blob: e233acf523349c8e0e84aa6df34cb1fecce1da91 [file] [log] [blame]
/*
* Copyright (C) 2013 Red Hat
* Author: Rob Clark <robdclark@gmail.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published by
* the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "mdp4_kms.h"
#include <drm/drm_mode.h>
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "drm_flip_work.h"
struct mdp4_crtc {
struct drm_crtc base;
char name[8];
int id;
int ovlp;
enum mdp4_dma dma;
bool enabled;
/* which mixer/encoder we route output to: */
int mixer;
struct {
spinlock_t lock;
bool stale;
uint32_t width, height;
uint32_t x, y;
/* next cursor to scan-out: */
uint32_t next_iova;
struct drm_gem_object *next_bo;
/* current cursor being scanned out: */
struct drm_gem_object *scanout_bo;
} cursor;
/* if there is a pending flip, these will be non-null: */
struct drm_pending_vblank_event *event;
/* Bits have been flushed at the last commit,
* used to decide if a vsync has happened since last commit.
*/
u32 flushed_mask;
#define PENDING_CURSOR 0x1
#define PENDING_FLIP 0x2
atomic_t pending;
/* for unref'ing cursor bo's after scanout completes: */
struct drm_flip_work unref_cursor_work;
struct mdp_irq vblank;
struct mdp_irq err;
};
#define to_mdp4_crtc(x) container_of(x, struct mdp4_crtc, base)
static struct mdp4_kms *get_kms(struct drm_crtc *crtc)
{
struct msm_drm_private *priv = crtc->dev->dev_private;
return to_mdp4_kms(to_mdp_kms(priv->kms));
}
static void request_pending(struct drm_crtc *crtc, uint32_t pending)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
atomic_or(pending, &mdp4_crtc->pending);
mdp_irq_register(&get_kms(crtc)->base, &mdp4_crtc->vblank);
}
static void crtc_flush(struct drm_crtc *crtc)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
struct mdp4_kms *mdp4_kms = get_kms(crtc);
struct drm_plane *plane;
uint32_t flush = 0;
drm_atomic_crtc_for_each_plane(plane, crtc) {
enum mdp4_pipe pipe_id = mdp4_plane_pipe(plane);
flush |= pipe2flush(pipe_id);
}
flush |= ovlp2flush(mdp4_crtc->ovlp);
DBG("%s: flush=%08x", mdp4_crtc->name, flush);
mdp4_crtc->flushed_mask = flush;
mdp4_write(mdp4_kms, REG_MDP4_OVERLAY_FLUSH, flush);
}
/* if file!=NULL, this is preclose potential cancel-flip path */
static void complete_flip(struct drm_crtc *crtc, struct drm_file *file)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct drm_pending_vblank_event *event;
unsigned long flags;
spin_lock_irqsave(&dev->event_lock, flags);
event = mdp4_crtc->event;
if (event) {
/* if regular vblank case (!file) or if cancel-flip from
* preclose on file that requested flip, then send the
* event:
*/
if (!file || (event->base.file_priv == file)) {
mdp4_crtc->event = NULL;
DBG("%s: send event: %p", mdp4_crtc->name, event);
drm_send_vblank_event(dev, mdp4_crtc->id, event);
}
}
spin_unlock_irqrestore(&dev->event_lock, flags);
}
static void unref_cursor_worker(struct drm_flip_work *work, void *val)
{
struct mdp4_crtc *mdp4_crtc =
container_of(work, struct mdp4_crtc, unref_cursor_work);
struct mdp4_kms *mdp4_kms = get_kms(&mdp4_crtc->base);
msm_gem_put_iova(val, mdp4_kms->id);
drm_gem_object_unreference_unlocked(val);
}
static void mdp4_crtc_destroy(struct drm_crtc *crtc)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
drm_crtc_cleanup(crtc);
drm_flip_work_cleanup(&mdp4_crtc->unref_cursor_work);
kfree(mdp4_crtc);
}
/* statically (for now) map planes to mixer stage (z-order): */
static const int idxs[] = {
[VG1] = 1,
[VG2] = 2,
[RGB1] = 0,
[RGB2] = 0,
[RGB3] = 0,
[VG3] = 3,
[VG4] = 4,
};
/* setup mixer config, for which we need to consider all crtc's and
* the planes attached to them
*
* TODO may possibly need some extra locking here
*/
static void setup_mixer(struct mdp4_kms *mdp4_kms)
{
struct drm_mode_config *config = &mdp4_kms->dev->mode_config;
struct drm_crtc *crtc;
uint32_t mixer_cfg = 0;
static const enum mdp_mixer_stage_id stages[] = {
STAGE_BASE, STAGE0, STAGE1, STAGE2, STAGE3,
};
list_for_each_entry(crtc, &config->crtc_list, head) {
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
struct drm_plane *plane;
drm_atomic_crtc_for_each_plane(plane, crtc) {
enum mdp4_pipe pipe_id = mdp4_plane_pipe(plane);
int idx = idxs[pipe_id];
mixer_cfg = mixercfg(mixer_cfg, mdp4_crtc->mixer,
pipe_id, stages[idx]);
}
}
mdp4_write(mdp4_kms, REG_MDP4_LAYERMIXER_IN_CFG, mixer_cfg);
}
static void blend_setup(struct drm_crtc *crtc)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
struct mdp4_kms *mdp4_kms = get_kms(crtc);
struct drm_plane *plane;
int i, ovlp = mdp4_crtc->ovlp;
bool alpha[4]= { false, false, false, false };
mdp4_write(mdp4_kms, REG_MDP4_OVLP_TRANSP_LOW0(ovlp), 0);
mdp4_write(mdp4_kms, REG_MDP4_OVLP_TRANSP_LOW1(ovlp), 0);
mdp4_write(mdp4_kms, REG_MDP4_OVLP_TRANSP_HIGH0(ovlp), 0);
mdp4_write(mdp4_kms, REG_MDP4_OVLP_TRANSP_HIGH1(ovlp), 0);
drm_atomic_crtc_for_each_plane(plane, crtc) {
enum mdp4_pipe pipe_id = mdp4_plane_pipe(plane);
int idx = idxs[pipe_id];
if (idx > 0) {
const struct mdp_format *format =
to_mdp_format(msm_framebuffer_format(plane->fb));
alpha[idx-1] = format->alpha_enable;
}
}
for (i = 0; i < 4; i++) {
uint32_t op;
if (alpha[i]) {
op = MDP4_OVLP_STAGE_OP_FG_ALPHA(FG_PIXEL) |
MDP4_OVLP_STAGE_OP_BG_ALPHA(FG_PIXEL) |
MDP4_OVLP_STAGE_OP_BG_INV_ALPHA;
} else {
op = MDP4_OVLP_STAGE_OP_FG_ALPHA(FG_CONST) |
MDP4_OVLP_STAGE_OP_BG_ALPHA(BG_CONST);
}
mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_FG_ALPHA(ovlp, i), 0xff);
mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_BG_ALPHA(ovlp, i), 0x00);
mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_OP(ovlp, i), op);
mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_CO3(ovlp, i), 1);
mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_TRANSP_LOW0(ovlp, i), 0);
mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_TRANSP_LOW1(ovlp, i), 0);
mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_TRANSP_HIGH0(ovlp, i), 0);
mdp4_write(mdp4_kms, REG_MDP4_OVLP_STAGE_TRANSP_HIGH1(ovlp, i), 0);
}
setup_mixer(mdp4_kms);
}
static void mdp4_crtc_mode_set_nofb(struct drm_crtc *crtc)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
struct mdp4_kms *mdp4_kms = get_kms(crtc);
enum mdp4_dma dma = mdp4_crtc->dma;
int ovlp = mdp4_crtc->ovlp;
struct drm_display_mode *mode;
if (WARN_ON(!crtc->state))
return;
mode = &crtc->state->adjusted_mode;
DBG("%s: set mode: %d:\"%s\" %d %d %d %d %d %d %d %d %d %d 0x%x 0x%x",
mdp4_crtc->name, mode->base.id, mode->name,
mode->vrefresh, mode->clock,
mode->hdisplay, mode->hsync_start,
mode->hsync_end, mode->htotal,
mode->vdisplay, mode->vsync_start,
mode->vsync_end, mode->vtotal,
mode->type, mode->flags);
mdp4_write(mdp4_kms, REG_MDP4_DMA_SRC_SIZE(dma),
MDP4_DMA_SRC_SIZE_WIDTH(mode->hdisplay) |
MDP4_DMA_SRC_SIZE_HEIGHT(mode->vdisplay));
/* take data from pipe: */
mdp4_write(mdp4_kms, REG_MDP4_DMA_SRC_BASE(dma), 0);
mdp4_write(mdp4_kms, REG_MDP4_DMA_SRC_STRIDE(dma), 0);
mdp4_write(mdp4_kms, REG_MDP4_DMA_DST_SIZE(dma),
MDP4_DMA_DST_SIZE_WIDTH(0) |
MDP4_DMA_DST_SIZE_HEIGHT(0));
mdp4_write(mdp4_kms, REG_MDP4_OVLP_BASE(ovlp), 0);
mdp4_write(mdp4_kms, REG_MDP4_OVLP_SIZE(ovlp),
MDP4_OVLP_SIZE_WIDTH(mode->hdisplay) |
MDP4_OVLP_SIZE_HEIGHT(mode->vdisplay));
mdp4_write(mdp4_kms, REG_MDP4_OVLP_STRIDE(ovlp), 0);
mdp4_write(mdp4_kms, REG_MDP4_OVLP_CFG(ovlp), 1);
if (dma == DMA_E) {
mdp4_write(mdp4_kms, REG_MDP4_DMA_E_QUANT(0), 0x00ff0000);
mdp4_write(mdp4_kms, REG_MDP4_DMA_E_QUANT(1), 0x00ff0000);
mdp4_write(mdp4_kms, REG_MDP4_DMA_E_QUANT(2), 0x00ff0000);
}
}
static void mdp4_crtc_disable(struct drm_crtc *crtc)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
struct mdp4_kms *mdp4_kms = get_kms(crtc);
DBG("%s", mdp4_crtc->name);
if (WARN_ON(!mdp4_crtc->enabled))
return;
mdp_irq_unregister(&mdp4_kms->base, &mdp4_crtc->err);
mdp4_disable(mdp4_kms);
mdp4_crtc->enabled = false;
}
static void mdp4_crtc_enable(struct drm_crtc *crtc)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
struct mdp4_kms *mdp4_kms = get_kms(crtc);
DBG("%s", mdp4_crtc->name);
if (WARN_ON(mdp4_crtc->enabled))
return;
mdp4_enable(mdp4_kms);
mdp_irq_register(&mdp4_kms->base, &mdp4_crtc->err);
crtc_flush(crtc);
mdp4_crtc->enabled = true;
}
static int mdp4_crtc_atomic_check(struct drm_crtc *crtc,
struct drm_crtc_state *state)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
DBG("%s: check", mdp4_crtc->name);
// TODO anything else to check?
return 0;
}
static void mdp4_crtc_atomic_begin(struct drm_crtc *crtc,
struct drm_crtc_state *old_crtc_state)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
DBG("%s: begin", mdp4_crtc->name);
}
static void mdp4_crtc_atomic_flush(struct drm_crtc *crtc,
struct drm_crtc_state *old_crtc_state)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
struct drm_device *dev = crtc->dev;
unsigned long flags;
DBG("%s: event: %p", mdp4_crtc->name, crtc->state->event);
WARN_ON(mdp4_crtc->event);
spin_lock_irqsave(&dev->event_lock, flags);
mdp4_crtc->event = crtc->state->event;
spin_unlock_irqrestore(&dev->event_lock, flags);
blend_setup(crtc);
crtc_flush(crtc);
request_pending(crtc, PENDING_FLIP);
}
#define CURSOR_WIDTH 64
#define CURSOR_HEIGHT 64
/* called from IRQ to update cursor related registers (if needed). The
* cursor registers, other than x/y position, appear not to be double
* buffered, and changing them other than from vblank seems to trigger
* underflow.
*/
static void update_cursor(struct drm_crtc *crtc)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
struct mdp4_kms *mdp4_kms = get_kms(crtc);
enum mdp4_dma dma = mdp4_crtc->dma;
unsigned long flags;
spin_lock_irqsave(&mdp4_crtc->cursor.lock, flags);
if (mdp4_crtc->cursor.stale) {
struct drm_gem_object *next_bo = mdp4_crtc->cursor.next_bo;
struct drm_gem_object *prev_bo = mdp4_crtc->cursor.scanout_bo;
uint32_t iova = mdp4_crtc->cursor.next_iova;
if (next_bo) {
/* take a obj ref + iova ref when we start scanning out: */
drm_gem_object_reference(next_bo);
msm_gem_get_iova_locked(next_bo, mdp4_kms->id, &iova);
/* enable cursor: */
mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_SIZE(dma),
MDP4_DMA_CURSOR_SIZE_WIDTH(mdp4_crtc->cursor.width) |
MDP4_DMA_CURSOR_SIZE_HEIGHT(mdp4_crtc->cursor.height));
mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_BASE(dma), iova);
mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_BLEND_CONFIG(dma),
MDP4_DMA_CURSOR_BLEND_CONFIG_FORMAT(CURSOR_ARGB) |
MDP4_DMA_CURSOR_BLEND_CONFIG_CURSOR_EN);
} else {
/* disable cursor: */
mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_BASE(dma),
mdp4_kms->blank_cursor_iova);
}
/* and drop the iova ref + obj rev when done scanning out: */
if (prev_bo)
drm_flip_work_queue(&mdp4_crtc->unref_cursor_work, prev_bo);
mdp4_crtc->cursor.scanout_bo = next_bo;
mdp4_crtc->cursor.stale = false;
}
mdp4_write(mdp4_kms, REG_MDP4_DMA_CURSOR_POS(dma),
MDP4_DMA_CURSOR_POS_X(mdp4_crtc->cursor.x) |
MDP4_DMA_CURSOR_POS_Y(mdp4_crtc->cursor.y));
spin_unlock_irqrestore(&mdp4_crtc->cursor.lock, flags);
}
static int mdp4_crtc_cursor_set(struct drm_crtc *crtc,
struct drm_file *file_priv, uint32_t handle,
uint32_t width, uint32_t height)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
struct mdp4_kms *mdp4_kms = get_kms(crtc);
struct drm_device *dev = crtc->dev;
struct drm_gem_object *cursor_bo, *old_bo;
unsigned long flags;
uint32_t iova;
int ret;
if ((width > CURSOR_WIDTH) || (height > CURSOR_HEIGHT)) {
dev_err(dev->dev, "bad cursor size: %dx%d\n", width, height);
return -EINVAL;
}
if (handle) {
cursor_bo = drm_gem_object_lookup(dev, file_priv, handle);
if (!cursor_bo)
return -ENOENT;
} else {
cursor_bo = NULL;
}
if (cursor_bo) {
ret = msm_gem_get_iova(cursor_bo, mdp4_kms->id, &iova);
if (ret)
goto fail;
} else {
iova = 0;
}
spin_lock_irqsave(&mdp4_crtc->cursor.lock, flags);
old_bo = mdp4_crtc->cursor.next_bo;
mdp4_crtc->cursor.next_bo = cursor_bo;
mdp4_crtc->cursor.next_iova = iova;
mdp4_crtc->cursor.width = width;
mdp4_crtc->cursor.height = height;
mdp4_crtc->cursor.stale = true;
spin_unlock_irqrestore(&mdp4_crtc->cursor.lock, flags);
if (old_bo) {
/* drop our previous reference: */
drm_flip_work_queue(&mdp4_crtc->unref_cursor_work, old_bo);
}
request_pending(crtc, PENDING_CURSOR);
return 0;
fail:
drm_gem_object_unreference_unlocked(cursor_bo);
return ret;
}
static int mdp4_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
unsigned long flags;
spin_lock_irqsave(&mdp4_crtc->cursor.lock, flags);
mdp4_crtc->cursor.x = x;
mdp4_crtc->cursor.y = y;
spin_unlock_irqrestore(&mdp4_crtc->cursor.lock, flags);
crtc_flush(crtc);
request_pending(crtc, PENDING_CURSOR);
return 0;
}
static const struct drm_crtc_funcs mdp4_crtc_funcs = {
.set_config = drm_atomic_helper_set_config,
.destroy = mdp4_crtc_destroy,
.page_flip = drm_atomic_helper_page_flip,
.set_property = drm_atomic_helper_crtc_set_property,
.cursor_set = mdp4_crtc_cursor_set,
.cursor_move = mdp4_crtc_cursor_move,
.reset = drm_atomic_helper_crtc_reset,
.atomic_duplicate_state = drm_atomic_helper_crtc_duplicate_state,
.atomic_destroy_state = drm_atomic_helper_crtc_destroy_state,
};
static const struct drm_crtc_helper_funcs mdp4_crtc_helper_funcs = {
.mode_set_nofb = mdp4_crtc_mode_set_nofb,
.disable = mdp4_crtc_disable,
.enable = mdp4_crtc_enable,
.atomic_check = mdp4_crtc_atomic_check,
.atomic_begin = mdp4_crtc_atomic_begin,
.atomic_flush = mdp4_crtc_atomic_flush,
};
static void mdp4_crtc_vblank_irq(struct mdp_irq *irq, uint32_t irqstatus)
{
struct mdp4_crtc *mdp4_crtc = container_of(irq, struct mdp4_crtc, vblank);
struct drm_crtc *crtc = &mdp4_crtc->base;
struct msm_drm_private *priv = crtc->dev->dev_private;
unsigned pending;
mdp_irq_unregister(&get_kms(crtc)->base, &mdp4_crtc->vblank);
pending = atomic_xchg(&mdp4_crtc->pending, 0);
if (pending & PENDING_FLIP) {
complete_flip(crtc, NULL);
}
if (pending & PENDING_CURSOR) {
update_cursor(crtc);
drm_flip_work_commit(&mdp4_crtc->unref_cursor_work, priv->wq);
}
}
static void mdp4_crtc_err_irq(struct mdp_irq *irq, uint32_t irqstatus)
{
struct mdp4_crtc *mdp4_crtc = container_of(irq, struct mdp4_crtc, err);
struct drm_crtc *crtc = &mdp4_crtc->base;
DBG("%s: error: %08x", mdp4_crtc->name, irqstatus);
crtc_flush(crtc);
}
static void mdp4_crtc_wait_for_flush_done(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
struct mdp4_kms *mdp4_kms = get_kms(crtc);
int ret;
ret = drm_crtc_vblank_get(crtc);
if (ret)
return;
ret = wait_event_timeout(dev->vblank[drm_crtc_index(crtc)].queue,
!(mdp4_read(mdp4_kms, REG_MDP4_OVERLAY_FLUSH) &
mdp4_crtc->flushed_mask),
msecs_to_jiffies(50));
if (ret <= 0)
dev_warn(dev->dev, "vblank time out, crtc=%d\n", mdp4_crtc->id);
mdp4_crtc->flushed_mask = 0;
drm_crtc_vblank_put(crtc);
}
uint32_t mdp4_crtc_vblank(struct drm_crtc *crtc)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
return mdp4_crtc->vblank.irqmask;
}
/* set dma config, ie. the format the encoder wants. */
void mdp4_crtc_set_config(struct drm_crtc *crtc, uint32_t config)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
struct mdp4_kms *mdp4_kms = get_kms(crtc);
mdp4_write(mdp4_kms, REG_MDP4_DMA_CONFIG(mdp4_crtc->dma), config);
}
/* set interface for routing crtc->encoder: */
void mdp4_crtc_set_intf(struct drm_crtc *crtc, enum mdp4_intf intf, int mixer)
{
struct mdp4_crtc *mdp4_crtc = to_mdp4_crtc(crtc);
struct mdp4_kms *mdp4_kms = get_kms(crtc);
uint32_t intf_sel;
intf_sel = mdp4_read(mdp4_kms, REG_MDP4_DISP_INTF_SEL);
switch (mdp4_crtc->dma) {
case DMA_P:
intf_sel &= ~MDP4_DISP_INTF_SEL_PRIM__MASK;
intf_sel |= MDP4_DISP_INTF_SEL_PRIM(intf);
break;
case DMA_S:
intf_sel &= ~MDP4_DISP_INTF_SEL_SEC__MASK;
intf_sel |= MDP4_DISP_INTF_SEL_SEC(intf);
break;
case DMA_E:
intf_sel &= ~MDP4_DISP_INTF_SEL_EXT__MASK;
intf_sel |= MDP4_DISP_INTF_SEL_EXT(intf);
break;
}
if (intf == INTF_DSI_VIDEO) {
intf_sel &= ~MDP4_DISP_INTF_SEL_DSI_CMD;
intf_sel |= MDP4_DISP_INTF_SEL_DSI_VIDEO;
} else if (intf == INTF_DSI_CMD) {
intf_sel &= ~MDP4_DISP_INTF_SEL_DSI_VIDEO;
intf_sel |= MDP4_DISP_INTF_SEL_DSI_CMD;
}
mdp4_crtc->mixer = mixer;
blend_setup(crtc);
DBG("%s: intf_sel=%08x", mdp4_crtc->name, intf_sel);
mdp4_write(mdp4_kms, REG_MDP4_DISP_INTF_SEL, intf_sel);
}
void mdp4_crtc_wait_for_commit_done(struct drm_crtc *crtc)
{
/* wait_for_flush_done is the only case for now.
* Later we will have command mode CRTC to wait for
* other event.
*/
mdp4_crtc_wait_for_flush_done(crtc);
}
static const char *dma_names[] = {
"DMA_P", "DMA_S", "DMA_E",
};
/* initialize crtc */
struct drm_crtc *mdp4_crtc_init(struct drm_device *dev,
struct drm_plane *plane, int id, int ovlp_id,
enum mdp4_dma dma_id)
{
struct drm_crtc *crtc = NULL;
struct mdp4_crtc *mdp4_crtc;
mdp4_crtc = kzalloc(sizeof(*mdp4_crtc), GFP_KERNEL);
if (!mdp4_crtc)
return ERR_PTR(-ENOMEM);
crtc = &mdp4_crtc->base;
mdp4_crtc->id = id;
mdp4_crtc->ovlp = ovlp_id;
mdp4_crtc->dma = dma_id;
mdp4_crtc->vblank.irqmask = dma2irq(mdp4_crtc->dma);
mdp4_crtc->vblank.irq = mdp4_crtc_vblank_irq;
mdp4_crtc->err.irqmask = dma2err(mdp4_crtc->dma);
mdp4_crtc->err.irq = mdp4_crtc_err_irq;
snprintf(mdp4_crtc->name, sizeof(mdp4_crtc->name), "%s:%d",
dma_names[dma_id], ovlp_id);
spin_lock_init(&mdp4_crtc->cursor.lock);
drm_flip_work_init(&mdp4_crtc->unref_cursor_work,
"unref cursor", unref_cursor_worker);
drm_crtc_init_with_planes(dev, crtc, plane, NULL, &mdp4_crtc_funcs,
NULL);
drm_crtc_helper_add(crtc, &mdp4_crtc_helper_funcs);
plane->crtc = crtc;
return crtc;
}