blob: 8d8081c6bd3850f62a18d2b9879341ea3ce6c89f [file] [log] [blame]
/*
* Copyright 2019 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#define SWSMU_CODE_LAYER_L2
#include <linux/firmware.h>
#include <linux/pci.h>
#include <linux/i2c.h>
#include "amdgpu.h"
#include "amdgpu_smu.h"
#include "atomfirmware.h"
#include "amdgpu_atomfirmware.h"
#include "amdgpu_atombios.h"
#include "soc15_common.h"
#include "smu_v11_0.h"
#include "smu11_driver_if_navi10.h"
#include "atom.h"
#include "navi10_ppt.h"
#include "smu_v11_0_pptable.h"
#include "smu_v11_0_ppsmc.h"
#include "nbio/nbio_2_3_offset.h"
#include "nbio/nbio_2_3_sh_mask.h"
#include "thm/thm_11_0_2_offset.h"
#include "thm/thm_11_0_2_sh_mask.h"
#include "asic_reg/mp/mp_11_0_sh_mask.h"
#include "smu_cmn.h"
#include "smu_11_0_cdr_table.h"
/*
* DO NOT use these for err/warn/info/debug messages.
* Use dev_err, dev_warn, dev_info and dev_dbg instead.
* They are more MGPU friendly.
*/
#undef pr_err
#undef pr_warn
#undef pr_info
#undef pr_debug
#define to_amdgpu_device(x) (container_of(x, struct amdgpu_device, pm.smu_i2c))
#define FEATURE_MASK(feature) (1ULL << feature)
#define SMC_DPM_FEATURE ( \
FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT) | \
FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_GFX_PACE_BIT) | \
FEATURE_MASK(FEATURE_DPM_UCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT) | \
FEATURE_MASK(FEATURE_DPM_LINK_BIT) | \
FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT))
static struct cmn2asic_msg_mapping navi10_message_map[SMU_MSG_MAX_COUNT] = {
MSG_MAP(TestMessage, PPSMC_MSG_TestMessage, 1),
MSG_MAP(GetSmuVersion, PPSMC_MSG_GetSmuVersion, 1),
MSG_MAP(GetDriverIfVersion, PPSMC_MSG_GetDriverIfVersion, 1),
MSG_MAP(SetAllowedFeaturesMaskLow, PPSMC_MSG_SetAllowedFeaturesMaskLow, 0),
MSG_MAP(SetAllowedFeaturesMaskHigh, PPSMC_MSG_SetAllowedFeaturesMaskHigh, 0),
MSG_MAP(EnableAllSmuFeatures, PPSMC_MSG_EnableAllSmuFeatures, 0),
MSG_MAP(DisableAllSmuFeatures, PPSMC_MSG_DisableAllSmuFeatures, 0),
MSG_MAP(EnableSmuFeaturesLow, PPSMC_MSG_EnableSmuFeaturesLow, 1),
MSG_MAP(EnableSmuFeaturesHigh, PPSMC_MSG_EnableSmuFeaturesHigh, 1),
MSG_MAP(DisableSmuFeaturesLow, PPSMC_MSG_DisableSmuFeaturesLow, 1),
MSG_MAP(DisableSmuFeaturesHigh, PPSMC_MSG_DisableSmuFeaturesHigh, 1),
MSG_MAP(GetEnabledSmuFeaturesLow, PPSMC_MSG_GetEnabledSmuFeaturesLow, 1),
MSG_MAP(GetEnabledSmuFeaturesHigh, PPSMC_MSG_GetEnabledSmuFeaturesHigh, 1),
MSG_MAP(SetWorkloadMask, PPSMC_MSG_SetWorkloadMask, 1),
MSG_MAP(SetPptLimit, PPSMC_MSG_SetPptLimit, 0),
MSG_MAP(SetDriverDramAddrHigh, PPSMC_MSG_SetDriverDramAddrHigh, 0),
MSG_MAP(SetDriverDramAddrLow, PPSMC_MSG_SetDriverDramAddrLow, 0),
MSG_MAP(SetToolsDramAddrHigh, PPSMC_MSG_SetToolsDramAddrHigh, 0),
MSG_MAP(SetToolsDramAddrLow, PPSMC_MSG_SetToolsDramAddrLow, 0),
MSG_MAP(TransferTableSmu2Dram, PPSMC_MSG_TransferTableSmu2Dram, 0),
MSG_MAP(TransferTableDram2Smu, PPSMC_MSG_TransferTableDram2Smu, 0),
MSG_MAP(UseDefaultPPTable, PPSMC_MSG_UseDefaultPPTable, 0),
MSG_MAP(UseBackupPPTable, PPSMC_MSG_UseBackupPPTable, 0),
MSG_MAP(RunBtc, PPSMC_MSG_RunBtc, 0),
MSG_MAP(EnterBaco, PPSMC_MSG_EnterBaco, 0),
MSG_MAP(SetSoftMinByFreq, PPSMC_MSG_SetSoftMinByFreq, 0),
MSG_MAP(SetSoftMaxByFreq, PPSMC_MSG_SetSoftMaxByFreq, 0),
MSG_MAP(SetHardMinByFreq, PPSMC_MSG_SetHardMinByFreq, 1),
MSG_MAP(SetHardMaxByFreq, PPSMC_MSG_SetHardMaxByFreq, 0),
MSG_MAP(GetMinDpmFreq, PPSMC_MSG_GetMinDpmFreq, 1),
MSG_MAP(GetMaxDpmFreq, PPSMC_MSG_GetMaxDpmFreq, 1),
MSG_MAP(GetDpmFreqByIndex, PPSMC_MSG_GetDpmFreqByIndex, 1),
MSG_MAP(SetMemoryChannelConfig, PPSMC_MSG_SetMemoryChannelConfig, 0),
MSG_MAP(SetGeminiMode, PPSMC_MSG_SetGeminiMode, 0),
MSG_MAP(SetGeminiApertureHigh, PPSMC_MSG_SetGeminiApertureHigh, 0),
MSG_MAP(SetGeminiApertureLow, PPSMC_MSG_SetGeminiApertureLow, 0),
MSG_MAP(OverridePcieParameters, PPSMC_MSG_OverridePcieParameters, 0),
MSG_MAP(SetMinDeepSleepDcefclk, PPSMC_MSG_SetMinDeepSleepDcefclk, 0),
MSG_MAP(ReenableAcDcInterrupt, PPSMC_MSG_ReenableAcDcInterrupt, 0),
MSG_MAP(NotifyPowerSource, PPSMC_MSG_NotifyPowerSource, 0),
MSG_MAP(SetUclkFastSwitch, PPSMC_MSG_SetUclkFastSwitch, 0),
MSG_MAP(SetVideoFps, PPSMC_MSG_SetVideoFps, 0),
MSG_MAP(PrepareMp1ForUnload, PPSMC_MSG_PrepareMp1ForUnload, 1),
MSG_MAP(DramLogSetDramAddrHigh, PPSMC_MSG_DramLogSetDramAddrHigh, 0),
MSG_MAP(DramLogSetDramAddrLow, PPSMC_MSG_DramLogSetDramAddrLow, 0),
MSG_MAP(DramLogSetDramSize, PPSMC_MSG_DramLogSetDramSize, 0),
MSG_MAP(ConfigureGfxDidt, PPSMC_MSG_ConfigureGfxDidt, 0),
MSG_MAP(NumOfDisplays, PPSMC_MSG_NumOfDisplays, 0),
MSG_MAP(SetSystemVirtualDramAddrHigh, PPSMC_MSG_SetSystemVirtualDramAddrHigh, 0),
MSG_MAP(SetSystemVirtualDramAddrLow, PPSMC_MSG_SetSystemVirtualDramAddrLow, 0),
MSG_MAP(AllowGfxOff, PPSMC_MSG_AllowGfxOff, 0),
MSG_MAP(DisallowGfxOff, PPSMC_MSG_DisallowGfxOff, 0),
MSG_MAP(GetPptLimit, PPSMC_MSG_GetPptLimit, 0),
MSG_MAP(GetDcModeMaxDpmFreq, PPSMC_MSG_GetDcModeMaxDpmFreq, 1),
MSG_MAP(GetDebugData, PPSMC_MSG_GetDebugData, 0),
MSG_MAP(ExitBaco, PPSMC_MSG_ExitBaco, 0),
MSG_MAP(PrepareMp1ForReset, PPSMC_MSG_PrepareMp1ForReset, 0),
MSG_MAP(PrepareMp1ForShutdown, PPSMC_MSG_PrepareMp1ForShutdown, 0),
MSG_MAP(PowerUpVcn, PPSMC_MSG_PowerUpVcn, 0),
MSG_MAP(PowerDownVcn, PPSMC_MSG_PowerDownVcn, 0),
MSG_MAP(PowerUpJpeg, PPSMC_MSG_PowerUpJpeg, 0),
MSG_MAP(PowerDownJpeg, PPSMC_MSG_PowerDownJpeg, 0),
MSG_MAP(BacoAudioD3PME, PPSMC_MSG_BacoAudioD3PME, 0),
MSG_MAP(ArmD3, PPSMC_MSG_ArmD3, 0),
MSG_MAP(DAL_DISABLE_DUMMY_PSTATE_CHANGE,PPSMC_MSG_DALDisableDummyPstateChange, 0),
MSG_MAP(DAL_ENABLE_DUMMY_PSTATE_CHANGE, PPSMC_MSG_DALEnableDummyPstateChange, 0),
MSG_MAP(GetVoltageByDpm, PPSMC_MSG_GetVoltageByDpm, 0),
MSG_MAP(GetVoltageByDpmOverdrive, PPSMC_MSG_GetVoltageByDpmOverdrive, 0),
MSG_MAP(SetMGpuFanBoostLimitRpm, PPSMC_MSG_SetMGpuFanBoostLimitRpm, 0),
MSG_MAP(SET_DRIVER_DUMMY_TABLE_DRAM_ADDR_HIGH, PPSMC_MSG_SetDriverDummyTableDramAddrHigh, 0),
MSG_MAP(SET_DRIVER_DUMMY_TABLE_DRAM_ADDR_LOW, PPSMC_MSG_SetDriverDummyTableDramAddrLow, 0),
MSG_MAP(GET_UMC_FW_WA, PPSMC_MSG_GetUMCFWWA, 0),
};
static struct cmn2asic_mapping navi10_clk_map[SMU_CLK_COUNT] = {
CLK_MAP(GFXCLK, PPCLK_GFXCLK),
CLK_MAP(SCLK, PPCLK_GFXCLK),
CLK_MAP(SOCCLK, PPCLK_SOCCLK),
CLK_MAP(FCLK, PPCLK_SOCCLK),
CLK_MAP(UCLK, PPCLK_UCLK),
CLK_MAP(MCLK, PPCLK_UCLK),
CLK_MAP(DCLK, PPCLK_DCLK),
CLK_MAP(VCLK, PPCLK_VCLK),
CLK_MAP(DCEFCLK, PPCLK_DCEFCLK),
CLK_MAP(DISPCLK, PPCLK_DISPCLK),
CLK_MAP(PIXCLK, PPCLK_PIXCLK),
CLK_MAP(PHYCLK, PPCLK_PHYCLK),
};
static struct cmn2asic_mapping navi10_feature_mask_map[SMU_FEATURE_COUNT] = {
FEA_MAP(DPM_PREFETCHER),
FEA_MAP(DPM_GFXCLK),
FEA_MAP(DPM_GFX_PACE),
FEA_MAP(DPM_UCLK),
FEA_MAP(DPM_SOCCLK),
FEA_MAP(DPM_MP0CLK),
FEA_MAP(DPM_LINK),
FEA_MAP(DPM_DCEFCLK),
FEA_MAP(MEM_VDDCI_SCALING),
FEA_MAP(MEM_MVDD_SCALING),
FEA_MAP(DS_GFXCLK),
FEA_MAP(DS_SOCCLK),
FEA_MAP(DS_LCLK),
FEA_MAP(DS_DCEFCLK),
FEA_MAP(DS_UCLK),
FEA_MAP(GFX_ULV),
FEA_MAP(FW_DSTATE),
FEA_MAP(GFXOFF),
FEA_MAP(BACO),
FEA_MAP(VCN_PG),
FEA_MAP(JPEG_PG),
FEA_MAP(USB_PG),
FEA_MAP(RSMU_SMN_CG),
FEA_MAP(PPT),
FEA_MAP(TDC),
FEA_MAP(GFX_EDC),
FEA_MAP(APCC_PLUS),
FEA_MAP(GTHR),
FEA_MAP(ACDC),
FEA_MAP(VR0HOT),
FEA_MAP(VR1HOT),
FEA_MAP(FW_CTF),
FEA_MAP(FAN_CONTROL),
FEA_MAP(THERMAL),
FEA_MAP(GFX_DCS),
FEA_MAP(RM),
FEA_MAP(LED_DISPLAY),
FEA_MAP(GFX_SS),
FEA_MAP(OUT_OF_BAND_MONITOR),
FEA_MAP(TEMP_DEPENDENT_VMIN),
FEA_MAP(MMHUB_PG),
FEA_MAP(ATHUB_PG),
FEA_MAP(APCC_DFLL),
};
static struct cmn2asic_mapping navi10_table_map[SMU_TABLE_COUNT] = {
TAB_MAP(PPTABLE),
TAB_MAP(WATERMARKS),
TAB_MAP(AVFS),
TAB_MAP(AVFS_PSM_DEBUG),
TAB_MAP(AVFS_FUSE_OVERRIDE),
TAB_MAP(PMSTATUSLOG),
TAB_MAP(SMU_METRICS),
TAB_MAP(DRIVER_SMU_CONFIG),
TAB_MAP(ACTIVITY_MONITOR_COEFF),
TAB_MAP(OVERDRIVE),
TAB_MAP(I2C_COMMANDS),
TAB_MAP(PACE),
};
static struct cmn2asic_mapping navi10_pwr_src_map[SMU_POWER_SOURCE_COUNT] = {
PWR_MAP(AC),
PWR_MAP(DC),
};
static struct cmn2asic_mapping navi10_workload_map[PP_SMC_POWER_PROFILE_COUNT] = {
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_BOOTUP_DEFAULT, WORKLOAD_PPLIB_DEFAULT_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_FULLSCREEN3D, WORKLOAD_PPLIB_FULL_SCREEN_3D_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_POWERSAVING, WORKLOAD_PPLIB_POWER_SAVING_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VIDEO, WORKLOAD_PPLIB_VIDEO_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_VR, WORKLOAD_PPLIB_VR_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_COMPUTE, WORKLOAD_PPLIB_COMPUTE_BIT),
WORKLOAD_MAP(PP_SMC_POWER_PROFILE_CUSTOM, WORKLOAD_PPLIB_CUSTOM_BIT),
};
static bool is_asic_secure(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
bool is_secure = true;
uint32_t mp0_fw_intf;
mp0_fw_intf = RREG32_PCIE(MP0_Public |
(smnMP0_FW_INTF & 0xffffffff));
if (!(mp0_fw_intf & (1 << 19)))
is_secure = false;
return is_secure;
}
static int
navi10_get_allowed_feature_mask(struct smu_context *smu,
uint32_t *feature_mask, uint32_t num)
{
struct amdgpu_device *adev = smu->adev;
if (num > 2)
return -EINVAL;
memset(feature_mask, 0, sizeof(uint32_t) * num);
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_PREFETCHER_BIT)
| FEATURE_MASK(FEATURE_DPM_MP0CLK_BIT)
| FEATURE_MASK(FEATURE_RSMU_SMN_CG_BIT)
| FEATURE_MASK(FEATURE_DS_SOCCLK_BIT)
| FEATURE_MASK(FEATURE_PPT_BIT)
| FEATURE_MASK(FEATURE_TDC_BIT)
| FEATURE_MASK(FEATURE_GFX_EDC_BIT)
| FEATURE_MASK(FEATURE_APCC_PLUS_BIT)
| FEATURE_MASK(FEATURE_VR0HOT_BIT)
| FEATURE_MASK(FEATURE_FAN_CONTROL_BIT)
| FEATURE_MASK(FEATURE_THERMAL_BIT)
| FEATURE_MASK(FEATURE_LED_DISPLAY_BIT)
| FEATURE_MASK(FEATURE_DS_LCLK_BIT)
| FEATURE_MASK(FEATURE_DS_DCEFCLK_BIT)
| FEATURE_MASK(FEATURE_FW_DSTATE_BIT)
| FEATURE_MASK(FEATURE_BACO_BIT)
| FEATURE_MASK(FEATURE_GFX_SS_BIT)
| FEATURE_MASK(FEATURE_APCC_DFLL_BIT)
| FEATURE_MASK(FEATURE_FW_CTF_BIT)
| FEATURE_MASK(FEATURE_OUT_OF_BAND_MONITOR_BIT);
if (adev->pm.pp_feature & PP_SCLK_DPM_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_GFXCLK_BIT);
if (adev->pm.pp_feature & PP_PCIE_DPM_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_LINK_BIT);
if (adev->pm.pp_feature & PP_DCEFCLK_DPM_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_DCEFCLK_BIT);
if (adev->pm.pp_feature & PP_ULV_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_GFX_ULV_BIT);
if (adev->pm.pp_feature & PP_SCLK_DEEP_SLEEP_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DS_GFXCLK_BIT);
if (adev->pm.pp_feature & PP_GFXOFF_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_GFXOFF_BIT);
if (smu->adev->pg_flags & AMD_PG_SUPPORT_MMHUB)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_MMHUB_PG_BIT);
if (smu->adev->pg_flags & AMD_PG_SUPPORT_ATHUB)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_ATHUB_PG_BIT);
if (smu->adev->pg_flags & AMD_PG_SUPPORT_VCN)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_VCN_PG_BIT);
if (smu->adev->pg_flags & AMD_PG_SUPPORT_JPEG)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_JPEG_PG_BIT);
if (smu->dc_controlled_by_gpio)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_ACDC_BIT);
if (adev->pm.pp_feature & PP_SOCCLK_DPM_MASK)
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_SOCCLK_BIT);
/* DPM UCLK enablement should be skipped for navi10 A0 secure board */
if (!(is_asic_secure(smu) &&
(adev->asic_type == CHIP_NAVI10) &&
(adev->rev_id == 0)) &&
(adev->pm.pp_feature & PP_MCLK_DPM_MASK))
*(uint64_t *)feature_mask |= FEATURE_MASK(FEATURE_DPM_UCLK_BIT)
| FEATURE_MASK(FEATURE_MEM_VDDCI_SCALING_BIT)
| FEATURE_MASK(FEATURE_MEM_MVDD_SCALING_BIT);
/* DS SOCCLK enablement should be skipped for navi10 A0 secure board */
if (is_asic_secure(smu) &&
(adev->asic_type == CHIP_NAVI10) &&
(adev->rev_id == 0))
*(uint64_t *)feature_mask &=
~FEATURE_MASK(FEATURE_DS_SOCCLK_BIT);
return 0;
}
static int navi10_check_powerplay_table(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_11_0_powerplay_table *powerplay_table =
table_context->power_play_table;
struct smu_baco_context *smu_baco = &smu->smu_baco;
if (powerplay_table->platform_caps & SMU_11_0_PP_PLATFORM_CAP_HARDWAREDC)
smu->dc_controlled_by_gpio = true;
if (powerplay_table->platform_caps & SMU_11_0_PP_PLATFORM_CAP_BACO ||
powerplay_table->platform_caps & SMU_11_0_PP_PLATFORM_CAP_MACO)
smu_baco->platform_support = true;
table_context->thermal_controller_type =
powerplay_table->thermal_controller_type;
/*
* Instead of having its own buffer space and get overdrive_table copied,
* smu->od_settings just points to the actual overdrive_table
*/
smu->od_settings = &powerplay_table->overdrive_table;
return 0;
}
static int navi10_append_powerplay_table(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *smc_pptable = table_context->driver_pptable;
struct atom_smc_dpm_info_v4_5 *smc_dpm_table;
struct atom_smc_dpm_info_v4_7 *smc_dpm_table_v4_7;
int index, ret;
index = get_index_into_master_table(atom_master_list_of_data_tables_v2_1,
smc_dpm_info);
ret = amdgpu_atombios_get_data_table(adev, index, NULL, NULL, NULL,
(uint8_t **)&smc_dpm_table);
if (ret)
return ret;
dev_info(adev->dev, "smc_dpm_info table revision(format.content): %d.%d\n",
smc_dpm_table->table_header.format_revision,
smc_dpm_table->table_header.content_revision);
if (smc_dpm_table->table_header.format_revision != 4) {
dev_err(adev->dev, "smc_dpm_info table format revision is not 4!\n");
return -EINVAL;
}
switch (smc_dpm_table->table_header.content_revision) {
case 5: /* nv10 and nv14 */
memcpy(smc_pptable->I2cControllers, smc_dpm_table->I2cControllers,
sizeof(*smc_dpm_table) - sizeof(smc_dpm_table->table_header));
break;
case 7: /* nv12 */
ret = amdgpu_atombios_get_data_table(adev, index, NULL, NULL, NULL,
(uint8_t **)&smc_dpm_table_v4_7);
if (ret)
return ret;
memcpy(smc_pptable->I2cControllers, smc_dpm_table_v4_7->I2cControllers,
sizeof(*smc_dpm_table_v4_7) - sizeof(smc_dpm_table_v4_7->table_header));
break;
default:
dev_err(smu->adev->dev, "smc_dpm_info with unsupported content revision %d!\n",
smc_dpm_table->table_header.content_revision);
return -EINVAL;
}
if (adev->pm.pp_feature & PP_GFXOFF_MASK) {
/* TODO: remove it once SMU fw fix it */
smc_pptable->DebugOverrides |= DPM_OVERRIDE_DISABLE_DFLL_PLL_SHUTDOWN;
}
return 0;
}
static int navi10_store_powerplay_table(struct smu_context *smu)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_11_0_powerplay_table *powerplay_table =
table_context->power_play_table;
memcpy(table_context->driver_pptable, &powerplay_table->smc_pptable,
sizeof(PPTable_t));
return 0;
}
static int navi10_setup_pptable(struct smu_context *smu)
{
int ret = 0;
ret = smu_v11_0_setup_pptable(smu);
if (ret)
return ret;
ret = navi10_store_powerplay_table(smu);
if (ret)
return ret;
ret = navi10_append_powerplay_table(smu);
if (ret)
return ret;
ret = navi10_check_powerplay_table(smu);
if (ret)
return ret;
return ret;
}
static int navi10_tables_init(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *tables = smu_table->tables;
struct amdgpu_device *adev = smu->adev;
SMU_TABLE_INIT(tables, SMU_TABLE_PPTABLE, sizeof(PPTable_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_WATERMARKS, sizeof(Watermarks_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
if (adev->asic_type == CHIP_NAVI12)
SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_NV12_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
else
SMU_TABLE_INIT(tables, SMU_TABLE_SMU_METRICS, sizeof(SmuMetrics_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_I2C_COMMANDS, sizeof(SwI2cRequest_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_OVERDRIVE, sizeof(OverDriveTable_t),
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_PMSTATUSLOG, SMU11_TOOL_SIZE,
PAGE_SIZE, AMDGPU_GEM_DOMAIN_VRAM);
SMU_TABLE_INIT(tables, SMU_TABLE_ACTIVITY_MONITOR_COEFF,
sizeof(DpmActivityMonitorCoeffInt_t), PAGE_SIZE,
AMDGPU_GEM_DOMAIN_VRAM);
smu_table->metrics_table = kzalloc(adev->asic_type == CHIP_NAVI12 ?
sizeof(SmuMetrics_NV12_t) :
sizeof(SmuMetrics_t), GFP_KERNEL);
if (!smu_table->metrics_table)
goto err0_out;
smu_table->metrics_time = 0;
smu_table->gpu_metrics_table_size = sizeof(struct gpu_metrics_v1_0);
smu_table->gpu_metrics_table = kzalloc(smu_table->gpu_metrics_table_size, GFP_KERNEL);
if (!smu_table->gpu_metrics_table)
goto err1_out;
smu_table->watermarks_table = kzalloc(sizeof(Watermarks_t), GFP_KERNEL);
if (!smu_table->watermarks_table)
goto err2_out;
return 0;
err2_out:
kfree(smu_table->gpu_metrics_table);
err1_out:
kfree(smu_table->metrics_table);
err0_out:
return -ENOMEM;
}
static int navi10_get_smu_metrics_data(struct smu_context *smu,
MetricsMember_t member,
uint32_t *value)
{
struct smu_table_context *smu_table= &smu->smu_table;
/*
* This works for NV12 also. As although NV12 uses a different
* SmuMetrics structure from other NV1X ASICs, they share the
* same offsets for the heading parts(those members used here).
*/
SmuMetrics_t *metrics = (SmuMetrics_t *)smu_table->metrics_table;
int ret = 0;
mutex_lock(&smu->metrics_lock);
ret = smu_cmn_get_metrics_table_locked(smu,
NULL,
false);
if (ret) {
mutex_unlock(&smu->metrics_lock);
return ret;
}
switch (member) {
case METRICS_CURR_GFXCLK:
*value = metrics->CurrClock[PPCLK_GFXCLK];
break;
case METRICS_CURR_SOCCLK:
*value = metrics->CurrClock[PPCLK_SOCCLK];
break;
case METRICS_CURR_UCLK:
*value = metrics->CurrClock[PPCLK_UCLK];
break;
case METRICS_CURR_VCLK:
*value = metrics->CurrClock[PPCLK_VCLK];
break;
case METRICS_CURR_DCLK:
*value = metrics->CurrClock[PPCLK_DCLK];
break;
case METRICS_CURR_DCEFCLK:
*value = metrics->CurrClock[PPCLK_DCEFCLK];
break;
case METRICS_AVERAGE_GFXCLK:
*value = metrics->AverageGfxclkFrequency;
break;
case METRICS_AVERAGE_SOCCLK:
*value = metrics->AverageSocclkFrequency;
break;
case METRICS_AVERAGE_UCLK:
*value = metrics->AverageUclkFrequency;
break;
case METRICS_AVERAGE_GFXACTIVITY:
*value = metrics->AverageGfxActivity;
break;
case METRICS_AVERAGE_MEMACTIVITY:
*value = metrics->AverageUclkActivity;
break;
case METRICS_AVERAGE_SOCKETPOWER:
*value = metrics->AverageSocketPower << 8;
break;
case METRICS_TEMPERATURE_EDGE:
*value = metrics->TemperatureEdge *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_HOTSPOT:
*value = metrics->TemperatureHotspot *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_MEM:
*value = metrics->TemperatureMem *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_VRGFX:
*value = metrics->TemperatureVrGfx *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_TEMPERATURE_VRSOC:
*value = metrics->TemperatureVrSoc *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
break;
case METRICS_THROTTLER_STATUS:
*value = metrics->ThrottlerStatus;
break;
case METRICS_CURR_FANSPEED:
*value = metrics->CurrFanSpeed;
break;
default:
*value = UINT_MAX;
break;
}
mutex_unlock(&smu->metrics_lock);
return ret;
}
static int navi10_allocate_dpm_context(struct smu_context *smu)
{
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
smu_dpm->dpm_context = kzalloc(sizeof(struct smu_11_0_dpm_context),
GFP_KERNEL);
if (!smu_dpm->dpm_context)
return -ENOMEM;
smu_dpm->dpm_context_size = sizeof(struct smu_11_0_dpm_context);
return 0;
}
static int navi10_init_smc_tables(struct smu_context *smu)
{
int ret = 0;
ret = navi10_tables_init(smu);
if (ret)
return ret;
ret = navi10_allocate_dpm_context(smu);
if (ret)
return ret;
return smu_v11_0_init_smc_tables(smu);
}
static int navi10_set_default_dpm_table(struct smu_context *smu)
{
struct smu_11_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context;
PPTable_t *driver_ppt = smu->smu_table.driver_pptable;
struct smu_11_0_dpm_table *dpm_table;
int ret = 0;
/* socclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.soc_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_SOCCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_SOCCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.socclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* gfxclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.gfx_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_GFXCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_GFXCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_GFXCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.gfxclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* uclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.uclk_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_UCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_UCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.uclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* vclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.vclk_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_VCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_VCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.vclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* dclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.dclk_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_DCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_DCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* dcefclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.dcef_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_DCEFCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_DCEFCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* pixelclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.pixel_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_PIXCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_PIXCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* displayclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.display_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_DISPCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_DISPCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
/* phyclk dpm table setup */
dpm_table = &dpm_context->dpm_tables.phy_table;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
ret = smu_v11_0_set_single_dpm_table(smu,
SMU_PHYCLK,
dpm_table);
if (ret)
return ret;
dpm_table->is_fine_grained =
!driver_ppt->DpmDescriptor[PPCLK_PHYCLK].SnapToDiscrete;
} else {
dpm_table->count = 1;
dpm_table->dpm_levels[0].value = smu->smu_table.boot_values.dcefclk / 100;
dpm_table->dpm_levels[0].enabled = true;
dpm_table->min = dpm_table->dpm_levels[0].value;
dpm_table->max = dpm_table->dpm_levels[0].value;
}
return 0;
}
static int navi10_dpm_set_vcn_enable(struct smu_context *smu, bool enable)
{
int ret = 0;
if (enable) {
/* vcn dpm on is a prerequisite for vcn power gate messages */
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_PowerUpVcn, 1, NULL);
if (ret)
return ret;
}
} else {
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_VCN_PG_BIT)) {
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_PowerDownVcn, NULL);
if (ret)
return ret;
}
}
return ret;
}
static int navi10_dpm_set_jpeg_enable(struct smu_context *smu, bool enable)
{
int ret = 0;
if (enable) {
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) {
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_PowerUpJpeg, NULL);
if (ret)
return ret;
}
} else {
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_JPEG_PG_BIT)) {
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_PowerDownJpeg, NULL);
if (ret)
return ret;
}
}
return ret;
}
static int navi10_get_current_clk_freq_by_table(struct smu_context *smu,
enum smu_clk_type clk_type,
uint32_t *value)
{
MetricsMember_t member_type;
int clk_id = 0;
clk_id = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_CLK,
clk_type);
if (clk_id < 0)
return clk_id;
switch (clk_id) {
case PPCLK_GFXCLK:
member_type = METRICS_CURR_GFXCLK;
break;
case PPCLK_UCLK:
member_type = METRICS_CURR_UCLK;
break;
case PPCLK_SOCCLK:
member_type = METRICS_CURR_SOCCLK;
break;
case PPCLK_VCLK:
member_type = METRICS_CURR_VCLK;
break;
case PPCLK_DCLK:
member_type = METRICS_CURR_DCLK;
break;
case PPCLK_DCEFCLK:
member_type = METRICS_CURR_DCEFCLK;
break;
default:
return -EINVAL;
}
return navi10_get_smu_metrics_data(smu,
member_type,
value);
}
static bool navi10_is_support_fine_grained_dpm(struct smu_context *smu, enum smu_clk_type clk_type)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
DpmDescriptor_t *dpm_desc = NULL;
uint32_t clk_index = 0;
clk_index = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_CLK,
clk_type);
dpm_desc = &pptable->DpmDescriptor[clk_index];
/* 0 - Fine grained DPM, 1 - Discrete DPM */
return dpm_desc->SnapToDiscrete == 0 ? true : false;
}
static inline bool navi10_od_feature_is_supported(struct smu_11_0_overdrive_table *od_table, enum SMU_11_0_ODFEATURE_CAP cap)
{
return od_table->cap[cap];
}
static void navi10_od_setting_get_range(struct smu_11_0_overdrive_table *od_table,
enum SMU_11_0_ODSETTING_ID setting,
uint32_t *min, uint32_t *max)
{
if (min)
*min = od_table->min[setting];
if (max)
*max = od_table->max[setting];
}
static int navi10_print_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, char *buf)
{
uint16_t *curve_settings;
int i, size = 0, ret = 0;
uint32_t cur_value = 0, value = 0, count = 0;
uint32_t freq_values[3] = {0};
uint32_t mark_index = 0;
struct smu_table_context *table_context = &smu->smu_table;
uint32_t gen_speed, lane_width;
struct smu_dpm_context *smu_dpm = &smu->smu_dpm;
struct smu_11_0_dpm_context *dpm_context = smu_dpm->dpm_context;
PPTable_t *pptable = (PPTable_t *)table_context->driver_pptable;
OverDriveTable_t *od_table =
(OverDriveTable_t *)table_context->overdrive_table;
struct smu_11_0_overdrive_table *od_settings = smu->od_settings;
uint32_t min_value, max_value;
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
case SMU_SOCCLK:
case SMU_MCLK:
case SMU_UCLK:
case SMU_FCLK:
case SMU_DCEFCLK:
ret = navi10_get_current_clk_freq_by_table(smu, clk_type, &cur_value);
if (ret)
return size;
ret = smu_v11_0_get_dpm_level_count(smu, clk_type, &count);
if (ret)
return size;
if (!navi10_is_support_fine_grained_dpm(smu, clk_type)) {
for (i = 0; i < count; i++) {
ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, i, &value);
if (ret)
return size;
size += sprintf(buf + size, "%d: %uMhz %s\n", i, value,
cur_value == value ? "*" : "");
}
} else {
ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, 0, &freq_values[0]);
if (ret)
return size;
ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, count - 1, &freq_values[2]);
if (ret)
return size;
freq_values[1] = cur_value;
mark_index = cur_value == freq_values[0] ? 0 :
cur_value == freq_values[2] ? 2 : 1;
if (mark_index != 1)
freq_values[1] = (freq_values[0] + freq_values[2]) / 2;
for (i = 0; i < 3; i++) {
size += sprintf(buf + size, "%d: %uMhz %s\n", i, freq_values[i],
i == mark_index ? "*" : "");
}
}
break;
case SMU_PCIE:
gen_speed = smu_v11_0_get_current_pcie_link_speed_level(smu);
lane_width = smu_v11_0_get_current_pcie_link_width_level(smu);
for (i = 0; i < NUM_LINK_LEVELS; i++)
size += sprintf(buf + size, "%d: %s %s %dMhz %s\n", i,
(dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 0) ? "2.5GT/s," :
(dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 1) ? "5.0GT/s," :
(dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 2) ? "8.0GT/s," :
(dpm_context->dpm_tables.pcie_table.pcie_gen[i] == 3) ? "16.0GT/s," : "",
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 1) ? "x1" :
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 2) ? "x2" :
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 3) ? "x4" :
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 4) ? "x8" :
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 5) ? "x12" :
(dpm_context->dpm_tables.pcie_table.pcie_lane[i] == 6) ? "x16" : "",
pptable->LclkFreq[i],
(gen_speed == dpm_context->dpm_tables.pcie_table.pcie_gen[i]) &&
(lane_width == dpm_context->dpm_tables.pcie_table.pcie_lane[i]) ?
"*" : "");
break;
case SMU_OD_SCLK:
if (!smu->od_enabled || !od_table || !od_settings)
break;
if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_LIMITS))
break;
size += sprintf(buf + size, "OD_SCLK:\n");
size += sprintf(buf + size, "0: %uMhz\n1: %uMhz\n", od_table->GfxclkFmin, od_table->GfxclkFmax);
break;
case SMU_OD_MCLK:
if (!smu->od_enabled || !od_table || !od_settings)
break;
if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_UCLK_MAX))
break;
size += sprintf(buf + size, "OD_MCLK:\n");
size += sprintf(buf + size, "1: %uMHz\n", od_table->UclkFmax);
break;
case SMU_OD_VDDC_CURVE:
if (!smu->od_enabled || !od_table || !od_settings)
break;
if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_CURVE))
break;
size += sprintf(buf + size, "OD_VDDC_CURVE:\n");
for (i = 0; i < 3; i++) {
switch (i) {
case 0:
curve_settings = &od_table->GfxclkFreq1;
break;
case 1:
curve_settings = &od_table->GfxclkFreq2;
break;
case 2:
curve_settings = &od_table->GfxclkFreq3;
break;
default:
break;
}
size += sprintf(buf + size, "%d: %uMHz %umV\n", i, curve_settings[0], curve_settings[1] / NAVI10_VOLTAGE_SCALE);
}
break;
case SMU_OD_RANGE:
if (!smu->od_enabled || !od_table || !od_settings)
break;
size = sprintf(buf, "%s:\n", "OD_RANGE");
if (navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_LIMITS)) {
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_GFXCLKFMIN,
&min_value, NULL);
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_GFXCLKFMAX,
NULL, &max_value);
size += sprintf(buf + size, "SCLK: %7uMhz %10uMhz\n",
min_value, max_value);
}
if (navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_UCLK_MAX)) {
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_UCLKFMAX,
&min_value, &max_value);
size += sprintf(buf + size, "MCLK: %7uMhz %10uMhz\n",
min_value, max_value);
}
if (navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_CURVE)) {
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P1,
&min_value, &max_value);
size += sprintf(buf + size, "VDDC_CURVE_SCLK[0]: %7uMhz %10uMhz\n",
min_value, max_value);
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P1,
&min_value, &max_value);
size += sprintf(buf + size, "VDDC_CURVE_VOLT[0]: %7dmV %11dmV\n",
min_value, max_value);
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P2,
&min_value, &max_value);
size += sprintf(buf + size, "VDDC_CURVE_SCLK[1]: %7uMhz %10uMhz\n",
min_value, max_value);
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P2,
&min_value, &max_value);
size += sprintf(buf + size, "VDDC_CURVE_VOLT[1]: %7dmV %11dmV\n",
min_value, max_value);
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P3,
&min_value, &max_value);
size += sprintf(buf + size, "VDDC_CURVE_SCLK[2]: %7uMhz %10uMhz\n",
min_value, max_value);
navi10_od_setting_get_range(od_settings, SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P3,
&min_value, &max_value);
size += sprintf(buf + size, "VDDC_CURVE_VOLT[2]: %7dmV %11dmV\n",
min_value, max_value);
}
break;
default:
break;
}
return size;
}
static int navi10_force_clk_levels(struct smu_context *smu,
enum smu_clk_type clk_type, uint32_t mask)
{
int ret = 0, size = 0;
uint32_t soft_min_level = 0, soft_max_level = 0, min_freq = 0, max_freq = 0;
soft_min_level = mask ? (ffs(mask) - 1) : 0;
soft_max_level = mask ? (fls(mask) - 1) : 0;
switch (clk_type) {
case SMU_GFXCLK:
case SMU_SCLK:
case SMU_SOCCLK:
case SMU_MCLK:
case SMU_UCLK:
case SMU_DCEFCLK:
case SMU_FCLK:
/* There is only 2 levels for fine grained DPM */
if (navi10_is_support_fine_grained_dpm(smu, clk_type)) {
soft_max_level = (soft_max_level >= 1 ? 1 : 0);
soft_min_level = (soft_min_level >= 1 ? 1 : 0);
}
ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, soft_min_level, &min_freq);
if (ret)
return size;
ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, soft_max_level, &max_freq);
if (ret)
return size;
ret = smu_v11_0_set_soft_freq_limited_range(smu, clk_type, min_freq, max_freq);
if (ret)
return size;
break;
default:
break;
}
return size;
}
static int navi10_populate_umd_state_clk(struct smu_context *smu)
{
struct smu_11_0_dpm_context *dpm_context =
smu->smu_dpm.dpm_context;
struct smu_11_0_dpm_table *gfx_table =
&dpm_context->dpm_tables.gfx_table;
struct smu_11_0_dpm_table *mem_table =
&dpm_context->dpm_tables.uclk_table;
struct smu_11_0_dpm_table *soc_table =
&dpm_context->dpm_tables.soc_table;
struct smu_umd_pstate_table *pstate_table =
&smu->pstate_table;
struct amdgpu_device *adev = smu->adev;
uint32_t sclk_freq;
pstate_table->gfxclk_pstate.min = gfx_table->min;
switch (adev->asic_type) {
case CHIP_NAVI10:
switch (adev->pdev->revision) {
case 0xf0: /* XTX */
case 0xc0:
sclk_freq = NAVI10_PEAK_SCLK_XTX;
break;
case 0xf1: /* XT */
case 0xc1:
sclk_freq = NAVI10_PEAK_SCLK_XT;
break;
default: /* XL */
sclk_freq = NAVI10_PEAK_SCLK_XL;
break;
}
break;
case CHIP_NAVI14:
switch (adev->pdev->revision) {
case 0xc7: /* XT */
case 0xf4:
sclk_freq = NAVI14_UMD_PSTATE_PEAK_XT_GFXCLK;
break;
case 0xc1: /* XTM */
case 0xf2:
sclk_freq = NAVI14_UMD_PSTATE_PEAK_XTM_GFXCLK;
break;
case 0xc3: /* XLM */
case 0xf3:
sclk_freq = NAVI14_UMD_PSTATE_PEAK_XLM_GFXCLK;
break;
case 0xc5: /* XTX */
case 0xf6:
sclk_freq = NAVI14_UMD_PSTATE_PEAK_XLM_GFXCLK;
break;
default: /* XL */
sclk_freq = NAVI14_UMD_PSTATE_PEAK_XL_GFXCLK;
break;
}
break;
case CHIP_NAVI12:
sclk_freq = NAVI12_UMD_PSTATE_PEAK_GFXCLK;
break;
default:
sclk_freq = gfx_table->dpm_levels[gfx_table->count - 1].value;
break;
}
pstate_table->gfxclk_pstate.peak = sclk_freq;
pstate_table->uclk_pstate.min = mem_table->min;
pstate_table->uclk_pstate.peak = mem_table->max;
pstate_table->socclk_pstate.min = soc_table->min;
pstate_table->socclk_pstate.peak = soc_table->max;
if (gfx_table->max > NAVI10_UMD_PSTATE_PROFILING_GFXCLK &&
mem_table->max > NAVI10_UMD_PSTATE_PROFILING_MEMCLK &&
soc_table->max > NAVI10_UMD_PSTATE_PROFILING_SOCCLK) {
pstate_table->gfxclk_pstate.standard =
NAVI10_UMD_PSTATE_PROFILING_GFXCLK;
pstate_table->uclk_pstate.standard =
NAVI10_UMD_PSTATE_PROFILING_MEMCLK;
pstate_table->socclk_pstate.standard =
NAVI10_UMD_PSTATE_PROFILING_SOCCLK;
} else {
pstate_table->gfxclk_pstate.standard =
pstate_table->gfxclk_pstate.min;
pstate_table->uclk_pstate.standard =
pstate_table->uclk_pstate.min;
pstate_table->socclk_pstate.standard =
pstate_table->socclk_pstate.min;
}
return 0;
}
static int navi10_get_clock_by_type_with_latency(struct smu_context *smu,
enum smu_clk_type clk_type,
struct pp_clock_levels_with_latency *clocks)
{
int ret = 0, i = 0;
uint32_t level_count = 0, freq = 0;
switch (clk_type) {
case SMU_GFXCLK:
case SMU_DCEFCLK:
case SMU_SOCCLK:
case SMU_MCLK:
case SMU_UCLK:
ret = smu_v11_0_get_dpm_level_count(smu, clk_type, &level_count);
if (ret)
return ret;
level_count = min(level_count, (uint32_t)MAX_NUM_CLOCKS);
clocks->num_levels = level_count;
for (i = 0; i < level_count; i++) {
ret = smu_v11_0_get_dpm_freq_by_index(smu, clk_type, i, &freq);
if (ret)
return ret;
clocks->data[i].clocks_in_khz = freq * 1000;
clocks->data[i].latency_in_us = 0;
}
break;
default:
break;
}
return ret;
}
static int navi10_pre_display_config_changed(struct smu_context *smu)
{
int ret = 0;
uint32_t max_freq = 0;
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays, 0, NULL);
if (ret)
return ret;
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
ret = smu_v11_0_get_dpm_ultimate_freq(smu, SMU_UCLK, NULL, &max_freq);
if (ret)
return ret;
ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, 0, max_freq);
if (ret)
return ret;
}
return ret;
}
static int navi10_display_config_changed(struct smu_context *smu)
{
int ret = 0;
if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
smu_cmn_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT) &&
smu_cmn_feature_is_supported(smu, SMU_FEATURE_DPM_SOCCLK_BIT)) {
ret = smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_NumOfDisplays,
smu->display_config->num_display,
NULL);
if (ret)
return ret;
}
return ret;
}
static int navi10_get_gpu_power(struct smu_context *smu, uint32_t *value)
{
if (!value)
return -EINVAL;
return navi10_get_smu_metrics_data(smu,
METRICS_AVERAGE_SOCKETPOWER,
value);
}
static int navi10_get_current_activity_percent(struct smu_context *smu,
enum amd_pp_sensors sensor,
uint32_t *value)
{
int ret = 0;
if (!value)
return -EINVAL;
switch (sensor) {
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = navi10_get_smu_metrics_data(smu,
METRICS_AVERAGE_GFXACTIVITY,
value);
break;
case AMDGPU_PP_SENSOR_MEM_LOAD:
ret = navi10_get_smu_metrics_data(smu,
METRICS_AVERAGE_MEMACTIVITY,
value);
break;
default:
dev_err(smu->adev->dev, "Invalid sensor for retrieving clock activity\n");
return -EINVAL;
}
return ret;
}
static bool navi10_is_dpm_running(struct smu_context *smu)
{
int ret = 0;
uint32_t feature_mask[2];
uint64_t feature_enabled;
ret = smu_cmn_get_enabled_mask(smu, feature_mask, 2);
if (ret)
return false;
feature_enabled = (uint64_t)feature_mask[1] << 32 | feature_mask[0];
return !!(feature_enabled & SMC_DPM_FEATURE);
}
static int navi10_get_fan_speed_rpm(struct smu_context *smu,
uint32_t *speed)
{
if (!speed)
return -EINVAL;
switch (smu_v11_0_get_fan_control_mode(smu)) {
case AMD_FAN_CTRL_AUTO:
return navi10_get_smu_metrics_data(smu,
METRICS_CURR_FANSPEED,
speed);
default:
return smu_v11_0_get_fan_speed_rpm(smu, speed);
}
}
static int navi10_get_fan_parameters(struct smu_context *smu)
{
PPTable_t *pptable = smu->smu_table.driver_pptable;
smu->fan_max_rpm = pptable->FanMaximumRpm;
return 0;
}
static int navi10_get_power_profile_mode(struct smu_context *smu, char *buf)
{
DpmActivityMonitorCoeffInt_t activity_monitor;
uint32_t i, size = 0;
int16_t workload_type = 0;
static const char *profile_name[] = {
"BOOTUP_DEFAULT",
"3D_FULL_SCREEN",
"POWER_SAVING",
"VIDEO",
"VR",
"COMPUTE",
"CUSTOM"};
static const char *title[] = {
"PROFILE_INDEX(NAME)",
"CLOCK_TYPE(NAME)",
"FPS",
"MinFreqType",
"MinActiveFreqType",
"MinActiveFreq",
"BoosterFreqType",
"BoosterFreq",
"PD_Data_limit_c",
"PD_Data_error_coeff",
"PD_Data_error_rate_coeff"};
int result = 0;
if (!buf)
return -EINVAL;
size += sprintf(buf + size, "%16s %s %s %s %s %s %s %s %s %s %s\n",
title[0], title[1], title[2], title[3], title[4], title[5],
title[6], title[7], title[8], title[9], title[10]);
for (i = 0; i <= PP_SMC_POWER_PROFILE_CUSTOM; i++) {
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_WORKLOAD,
i);
if (workload_type < 0)
return -EINVAL;
result = smu_cmn_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF, workload_type,
(void *)(&activity_monitor), false);
if (result) {
dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__);
return result;
}
size += sprintf(buf + size, "%2d %14s%s:\n",
i, profile_name[i], (i == smu->power_profile_mode) ? "*" : " ");
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
0,
"GFXCLK",
activity_monitor.Gfx_FPS,
activity_monitor.Gfx_MinFreqStep,
activity_monitor.Gfx_MinActiveFreqType,
activity_monitor.Gfx_MinActiveFreq,
activity_monitor.Gfx_BoosterFreqType,
activity_monitor.Gfx_BoosterFreq,
activity_monitor.Gfx_PD_Data_limit_c,
activity_monitor.Gfx_PD_Data_error_coeff,
activity_monitor.Gfx_PD_Data_error_rate_coeff);
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
1,
"SOCCLK",
activity_monitor.Soc_FPS,
activity_monitor.Soc_MinFreqStep,
activity_monitor.Soc_MinActiveFreqType,
activity_monitor.Soc_MinActiveFreq,
activity_monitor.Soc_BoosterFreqType,
activity_monitor.Soc_BoosterFreq,
activity_monitor.Soc_PD_Data_limit_c,
activity_monitor.Soc_PD_Data_error_coeff,
activity_monitor.Soc_PD_Data_error_rate_coeff);
size += sprintf(buf + size, "%19s %d(%13s) %7d %7d %7d %7d %7d %7d %7d %7d %7d\n",
" ",
2,
"MEMLK",
activity_monitor.Mem_FPS,
activity_monitor.Mem_MinFreqStep,
activity_monitor.Mem_MinActiveFreqType,
activity_monitor.Mem_MinActiveFreq,
activity_monitor.Mem_BoosterFreqType,
activity_monitor.Mem_BoosterFreq,
activity_monitor.Mem_PD_Data_limit_c,
activity_monitor.Mem_PD_Data_error_coeff,
activity_monitor.Mem_PD_Data_error_rate_coeff);
}
return size;
}
static int navi10_set_power_profile_mode(struct smu_context *smu, long *input, uint32_t size)
{
DpmActivityMonitorCoeffInt_t activity_monitor;
int workload_type, ret = 0;
smu->power_profile_mode = input[size];
if (smu->power_profile_mode > PP_SMC_POWER_PROFILE_CUSTOM) {
dev_err(smu->adev->dev, "Invalid power profile mode %d\n", smu->power_profile_mode);
return -EINVAL;
}
if (smu->power_profile_mode == PP_SMC_POWER_PROFILE_CUSTOM) {
ret = smu_cmn_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT,
(void *)(&activity_monitor), false);
if (ret) {
dev_err(smu->adev->dev, "[%s] Failed to get activity monitor!", __func__);
return ret;
}
switch (input[0]) {
case 0: /* Gfxclk */
activity_monitor.Gfx_FPS = input[1];
activity_monitor.Gfx_MinFreqStep = input[2];
activity_monitor.Gfx_MinActiveFreqType = input[3];
activity_monitor.Gfx_MinActiveFreq = input[4];
activity_monitor.Gfx_BoosterFreqType = input[5];
activity_monitor.Gfx_BoosterFreq = input[6];
activity_monitor.Gfx_PD_Data_limit_c = input[7];
activity_monitor.Gfx_PD_Data_error_coeff = input[8];
activity_monitor.Gfx_PD_Data_error_rate_coeff = input[9];
break;
case 1: /* Socclk */
activity_monitor.Soc_FPS = input[1];
activity_monitor.Soc_MinFreqStep = input[2];
activity_monitor.Soc_MinActiveFreqType = input[3];
activity_monitor.Soc_MinActiveFreq = input[4];
activity_monitor.Soc_BoosterFreqType = input[5];
activity_monitor.Soc_BoosterFreq = input[6];
activity_monitor.Soc_PD_Data_limit_c = input[7];
activity_monitor.Soc_PD_Data_error_coeff = input[8];
activity_monitor.Soc_PD_Data_error_rate_coeff = input[9];
break;
case 2: /* Memlk */
activity_monitor.Mem_FPS = input[1];
activity_monitor.Mem_MinFreqStep = input[2];
activity_monitor.Mem_MinActiveFreqType = input[3];
activity_monitor.Mem_MinActiveFreq = input[4];
activity_monitor.Mem_BoosterFreqType = input[5];
activity_monitor.Mem_BoosterFreq = input[6];
activity_monitor.Mem_PD_Data_limit_c = input[7];
activity_monitor.Mem_PD_Data_error_coeff = input[8];
activity_monitor.Mem_PD_Data_error_rate_coeff = input[9];
break;
}
ret = smu_cmn_update_table(smu,
SMU_TABLE_ACTIVITY_MONITOR_COEFF, WORKLOAD_PPLIB_CUSTOM_BIT,
(void *)(&activity_monitor), true);
if (ret) {
dev_err(smu->adev->dev, "[%s] Failed to set activity monitor!", __func__);
return ret;
}
}
/* conv PP_SMC_POWER_PROFILE* to WORKLOAD_PPLIB_*_BIT */
workload_type = smu_cmn_to_asic_specific_index(smu,
CMN2ASIC_MAPPING_WORKLOAD,
smu->power_profile_mode);
if (workload_type < 0)
return -EINVAL;
smu_cmn_send_smc_msg_with_param(smu, SMU_MSG_SetWorkloadMask,
1 << workload_type, NULL);
return ret;
}
static int navi10_notify_smc_display_config(struct smu_context *smu)
{
struct smu_clocks min_clocks = {0};
struct pp_display_clock_request clock_req;
int ret = 0;
min_clocks.dcef_clock = smu->display_config->min_dcef_set_clk;
min_clocks.dcef_clock_in_sr = smu->display_config->min_dcef_deep_sleep_set_clk;
min_clocks.memory_clock = smu->display_config->min_mem_set_clock;
if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DPM_DCEFCLK_BIT)) {
clock_req.clock_type = amd_pp_dcef_clock;
clock_req.clock_freq_in_khz = min_clocks.dcef_clock * 10;
ret = smu_v11_0_display_clock_voltage_request(smu, &clock_req);
if (!ret) {
if (smu_cmn_feature_is_supported(smu, SMU_FEATURE_DS_DCEFCLK_BIT)) {
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetMinDeepSleepDcefclk,
min_clocks.dcef_clock_in_sr/100,
NULL);
if (ret) {
dev_err(smu->adev->dev, "Attempt to set divider for DCEFCLK Failed!");
return ret;
}
}
} else {
dev_info(smu->adev->dev, "Attempt to set Hard Min for DCEFCLK Failed!");
}
}
if (smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT)) {
ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, min_clocks.memory_clock/100, 0);
if (ret) {
dev_err(smu->adev->dev, "[%s] Set hard min uclk failed!", __func__);
return ret;
}
}
return 0;
}
static int navi10_set_watermarks_table(struct smu_context *smu,
struct pp_smu_wm_range_sets *clock_ranges)
{
Watermarks_t *table = smu->smu_table.watermarks_table;
int ret = 0;
int i;
if (clock_ranges) {
if (clock_ranges->num_reader_wm_sets > NUM_WM_RANGES ||
clock_ranges->num_writer_wm_sets > NUM_WM_RANGES)
return -EINVAL;
for (i = 0; i < clock_ranges->num_reader_wm_sets; i++) {
table->WatermarkRow[WM_DCEFCLK][i].MinClock =
clock_ranges->reader_wm_sets[i].min_drain_clk_mhz;
table->WatermarkRow[WM_DCEFCLK][i].MaxClock =
clock_ranges->reader_wm_sets[i].max_drain_clk_mhz;
table->WatermarkRow[WM_DCEFCLK][i].MinUclk =
clock_ranges->reader_wm_sets[i].min_fill_clk_mhz;
table->WatermarkRow[WM_DCEFCLK][i].MaxUclk =
clock_ranges->reader_wm_sets[i].max_fill_clk_mhz;
table->WatermarkRow[WM_DCEFCLK][i].WmSetting =
clock_ranges->reader_wm_sets[i].wm_inst;
}
for (i = 0; i < clock_ranges->num_writer_wm_sets; i++) {
table->WatermarkRow[WM_SOCCLK][i].MinClock =
clock_ranges->writer_wm_sets[i].min_fill_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].MaxClock =
clock_ranges->writer_wm_sets[i].max_fill_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].MinUclk =
clock_ranges->writer_wm_sets[i].min_drain_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].MaxUclk =
clock_ranges->writer_wm_sets[i].max_drain_clk_mhz;
table->WatermarkRow[WM_SOCCLK][i].WmSetting =
clock_ranges->writer_wm_sets[i].wm_inst;
}
smu->watermarks_bitmap |= WATERMARKS_EXIST;
}
/* pass data to smu controller */
if ((smu->watermarks_bitmap & WATERMARKS_EXIST) &&
!(smu->watermarks_bitmap & WATERMARKS_LOADED)) {
ret = smu_cmn_write_watermarks_table(smu);
if (ret) {
dev_err(smu->adev->dev, "Failed to update WMTABLE!");
return ret;
}
smu->watermarks_bitmap |= WATERMARKS_LOADED;
}
return 0;
}
static int navi10_thermal_get_temperature(struct smu_context *smu,
enum amd_pp_sensors sensor,
uint32_t *value)
{
int ret = 0;
if (!value)
return -EINVAL;
switch (sensor) {
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
ret = navi10_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_HOTSPOT,
value);
break;
case AMDGPU_PP_SENSOR_EDGE_TEMP:
ret = navi10_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_EDGE,
value);
break;
case AMDGPU_PP_SENSOR_MEM_TEMP:
ret = navi10_get_smu_metrics_data(smu,
METRICS_TEMPERATURE_MEM,
value);
break;
default:
dev_err(smu->adev->dev, "Invalid sensor for retrieving temp\n");
return -EINVAL;
}
return ret;
}
static int navi10_read_sensor(struct smu_context *smu,
enum amd_pp_sensors sensor,
void *data, uint32_t *size)
{
int ret = 0;
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *pptable = table_context->driver_pptable;
if(!data || !size)
return -EINVAL;
mutex_lock(&smu->sensor_lock);
switch (sensor) {
case AMDGPU_PP_SENSOR_MAX_FAN_RPM:
*(uint32_t *)data = pptable->FanMaximumRpm;
*size = 4;
break;
case AMDGPU_PP_SENSOR_MEM_LOAD:
case AMDGPU_PP_SENSOR_GPU_LOAD:
ret = navi10_get_current_activity_percent(smu, sensor, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GPU_POWER:
ret = navi10_get_gpu_power(smu, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_HOTSPOT_TEMP:
case AMDGPU_PP_SENSOR_EDGE_TEMP:
case AMDGPU_PP_SENSOR_MEM_TEMP:
ret = navi10_thermal_get_temperature(smu, sensor, (uint32_t *)data);
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_MCLK:
ret = navi10_get_current_clk_freq_by_table(smu, SMU_UCLK, (uint32_t *)data);
*(uint32_t *)data *= 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_GFX_SCLK:
ret = navi10_get_current_clk_freq_by_table(smu, SMU_GFXCLK, (uint32_t *)data);
*(uint32_t *)data *= 100;
*size = 4;
break;
case AMDGPU_PP_SENSOR_VDDGFX:
ret = smu_v11_0_get_gfx_vdd(smu, (uint32_t *)data);
*size = 4;
break;
default:
ret = -EOPNOTSUPP;
break;
}
mutex_unlock(&smu->sensor_lock);
return ret;
}
static int navi10_get_uclk_dpm_states(struct smu_context *smu, uint32_t *clocks_in_khz, uint32_t *num_states)
{
uint32_t num_discrete_levels = 0;
uint16_t *dpm_levels = NULL;
uint16_t i = 0;
struct smu_table_context *table_context = &smu->smu_table;
PPTable_t *driver_ppt = NULL;
if (!clocks_in_khz || !num_states || !table_context->driver_pptable)
return -EINVAL;
driver_ppt = table_context->driver_pptable;
num_discrete_levels = driver_ppt->DpmDescriptor[PPCLK_UCLK].NumDiscreteLevels;
dpm_levels = driver_ppt->FreqTableUclk;
if (num_discrete_levels == 0 || dpm_levels == NULL)
return -EINVAL;
*num_states = num_discrete_levels;
for (i = 0; i < num_discrete_levels; i++) {
/* convert to khz */
*clocks_in_khz = (*dpm_levels) * 1000;
clocks_in_khz++;
dpm_levels++;
}
return 0;
}
static int navi10_get_thermal_temperature_range(struct smu_context *smu,
struct smu_temperature_range *range)
{
struct smu_table_context *table_context = &smu->smu_table;
struct smu_11_0_powerplay_table *powerplay_table =
table_context->power_play_table;
PPTable_t *pptable = smu->smu_table.driver_pptable;
if (!range)
return -EINVAL;
memcpy(range, &smu11_thermal_policy[0], sizeof(struct smu_temperature_range));
range->max = pptable->TedgeLimit *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->edge_emergency_max = (pptable->TedgeLimit + CTF_OFFSET_EDGE) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->hotspot_crit_max = pptable->ThotspotLimit *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->hotspot_emergency_max = (pptable->ThotspotLimit + CTF_OFFSET_HOTSPOT) *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->mem_crit_max = pptable->TmemLimit *
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->mem_emergency_max = (pptable->TmemLimit + CTF_OFFSET_MEM)*
SMU_TEMPERATURE_UNITS_PER_CENTIGRADES;
range->software_shutdown_temp = powerplay_table->software_shutdown_temp;
return 0;
}
static int navi10_display_disable_memory_clock_switch(struct smu_context *smu,
bool disable_memory_clock_switch)
{
int ret = 0;
struct smu_11_0_max_sustainable_clocks *max_sustainable_clocks =
(struct smu_11_0_max_sustainable_clocks *)
smu->smu_table.max_sustainable_clocks;
uint32_t min_memory_clock = smu->hard_min_uclk_req_from_dal;
uint32_t max_memory_clock = max_sustainable_clocks->uclock;
if(smu->disable_uclk_switch == disable_memory_clock_switch)
return 0;
if(disable_memory_clock_switch)
ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, max_memory_clock, 0);
else
ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, min_memory_clock, 0);
if(!ret)
smu->disable_uclk_switch = disable_memory_clock_switch;
return ret;
}
static int navi10_get_power_limit(struct smu_context *smu)
{
struct smu_11_0_powerplay_table *powerplay_table =
(struct smu_11_0_powerplay_table *)smu->smu_table.power_play_table;
struct smu_11_0_overdrive_table *od_settings = smu->od_settings;
PPTable_t *pptable = smu->smu_table.driver_pptable;
uint32_t power_limit, od_percent;
if (smu_v11_0_get_current_power_limit(smu, &power_limit)) {
/* the last hope to figure out the ppt limit */
if (!pptable) {
dev_err(smu->adev->dev, "Cannot get PPT limit due to pptable missing!");
return -EINVAL;
}
power_limit =
pptable->SocketPowerLimitAc[PPT_THROTTLER_PPT0];
}
smu->current_power_limit = power_limit;
if (smu->od_enabled &&
navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_POWER_LIMIT)) {
od_percent = le32_to_cpu(powerplay_table->overdrive_table.max[SMU_11_0_ODSETTING_POWERPERCENTAGE]);
dev_dbg(smu->adev->dev, "ODSETTING_POWERPERCENTAGE: %d (default: %d)\n", od_percent, power_limit);
power_limit *= (100 + od_percent);
power_limit /= 100;
}
smu->max_power_limit = power_limit;
return 0;
}
static int navi10_update_pcie_parameters(struct smu_context *smu,
uint32_t pcie_gen_cap,
uint32_t pcie_width_cap)
{
struct smu_11_0_dpm_context *dpm_context = smu->smu_dpm.dpm_context;
PPTable_t *pptable = smu->smu_table.driver_pptable;
uint32_t smu_pcie_arg;
int ret, i;
/* lclk dpm table setup */
for (i = 0; i < MAX_PCIE_CONF; i++) {
dpm_context->dpm_tables.pcie_table.pcie_gen[i] = pptable->PcieGenSpeed[i];
dpm_context->dpm_tables.pcie_table.pcie_lane[i] = pptable->PcieLaneCount[i];
}
for (i = 0; i < NUM_LINK_LEVELS; i++) {
smu_pcie_arg = (i << 16) |
((pptable->PcieGenSpeed[i] <= pcie_gen_cap) ? (pptable->PcieGenSpeed[i] << 8) :
(pcie_gen_cap << 8)) | ((pptable->PcieLaneCount[i] <= pcie_width_cap) ?
pptable->PcieLaneCount[i] : pcie_width_cap);
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_OverridePcieParameters,
smu_pcie_arg,
NULL);
if (ret)
return ret;
if (pptable->PcieGenSpeed[i] > pcie_gen_cap)
dpm_context->dpm_tables.pcie_table.pcie_gen[i] = pcie_gen_cap;
if (pptable->PcieLaneCount[i] > pcie_width_cap)
dpm_context->dpm_tables.pcie_table.pcie_lane[i] = pcie_width_cap;
}
return 0;
}
static inline void navi10_dump_od_table(struct smu_context *smu,
OverDriveTable_t *od_table)
{
dev_dbg(smu->adev->dev, "OD: Gfxclk: (%d, %d)\n", od_table->GfxclkFmin, od_table->GfxclkFmax);
dev_dbg(smu->adev->dev, "OD: Gfx1: (%d, %d)\n", od_table->GfxclkFreq1, od_table->GfxclkVolt1);
dev_dbg(smu->adev->dev, "OD: Gfx2: (%d, %d)\n", od_table->GfxclkFreq2, od_table->GfxclkVolt2);
dev_dbg(smu->adev->dev, "OD: Gfx3: (%d, %d)\n", od_table->GfxclkFreq3, od_table->GfxclkVolt3);
dev_dbg(smu->adev->dev, "OD: UclkFmax: %d\n", od_table->UclkFmax);
dev_dbg(smu->adev->dev, "OD: OverDrivePct: %d\n", od_table->OverDrivePct);
}
static int navi10_od_setting_check_range(struct smu_context *smu,
struct smu_11_0_overdrive_table *od_table,
enum SMU_11_0_ODSETTING_ID setting,
uint32_t value)
{
if (value < od_table->min[setting]) {
dev_warn(smu->adev->dev, "OD setting (%d, %d) is less than the minimum allowed (%d)\n", setting, value, od_table->min[setting]);
return -EINVAL;
}
if (value > od_table->max[setting]) {
dev_warn(smu->adev->dev, "OD setting (%d, %d) is greater than the maximum allowed (%d)\n", setting, value, od_table->max[setting]);
return -EINVAL;
}
return 0;
}
static int navi10_overdrive_get_gfx_clk_base_voltage(struct smu_context *smu,
uint16_t *voltage,
uint32_t freq)
{
uint32_t param = (freq & 0xFFFF) | (PPCLK_GFXCLK << 16);
uint32_t value = 0;
int ret;
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_GetVoltageByDpm,
param,
&value);
if (ret) {
dev_err(smu->adev->dev, "[GetBaseVoltage] failed to get GFXCLK AVFS voltage from SMU!");
return ret;
}
*voltage = (uint16_t)value;
return 0;
}
static bool navi10_is_baco_supported(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t val;
if (amdgpu_sriov_vf(adev) || (!smu_v11_0_baco_is_support(smu)))
return false;
val = RREG32_SOC15(NBIO, 0, mmRCC_BIF_STRAP0);
return (val & RCC_BIF_STRAP0__STRAP_PX_CAPABLE_MASK) ? true : false;
}
static int navi10_set_default_od_settings(struct smu_context *smu)
{
OverDriveTable_t *od_table =
(OverDriveTable_t *)smu->smu_table.overdrive_table;
OverDriveTable_t *boot_od_table =
(OverDriveTable_t *)smu->smu_table.boot_overdrive_table;
int ret = 0;
ret = smu_cmn_update_table(smu, SMU_TABLE_OVERDRIVE, 0, (void *)od_table, false);
if (ret) {
dev_err(smu->adev->dev, "Failed to get overdrive table!\n");
return ret;
}
if (!od_table->GfxclkVolt1) {
ret = navi10_overdrive_get_gfx_clk_base_voltage(smu,
&od_table->GfxclkVolt1,
od_table->GfxclkFreq1);
if (ret)
return ret;
}
if (!od_table->GfxclkVolt2) {
ret = navi10_overdrive_get_gfx_clk_base_voltage(smu,
&od_table->GfxclkVolt2,
od_table->GfxclkFreq2);
if (ret)
return ret;
}
if (!od_table->GfxclkVolt3) {
ret = navi10_overdrive_get_gfx_clk_base_voltage(smu,
&od_table->GfxclkVolt3,
od_table->GfxclkFreq3);
if (ret)
return ret;
}
memcpy(boot_od_table, od_table, sizeof(OverDriveTable_t));
navi10_dump_od_table(smu, od_table);
return 0;
}
static int navi10_od_edit_dpm_table(struct smu_context *smu, enum PP_OD_DPM_TABLE_COMMAND type, long input[], uint32_t size) {
int i;
int ret = 0;
struct smu_table_context *table_context = &smu->smu_table;
OverDriveTable_t *od_table;
struct smu_11_0_overdrive_table *od_settings;
enum SMU_11_0_ODSETTING_ID freq_setting, voltage_setting;
uint16_t *freq_ptr, *voltage_ptr;
od_table = (OverDriveTable_t *)table_context->overdrive_table;
if (!smu->od_enabled) {
dev_warn(smu->adev->dev, "OverDrive is not enabled!\n");
return -EINVAL;
}
if (!smu->od_settings) {
dev_err(smu->adev->dev, "OD board limits are not set!\n");
return -ENOENT;
}
od_settings = smu->od_settings;
switch (type) {
case PP_OD_EDIT_SCLK_VDDC_TABLE:
if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_LIMITS)) {
dev_warn(smu->adev->dev, "GFXCLK_LIMITS not supported!\n");
return -ENOTSUPP;
}
if (!table_context->overdrive_table) {
dev_err(smu->adev->dev, "Overdrive is not initialized\n");
return -EINVAL;
}
for (i = 0; i < size; i += 2) {
if (i + 2 > size) {
dev_info(smu->adev->dev, "invalid number of input parameters %d\n", size);
return -EINVAL;
}
switch (input[i]) {
case 0:
freq_setting = SMU_11_0_ODSETTING_GFXCLKFMIN;
freq_ptr = &od_table->GfxclkFmin;
if (input[i + 1] > od_table->GfxclkFmax) {
dev_info(smu->adev->dev, "GfxclkFmin (%ld) must be <= GfxclkFmax (%u)!\n",
input[i + 1],
od_table->GfxclkFmin);
return -EINVAL;
}
break;
case 1:
freq_setting = SMU_11_0_ODSETTING_GFXCLKFMAX;
freq_ptr = &od_table->GfxclkFmax;
if (input[i + 1] < od_table->GfxclkFmin) {
dev_info(smu->adev->dev, "GfxclkFmax (%ld) must be >= GfxclkFmin (%u)!\n",
input[i + 1],
od_table->GfxclkFmax);
return -EINVAL;
}
break;
default:
dev_info(smu->adev->dev, "Invalid SCLK_VDDC_TABLE index: %ld\n", input[i]);
dev_info(smu->adev->dev, "Supported indices: [0:min,1:max]\n");
return -EINVAL;
}
ret = navi10_od_setting_check_range(smu, od_settings, freq_setting, input[i + 1]);
if (ret)
return ret;
*freq_ptr = input[i + 1];
}
break;
case PP_OD_EDIT_MCLK_VDDC_TABLE:
if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_UCLK_MAX)) {
dev_warn(smu->adev->dev, "UCLK_MAX not supported!\n");
return -ENOTSUPP;
}
if (size < 2) {
dev_info(smu->adev->dev, "invalid number of parameters: %d\n", size);
return -EINVAL;
}
if (input[0] != 1) {
dev_info(smu->adev->dev, "Invalid MCLK_VDDC_TABLE index: %ld\n", input[0]);
dev_info(smu->adev->dev, "Supported indices: [1:max]\n");
return -EINVAL;
}
ret = navi10_od_setting_check_range(smu, od_settings, SMU_11_0_ODSETTING_UCLKFMAX, input[1]);
if (ret)
return ret;
od_table->UclkFmax = input[1];
break;
case PP_OD_RESTORE_DEFAULT_TABLE:
if (!(table_context->overdrive_table && table_context->boot_overdrive_table)) {
dev_err(smu->adev->dev, "Overdrive table was not initialized!\n");
return -EINVAL;
}
memcpy(table_context->overdrive_table, table_context->boot_overdrive_table, sizeof(OverDriveTable_t));
break;
case PP_OD_COMMIT_DPM_TABLE:
navi10_dump_od_table(smu, od_table);
ret = smu_cmn_update_table(smu, SMU_TABLE_OVERDRIVE, 0, (void *)od_table, true);
if (ret) {
dev_err(smu->adev->dev, "Failed to import overdrive table!\n");
return ret;
}
break;
case PP_OD_EDIT_VDDC_CURVE:
if (!navi10_od_feature_is_supported(od_settings, SMU_11_0_ODCAP_GFXCLK_CURVE)) {
dev_warn(smu->adev->dev, "GFXCLK_CURVE not supported!\n");
return -ENOTSUPP;
}
if (size < 3) {
dev_info(smu->adev->dev, "invalid number of parameters: %d\n", size);
return -EINVAL;
}
if (!od_table) {
dev_info(smu->adev->dev, "Overdrive is not initialized\n");
return -EINVAL;
}
switch (input[0]) {
case 0:
freq_setting = SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P1;
voltage_setting = SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P1;
freq_ptr = &od_table->GfxclkFreq1;
voltage_ptr = &od_table->GfxclkVolt1;
break;
case 1:
freq_setting = SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P2;
voltage_setting = SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P2;
freq_ptr = &od_table->GfxclkFreq2;
voltage_ptr = &od_table->GfxclkVolt2;
break;
case 2:
freq_setting = SMU_11_0_ODSETTING_VDDGFXCURVEFREQ_P3;
voltage_setting = SMU_11_0_ODSETTING_VDDGFXCURVEVOLTAGE_P3;
freq_ptr = &od_table->GfxclkFreq3;
voltage_ptr = &od_table->GfxclkVolt3;
break;
default:
dev_info(smu->adev->dev, "Invalid VDDC_CURVE index: %ld\n", input[0]);
dev_info(smu->adev->dev, "Supported indices: [0, 1, 2]\n");
return -EINVAL;
}
ret = navi10_od_setting_check_range(smu, od_settings, freq_setting, input[1]);
if (ret)
return ret;
// Allow setting zero to disable the OverDrive VDDC curve
if (input[2] != 0) {
ret = navi10_od_setting_check_range(smu, od_settings, voltage_setting, input[2]);
if (ret)
return ret;
*freq_ptr = input[1];
*voltage_ptr = ((uint16_t)input[2]) * NAVI10_VOLTAGE_SCALE;
dev_dbg(smu->adev->dev, "OD: set curve %ld: (%d, %d)\n", input[0], *freq_ptr, *voltage_ptr);
} else {
// If setting 0, disable all voltage curve settings
od_table->GfxclkVolt1 = 0;
od_table->GfxclkVolt2 = 0;
od_table->GfxclkVolt3 = 0;
}
navi10_dump_od_table(smu, od_table);
break;
default:
return -ENOSYS;
}
return ret;
}
static int navi10_run_btc(struct smu_context *smu)
{
int ret = 0;
ret = smu_cmn_send_smc_msg(smu, SMU_MSG_RunBtc, NULL);
if (ret)
dev_err(smu->adev->dev, "RunBtc failed!\n");
return ret;
}
static bool navi10_need_umc_cdr_workaround(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT))
return false;
if (adev->asic_type == CHIP_NAVI10 ||
adev->asic_type == CHIP_NAVI14)
return true;
return false;
}
static int navi10_umc_hybrid_cdr_workaround(struct smu_context *smu)
{
uint32_t uclk_count, uclk_min, uclk_max;
int ret = 0;
/* This workaround can be applied only with uclk dpm enabled */
if (!smu_cmn_feature_is_enabled(smu, SMU_FEATURE_DPM_UCLK_BIT))
return 0;
ret = smu_v11_0_get_dpm_level_count(smu, SMU_UCLK, &uclk_count);
if (ret)
return ret;
ret = smu_v11_0_get_dpm_freq_by_index(smu, SMU_UCLK, (uint16_t)(uclk_count - 1), &uclk_max);
if (ret)
return ret;
/*
* The NAVI10_UMC_HYBRID_CDR_WORKAROUND_UCLK_THRESHOLD is 750Mhz.
* This workaround is needed only when the max uclk frequency
* not greater than that.
*/
if (uclk_max > 0x2EE)
return 0;
ret = smu_v11_0_get_dpm_freq_by_index(smu, SMU_UCLK, (uint16_t)0, &uclk_min);
if (ret)
return ret;
/* Force UCLK out of the highest DPM */
ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, 0, uclk_min);
if (ret)
return ret;
/* Revert the UCLK Hardmax */
ret = smu_v11_0_set_hard_freq_limited_range(smu, SMU_UCLK, 0, uclk_max);
if (ret)
return ret;
/*
* In this case, SMU already disabled dummy pstate during enablement
* of UCLK DPM, we have to re-enabled it.
*/
return smu_cmn_send_smc_msg(smu, SMU_MSG_DAL_ENABLE_DUMMY_PSTATE_CHANGE, NULL);
}
static int navi10_set_dummy_pstates_table_location(struct smu_context *smu)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct smu_table *dummy_read_table =
&smu_table->dummy_read_1_table;
char *dummy_table = dummy_read_table->cpu_addr;
int ret = 0;
uint32_t i;
for (i = 0; i < 0x40000; i += 0x1000 * 2) {
memcpy(dummy_table, &NoDbiPrbs7[0], 0x1000);
dummy_table += 0x1000;
memcpy(dummy_table, &DbiPrbs7[0], 0x1000);
dummy_table += 0x1000;
}
amdgpu_asic_flush_hdp(smu->adev, NULL);
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SET_DRIVER_DUMMY_TABLE_DRAM_ADDR_HIGH,
upper_32_bits(dummy_read_table->mc_address),
NULL);
if (ret)
return ret;
return smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SET_DRIVER_DUMMY_TABLE_DRAM_ADDR_LOW,
lower_32_bits(dummy_read_table->mc_address),
NULL);
}
static int navi10_run_umc_cdr_workaround(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint8_t umc_fw_greater_than_v136 = false;
uint8_t umc_fw_disable_cdr = false;
uint32_t pmfw_version;
uint32_t param;
int ret = 0;
if (!navi10_need_umc_cdr_workaround(smu))
return 0;
ret = smu_cmn_get_smc_version(smu, NULL, &pmfw_version);
if (ret) {
dev_err(adev->dev, "Failed to get smu version!\n");
return ret;
}
/*
* The messages below are only supported by Navi10 42.53.0 and later
* PMFWs and Navi14 53.29.0 and later PMFWs.
* - PPSMC_MSG_SetDriverDummyTableDramAddrHigh
* - PPSMC_MSG_SetDriverDummyTableDramAddrLow
* - PPSMC_MSG_GetUMCFWWA
*/
if (((adev->asic_type == CHIP_NAVI10) && (pmfw_version >= 0x2a3500)) ||
((adev->asic_type == CHIP_NAVI14) && (pmfw_version >= 0x351D00))) {
ret = smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_GET_UMC_FW_WA,
0,
&param);
if (ret)
return ret;
/* First bit indicates if the UMC f/w is above v137 */
umc_fw_greater_than_v136 = param & 0x1;
/* Second bit indicates if hybrid-cdr is disabled */
umc_fw_disable_cdr = param & 0x2;
/* w/a only allowed if UMC f/w is <= 136 */
if (umc_fw_greater_than_v136)
return 0;
if (umc_fw_disable_cdr) {
if (adev->asic_type == CHIP_NAVI10)
return navi10_umc_hybrid_cdr_workaround(smu);
} else {
return navi10_set_dummy_pstates_table_location(smu);
}
} else {
if (adev->asic_type == CHIP_NAVI10)
return navi10_umc_hybrid_cdr_workaround(smu);
}
return 0;
}
static void navi10_fill_i2c_req(SwI2cRequest_t *req, bool write,
uint8_t address, uint32_t numbytes,
uint8_t *data)
{
int i;
req->I2CcontrollerPort = 0;
req->I2CSpeed = 2;
req->SlaveAddress = address;
req->NumCmds = numbytes;
for (i = 0; i < numbytes; i++) {
SwI2cCmd_t *cmd = &req->SwI2cCmds[i];
/* First 2 bytes are always write for lower 2b EEPROM address */
if (i < 2)
cmd->Cmd = 1;
else
cmd->Cmd = write;
/* Add RESTART for read after address filled */
cmd->CmdConfig |= (i == 2 && !write) ? CMDCONFIG_RESTART_MASK : 0;
/* Add STOP in the end */
cmd->CmdConfig |= (i == (numbytes - 1)) ? CMDCONFIG_STOP_MASK : 0;
/* Fill with data regardless if read or write to simplify code */
cmd->RegisterAddr = data[i];
}
}
static int navi10_i2c_read_data(struct i2c_adapter *control,
uint8_t address,
uint8_t *data,
uint32_t numbytes)
{
uint32_t i, ret = 0;
SwI2cRequest_t req;
struct amdgpu_device *adev = to_amdgpu_device(control);
struct smu_table_context *smu_table = &adev->smu.smu_table;
struct smu_table *table = &smu_table->driver_table;
if (numbytes > MAX_SW_I2C_COMMANDS) {
dev_err(adev->dev, "numbytes requested %d is over max allowed %d\n",
numbytes, MAX_SW_I2C_COMMANDS);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
navi10_fill_i2c_req(&req, false, address, numbytes, data);
mutex_lock(&adev->smu.mutex);
/* Now read data starting with that address */
ret = smu_cmn_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req,
true);
mutex_unlock(&adev->smu.mutex);
if (!ret) {
SwI2cRequest_t *res = (SwI2cRequest_t *)table->cpu_addr;
/* Assume SMU fills res.SwI2cCmds[i].Data with read bytes */
for (i = 0; i < numbytes; i++)
data[i] = res->SwI2cCmds[i].Data;
dev_dbg(adev->dev, "navi10_i2c_read_data, address = %x, bytes = %d, data :",
(uint16_t)address, numbytes);
print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE,
8, 1, data, numbytes, false);
} else
dev_err(adev->dev, "navi10_i2c_read_data - error occurred :%x", ret);
return ret;
}
static int navi10_i2c_write_data(struct i2c_adapter *control,
uint8_t address,
uint8_t *data,
uint32_t numbytes)
{
uint32_t ret;
SwI2cRequest_t req;
struct amdgpu_device *adev = to_amdgpu_device(control);
if (numbytes > MAX_SW_I2C_COMMANDS) {
dev_err(adev->dev, "numbytes requested %d is over max allowed %d\n",
numbytes, MAX_SW_I2C_COMMANDS);
return -EINVAL;
}
memset(&req, 0, sizeof(req));
navi10_fill_i2c_req(&req, true, address, numbytes, data);
mutex_lock(&adev->smu.mutex);
ret = smu_cmn_update_table(&adev->smu, SMU_TABLE_I2C_COMMANDS, 0, &req, true);
mutex_unlock(&adev->smu.mutex);
if (!ret) {
dev_dbg(adev->dev, "navi10_i2c_write(), address = %x, bytes = %d , data: ",
(uint16_t)address, numbytes);
print_hex_dump(KERN_DEBUG, "data: ", DUMP_PREFIX_NONE,
8, 1, data, numbytes, false);
/*
* According to EEPROM spec there is a MAX of 10 ms required for
* EEPROM to flush internal RX buffer after STOP was issued at the
* end of write transaction. During this time the EEPROM will not be
* responsive to any more commands - so wait a bit more.
*/
msleep(10);
} else
dev_err(adev->dev, "navi10_i2c_write- error occurred :%x", ret);
return ret;
}
static int navi10_i2c_xfer(struct i2c_adapter *i2c_adap,
struct i2c_msg *msgs, int num)
{
uint32_t i, j, ret, data_size, data_chunk_size, next_eeprom_addr = 0;
uint8_t *data_ptr, data_chunk[MAX_SW_I2C_COMMANDS] = { 0 };
for (i = 0; i < num; i++) {
/*
* SMU interface allows at most MAX_SW_I2C_COMMANDS bytes of data at
* once and hence the data needs to be spliced into chunks and sent each
* chunk separately
*/
data_size = msgs[i].len - 2;
data_chunk_size = MAX_SW_I2C_COMMANDS - 2;
next_eeprom_addr = (msgs[i].buf[0] << 8 & 0xff00) | (msgs[i].buf[1] & 0xff);
data_ptr = msgs[i].buf + 2;
for (j = 0; j < data_size / data_chunk_size; j++) {
/* Insert the EEPROM dest addess, bits 0-15 */
data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff);
data_chunk[1] = (next_eeprom_addr & 0xff);
if (msgs[i].flags & I2C_M_RD) {
ret = navi10_i2c_read_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, MAX_SW_I2C_COMMANDS);
memcpy(data_ptr, data_chunk + 2, data_chunk_size);
} else {
memcpy(data_chunk + 2, data_ptr, data_chunk_size);
ret = navi10_i2c_write_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, MAX_SW_I2C_COMMANDS);
}
if (ret) {
num = -EIO;
goto fail;
}
next_eeprom_addr += data_chunk_size;
data_ptr += data_chunk_size;
}
if (data_size % data_chunk_size) {
data_chunk[0] = ((next_eeprom_addr >> 8) & 0xff);
data_chunk[1] = (next_eeprom_addr & 0xff);
if (msgs[i].flags & I2C_M_RD) {
ret = navi10_i2c_read_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, (data_size % data_chunk_size) + 2);
memcpy(data_ptr, data_chunk + 2, data_size % data_chunk_size);
} else {
memcpy(data_chunk + 2, data_ptr, data_size % data_chunk_size);
ret = navi10_i2c_write_data(i2c_adap,
(uint8_t)msgs[i].addr,
data_chunk, (data_size % data_chunk_size) + 2);
}
if (ret) {
num = -EIO;
goto fail;
}
}
}
fail:
return num;
}
static u32 navi10_i2c_func(struct i2c_adapter *adap)
{
return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL;
}
static const struct i2c_algorithm navi10_i2c_algo = {
.master_xfer = navi10_i2c_xfer,
.functionality = navi10_i2c_func,
};
static int navi10_i2c_control_init(struct smu_context *smu, struct i2c_adapter *control)
{
struct amdgpu_device *adev = to_amdgpu_device(control);
int res;
control->owner = THIS_MODULE;
control->class = I2C_CLASS_SPD;
control->dev.parent = &adev->pdev->dev;
control->algo = &navi10_i2c_algo;
snprintf(control->name, sizeof(control->name), "AMDGPU SMU");
res = i2c_add_adapter(control);
if (res)
DRM_ERROR("Failed to register hw i2c, err: %d\n", res);
return res;
}
static void navi10_i2c_control_fini(struct smu_context *smu, struct i2c_adapter *control)
{
i2c_del_adapter(control);
}
static ssize_t navi10_get_gpu_metrics(struct smu_context *smu,
void **table)
{
struct smu_table_context *smu_table = &smu->smu_table;
struct gpu_metrics_v1_0 *gpu_metrics =
(struct gpu_metrics_v1_0 *)smu_table->gpu_metrics_table;
struct amdgpu_device *adev = smu->adev;
SmuMetrics_NV12_t nv12_metrics = { 0 };
SmuMetrics_t metrics;
int ret = 0;
mutex_lock(&smu->metrics_lock);
ret = smu_cmn_get_metrics_table_locked(smu,
NULL,
true);
if (ret) {
mutex_unlock(&smu->metrics_lock);
return ret;
}
memcpy(&metrics, smu_table->metrics_table, sizeof(SmuMetrics_t));
if (adev->asic_type == CHIP_NAVI12)
memcpy(&nv12_metrics, smu_table->metrics_table, sizeof(SmuMetrics_NV12_t));
mutex_unlock(&smu->metrics_lock);
smu_v11_0_init_gpu_metrics_v1_0(gpu_metrics);
gpu_metrics->temperature_edge = metrics.TemperatureEdge;
gpu_metrics->temperature_hotspot = metrics.TemperatureHotspot;
gpu_metrics->temperature_mem = metrics.TemperatureMem;
gpu_metrics->temperature_vrgfx = metrics.TemperatureVrGfx;
gpu_metrics->temperature_vrsoc = metrics.TemperatureVrSoc;
gpu_metrics->temperature_vrmem = metrics.TemperatureVrMem0;
gpu_metrics->average_gfx_activity = metrics.AverageGfxActivity;
gpu_metrics->average_umc_activity = metrics.AverageUclkActivity;
gpu_metrics->average_socket_power = metrics.AverageSocketPower;
gpu_metrics->average_gfxclk_frequency = metrics.AverageGfxclkFrequency;
gpu_metrics->average_socclk_frequency = metrics.AverageSocclkFrequency;
gpu_metrics->average_uclk_frequency = metrics.AverageUclkFrequency;
if (adev->asic_type == CHIP_NAVI12) {
gpu_metrics->energy_accumulator = nv12_metrics.EnergyAccumulator;
gpu_metrics->average_vclk0_frequency = nv12_metrics.AverageVclkFrequency;
gpu_metrics->average_dclk0_frequency = nv12_metrics.AverageDclkFrequency;
gpu_metrics->average_mm_activity = nv12_metrics.VcnActivityPercentage;
}
gpu_metrics->current_gfxclk = metrics.CurrClock[PPCLK_GFXCLK];
gpu_metrics->current_socclk = metrics.CurrClock[PPCLK_SOCCLK];
gpu_metrics->current_uclk = metrics.CurrClock[PPCLK_UCLK];
gpu_metrics->current_vclk0 = metrics.CurrClock[PPCLK_VCLK];
gpu_metrics->current_dclk0 = metrics.CurrClock[PPCLK_DCLK];
gpu_metrics->throttle_status = metrics.ThrottlerStatus;
gpu_metrics->current_fan_speed = metrics.CurrFanSpeed;
gpu_metrics->pcie_link_width =
smu_v11_0_get_current_pcie_link_width(smu);
gpu_metrics->pcie_link_speed =
smu_v11_0_get_current_pcie_link_speed(smu);
*table = (void *)gpu_metrics;
return sizeof(struct gpu_metrics_v1_0);
}
static int navi10_enable_mgpu_fan_boost(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
uint32_t param = 0;
/* Navi12 does not support this */
if (adev->asic_type == CHIP_NAVI12)
return 0;
/* Workaround for WS SKU */
if (adev->pdev->device == 0x7312 &&
adev->pdev->revision == 0)
param = 0xD188;
return smu_cmn_send_smc_msg_with_param(smu,
SMU_MSG_SetMGpuFanBoostLimitRpm,
param,
NULL);
}
static int navi10_post_smu_init(struct smu_context *smu)
{
struct amdgpu_device *adev = smu->adev;
int ret = 0;
if (amdgpu_sriov_vf(adev))
return 0;
ret = navi10_run_umc_cdr_workaround(smu);
if (ret) {
dev_err(adev->dev, "Failed to apply umc cdr workaround!\n");
return ret;
}
if (!smu->dc_controlled_by_gpio) {
/*
* For Navi1X, manually switch it to AC mode as PMFW
* may boot it with DC mode.
*/
ret = smu_v11_0_set_power_source(smu,
adev->pm.ac_power ?
SMU_POWER_SOURCE_AC :
SMU_POWER_SOURCE_DC);
if (ret) {
dev_err(adev->dev, "Failed to switch to %s mode!\n",
adev->pm.ac_power ? "AC" : "DC");
return ret;
}
}
return ret;
}
static const struct pptable_funcs navi10_ppt_funcs = {
.get_allowed_feature_mask = navi10_get_allowed_feature_mask,
.set_default_dpm_table = navi10_set_default_dpm_table,
.dpm_set_vcn_enable = navi10_dpm_set_vcn_enable,
.dpm_set_jpeg_enable = navi10_dpm_set_jpeg_enable,
.i2c_init = navi10_i2c_control_init,
.i2c_fini = navi10_i2c_control_fini,
.print_clk_levels = navi10_print_clk_levels,
.force_clk_levels = navi10_force_clk_levels,
.populate_umd_state_clk = navi10_populate_umd_state_clk,
.get_clock_by_type_with_latency = navi10_get_clock_by_type_with_latency,
.pre_display_config_changed = navi10_pre_display_config_changed,
.display_config_changed = navi10_display_config_changed,
.notify_smc_display_config = navi10_notify_smc_display_config,
.is_dpm_running = navi10_is_dpm_running,
.get_fan_speed_rpm = navi10_get_fan_speed_rpm,
.get_power_profile_mode = navi10_get_power_profile_mode,
.set_power_profile_mode = navi10_set_power_profile_mode,
.set_watermarks_table = navi10_set_watermarks_table,
.read_sensor = navi10_read_sensor,
.get_uclk_dpm_states = navi10_get_uclk_dpm_states,
.set_performance_level = smu_v11_0_set_performance_level,
.get_thermal_temperature_range = navi10_get_thermal_temperature_range,
.display_disable_memory_clock_switch = navi10_display_disable_memory_clock_switch,
.get_power_limit = navi10_get_power_limit,
.update_pcie_parameters = navi10_update_pcie_parameters,
.init_microcode = smu_v11_0_init_microcode,
.load_microcode = smu_v11_0_load_microcode,
.fini_microcode = smu_v11_0_fini_microcode,
.init_smc_tables = navi10_init_smc_tables,
.fini_smc_tables = smu_v11_0_fini_smc_tables,
.init_power = smu_v11_0_init_power,
.fini_power = smu_v11_0_fini_power,
.check_fw_status = smu_v11_0_check_fw_status,
.setup_pptable = navi10_setup_pptable,
.get_vbios_bootup_values = smu_v11_0_get_vbios_bootup_values,
.check_fw_version = smu_v11_0_check_fw_version,
.write_pptable = smu_cmn_write_pptable,
.set_driver_table_location = smu_v11_0_set_driver_table_location,
.set_tool_table_location = smu_v11_0_set_tool_table_location,
.notify_memory_pool_location = smu_v11_0_notify_memory_pool_location,
.system_features_control = smu_v11_0_system_features_control,
.send_smc_msg_with_param = smu_cmn_send_smc_msg_with_param,
.send_smc_msg = smu_cmn_send_smc_msg,
.init_display_count = smu_v11_0_init_display_count,
.set_allowed_mask = smu_v11_0_set_allowed_mask,
.get_enabled_mask = smu_cmn_get_enabled_mask,
.feature_is_enabled = smu_cmn_feature_is_enabled,
.disable_all_features_with_exception = smu_cmn_disable_all_features_with_exception,
.notify_display_change = smu_v11_0_notify_display_change,
.set_power_limit = smu_v11_0_set_power_limit,
.init_max_sustainable_clocks = smu_v11_0_init_max_sustainable_clocks,
.enable_thermal_alert = smu_v11_0_enable_thermal_alert,
.disable_thermal_alert = smu_v11_0_disable_thermal_alert,
.set_min_dcef_deep_sleep = smu_v11_0_set_min_deep_sleep_dcefclk,
.display_clock_voltage_request = smu_v11_0_display_clock_voltage_request,
.get_fan_control_mode = smu_v11_0_get_fan_control_mode,
.set_fan_control_mode = smu_v11_0_set_fan_control_mode,
.set_fan_speed_rpm = smu_v11_0_set_fan_speed_rpm,
.set_xgmi_pstate = smu_v11_0_set_xgmi_pstate,
.gfx_off_control = smu_v11_0_gfx_off_control,
.register_irq_handler = smu_v11_0_register_irq_handler,
.set_azalia_d3_pme = smu_v11_0_set_azalia_d3_pme,
.get_max_sustainable_clocks_by_dc = smu_v11_0_get_max_sustainable_clocks_by_dc,
.baco_is_support= navi10_is_baco_supported,
.baco_get_state = smu_v11_0_baco_get_state,
.baco_set_state = smu_v11_0_baco_set_state,
.baco_enter = smu_v11_0_baco_enter,
.baco_exit = smu_v11_0_baco_exit,
.get_dpm_ultimate_freq = smu_v11_0_get_dpm_ultimate_freq,
.set_soft_freq_limited_range = smu_v11_0_set_soft_freq_limited_range,
.set_default_od_settings = navi10_set_default_od_settings,
.od_edit_dpm_table = navi10_od_edit_dpm_table,
.run_btc = navi10_run_btc,
.set_power_source = smu_v11_0_set_power_source,
.get_pp_feature_mask = smu_cmn_get_pp_feature_mask,
.set_pp_feature_mask = smu_cmn_set_pp_feature_mask,
.get_gpu_metrics = navi10_get_gpu_metrics,
.enable_mgpu_fan_boost = navi10_enable_mgpu_fan_boost,
.gfx_ulv_control = smu_v11_0_gfx_ulv_control,
.deep_sleep_control = smu_v11_0_deep_sleep_control,
.get_fan_parameters = navi10_get_fan_parameters,
.post_init = navi10_post_smu_init,
.interrupt_work = smu_v11_0_interrupt_work,
};
void navi10_set_ppt_funcs(struct smu_context *smu)
{
smu->ppt_funcs = &navi10_ppt_funcs;
smu->message_map = navi10_message_map;
smu->clock_map = navi10_clk_map;
smu->feature_map = navi10_feature_mask_map;
smu->table_map = navi10_table_map;
smu->pwr_src_map = navi10_pwr_src_map;
smu->workload_map = navi10_workload_map;
}