| /* |
| * Copyright (c) 2008-2010 Atheros Communications Inc. |
| * |
| * Permission to use, copy, modify, and/or distribute this software for any |
| * purpose with or without fee is hereby granted, provided that the above |
| * copyright notice and this permission notice appear in all copies. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| */ |
| |
| /** |
| * DOC: Programming Atheros 802.11n analog front end radios |
| * |
| * AR5416 MAC based PCI devices and AR518 MAC based PCI-Express |
| * devices have either an external AR2133 analog front end radio for single |
| * band 2.4 GHz communication or an AR5133 analog front end radio for dual |
| * band 2.4 GHz / 5 GHz communication. |
| * |
| * All devices after the AR5416 and AR5418 family starting with the AR9280 |
| * have their analog front radios, MAC/BB and host PCIe/USB interface embedded |
| * into a single-chip and require less programming. |
| * |
| * The following single-chips exist with a respective embedded radio: |
| * |
| * AR9280 - 11n dual-band 2x2 MIMO for PCIe |
| * AR9281 - 11n single-band 1x2 MIMO for PCIe |
| * AR9285 - 11n single-band 1x1 for PCIe |
| * AR9287 - 11n single-band 2x2 MIMO for PCIe |
| * |
| * AR9220 - 11n dual-band 2x2 MIMO for PCI |
| * AR9223 - 11n single-band 2x2 MIMO for PCI |
| * |
| * AR9287 - 11n single-band 1x1 MIMO for USB |
| */ |
| |
| #include "hw.h" |
| #include "ar9002_phy.h" |
| |
| /** |
| * ar9002_hw_set_channel - set channel on single-chip device |
| * @ah: atheros hardware structure |
| * @chan: |
| * |
| * This is the function to change channel on single-chip devices, that is |
| * all devices after ar9280. |
| * |
| * This function takes the channel value in MHz and sets |
| * hardware channel value. Assumes writes have been enabled to analog bus. |
| * |
| * Actual Expression, |
| * |
| * For 2GHz channel, |
| * Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17) |
| * (freq_ref = 40MHz) |
| * |
| * For 5GHz channel, |
| * Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10) |
| * (freq_ref = 40MHz/(24>>amodeRefSel)) |
| */ |
| static int ar9002_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan) |
| { |
| u16 bMode, fracMode, aModeRefSel = 0; |
| u32 freq, ndiv, channelSel = 0, channelFrac = 0, reg32 = 0; |
| struct chan_centers centers; |
| u32 refDivA = 24; |
| |
| ath9k_hw_get_channel_centers(ah, chan, ¢ers); |
| freq = centers.synth_center; |
| |
| reg32 = REG_READ(ah, AR_PHY_SYNTH_CONTROL); |
| reg32 &= 0xc0000000; |
| |
| if (freq < 4800) { /* 2 GHz, fractional mode */ |
| u32 txctl; |
| int regWrites = 0; |
| |
| bMode = 1; |
| fracMode = 1; |
| aModeRefSel = 0; |
| channelSel = CHANSEL_2G(freq); |
| |
| if (AR_SREV_9287_11_OR_LATER(ah)) { |
| if (freq == 2484) { |
| /* Enable channel spreading for channel 14 */ |
| REG_WRITE_ARRAY(&ah->iniCckfirJapan2484, |
| 1, regWrites); |
| } else { |
| REG_WRITE_ARRAY(&ah->iniCckfirNormal, |
| 1, regWrites); |
| } |
| } else { |
| txctl = REG_READ(ah, AR_PHY_CCK_TX_CTRL); |
| if (freq == 2484) { |
| /* Enable channel spreading for channel 14 */ |
| REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, |
| txctl | AR_PHY_CCK_TX_CTRL_JAPAN); |
| } else { |
| REG_WRITE(ah, AR_PHY_CCK_TX_CTRL, |
| txctl & ~AR_PHY_CCK_TX_CTRL_JAPAN); |
| } |
| } |
| } else { |
| bMode = 0; |
| fracMode = 0; |
| |
| switch (ah->eep_ops->get_eeprom(ah, EEP_FRAC_N_5G)) { |
| case 0: |
| if ((freq % 20) == 0) |
| aModeRefSel = 3; |
| else if ((freq % 10) == 0) |
| aModeRefSel = 2; |
| if (aModeRefSel) |
| break; |
| case 1: |
| default: |
| aModeRefSel = 0; |
| /* |
| * Enable 2G (fractional) mode for channels |
| * which are 5MHz spaced. |
| */ |
| fracMode = 1; |
| refDivA = 1; |
| channelSel = CHANSEL_5G(freq); |
| |
| /* RefDivA setting */ |
| REG_RMW_FIELD(ah, AR_AN_SYNTH9, |
| AR_AN_SYNTH9_REFDIVA, refDivA); |
| |
| } |
| |
| if (!fracMode) { |
| ndiv = (freq * (refDivA >> aModeRefSel)) / 60; |
| channelSel = ndiv & 0x1ff; |
| channelFrac = (ndiv & 0xfffffe00) * 2; |
| channelSel = (channelSel << 17) | channelFrac; |
| } |
| } |
| |
| reg32 = reg32 | |
| (bMode << 29) | |
| (fracMode << 28) | (aModeRefSel << 26) | (channelSel); |
| |
| REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32); |
| |
| ah->curchan = chan; |
| ah->curchan_rad_index = -1; |
| |
| return 0; |
| } |
| |
| /** |
| * ar9002_hw_spur_mitigate - convert baseband spur frequency |
| * @ah: atheros hardware structure |
| * @chan: |
| * |
| * For single-chip solutions. Converts to baseband spur frequency given the |
| * input channel frequency and compute register settings below. |
| */ |
| static void ar9002_hw_spur_mitigate(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| int bb_spur = AR_NO_SPUR; |
| int freq; |
| int bin, cur_bin; |
| int bb_spur_off, spur_subchannel_sd; |
| int spur_freq_sd; |
| int spur_delta_phase; |
| int denominator; |
| int upper, lower, cur_vit_mask; |
| int tmp, newVal; |
| int i; |
| int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8, |
| AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60 |
| }; |
| int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10, |
| AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60 |
| }; |
| int inc[4] = { 0, 100, 0, 0 }; |
| struct chan_centers centers; |
| |
| int8_t mask_m[123]; |
| int8_t mask_p[123]; |
| int8_t mask_amt; |
| int tmp_mask; |
| int cur_bb_spur; |
| bool is2GHz = IS_CHAN_2GHZ(chan); |
| |
| memset(&mask_m, 0, sizeof(int8_t) * 123); |
| memset(&mask_p, 0, sizeof(int8_t) * 123); |
| |
| ath9k_hw_get_channel_centers(ah, chan, ¢ers); |
| freq = centers.synth_center; |
| |
| ah->config.spurmode = SPUR_ENABLE_EEPROM; |
| for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { |
| cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz); |
| |
| if (is2GHz) |
| cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ; |
| else |
| cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ; |
| |
| if (AR_NO_SPUR == cur_bb_spur) |
| break; |
| cur_bb_spur = cur_bb_spur - freq; |
| |
| if (IS_CHAN_HT40(chan)) { |
| if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) && |
| (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) { |
| bb_spur = cur_bb_spur; |
| break; |
| } |
| } else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) && |
| (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) { |
| bb_spur = cur_bb_spur; |
| break; |
| } |
| } |
| |
| if (AR_NO_SPUR == bb_spur) { |
| REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, |
| AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); |
| return; |
| } else { |
| REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK, |
| AR_PHY_FORCE_CLKEN_CCK_MRC_MUX); |
| } |
| |
| bin = bb_spur * 320; |
| |
| tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0)); |
| |
| ENABLE_REGWRITE_BUFFER(ah); |
| |
| newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI | |
| AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER | |
| AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK | |
| AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK); |
| REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal); |
| |
| newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL | |
| AR_PHY_SPUR_REG_ENABLE_MASK_PPM | |
| AR_PHY_SPUR_REG_MASK_RATE_SELECT | |
| AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI | |
| SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH)); |
| REG_WRITE(ah, AR_PHY_SPUR_REG, newVal); |
| |
| if (IS_CHAN_HT40(chan)) { |
| if (bb_spur < 0) { |
| spur_subchannel_sd = 1; |
| bb_spur_off = bb_spur + 10; |
| } else { |
| spur_subchannel_sd = 0; |
| bb_spur_off = bb_spur - 10; |
| } |
| } else { |
| spur_subchannel_sd = 0; |
| bb_spur_off = bb_spur; |
| } |
| |
| if (IS_CHAN_HT40(chan)) |
| spur_delta_phase = |
| ((bb_spur * 262144) / |
| 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; |
| else |
| spur_delta_phase = |
| ((bb_spur * 524288) / |
| 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE; |
| |
| denominator = IS_CHAN_2GHZ(chan) ? 44 : 40; |
| spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff; |
| |
| newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC | |
| SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) | |
| SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE)); |
| REG_WRITE(ah, AR_PHY_TIMING11, newVal); |
| |
| newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S; |
| REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal); |
| |
| cur_bin = -6000; |
| upper = bin + 100; |
| lower = bin - 100; |
| |
| for (i = 0; i < 4; i++) { |
| int pilot_mask = 0; |
| int chan_mask = 0; |
| int bp = 0; |
| for (bp = 0; bp < 30; bp++) { |
| if ((cur_bin > lower) && (cur_bin < upper)) { |
| pilot_mask = pilot_mask | 0x1 << bp; |
| chan_mask = chan_mask | 0x1 << bp; |
| } |
| cur_bin += 100; |
| } |
| cur_bin += inc[i]; |
| REG_WRITE(ah, pilot_mask_reg[i], pilot_mask); |
| REG_WRITE(ah, chan_mask_reg[i], chan_mask); |
| } |
| |
| cur_vit_mask = 6100; |
| upper = bin + 120; |
| lower = bin - 120; |
| |
| for (i = 0; i < 123; i++) { |
| if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) { |
| |
| /* workaround for gcc bug #37014 */ |
| volatile int tmp_v = abs(cur_vit_mask - bin); |
| |
| if (tmp_v < 75) |
| mask_amt = 1; |
| else |
| mask_amt = 0; |
| if (cur_vit_mask < 0) |
| mask_m[abs(cur_vit_mask / 100)] = mask_amt; |
| else |
| mask_p[cur_vit_mask / 100] = mask_amt; |
| } |
| cur_vit_mask -= 100; |
| } |
| |
| tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28) |
| | (mask_m[48] << 26) | (mask_m[49] << 24) |
| | (mask_m[50] << 22) | (mask_m[51] << 20) |
| | (mask_m[52] << 18) | (mask_m[53] << 16) |
| | (mask_m[54] << 14) | (mask_m[55] << 12) |
| | (mask_m[56] << 10) | (mask_m[57] << 8) |
| | (mask_m[58] << 6) | (mask_m[59] << 4) |
| | (mask_m[60] << 2) | (mask_m[61] << 0); |
| REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask); |
| REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask); |
| |
| tmp_mask = (mask_m[31] << 28) |
| | (mask_m[32] << 26) | (mask_m[33] << 24) |
| | (mask_m[34] << 22) | (mask_m[35] << 20) |
| | (mask_m[36] << 18) | (mask_m[37] << 16) |
| | (mask_m[48] << 14) | (mask_m[39] << 12) |
| | (mask_m[40] << 10) | (mask_m[41] << 8) |
| | (mask_m[42] << 6) | (mask_m[43] << 4) |
| | (mask_m[44] << 2) | (mask_m[45] << 0); |
| REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask); |
| REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask); |
| |
| tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28) |
| | (mask_m[18] << 26) | (mask_m[18] << 24) |
| | (mask_m[20] << 22) | (mask_m[20] << 20) |
| | (mask_m[22] << 18) | (mask_m[22] << 16) |
| | (mask_m[24] << 14) | (mask_m[24] << 12) |
| | (mask_m[25] << 10) | (mask_m[26] << 8) |
| | (mask_m[27] << 6) | (mask_m[28] << 4) |
| | (mask_m[29] << 2) | (mask_m[30] << 0); |
| REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask); |
| REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask); |
| |
| tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28) |
| | (mask_m[2] << 26) | (mask_m[3] << 24) |
| | (mask_m[4] << 22) | (mask_m[5] << 20) |
| | (mask_m[6] << 18) | (mask_m[7] << 16) |
| | (mask_m[8] << 14) | (mask_m[9] << 12) |
| | (mask_m[10] << 10) | (mask_m[11] << 8) |
| | (mask_m[12] << 6) | (mask_m[13] << 4) |
| | (mask_m[14] << 2) | (mask_m[15] << 0); |
| REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask); |
| REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask); |
| |
| tmp_mask = (mask_p[15] << 28) |
| | (mask_p[14] << 26) | (mask_p[13] << 24) |
| | (mask_p[12] << 22) | (mask_p[11] << 20) |
| | (mask_p[10] << 18) | (mask_p[9] << 16) |
| | (mask_p[8] << 14) | (mask_p[7] << 12) |
| | (mask_p[6] << 10) | (mask_p[5] << 8) |
| | (mask_p[4] << 6) | (mask_p[3] << 4) |
| | (mask_p[2] << 2) | (mask_p[1] << 0); |
| REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask); |
| REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask); |
| |
| tmp_mask = (mask_p[30] << 28) |
| | (mask_p[29] << 26) | (mask_p[28] << 24) |
| | (mask_p[27] << 22) | (mask_p[26] << 20) |
| | (mask_p[25] << 18) | (mask_p[24] << 16) |
| | (mask_p[23] << 14) | (mask_p[22] << 12) |
| | (mask_p[21] << 10) | (mask_p[20] << 8) |
| | (mask_p[19] << 6) | (mask_p[18] << 4) |
| | (mask_p[17] << 2) | (mask_p[16] << 0); |
| REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask); |
| REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask); |
| |
| tmp_mask = (mask_p[45] << 28) |
| | (mask_p[44] << 26) | (mask_p[43] << 24) |
| | (mask_p[42] << 22) | (mask_p[41] << 20) |
| | (mask_p[40] << 18) | (mask_p[39] << 16) |
| | (mask_p[38] << 14) | (mask_p[37] << 12) |
| | (mask_p[36] << 10) | (mask_p[35] << 8) |
| | (mask_p[34] << 6) | (mask_p[33] << 4) |
| | (mask_p[32] << 2) | (mask_p[31] << 0); |
| REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask); |
| REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask); |
| |
| tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28) |
| | (mask_p[59] << 26) | (mask_p[58] << 24) |
| | (mask_p[57] << 22) | (mask_p[56] << 20) |
| | (mask_p[55] << 18) | (mask_p[54] << 16) |
| | (mask_p[53] << 14) | (mask_p[52] << 12) |
| | (mask_p[51] << 10) | (mask_p[50] << 8) |
| | (mask_p[49] << 6) | (mask_p[48] << 4) |
| | (mask_p[47] << 2) | (mask_p[46] << 0); |
| REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask); |
| REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask); |
| |
| REGWRITE_BUFFER_FLUSH(ah); |
| DISABLE_REGWRITE_BUFFER(ah); |
| } |
| |
| static void ar9002_olc_init(struct ath_hw *ah) |
| { |
| u32 i; |
| |
| if (!OLC_FOR_AR9280_20_LATER) |
| return; |
| |
| if (OLC_FOR_AR9287_10_LATER) { |
| REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9, |
| AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL); |
| ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0, |
| AR9287_AN_TXPC0_TXPCMODE, |
| AR9287_AN_TXPC0_TXPCMODE_S, |
| AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE); |
| udelay(100); |
| } else { |
| for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++) |
| ah->originalGain[i] = |
| MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4), |
| AR_PHY_TX_GAIN); |
| ah->PDADCdelta = 0; |
| } |
| } |
| |
| static u32 ar9002_hw_compute_pll_control(struct ath_hw *ah, |
| struct ath9k_channel *chan) |
| { |
| u32 pll; |
| |
| pll = SM(0x5, AR_RTC_9160_PLL_REFDIV); |
| |
| if (chan && IS_CHAN_HALF_RATE(chan)) |
| pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL); |
| else if (chan && IS_CHAN_QUARTER_RATE(chan)) |
| pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL); |
| |
| if (chan && IS_CHAN_5GHZ(chan)) { |
| if (IS_CHAN_A_FAST_CLOCK(ah, chan)) |
| pll = 0x142c; |
| else if (AR_SREV_9280_20(ah)) |
| pll = 0x2850; |
| else |
| pll |= SM(0x28, AR_RTC_9160_PLL_DIV); |
| } else { |
| pll |= SM(0x2c, AR_RTC_9160_PLL_DIV); |
| } |
| |
| return pll; |
| } |
| |
| static void ar9002_hw_do_getnf(struct ath_hw *ah, |
| int16_t nfarray[NUM_NF_READINGS]) |
| { |
| int16_t nf; |
| |
| nf = MS(REG_READ(ah, AR_PHY_CCA), AR9280_PHY_MINCCA_PWR); |
| nfarray[0] = sign_extend(nf, 9); |
| |
| nf = MS(REG_READ(ah, AR_PHY_EXT_CCA), AR9280_PHY_EXT_MINCCA_PWR); |
| if (IS_CHAN_HT40(ah->curchan)) |
| nfarray[3] = sign_extend(nf, 9); |
| |
| if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) |
| return; |
| |
| nf = MS(REG_READ(ah, AR_PHY_CH1_CCA), AR9280_PHY_CH1_MINCCA_PWR); |
| nfarray[1] = sign_extend(nf, 9); |
| |
| nf = MS(REG_READ(ah, AR_PHY_CH1_EXT_CCA), AR9280_PHY_CH1_EXT_MINCCA_PWR); |
| if (IS_CHAN_HT40(ah->curchan)) |
| nfarray[4] = sign_extend(nf, 9); |
| } |
| |
| static void ar9002_hw_set_nf_limits(struct ath_hw *ah) |
| { |
| if (AR_SREV_9285(ah)) { |
| ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9285_2GHZ; |
| ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9285_2GHZ; |
| ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9285_2GHZ; |
| } else if (AR_SREV_9287(ah)) { |
| ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9287_2GHZ; |
| ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9287_2GHZ; |
| ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9287_2GHZ; |
| } else if (AR_SREV_9271(ah)) { |
| ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9271_2GHZ; |
| ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9271_2GHZ; |
| ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9271_2GHZ; |
| } else { |
| ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_2GHZ; |
| ah->nf_2g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_2GHZ; |
| ah->nf_2g.nominal = AR_PHY_CCA_NOM_VAL_9280_2GHZ; |
| ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9280_5GHZ; |
| ah->nf_5g.min = AR_PHY_CCA_MIN_GOOD_VAL_9280_5GHZ; |
| ah->nf_5g.nominal = AR_PHY_CCA_NOM_VAL_9280_5GHZ; |
| } |
| } |
| |
| void ar9002_hw_attach_phy_ops(struct ath_hw *ah) |
| { |
| struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah); |
| |
| priv_ops->set_rf_regs = NULL; |
| priv_ops->rf_alloc_ext_banks = NULL; |
| priv_ops->rf_free_ext_banks = NULL; |
| priv_ops->rf_set_freq = ar9002_hw_set_channel; |
| priv_ops->spur_mitigate_freq = ar9002_hw_spur_mitigate; |
| priv_ops->olc_init = ar9002_olc_init; |
| priv_ops->compute_pll_control = ar9002_hw_compute_pll_control; |
| priv_ops->do_getnf = ar9002_hw_do_getnf; |
| |
| ar9002_hw_set_nf_limits(ah); |
| } |