count);
} else if (count > ichdr1.count) {
/*
* I assert that since all callers pass in an empty
* second buffer, this code should never execute.
*/
ASSERT(0);
/*
* Figure the total bytes to be added to the destination leaf.
*/
/* number entries being moved */
count -= ichdr1.count;
space = totallen - ichdr1.usedbytes;
space += count * sizeof(xfs_attr_leaf_entry_t);
/*
* leaf1 is the destination, compact it if it looks tight.
*/
max = ichdr1.firstused - xfs_attr3_leaf_hdr_size(leaf1);
max -= ichdr1.count * sizeof(xfs_attr_leaf_entry_t);
if (space > max)
xfs_attr3_leaf_compact(args, &ichdr1, blk1->bp);
/*
* Move low entries from leaf2 to high end of leaf1.
*/
xfs_attr3_leaf_moveents(args, leaf2, &ichdr2, 0, leaf1, &ichdr1,
ichdr1.count, count);
}
xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf1, &ichdr1);
xfs_attr3_leaf_hdr_to_disk(state->args->geo, leaf2, &ichdr2);
xfs_trans_log_buf(args->trans, blk1->bp, 0, args->geo->blksize - 1);
xfs_trans_log_buf(args->trans, blk2->bp, 0, args->geo->blksize - 1);
/*
* Copy out last hashval in each block for B-tree code.
*/
entries1 = xfs_attr3_leaf_entryp(leaf1);
entries2 = xfs_attr3_leaf_entryp(leaf2);
blk1->hashval = be32_to_cpu(entries1[ichdr1.count - 1].hashval);
blk2->hashval = be32_to_cpu(entries2[ichdr2.count - 1].hashval);
/*
* Adjust the expected index for insertion.
* NOTE: this code depends on the (current) situation that the
* second block was originally empty.
*
* If the insertion point moved to the 2nd block, we must adjust
* the index. We must also track the entry just following the
* new entry for use in an "atomic rename" operation, that entry
* is always the "old" entry and the "new" entry is what we are
* inserting. The index/blkno fields refer to the "old" entry,
* while the index2/blkno2 fields refer to the "new" entry.
*/
if (blk1->index > ichdr1.count) {
ASSERT(state->inleaf == 0);
blk2->index = blk1->index - ichdr1.count;
args->index = args->index2 = blk2->index;
args->blkno = args->blkno2 = blk2->blkno;
} else if (blk1->index == ichdr1.count) {
if (state->inleaf) {
args->index = blk1->index;
args->blkno = blk1->blkno;
args->index2 = 0;
args->blkno2 = blk2->blkno;
} else {
/*
* On a double leaf split, the original attr location
* is already stored in blkno2/index2, so don't
* overwrite it overwise we corrupt the tree.
*/
blk2->index = blk1->index - ichdr1.count;
args->index = blk2->index;
args->blkno = blk2->blkno;
if (!state->extravalid) {
/*
* set the new attr location to match the old
* one and let the higher level split code
* decide where in the leaf to place it.
*/
args->index2 = blk2->index;
args->blkno2 = blk2->blkno;
}
}
} else {
ASSERT(state->inleaf == 1);
args->index = args->index2 = blk1->index;
args->blkno = args->blkno2 = blk1->blkno;
}
}
/*
* Examine entries until we reduce the absolute difference in
* byte usage between the two blocks to a minimum.
* GROT: Is this really necessary? With other than a 512 byte blocksize,
* GROT: there will always be enough room in either block for a new entry.
* GROT: Do a double-split for this case?
*/
STATIC int
xfs_attr3_leaf_figure_balance(
struct xfs_da_state *state,
struct xfs_da_state_blk *blk1,
struct xfs_attr3_icleaf_hdr *ichdr1,
struct xfs_da_state_blk *blk2,
struct xfs_attr3_icleaf_hdr *ichdr2,
int *countarg,
int *usedbytesarg)
{
struct xfs_attr_leafblock *leaf1 = blk1->bp->b_addr;
struct xfs_attr_leafblock *leaf2 = blk2->bp->b_addr;
struct xfs_attr_leaf_entry *entry;
int count;
int max;
int index;
int totallen = 0;
int half;
int lastdelta;
int foundit = 0;
int tmp;
/*
* Examine entries until we reduce the absolute difference in
* byte usage between the two blocks to a minimum.
*/
max = ichdr1->count + ichdr2->count;
half = (max + 1) * sizeof(*entry);
half += ichdr1->usedbytes + ichdr2->usedbytes +
xfs_attr_leaf_newentsize(state->args, NULL);
half /= 2;
lastdelta = state->args->geo->blksize;
entry = xfs_attr3_leaf_entryp(leaf1);
for (count = index = 0; count < max; entry++, index++, count++) {
#define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
/*
* The new entry is in the first block, account for it.
*/
if (count == blk1->index) {
tmp = totallen + sizeof(*entry) +
xfs_attr_leaf_newentsize(state->args, NULL);
if (XFS_ATTR_ABS(half - tmp) > lastdelta)
break;
lastdelta = XFS_ATTR_ABS(half - tmp);
totallen = tmp;
foundit = 1;
}
/*
* Wrap around into the second block if necessary.
*/
if (count == ichdr1->count) {
leaf1 = leaf2;
entry = xfs_attr3_leaf_entryp(leaf1);
index = 0;
}
/*
* Figure out if next leaf entry would be too much.
*/
tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
index);
if (XFS_ATTR_ABS(half - tmp) > lastdelta)
break;
lastdelta = XFS_ATTR_ABS(half - tmp);
totallen = tmp;
#undef XFS_ATTR_ABS
}
/*
* Calculate the number of usedbytes that will end up in lower block.
* If new entry not in lower block, fix up the count.
*/
totallen -= count * sizeof(*entry);
if (foundit) {
totallen -= sizeof(*entry) +
xfs_attr_leaf_newentsize(state->args, NULL);
}
*countarg = count;
*usedbytesarg = totallen;
return foundit;
}
/*========================================================================
* Routines used for shrinking the Btree.
*========================================================================*/
/*
* Check a leaf block and its neighbors to see if the block should be
* collapsed into one or the other neighbor. Always keep the block
* with the smaller block number.
* If the current block is over 50% full, don't try to join it, return 0.
* If the block is empty, fill in the state structure and return 2.
* If it can be collapsed, fill in the state structure and return 1.
* If nothing can be done, return 0.
*
* GROT: allow for INCOMPLETE entries in calculation.
*/
int
xfs_attr3_leaf_toosmall(
struct xfs_da_state *state,
int *action)
{
struct xfs_attr_leafblock *leaf;
struct xfs_da_state_blk *blk;
struct xfs_attr3_icleaf_hdr ichdr;
struct xfs_buf *bp;
xfs_dablk_t blkno;
int bytes;
int forward;
int error;
int retval;
int i;
trace_xfs_attr_leaf_toosmall(state->args);
/*
* Check for the degenerate case of the block being over 50% full.
* If so, it's not worth even looking to see if we might be able
* to coalesce with a sibling.
*/
blk = &state->path.blk[ state->path.active-1 ];
leaf = blk->bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr, leaf);
bytes = xfs_attr3_leaf_hdr_size(leaf) +
ichdr.count * sizeof(xfs_attr_leaf_entry_t) +
ichdr.usedbytes;
if (bytes > (state->args->geo->blksize >> 1)) {
*action = 0; /* blk over 50%, don't try to join */
return 0;
}
/*
* Check for the degenerate case of the block being empty.
* If the block is empty, we'll simply delete it, no need to
* coalesce it with a sibling block. We choose (arbitrarily)
* to merge with the forward block unless it is NULL.
*/
if (ichdr.count == 0) {
/*
* Make altpath point to the block we want to keep and
* path point to the block we want to drop (this one).
*/
forward = (ichdr.forw != 0);
memcpy(&state->altpath, &state->path, sizeof(state->path));
error = xfs_da3_path_shift(state, &state->altpath, forward,
0, &retval);
if (error)
return error;
if (retval) {
*action = 0;
} else {
*action = 2;
}
return 0;
}
/*
* Examine each sibling block to see if we can coalesce with
* at least 25% free space to spare. We need to figure out
* whether to merge with the forward or the backward block.
* We prefer coalescing with the lower numbered sibling so as
* to shrink an attribute list over time.
*/
/* start with smaller blk num */
forward = ichdr.forw < ichdr.back;
for (i = 0; i < 2; forward = !forward, i++) {
struct xfs_attr3_icleaf_hdr ichdr2;
if (forward)
blkno = ichdr.forw;
else
blkno = ichdr.back;
if (blkno == 0)
continue;
error = xfs_attr3_leaf_read(state->args->trans, state->args->dp,
blkno, &bp);
if (error)
return error;
xfs_attr3_leaf_hdr_from_disk(state->args->geo, &ichdr2, bp->b_addr);
bytes = state->args->geo->blksize -
(state->args->geo->blksize >> 2) -
ichdr.usedbytes - ichdr2.usedbytes -
((ichdr.count + ichdr2.count) *
sizeof(xfs_attr_leaf_entry_t)) -
xfs_attr3_leaf_hdr_size(leaf);
xfs_trans_brelse(state->args->trans, bp);
if (bytes >= 0)
break; /* fits with at least 25% to spare */
}
if (i >= 2) {
*action = 0;
return 0;
}
/*
* Make altpath point to the block we want to keep (the lower
* numbered block) and path point to the block we want to drop.
*/
memcpy(&state->altpath, &state->path, sizeof(state->path));
if (blkno < blk->blkno) {
error = xfs_da3_path_shift(state, &state->altpath, forward,
0, &retval);
} else {
error = xfs_da3_path_shift(state, &state->path, forward,
0, &retval);
}
if (error)
return error;
if (retval) {
*action = 0;
} else {
*action = 1;
}
return 0;
}
/*
* Remove a name from the leaf attribute list structure.
*
* Return 1 if leaf is less than 37% full, 0 if >= 37% full.
* If two leaves are 37% full, when combined they will leave 25% free.
*/
int
xfs_attr3_leaf_remove(
struct xfs_buf *bp,
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr3_icleaf_hdr ichdr;
struct xfs_attr_leaf_entry *entry;
int before;
int after;
int smallest;
int entsize;
int tablesize;
int tmp;
int i;
trace_xfs_attr_leaf_remove(args);
leaf = bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
ASSERT(ichdr.count > 0 && ichdr.count < args->geo->blksize / 8);
ASSERT(args->index >= 0 && args->index < ichdr.count);
ASSERT(ichdr.firstused >= ichdr.count * sizeof(*entry) +
xfs_attr3_leaf_hdr_size(leaf));
entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
/*
* Scan through free region table:
* check for adjacency of free'd entry with an existing one,
* find smallest free region in case we need to replace it,
* adjust any map that borders the entry table,
*/
tablesize = ichdr.count * sizeof(xfs_attr_leaf_entry_t)
+ xfs_attr3_leaf_hdr_size(leaf);
tmp = ichdr.freemap[0].size;
before = after = -1;
smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
entsize = xfs_attr_leaf_entsize(leaf, args->index);
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; i++) {
ASSERT(ichdr.freemap[i].base < args->geo->blksize);
ASSERT(ichdr.freemap[i].size < args->geo->blksize);
if (ichdr.freemap[i].base == tablesize) {
ichdr.freemap[i].base -= sizeof(xfs_attr_leaf_entry_t);
ichdr.freemap[i].size += sizeof(xfs_attr_leaf_entry_t);
}
if (ichdr.freemap[i].base + ichdr.freemap[i].size ==
be16_to_cpu(entry->nameidx)) {
before = i;
} else if (ichdr.freemap[i].base ==
(be16_to_cpu(entry->nameidx) + entsize)) {
after = i;
} else if (ichdr.freemap[i].size < tmp) {
tmp = ichdr.freemap[i].size;
smallest = i;
}
}
/*
* Coalesce adjacent freemap regions,
* or replace the smallest region.
*/
if ((before >= 0) || (after >= 0)) {
if ((before >= 0) && (after >= 0)) {
ichdr.freemap[before].size += entsize;
ichdr.freemap[before].size += ichdr.freemap[after].size;
ichdr.freemap[after].base = 0;
ichdr.freemap[after].size = 0;
} else if (before >= 0) {
ichdr.freemap[before].size += entsize;
} else {
ichdr.freemap[after].base = be16_to_cpu(entry->nameidx);
ichdr.freemap[after].size += entsize;
}
} else {
/*
* Replace smallest region (if it is smaller than free'd entry)
*/
if (ichdr.freemap[smallest].size < entsize) {
ichdr.freemap[smallest].base = be16_to_cpu(entry->nameidx);
ichdr.freemap[smallest].size = entsize;
}
}
/*
* Did we remove the first entry?
*/
if (be16_to_cpu(entry->nameidx) == ichdr.firstused)
smallest = 1;
else
smallest = 0;
/*
* Compress the remaining entries and zero out the removed stuff.
*/
memset(xfs_attr3_leaf_name(leaf, args->index), 0, entsize);
ichdr.usedbytes -= entsize;
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, xfs_attr3_leaf_name(leaf, args->index),
entsize));
tmp = (ichdr.count - args->index) * sizeof(xfs_attr_leaf_entry_t);
memmove(entry, entry + 1, tmp);
ichdr.count--;
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(xfs_attr_leaf_entry_t)));
entry = &xfs_attr3_leaf_entryp(leaf)[ichdr.count];
memset(entry, 0, sizeof(xfs_attr_leaf_entry_t));
/*
* If we removed the first entry, re-find the first used byte
* in the name area. Note that if the entry was the "firstused",
* then we don't have a "hole" in our block resulting from
* removing the name.
*/
if (smallest) {
tmp = args->geo->blksize;
entry = xfs_attr3_leaf_entryp(leaf);
for (i = ichdr.count - 1; i >= 0; entry++, i--) {
ASSERT(be16_to_cpu(entry->nameidx) >= ichdr.firstused);
ASSERT(be16_to_cpu(entry->nameidx) < args->geo->blksize);
if (be16_to_cpu(entry->nameidx) < tmp)
tmp = be16_to_cpu(entry->nameidx);
}
ichdr.firstused = tmp;
ASSERT(ichdr.firstused != 0);
} else {
ichdr.holes = 1; /* mark as needing compaction */
}
xfs_attr3_leaf_hdr_to_disk(args->geo, leaf, &ichdr);
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, &leaf->hdr,
xfs_attr3_leaf_hdr_size(leaf)));
/*
* Check if leaf is less than 50% full, caller may want to
* "join" the leaf with a sibling if so.
*/
tmp = ichdr.usedbytes + xfs_attr3_leaf_hdr_size(leaf) +
ichdr.count * sizeof(xfs_attr_leaf_entry_t);
return tmp < args->geo->magicpct; /* leaf is < 37% full */
}
/*
* Move all the attribute list entries from drop_leaf into save_leaf.
*/
void
xfs_attr3_leaf_unbalance(
struct xfs_da_state *state,
struct xfs_da_state_blk *drop_blk,
struct xfs_da_state_blk *save_blk)
{
struct xfs_attr_leafblock *drop_leaf = drop_blk->bp->b_addr;
struct xfs_attr_leafblock *save_leaf = save_blk->bp->b_addr;
struct xfs_attr3_icleaf_hdr drophdr;
struct xfs_attr3_icleaf_hdr savehdr;
struct xfs_attr_leaf_entry *entry;
trace_xfs_attr_leaf_unbalance(state->args);
drop_leaf = drop_blk->bp->b_addr;
save_leaf = save_blk->bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(state->args->geo, &drophdr, drop_leaf);
xfs_attr3_leaf_hdr_from_disk(state->args->geo, &savehdr, save_leaf);
entry = xfs_attr3_leaf_entryp(drop_leaf);
/*
* Save last hashval from dying block for later Btree fixup.
*/
drop_blk->hashval = be32_to_cpu(entry[drophdr.count - 1].hashval);
/*
* Check if we need a temp buffer, or can we do it in place.
* Note that we don't check "leaf" for holes because we will
* always be dropping it, toosmall() decided that for us already.
*/
if (savehdr.holes == 0) {
/*
* dest leaf has no holes, so we add there. May need
* to make some room in the entry array.
*/
if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
drop_blk->bp, &drophdr)) {
xfs_attr3_leaf_moveents(state->args,
drop_leaf, &drophdr, 0,
save_leaf, &savehdr, 0,
drophdr.count);
} else {
xfs_attr3_leaf_moveents(state->args,
drop_leaf, &drophdr, 0,
save_leaf, &savehdr,
savehdr.count, drophdr.count);
}
} else {
/*
* Destination has holes, so we make a temporary copy
* of the leaf and add them both to that.
*/
struct xfs_attr_leafblock *tmp_leaf;
struct xfs_attr3_icleaf_hdr tmphdr;
tmp_leaf = kmem_zalloc(state->args->geo->blksize, 0);
/*
* Copy the header into the temp leaf so that all the stuff
* not in the incore header is present and gets copied back in
* once we've moved all the entries.
*/
memcpy(tmp_leaf, save_leaf, xfs_attr3_leaf_hdr_size(save_leaf));
memset(&tmphdr, 0, sizeof(tmphdr));
tmphdr.magic = savehdr.magic;
tmphdr.forw = savehdr.forw;
tmphdr.back = savehdr.back;
tmphdr.firstused = state->args->geo->blksize;
/* write the header to the temp buffer to initialise it */
xfs_attr3_leaf_hdr_to_disk(state->args->geo, tmp_leaf, &tmphdr);
if (xfs_attr3_leaf_order(save_blk->bp, &savehdr,
drop_blk->bp, &drophdr)) {
xfs_attr3_leaf_moveents(state->args,
drop_leaf, &drophdr, 0,
tmp_leaf, &tmphdr, 0,
drophdr.count);
xfs_attr3_leaf_moveents(state->args,
save_leaf, &savehdr, 0,
tmp_leaf, &tmphdr, tmphdr.count,
savehdr.count);
} else {
xfs_attr3_leaf_moveents(state->args,
save_leaf, &savehdr, 0,
tmp_leaf, &tmphdr, 0,
savehdr.count);
xfs_attr3_leaf_moveents(state->args,
drop_leaf, &drophdr, 0,
tmp_leaf, &tmphdr, tmphdr.count,
drophdr.count);
}
memcpy(save_leaf, tmp_leaf, state->args->geo->blksize);
savehdr = tmphdr; /* struct copy */
kmem_free(tmp_leaf);
}
xfs_attr3_leaf_hdr_to_disk(state->args->geo, save_leaf, &savehdr);
xfs_trans_log_buf(state->args->trans, save_blk->bp, 0,
state->args->geo->blksize - 1);
/*
* Copy out last hashval in each block for B-tree code.
*/
entry = xfs_attr3_leaf_entryp(save_leaf);
save_blk->hashval = be32_to_cpu(entry[savehdr.count - 1].hashval);
}
/*========================================================================
* Routines used for finding things in the Btree.
*========================================================================*/
/*
* Look up a name in a leaf attribute list structure.
* This is the internal routine, it uses the caller's buffer.
*
* Note that duplicate keys are allowed, but only check within the
* current leaf node. The Btree code must check in adjacent leaf nodes.
*
* Return in args->index the index into the entry[] array of either
* the found entry, or where the entry should have been (insert before
* that entry).
*
* Don't change the args->value unless we find the attribute.
*/
int
xfs_attr3_leaf_lookup_int(
struct xfs_buf *bp,
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr3_icleaf_hdr ichdr;
struct xfs_attr_leaf_entry *entry;
struct xfs_attr_leaf_entry *entries;
struct xfs_attr_leaf_name_local *name_loc;
struct xfs_attr_leaf_name_remote *name_rmt;
xfs_dahash_t hashval;
int probe;
int span;
trace_xfs_attr_leaf_lookup(args);
leaf = bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
entries = xfs_attr3_leaf_entryp(leaf);
if (ichdr.count >= args->geo->blksize / 8) {
xfs_buf_mark_corrupt(bp);
return -EFSCORRUPTED;
}
/*
* Binary search. (note: small blocks will skip this loop)
*/
hashval = args->hashval;
probe = span = ichdr.count / 2;
for (entry = &entries[probe]; span > 4; entry = &entries[probe]) {
span /= 2;
if (be32_to_cpu(entry->hashval) < hashval)
probe += span;
else if (be32_to_cpu(entry->hashval) > hashval)
probe -= span;
else
break;
}
if (!(probe >= 0 && (!ichdr.count || probe < ichdr.count))) {
xfs_buf_mark_corrupt(bp);
return -EFSCORRUPTED;
}
if (!(span <= 4 || be32_to_cpu(entry->hashval) == hashval)) {
xfs_buf_mark_corrupt(bp);
return -EFSCORRUPTED;
}
/*
* Since we may have duplicate hashval's, find the first matching
* hashval in the leaf.
*/
while (probe > 0 && be32_to_cpu(entry->hashval) >= hashval) {
entry--;
probe--;
}
while (probe < ichdr.count &&
be32_to_cpu(entry->hashval) < hashval) {
entry++;
probe++;
}
if (probe == ichdr.count || be32_to_cpu(entry->hashval) != hashval) {
args->index = probe;
return -ENOATTR;
}
/*
* Duplicate keys may be present, so search all of them for a match.
*/
for (; probe < ichdr.count && (be32_to_cpu(entry->hashval) == hashval);
entry++, probe++) {
/*
* GROT: Add code to remove incomplete entries.
*/
if (entry->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr3_leaf_name_local(leaf, probe);
if (!xfs_attr_match(args, name_loc->namelen,
name_loc->nameval, entry->flags))
continue;
args->index = probe;
return -EEXIST;
} else {
name_rmt = xfs_attr3_leaf_name_remote(leaf, probe);
if (!xfs_attr_match(args, name_rmt->namelen,
name_rmt->name, entry->flags))
continue;
args->index = probe;
args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
args->rmtblkcnt = xfs_attr3_rmt_blocks(
args->dp->i_mount,
args->rmtvaluelen);
return -EEXIST;
}
}
args->index = probe;
return -ENOATTR;
}
/*
* Get the value associated with an attribute name from a leaf attribute
* list structure.
*
* If args->valuelen is zero, only the length needs to be returned. Unlike a
* lookup, we only return an error if the attribute does not exist or we can't
* retrieve the value.
*/
int
xfs_attr3_leaf_getvalue(
struct xfs_buf *bp,
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr3_icleaf_hdr ichdr;
struct xfs_attr_leaf_entry *entry;
struct xfs_attr_leaf_name_local *name_loc;
struct xfs_attr_leaf_name_remote *name_rmt;
leaf = bp->b_addr;
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
ASSERT(ichdr.count < args->geo->blksize / 8);
ASSERT(args->index < ichdr.count);
entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
if (entry->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
ASSERT(name_loc->namelen == args->namelen);
ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
return xfs_attr_copy_value(args,
&name_loc->nameval[args->namelen],
be16_to_cpu(name_loc->valuelen));
}
name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
ASSERT(name_rmt->namelen == args->namelen);
ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
args->rmtvaluelen = be32_to_cpu(name_rmt->valuelen);
args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
args->rmtblkcnt = xfs_attr3_rmt_blocks(args->dp->i_mount,
args->rmtvaluelen);
return xfs_attr_copy_value(args, NULL, args->rmtvaluelen);
}
/*========================================================================
* Utility routines.
*========================================================================*/
/*
* Move the indicated entries from one leaf to another.
* NOTE: this routine modifies both source and destination leaves.
*/
/*ARGSUSED*/
STATIC void
xfs_attr3_leaf_moveents(
struct xfs_da_args *args,
struct xfs_attr_leafblock *leaf_s,
struct xfs_attr3_icleaf_hdr *ichdr_s,
int start_s,
struct xfs_attr_leafblock *leaf_d,
struct xfs_attr3_icleaf_hdr *ichdr_d,
int start_d,
int count)
{
struct xfs_attr_leaf_entry *entry_s;
struct xfs_attr_leaf_entry *entry_d;
int desti;
int tmp;
int i;
/*
* Check for nothing to do.
*/
if (count == 0)
return;
/*
* Set up environment.
*/
ASSERT(ichdr_s->magic == XFS_ATTR_LEAF_MAGIC ||
ichdr_s->magic == XFS_ATTR3_LEAF_MAGIC);
ASSERT(ichdr_s->magic == ichdr_d->magic);
ASSERT(ichdr_s->count > 0 && ichdr_s->count < args->geo->blksize / 8);
ASSERT(ichdr_s->firstused >= (ichdr_s->count * sizeof(*entry_s))
+ xfs_attr3_leaf_hdr_size(leaf_s));
ASSERT(ichdr_d->count < args->geo->blksize / 8);
ASSERT(ichdr_d->firstused >= (ichdr_d->count * sizeof(*entry_d))
+ xfs_attr3_leaf_hdr_size(leaf_d));
ASSERT(start_s < ichdr_s->count);
ASSERT(start_d <= ichdr_d->count);
ASSERT(count <= ichdr_s->count);
/*
* Move the entries in the destination leaf up to make a hole?
*/
if (start_d < ichdr_d->count) {
tmp = ichdr_d->count - start_d;
tmp *= sizeof(xfs_attr_leaf_entry_t);
entry_s = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d + count];
memmove(entry_d, entry_s, tmp);
}
/*
* Copy all entry's in the same (sorted) order,
* but allocate attribute info packed and in sequence.
*/
entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
entry_d = &xfs_attr3_leaf_entryp(leaf_d)[start_d];
desti = start_d;
for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
ASSERT(be16_to_cpu(entry_s->nameidx) >= ichdr_s->firstused);
tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
#ifdef GROT
/*
* Code to drop INCOMPLETE entries. Difficult to use as we
* may also need to change the insertion index. Code turned
* off for 6.2, should be revisited later.
*/
if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
ichdr_s->usedbytes -= tmp;
ichdr_s->count -= 1;
entry_d--; /* to compensate for ++ in loop hdr */
desti--;
if ((start_s + i) < offset)
result++; /* insertion index adjustment */
} else {
#endif /* GROT */
ichdr_d->firstused -= tmp;
/* both on-disk, don't endian flip twice */
entry_d->hashval = entry_s->hashval;
entry_d->nameidx = cpu_to_be16(ichdr_d->firstused);
entry_d->flags = entry_s->flags;
ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
<= args->geo->blksize);
memmove(xfs_attr3_leaf_name(leaf_d, desti),
xfs_attr3_leaf_name(leaf_s, start_s + i), tmp);
ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
<= args->geo->blksize);
memset(xfs_attr3_leaf_name(leaf_s, start_s + i), 0, tmp);
ichdr_s->usedbytes -= tmp;
ichdr_d->usedbytes += tmp;
ichdr_s->count -= 1;
ichdr_d->count += 1;
tmp = ichdr_d->count * sizeof(xfs_attr_leaf_entry_t)
+ xfs_attr3_leaf_hdr_size(leaf_d);
ASSERT(ichdr_d->firstused >= tmp);
#ifdef GROT
}
#endif /* GROT */
}
/*
* Zero out the entries we just copied.
*/
if (start_s == ichdr_s->count) {
tmp = count * sizeof(xfs_attr_leaf_entry_t);
entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
ASSERT(((char *)entry_s + tmp) <=
((char *)leaf_s + args->geo->blksize));
memset(entry_s, 0, tmp);
} else {
/*
* Move the remaining entries down to fill the hole,
* then zero the entries at the top.
*/
tmp = (ichdr_s->count - count) * sizeof(xfs_attr_leaf_entry_t);
entry_s = &xfs_attr3_leaf_entryp(leaf_s)[start_s + count];
entry_d = &xfs_attr3_leaf_entryp(leaf_s)[start_s];
memmove(entry_d, entry_s, tmp);
tmp = count * sizeof(xfs_attr_leaf_entry_t);
entry_s = &xfs_attr3_leaf_entryp(leaf_s)[ichdr_s->count];
ASSERT(((char *)entry_s + tmp) <=
((char *)leaf_s + args->geo->blksize));
memset(entry_s, 0, tmp);
}
/*
* Fill in the freemap information
*/
ichdr_d->freemap[0].base = xfs_attr3_leaf_hdr_size(leaf_d);
ichdr_d->freemap[0].base += ichdr_d->count * sizeof(xfs_attr_leaf_entry_t);
ichdr_d->freemap[0].size = ichdr_d->firstused - ichdr_d->freemap[0].base;
ichdr_d->freemap[1].base = 0;
ichdr_d->freemap[2].base = 0;
ichdr_d->freemap[1].size = 0;
ichdr_d->freemap[2].size = 0;
ichdr_s->holes = 1; /* leaf may not be compact */
}
/*
* Pick up the last hashvalue from a leaf block.
*/
xfs_dahash_t
xfs_attr_leaf_lasthash(
struct xfs_buf *bp,
int *count)
{
struct xfs_attr3_icleaf_hdr ichdr;
struct xfs_attr_leaf_entry *entries;
struct xfs_mount *mp = bp->b_mount;
xfs_attr3_leaf_hdr_from_disk(mp->m_attr_geo, &ichdr, bp->b_addr);
entries = xfs_attr3_leaf_entryp(bp->b_addr);
if (count)
*count = ichdr.count;
if (!ichdr.count)
return 0;
return be32_to_cpu(entries[ichdr.count - 1].hashval);
}
/*
* Calculate the number of bytes used to store the indicated attribute
* (whether local or remote only calculate bytes in this block).
*/
STATIC int
xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
{
struct xfs_attr_leaf_entry *entries;
xfs_attr_leaf_name_local_t *name_loc;
xfs_attr_leaf_name_remote_t *name_rmt;
int size;
entries = xfs_attr3_leaf_entryp(leaf);
if (entries[index].flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr3_leaf_name_local(leaf, index);
size = xfs_attr_leaf_entsize_local(name_loc->namelen,
be16_to_cpu(name_loc->valuelen));
} else {
name_rmt = xfs_attr3_leaf_name_remote(leaf, index);
size = xfs_attr_leaf_entsize_remote(name_rmt->namelen);
}
return size;
}
/*
* Calculate the number of bytes that would be required to store the new
* attribute (whether local or remote only calculate bytes in this block).
* This routine decides as a side effect whether the attribute will be
* a "local" or a "remote" attribute.
*/
int
xfs_attr_leaf_newentsize(
struct xfs_da_args *args,
int *local)
{
int size;
size = xfs_attr_leaf_entsize_local(args->namelen, args->valuelen);
if (size < xfs_attr_leaf_entsize_local_max(args->geo->blksize)) {
if (local)
*local = 1;
return size;
}
if (local)
*local = 0;
return xfs_attr_leaf_entsize_remote(args->namelen);
}
/*========================================================================
* Manage the INCOMPLETE flag in a leaf entry
*========================================================================*/
/*
* Clear the INCOMPLETE flag on an entry in a leaf block.
*/
int
xfs_attr3_leaf_clearflag(
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr_leaf_entry *entry;
struct xfs_attr_leaf_name_remote *name_rmt;
struct xfs_buf *bp;
int error;
#ifdef DEBUG
struct xfs_attr3_icleaf_hdr ichdr;
xfs_attr_leaf_name_local_t *name_loc;
int namelen;
char *name;
#endif /* DEBUG */
trace_xfs_attr_leaf_clearflag(args);
/*
* Set up the operation.
*/
error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp);
if (error)
return error;
leaf = bp->b_addr;
entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
#ifdef DEBUG
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
ASSERT(args->index < ichdr.count);
ASSERT(args->index >= 0);
if (entry->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr3_leaf_name_local(leaf, args->index);
namelen = name_loc->namelen;
name = (char *)name_loc->nameval;
} else {
name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
namelen = name_rmt->namelen;
name = (char *)name_rmt->name;
}
ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
ASSERT(namelen == args->namelen);
ASSERT(memcmp(name, args->name, namelen) == 0);
#endif /* DEBUG */
entry->flags &= ~XFS_ATTR_INCOMPLETE;
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
if (args->rmtblkno) {
ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
}
return 0;
}
/*
* Set the INCOMPLETE flag on an entry in a leaf block.
*/
int
xfs_attr3_leaf_setflag(
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf;
struct xfs_attr_leaf_entry *entry;
struct xfs_attr_leaf_name_remote *name_rmt;
struct xfs_buf *bp;
int error;
#ifdef DEBUG
struct xfs_attr3_icleaf_hdr ichdr;
#endif
trace_xfs_attr_leaf_setflag(args);
/*
* Set up the operation.
*/
error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp);
if (error)
return error;
leaf = bp->b_addr;
#ifdef DEBUG
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr, leaf);
ASSERT(args->index < ichdr.count);
ASSERT(args->index >= 0);
#endif
entry = &xfs_attr3_leaf_entryp(leaf)[args->index];
ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
entry->flags |= XFS_ATTR_INCOMPLETE;
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
name_rmt = xfs_attr3_leaf_name_remote(leaf, args->index);
name_rmt->valueblk = 0;
name_rmt->valuelen = 0;
xfs_trans_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
}
return 0;
}
/*
* In a single transaction, clear the INCOMPLETE flag on the leaf entry
* given by args->blkno/index and set the INCOMPLETE flag on the leaf
* entry given by args->blkno2/index2.
*
* Note that they could be in different blocks, or in the same block.
*/
int
xfs_attr3_leaf_flipflags(
struct xfs_da_args *args)
{
struct xfs_attr_leafblock *leaf1;
struct xfs_attr_leafblock *leaf2;
struct xfs_attr_leaf_entry *entry1;
struct xfs_attr_leaf_entry *entry2;
struct xfs_attr_leaf_name_remote *name_rmt;
struct xfs_buf *bp1;
struct xfs_buf *bp2;
int error;
#ifdef DEBUG
struct xfs_attr3_icleaf_hdr ichdr1;
struct xfs_attr3_icleaf_hdr ichdr2;
xfs_attr_leaf_name_local_t *name_loc;
int namelen1, namelen2;
char *name1, *name2;
#endif /* DEBUG */
trace_xfs_attr_leaf_flipflags(args);
/*
* Read the block containing the "old" attr
*/
error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno, &bp1);
if (error)
return error;
/*
* Read the block containing the "new" attr, if it is different
*/
if (args->blkno2 != args->blkno) {
error = xfs_attr3_leaf_read(args->trans, args->dp, args->blkno2,
&bp2);
if (error)
return error;
} else {
bp2 = bp1;
}
leaf1 = bp1->b_addr;
entry1 = &xfs_attr3_leaf_entryp(leaf1)[args->index];
leaf2 = bp2->b_addr;
entry2 = &xfs_attr3_leaf_entryp(leaf2)[args->index2];
#ifdef DEBUG
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr1, leaf1);
ASSERT(args->index < ichdr1.count);
ASSERT(args->index >= 0);
xfs_attr3_leaf_hdr_from_disk(args->geo, &ichdr2, leaf2);
ASSERT(args->index2 < ichdr2.count);
ASSERT(args->index2 >= 0);
if (entry1->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr3_leaf_name_local(leaf1, args->index);
namelen1 = name_loc->namelen;
name1 = (char *)name_loc->nameval;
} else {
name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
namelen1 = name_rmt->namelen;
name1 = (char *)name_rmt->name;
}
if (entry2->flags & XFS_ATTR_LOCAL) {
name_loc = xfs_attr3_leaf_name_local(leaf2, args->index2);
namelen2 = name_loc->namelen;
name2 = (char *)name_loc->nameval;
} else {
name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
namelen2 = name_rmt->namelen;
name2 = (char *)name_rmt->name;
}
ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
ASSERT(namelen1 == namelen2);
ASSERT(memcmp(name1, name2, namelen1) == 0);
#endif /* DEBUG */
ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
entry1->flags &= ~XFS_ATTR_INCOMPLETE;
xfs_trans_log_buf(args->trans, bp1,
XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
if (args->rmtblkno) {
ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
name_rmt = xfs_attr3_leaf_name_remote(leaf1, args->index);
name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
name_rmt->valuelen = cpu_to_be32(args->rmtvaluelen);
xfs_trans_log_buf(args->trans, bp1,
XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
}
entry2->flags |= XFS_ATTR_INCOMPLETE;
xfs_trans_log_buf(args->trans, bp2,
XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
name_rmt = xfs_attr3_leaf_name_remote(leaf2, args->index2);
name_rmt->valueblk = 0;
name_rmt->valuelen = 0;
xfs_trans_log_buf(args->trans, bp2,
XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
}
return 0;
}