blob: 661c6605d31b39033a42a5d4297e1684ed734011 [file] [log] [blame]
/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/errno.h>
#include <linux/acpi.h>
#include <linux/hash.h>
#include <linux/cpufreq.h>
#include <linux/log2.h>
#include "kfd_priv.h"
#include "kfd_crat.h"
#include "kfd_topology.h"
static struct list_head topology_device_list;
static int topology_crat_parsed;
static struct kfd_system_properties sys_props;
static DECLARE_RWSEM(topology_lock);
struct kfd_dev *kfd_device_by_id(uint32_t gpu_id)
{
struct kfd_topology_device *top_dev;
struct kfd_dev *device = NULL;
down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list)
if (top_dev->gpu_id == gpu_id) {
device = top_dev->gpu;
break;
}
up_read(&topology_lock);
return device;
}
struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev)
{
struct kfd_topology_device *top_dev;
struct kfd_dev *device = NULL;
down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list)
if (top_dev->gpu->pdev == pdev) {
device = top_dev->gpu;
break;
}
up_read(&topology_lock);
return device;
}
static int kfd_topology_get_crat_acpi(void *crat_image, size_t *size)
{
struct acpi_table_header *crat_table;
acpi_status status;
if (!size)
return -EINVAL;
/*
* Fetch the CRAT table from ACPI
*/
status = acpi_get_table(CRAT_SIGNATURE, 0, &crat_table);
if (status == AE_NOT_FOUND) {
pr_warn("CRAT table not found\n");
return -ENODATA;
} else if (ACPI_FAILURE(status)) {
const char *err = acpi_format_exception(status);
pr_err("CRAT table error: %s\n", err);
return -EINVAL;
}
if (*size >= crat_table->length && crat_image != NULL)
memcpy(crat_image, crat_table, crat_table->length);
*size = crat_table->length;
return 0;
}
static void kfd_populated_cu_info_cpu(struct kfd_topology_device *dev,
struct crat_subtype_computeunit *cu)
{
BUG_ON(!dev);
BUG_ON(!cu);
dev->node_props.cpu_cores_count = cu->num_cpu_cores;
dev->node_props.cpu_core_id_base = cu->processor_id_low;
if (cu->hsa_capability & CRAT_CU_FLAGS_IOMMU_PRESENT)
dev->node_props.capability |= HSA_CAP_ATS_PRESENT;
pr_info("CU CPU: cores=%d id_base=%d\n", cu->num_cpu_cores,
cu->processor_id_low);
}
static void kfd_populated_cu_info_gpu(struct kfd_topology_device *dev,
struct crat_subtype_computeunit *cu)
{
BUG_ON(!dev);
BUG_ON(!cu);
dev->node_props.simd_id_base = cu->processor_id_low;
dev->node_props.simd_count = cu->num_simd_cores;
dev->node_props.lds_size_in_kb = cu->lds_size_in_kb;
dev->node_props.max_waves_per_simd = cu->max_waves_simd;
dev->node_props.wave_front_size = cu->wave_front_size;
dev->node_props.mem_banks_count = cu->num_banks;
dev->node_props.array_count = cu->num_arrays;
dev->node_props.cu_per_simd_array = cu->num_cu_per_array;
dev->node_props.simd_per_cu = cu->num_simd_per_cu;
dev->node_props.max_slots_scratch_cu = cu->max_slots_scatch_cu;
if (cu->hsa_capability & CRAT_CU_FLAGS_HOT_PLUGGABLE)
dev->node_props.capability |= HSA_CAP_HOT_PLUGGABLE;
pr_info("CU GPU: simds=%d id_base=%d\n", cu->num_simd_cores,
cu->processor_id_low);
}
/* kfd_parse_subtype_cu is called when the topology mutex is already acquired */
static int kfd_parse_subtype_cu(struct crat_subtype_computeunit *cu)
{
struct kfd_topology_device *dev;
int i = 0;
BUG_ON(!cu);
pr_info("Found CU entry in CRAT table with proximity_domain=%d caps=%x\n",
cu->proximity_domain, cu->hsa_capability);
list_for_each_entry(dev, &topology_device_list, list) {
if (cu->proximity_domain == i) {
if (cu->flags & CRAT_CU_FLAGS_CPU_PRESENT)
kfd_populated_cu_info_cpu(dev, cu);
if (cu->flags & CRAT_CU_FLAGS_GPU_PRESENT)
kfd_populated_cu_info_gpu(dev, cu);
break;
}
i++;
}
return 0;
}
/*
* kfd_parse_subtype_mem is called when the topology mutex is
* already acquired
*/
static int kfd_parse_subtype_mem(struct crat_subtype_memory *mem)
{
struct kfd_mem_properties *props;
struct kfd_topology_device *dev;
int i = 0;
BUG_ON(!mem);
pr_info("Found memory entry in CRAT table with proximity_domain=%d\n",
mem->promixity_domain);
list_for_each_entry(dev, &topology_device_list, list) {
if (mem->promixity_domain == i) {
props = kfd_alloc_struct(props);
if (props == NULL)
return -ENOMEM;
if (dev->node_props.cpu_cores_count == 0)
props->heap_type = HSA_MEM_HEAP_TYPE_FB_PRIVATE;
else
props->heap_type = HSA_MEM_HEAP_TYPE_SYSTEM;
if (mem->flags & CRAT_MEM_FLAGS_HOT_PLUGGABLE)
props->flags |= HSA_MEM_FLAGS_HOT_PLUGGABLE;
if (mem->flags & CRAT_MEM_FLAGS_NON_VOLATILE)
props->flags |= HSA_MEM_FLAGS_NON_VOLATILE;
props->size_in_bytes =
((uint64_t)mem->length_high << 32) +
mem->length_low;
props->width = mem->width;
dev->mem_bank_count++;
list_add_tail(&props->list, &dev->mem_props);
break;
}
i++;
}
return 0;
}
/*
* kfd_parse_subtype_cache is called when the topology mutex
* is already acquired
*/
static int kfd_parse_subtype_cache(struct crat_subtype_cache *cache)
{
struct kfd_cache_properties *props;
struct kfd_topology_device *dev;
uint32_t id;
BUG_ON(!cache);
id = cache->processor_id_low;
pr_info("Found cache entry in CRAT table with processor_id=%d\n", id);
list_for_each_entry(dev, &topology_device_list, list)
if (id == dev->node_props.cpu_core_id_base ||
id == dev->node_props.simd_id_base) {
props = kfd_alloc_struct(props);
if (props == NULL)
return -ENOMEM;
props->processor_id_low = id;
props->cache_level = cache->cache_level;
props->cache_size = cache->cache_size;
props->cacheline_size = cache->cache_line_size;
props->cachelines_per_tag = cache->lines_per_tag;
props->cache_assoc = cache->associativity;
props->cache_latency = cache->cache_latency;
if (cache->flags & CRAT_CACHE_FLAGS_DATA_CACHE)
props->cache_type |= HSA_CACHE_TYPE_DATA;
if (cache->flags & CRAT_CACHE_FLAGS_INST_CACHE)
props->cache_type |= HSA_CACHE_TYPE_INSTRUCTION;
if (cache->flags & CRAT_CACHE_FLAGS_CPU_CACHE)
props->cache_type |= HSA_CACHE_TYPE_CPU;
if (cache->flags & CRAT_CACHE_FLAGS_SIMD_CACHE)
props->cache_type |= HSA_CACHE_TYPE_HSACU;
dev->cache_count++;
dev->node_props.caches_count++;
list_add_tail(&props->list, &dev->cache_props);
break;
}
return 0;
}
/*
* kfd_parse_subtype_iolink is called when the topology mutex
* is already acquired
*/
static int kfd_parse_subtype_iolink(struct crat_subtype_iolink *iolink)
{
struct kfd_iolink_properties *props;
struct kfd_topology_device *dev;
uint32_t i = 0;
uint32_t id_from;
uint32_t id_to;
BUG_ON(!iolink);
id_from = iolink->proximity_domain_from;
id_to = iolink->proximity_domain_to;
pr_info("Found IO link entry in CRAT table with id_from=%d\n", id_from);
list_for_each_entry(dev, &topology_device_list, list) {
if (id_from == i) {
props = kfd_alloc_struct(props);
if (props == NULL)
return -ENOMEM;
props->node_from = id_from;
props->node_to = id_to;
props->ver_maj = iolink->version_major;
props->ver_min = iolink->version_minor;
/*
* weight factor (derived from CDIR), currently always 1
*/
props->weight = 1;
props->min_latency = iolink->minimum_latency;
props->max_latency = iolink->maximum_latency;
props->min_bandwidth = iolink->minimum_bandwidth_mbs;
props->max_bandwidth = iolink->maximum_bandwidth_mbs;
props->rec_transfer_size =
iolink->recommended_transfer_size;
dev->io_link_count++;
dev->node_props.io_links_count++;
list_add_tail(&props->list, &dev->io_link_props);
break;
}
i++;
}
return 0;
}
static int kfd_parse_subtype(struct crat_subtype_generic *sub_type_hdr)
{
struct crat_subtype_computeunit *cu;
struct crat_subtype_memory *mem;
struct crat_subtype_cache *cache;
struct crat_subtype_iolink *iolink;
int ret = 0;
BUG_ON(!sub_type_hdr);
switch (sub_type_hdr->type) {
case CRAT_SUBTYPE_COMPUTEUNIT_AFFINITY:
cu = (struct crat_subtype_computeunit *)sub_type_hdr;
ret = kfd_parse_subtype_cu(cu);
break;
case CRAT_SUBTYPE_MEMORY_AFFINITY:
mem = (struct crat_subtype_memory *)sub_type_hdr;
ret = kfd_parse_subtype_mem(mem);
break;
case CRAT_SUBTYPE_CACHE_AFFINITY:
cache = (struct crat_subtype_cache *)sub_type_hdr;
ret = kfd_parse_subtype_cache(cache);
break;
case CRAT_SUBTYPE_TLB_AFFINITY:
/*
* For now, nothing to do here
*/
pr_info("Found TLB entry in CRAT table (not processing)\n");
break;
case CRAT_SUBTYPE_CCOMPUTE_AFFINITY:
/*
* For now, nothing to do here
*/
pr_info("Found CCOMPUTE entry in CRAT table (not processing)\n");
break;
case CRAT_SUBTYPE_IOLINK_AFFINITY:
iolink = (struct crat_subtype_iolink *)sub_type_hdr;
ret = kfd_parse_subtype_iolink(iolink);
break;
default:
pr_warn("Unknown subtype (%d) in CRAT\n",
sub_type_hdr->type);
}
return ret;
}
static void kfd_release_topology_device(struct kfd_topology_device *dev)
{
struct kfd_mem_properties *mem;
struct kfd_cache_properties *cache;
struct kfd_iolink_properties *iolink;
BUG_ON(!dev);
list_del(&dev->list);
while (dev->mem_props.next != &dev->mem_props) {
mem = container_of(dev->mem_props.next,
struct kfd_mem_properties, list);
list_del(&mem->list);
kfree(mem);
}
while (dev->cache_props.next != &dev->cache_props) {
cache = container_of(dev->cache_props.next,
struct kfd_cache_properties, list);
list_del(&cache->list);
kfree(cache);
}
while (dev->io_link_props.next != &dev->io_link_props) {
iolink = container_of(dev->io_link_props.next,
struct kfd_iolink_properties, list);
list_del(&iolink->list);
kfree(iolink);
}
kfree(dev);
sys_props.num_devices--;
}
static void kfd_release_live_view(void)
{
struct kfd_topology_device *dev;
while (topology_device_list.next != &topology_device_list) {
dev = container_of(topology_device_list.next,
struct kfd_topology_device, list);
kfd_release_topology_device(dev);
}
memset(&sys_props, 0, sizeof(sys_props));
}
static struct kfd_topology_device *kfd_create_topology_device(void)
{
struct kfd_topology_device *dev;
dev = kfd_alloc_struct(dev);
if (dev == NULL) {
pr_err("No memory to allocate a topology device");
return NULL;
}
INIT_LIST_HEAD(&dev->mem_props);
INIT_LIST_HEAD(&dev->cache_props);
INIT_LIST_HEAD(&dev->io_link_props);
list_add_tail(&dev->list, &topology_device_list);
sys_props.num_devices++;
return dev;
}
static int kfd_parse_crat_table(void *crat_image)
{
struct kfd_topology_device *top_dev;
struct crat_subtype_generic *sub_type_hdr;
uint16_t node_id;
int ret;
struct crat_header *crat_table = (struct crat_header *)crat_image;
uint16_t num_nodes;
uint32_t image_len;
if (!crat_image)
return -EINVAL;
num_nodes = crat_table->num_domains;
image_len = crat_table->length;
pr_info("Parsing CRAT table with %d nodes\n", num_nodes);
for (node_id = 0; node_id < num_nodes; node_id++) {
top_dev = kfd_create_topology_device();
if (!top_dev) {
kfd_release_live_view();
return -ENOMEM;
}
}
sys_props.platform_id =
(*((uint64_t *)crat_table->oem_id)) & CRAT_OEMID_64BIT_MASK;
sys_props.platform_oem = *((uint64_t *)crat_table->oem_table_id);
sys_props.platform_rev = crat_table->revision;
sub_type_hdr = (struct crat_subtype_generic *)(crat_table+1);
while ((char *)sub_type_hdr + sizeof(struct crat_subtype_generic) <
((char *)crat_image) + image_len) {
if (sub_type_hdr->flags & CRAT_SUBTYPE_FLAGS_ENABLED) {
ret = kfd_parse_subtype(sub_type_hdr);
if (ret != 0) {
kfd_release_live_view();
return ret;
}
}
sub_type_hdr = (typeof(sub_type_hdr))((char *)sub_type_hdr +
sub_type_hdr->length);
}
sys_props.generation_count++;
topology_crat_parsed = 1;
return 0;
}
#define sysfs_show_gen_prop(buffer, fmt, ...) \
snprintf(buffer, PAGE_SIZE, "%s"fmt, buffer, __VA_ARGS__)
#define sysfs_show_32bit_prop(buffer, name, value) \
sysfs_show_gen_prop(buffer, "%s %u\n", name, value)
#define sysfs_show_64bit_prop(buffer, name, value) \
sysfs_show_gen_prop(buffer, "%s %llu\n", name, value)
#define sysfs_show_32bit_val(buffer, value) \
sysfs_show_gen_prop(buffer, "%u\n", value)
#define sysfs_show_str_val(buffer, value) \
sysfs_show_gen_prop(buffer, "%s\n", value)
static ssize_t sysprops_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
ssize_t ret;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
if (attr == &sys_props.attr_genid) {
ret = sysfs_show_32bit_val(buffer, sys_props.generation_count);
} else if (attr == &sys_props.attr_props) {
sysfs_show_64bit_prop(buffer, "platform_oem",
sys_props.platform_oem);
sysfs_show_64bit_prop(buffer, "platform_id",
sys_props.platform_id);
ret = sysfs_show_64bit_prop(buffer, "platform_rev",
sys_props.platform_rev);
} else {
ret = -EINVAL;
}
return ret;
}
static const struct sysfs_ops sysprops_ops = {
.show = sysprops_show,
};
static struct kobj_type sysprops_type = {
.sysfs_ops = &sysprops_ops,
};
static ssize_t iolink_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
ssize_t ret;
struct kfd_iolink_properties *iolink;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
iolink = container_of(attr, struct kfd_iolink_properties, attr);
sysfs_show_32bit_prop(buffer, "type", iolink->iolink_type);
sysfs_show_32bit_prop(buffer, "version_major", iolink->ver_maj);
sysfs_show_32bit_prop(buffer, "version_minor", iolink->ver_min);
sysfs_show_32bit_prop(buffer, "node_from", iolink->node_from);
sysfs_show_32bit_prop(buffer, "node_to", iolink->node_to);
sysfs_show_32bit_prop(buffer, "weight", iolink->weight);
sysfs_show_32bit_prop(buffer, "min_latency", iolink->min_latency);
sysfs_show_32bit_prop(buffer, "max_latency", iolink->max_latency);
sysfs_show_32bit_prop(buffer, "min_bandwidth", iolink->min_bandwidth);
sysfs_show_32bit_prop(buffer, "max_bandwidth", iolink->max_bandwidth);
sysfs_show_32bit_prop(buffer, "recommended_transfer_size",
iolink->rec_transfer_size);
ret = sysfs_show_32bit_prop(buffer, "flags", iolink->flags);
return ret;
}
static const struct sysfs_ops iolink_ops = {
.show = iolink_show,
};
static struct kobj_type iolink_type = {
.sysfs_ops = &iolink_ops,
};
static ssize_t mem_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
ssize_t ret;
struct kfd_mem_properties *mem;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
mem = container_of(attr, struct kfd_mem_properties, attr);
sysfs_show_32bit_prop(buffer, "heap_type", mem->heap_type);
sysfs_show_64bit_prop(buffer, "size_in_bytes", mem->size_in_bytes);
sysfs_show_32bit_prop(buffer, "flags", mem->flags);
sysfs_show_32bit_prop(buffer, "width", mem->width);
ret = sysfs_show_32bit_prop(buffer, "mem_clk_max", mem->mem_clk_max);
return ret;
}
static const struct sysfs_ops mem_ops = {
.show = mem_show,
};
static struct kobj_type mem_type = {
.sysfs_ops = &mem_ops,
};
static ssize_t kfd_cache_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
ssize_t ret;
uint32_t i;
struct kfd_cache_properties *cache;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
cache = container_of(attr, struct kfd_cache_properties, attr);
sysfs_show_32bit_prop(buffer, "processor_id_low",
cache->processor_id_low);
sysfs_show_32bit_prop(buffer, "level", cache->cache_level);
sysfs_show_32bit_prop(buffer, "size", cache->cache_size);
sysfs_show_32bit_prop(buffer, "cache_line_size", cache->cacheline_size);
sysfs_show_32bit_prop(buffer, "cache_lines_per_tag",
cache->cachelines_per_tag);
sysfs_show_32bit_prop(buffer, "association", cache->cache_assoc);
sysfs_show_32bit_prop(buffer, "latency", cache->cache_latency);
sysfs_show_32bit_prop(buffer, "type", cache->cache_type);
snprintf(buffer, PAGE_SIZE, "%ssibling_map ", buffer);
for (i = 0; i < KFD_TOPOLOGY_CPU_SIBLINGS; i++)
ret = snprintf(buffer, PAGE_SIZE, "%s%d%s",
buffer, cache->sibling_map[i],
(i == KFD_TOPOLOGY_CPU_SIBLINGS-1) ?
"\n" : ",");
return ret;
}
static const struct sysfs_ops cache_ops = {
.show = kfd_cache_show,
};
static struct kobj_type cache_type = {
.sysfs_ops = &cache_ops,
};
static ssize_t node_show(struct kobject *kobj, struct attribute *attr,
char *buffer)
{
struct kfd_topology_device *dev;
char public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE];
uint32_t i;
uint32_t log_max_watch_addr;
/* Making sure that the buffer is an empty string */
buffer[0] = 0;
if (strcmp(attr->name, "gpu_id") == 0) {
dev = container_of(attr, struct kfd_topology_device,
attr_gpuid);
return sysfs_show_32bit_val(buffer, dev->gpu_id);
}
if (strcmp(attr->name, "name") == 0) {
dev = container_of(attr, struct kfd_topology_device,
attr_name);
for (i = 0; i < KFD_TOPOLOGY_PUBLIC_NAME_SIZE; i++) {
public_name[i] =
(char)dev->node_props.marketing_name[i];
if (dev->node_props.marketing_name[i] == 0)
break;
}
public_name[KFD_TOPOLOGY_PUBLIC_NAME_SIZE-1] = 0x0;
return sysfs_show_str_val(buffer, public_name);
}
dev = container_of(attr, struct kfd_topology_device,
attr_props);
sysfs_show_32bit_prop(buffer, "cpu_cores_count",
dev->node_props.cpu_cores_count);
sysfs_show_32bit_prop(buffer, "simd_count",
dev->node_props.simd_count);
if (dev->mem_bank_count < dev->node_props.mem_banks_count) {
pr_warn("kfd: mem_banks_count truncated from %d to %d\n",
dev->node_props.mem_banks_count,
dev->mem_bank_count);
sysfs_show_32bit_prop(buffer, "mem_banks_count",
dev->mem_bank_count);
} else {
sysfs_show_32bit_prop(buffer, "mem_banks_count",
dev->node_props.mem_banks_count);
}
sysfs_show_32bit_prop(buffer, "caches_count",
dev->node_props.caches_count);
sysfs_show_32bit_prop(buffer, "io_links_count",
dev->node_props.io_links_count);
sysfs_show_32bit_prop(buffer, "cpu_core_id_base",
dev->node_props.cpu_core_id_base);
sysfs_show_32bit_prop(buffer, "simd_id_base",
dev->node_props.simd_id_base);
sysfs_show_32bit_prop(buffer, "capability",
dev->node_props.capability);
sysfs_show_32bit_prop(buffer, "max_waves_per_simd",
dev->node_props.max_waves_per_simd);
sysfs_show_32bit_prop(buffer, "lds_size_in_kb",
dev->node_props.lds_size_in_kb);
sysfs_show_32bit_prop(buffer, "gds_size_in_kb",
dev->node_props.gds_size_in_kb);
sysfs_show_32bit_prop(buffer, "wave_front_size",
dev->node_props.wave_front_size);
sysfs_show_32bit_prop(buffer, "array_count",
dev->node_props.array_count);
sysfs_show_32bit_prop(buffer, "simd_arrays_per_engine",
dev->node_props.simd_arrays_per_engine);
sysfs_show_32bit_prop(buffer, "cu_per_simd_array",
dev->node_props.cu_per_simd_array);
sysfs_show_32bit_prop(buffer, "simd_per_cu",
dev->node_props.simd_per_cu);
sysfs_show_32bit_prop(buffer, "max_slots_scratch_cu",
dev->node_props.max_slots_scratch_cu);
sysfs_show_32bit_prop(buffer, "vendor_id",
dev->node_props.vendor_id);
sysfs_show_32bit_prop(buffer, "device_id",
dev->node_props.device_id);
sysfs_show_32bit_prop(buffer, "location_id",
dev->node_props.location_id);
if (dev->gpu) {
log_max_watch_addr =
__ilog2_u32(dev->gpu->device_info->num_of_watch_points);
if (log_max_watch_addr) {
dev->node_props.capability |=
HSA_CAP_WATCH_POINTS_SUPPORTED;
dev->node_props.capability |=
((log_max_watch_addr <<
HSA_CAP_WATCH_POINTS_TOTALBITS_SHIFT) &
HSA_CAP_WATCH_POINTS_TOTALBITS_MASK);
}
sysfs_show_32bit_prop(buffer, "max_engine_clk_fcompute",
dev->gpu->kfd2kgd->get_max_engine_clock_in_mhz(
dev->gpu->kgd));
sysfs_show_64bit_prop(buffer, "local_mem_size",
dev->gpu->kfd2kgd->get_vmem_size(
dev->gpu->kgd));
sysfs_show_32bit_prop(buffer, "fw_version",
dev->gpu->kfd2kgd->get_fw_version(
dev->gpu->kgd,
KGD_ENGINE_MEC1));
}
return sysfs_show_32bit_prop(buffer, "max_engine_clk_ccompute",
cpufreq_quick_get_max(0)/1000);
}
static const struct sysfs_ops node_ops = {
.show = node_show,
};
static struct kobj_type node_type = {
.sysfs_ops = &node_ops,
};
static void kfd_remove_sysfs_file(struct kobject *kobj, struct attribute *attr)
{
sysfs_remove_file(kobj, attr);
kobject_del(kobj);
kobject_put(kobj);
}
static void kfd_remove_sysfs_node_entry(struct kfd_topology_device *dev)
{
struct kfd_iolink_properties *iolink;
struct kfd_cache_properties *cache;
struct kfd_mem_properties *mem;
BUG_ON(!dev);
if (dev->kobj_iolink) {
list_for_each_entry(iolink, &dev->io_link_props, list)
if (iolink->kobj) {
kfd_remove_sysfs_file(iolink->kobj,
&iolink->attr);
iolink->kobj = NULL;
}
kobject_del(dev->kobj_iolink);
kobject_put(dev->kobj_iolink);
dev->kobj_iolink = NULL;
}
if (dev->kobj_cache) {
list_for_each_entry(cache, &dev->cache_props, list)
if (cache->kobj) {
kfd_remove_sysfs_file(cache->kobj,
&cache->attr);
cache->kobj = NULL;
}
kobject_del(dev->kobj_cache);
kobject_put(dev->kobj_cache);
dev->kobj_cache = NULL;
}
if (dev->kobj_mem) {
list_for_each_entry(mem, &dev->mem_props, list)
if (mem->kobj) {
kfd_remove_sysfs_file(mem->kobj, &mem->attr);
mem->kobj = NULL;
}
kobject_del(dev->kobj_mem);
kobject_put(dev->kobj_mem);
dev->kobj_mem = NULL;
}
if (dev->kobj_node) {
sysfs_remove_file(dev->kobj_node, &dev->attr_gpuid);
sysfs_remove_file(dev->kobj_node, &dev->attr_name);
sysfs_remove_file(dev->kobj_node, &dev->attr_props);
kobject_del(dev->kobj_node);
kobject_put(dev->kobj_node);
dev->kobj_node = NULL;
}
}
static int kfd_build_sysfs_node_entry(struct kfd_topology_device *dev,
uint32_t id)
{
struct kfd_iolink_properties *iolink;
struct kfd_cache_properties *cache;
struct kfd_mem_properties *mem;
int ret;
uint32_t i;
BUG_ON(!dev);
/*
* Creating the sysfs folders
*/
BUG_ON(dev->kobj_node);
dev->kobj_node = kfd_alloc_struct(dev->kobj_node);
if (!dev->kobj_node)
return -ENOMEM;
ret = kobject_init_and_add(dev->kobj_node, &node_type,
sys_props.kobj_nodes, "%d", id);
if (ret < 0)
return ret;
dev->kobj_mem = kobject_create_and_add("mem_banks", dev->kobj_node);
if (!dev->kobj_mem)
return -ENOMEM;
dev->kobj_cache = kobject_create_and_add("caches", dev->kobj_node);
if (!dev->kobj_cache)
return -ENOMEM;
dev->kobj_iolink = kobject_create_and_add("io_links", dev->kobj_node);
if (!dev->kobj_iolink)
return -ENOMEM;
/*
* Creating sysfs files for node properties
*/
dev->attr_gpuid.name = "gpu_id";
dev->attr_gpuid.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&dev->attr_gpuid);
dev->attr_name.name = "name";
dev->attr_name.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&dev->attr_name);
dev->attr_props.name = "properties";
dev->attr_props.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&dev->attr_props);
ret = sysfs_create_file(dev->kobj_node, &dev->attr_gpuid);
if (ret < 0)
return ret;
ret = sysfs_create_file(dev->kobj_node, &dev->attr_name);
if (ret < 0)
return ret;
ret = sysfs_create_file(dev->kobj_node, &dev->attr_props);
if (ret < 0)
return ret;
i = 0;
list_for_each_entry(mem, &dev->mem_props, list) {
mem->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (!mem->kobj)
return -ENOMEM;
ret = kobject_init_and_add(mem->kobj, &mem_type,
dev->kobj_mem, "%d", i);
if (ret < 0)
return ret;
mem->attr.name = "properties";
mem->attr.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&mem->attr);
ret = sysfs_create_file(mem->kobj, &mem->attr);
if (ret < 0)
return ret;
i++;
}
i = 0;
list_for_each_entry(cache, &dev->cache_props, list) {
cache->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (!cache->kobj)
return -ENOMEM;
ret = kobject_init_and_add(cache->kobj, &cache_type,
dev->kobj_cache, "%d", i);
if (ret < 0)
return ret;
cache->attr.name = "properties";
cache->attr.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&cache->attr);
ret = sysfs_create_file(cache->kobj, &cache->attr);
if (ret < 0)
return ret;
i++;
}
i = 0;
list_for_each_entry(iolink, &dev->io_link_props, list) {
iolink->kobj = kzalloc(sizeof(struct kobject), GFP_KERNEL);
if (!iolink->kobj)
return -ENOMEM;
ret = kobject_init_and_add(iolink->kobj, &iolink_type,
dev->kobj_iolink, "%d", i);
if (ret < 0)
return ret;
iolink->attr.name = "properties";
iolink->attr.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&iolink->attr);
ret = sysfs_create_file(iolink->kobj, &iolink->attr);
if (ret < 0)
return ret;
i++;
}
return 0;
}
static int kfd_build_sysfs_node_tree(void)
{
struct kfd_topology_device *dev;
int ret;
uint32_t i = 0;
list_for_each_entry(dev, &topology_device_list, list) {
ret = kfd_build_sysfs_node_entry(dev, i);
if (ret < 0)
return ret;
i++;
}
return 0;
}
static void kfd_remove_sysfs_node_tree(void)
{
struct kfd_topology_device *dev;
list_for_each_entry(dev, &topology_device_list, list)
kfd_remove_sysfs_node_entry(dev);
}
static int kfd_topology_update_sysfs(void)
{
int ret;
pr_info("Creating topology SYSFS entries\n");
if (sys_props.kobj_topology == NULL) {
sys_props.kobj_topology =
kfd_alloc_struct(sys_props.kobj_topology);
if (!sys_props.kobj_topology)
return -ENOMEM;
ret = kobject_init_and_add(sys_props.kobj_topology,
&sysprops_type, &kfd_device->kobj,
"topology");
if (ret < 0)
return ret;
sys_props.kobj_nodes = kobject_create_and_add("nodes",
sys_props.kobj_topology);
if (!sys_props.kobj_nodes)
return -ENOMEM;
sys_props.attr_genid.name = "generation_id";
sys_props.attr_genid.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&sys_props.attr_genid);
ret = sysfs_create_file(sys_props.kobj_topology,
&sys_props.attr_genid);
if (ret < 0)
return ret;
sys_props.attr_props.name = "system_properties";
sys_props.attr_props.mode = KFD_SYSFS_FILE_MODE;
sysfs_attr_init(&sys_props.attr_props);
ret = sysfs_create_file(sys_props.kobj_topology,
&sys_props.attr_props);
if (ret < 0)
return ret;
}
kfd_remove_sysfs_node_tree();
return kfd_build_sysfs_node_tree();
}
static void kfd_topology_release_sysfs(void)
{
kfd_remove_sysfs_node_tree();
if (sys_props.kobj_topology) {
sysfs_remove_file(sys_props.kobj_topology,
&sys_props.attr_genid);
sysfs_remove_file(sys_props.kobj_topology,
&sys_props.attr_props);
if (sys_props.kobj_nodes) {
kobject_del(sys_props.kobj_nodes);
kobject_put(sys_props.kobj_nodes);
sys_props.kobj_nodes = NULL;
}
kobject_del(sys_props.kobj_topology);
kobject_put(sys_props.kobj_topology);
sys_props.kobj_topology = NULL;
}
}
int kfd_topology_init(void)
{
void *crat_image = NULL;
size_t image_size = 0;
int ret;
/*
* Initialize the head for the topology device list
*/
INIT_LIST_HEAD(&topology_device_list);
init_rwsem(&topology_lock);
topology_crat_parsed = 0;
memset(&sys_props, 0, sizeof(sys_props));
/*
* Get the CRAT image from the ACPI
*/
ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
if (ret == 0 && image_size > 0) {
pr_info("Found CRAT image with size=%zd\n", image_size);
crat_image = kmalloc(image_size, GFP_KERNEL);
if (!crat_image) {
ret = -ENOMEM;
pr_err("No memory for allocating CRAT image\n");
goto err;
}
ret = kfd_topology_get_crat_acpi(crat_image, &image_size);
if (ret == 0) {
down_write(&topology_lock);
ret = kfd_parse_crat_table(crat_image);
if (ret == 0)
ret = kfd_topology_update_sysfs();
up_write(&topology_lock);
} else {
pr_err("Couldn't get CRAT table size from ACPI\n");
}
kfree(crat_image);
} else if (ret == -ENODATA) {
ret = 0;
} else {
pr_err("Couldn't get CRAT table size from ACPI\n");
}
err:
pr_info("Finished initializing topology ret=%d\n", ret);
return ret;
}
void kfd_topology_shutdown(void)
{
kfd_topology_release_sysfs();
kfd_release_live_view();
}
static void kfd_debug_print_topology(void)
{
struct kfd_topology_device *dev;
uint32_t i = 0;
pr_info("DEBUG PRINT OF TOPOLOGY:");
list_for_each_entry(dev, &topology_device_list, list) {
pr_info("Node: %d\n", i);
pr_info("\tGPU assigned: %s\n", (dev->gpu ? "yes" : "no"));
pr_info("\tCPU count: %d\n", dev->node_props.cpu_cores_count);
pr_info("\tSIMD count: %d", dev->node_props.simd_count);
i++;
}
}
static uint32_t kfd_generate_gpu_id(struct kfd_dev *gpu)
{
uint32_t hashout;
uint32_t buf[7];
int i;
if (!gpu)
return 0;
buf[0] = gpu->pdev->devfn;
buf[1] = gpu->pdev->subsystem_vendor;
buf[2] = gpu->pdev->subsystem_device;
buf[3] = gpu->pdev->device;
buf[4] = gpu->pdev->bus->number;
buf[5] = (uint32_t)(gpu->kfd2kgd->get_vmem_size(gpu->kgd)
& 0xffffffff);
buf[6] = (uint32_t)(gpu->kfd2kgd->get_vmem_size(gpu->kgd) >> 32);
for (i = 0, hashout = 0; i < 7; i++)
hashout ^= hash_32(buf[i], KFD_GPU_ID_HASH_WIDTH);
return hashout;
}
static struct kfd_topology_device *kfd_assign_gpu(struct kfd_dev *gpu)
{
struct kfd_topology_device *dev;
struct kfd_topology_device *out_dev = NULL;
BUG_ON(!gpu);
list_for_each_entry(dev, &topology_device_list, list)
if (dev->gpu == NULL && dev->node_props.simd_count > 0) {
dev->gpu = gpu;
out_dev = dev;
break;
}
return out_dev;
}
static void kfd_notify_gpu_change(uint32_t gpu_id, int arrival)
{
/*
* TODO: Generate an event for thunk about the arrival/removal
* of the GPU
*/
}
int kfd_topology_add_device(struct kfd_dev *gpu)
{
uint32_t gpu_id;
struct kfd_topology_device *dev;
int res;
BUG_ON(!gpu);
gpu_id = kfd_generate_gpu_id(gpu);
pr_debug("kfd: Adding new GPU (ID: 0x%x) to topology\n", gpu_id);
down_write(&topology_lock);
/*
* Try to assign the GPU to existing topology device (generated from
* CRAT table
*/
dev = kfd_assign_gpu(gpu);
if (!dev) {
pr_info("GPU was not found in the current topology. Extending.\n");
kfd_debug_print_topology();
dev = kfd_create_topology_device();
if (!dev) {
res = -ENOMEM;
goto err;
}
dev->gpu = gpu;
/*
* TODO: Make a call to retrieve topology information from the
* GPU vBIOS
*/
/*
* Update the SYSFS tree, since we added another topology device
*/
if (kfd_topology_update_sysfs() < 0)
kfd_topology_release_sysfs();
}
dev->gpu_id = gpu_id;
gpu->id = gpu_id;
dev->node_props.vendor_id = gpu->pdev->vendor;
dev->node_props.device_id = gpu->pdev->device;
dev->node_props.location_id = (gpu->pdev->bus->number << 24) +
(gpu->pdev->devfn & 0xffffff);
/*
* TODO: Retrieve max engine clock values from KGD
*/
res = 0;
err:
up_write(&topology_lock);
if (res == 0)
kfd_notify_gpu_change(gpu_id, 1);
return res;
}
int kfd_topology_remove_device(struct kfd_dev *gpu)
{
struct kfd_topology_device *dev;
uint32_t gpu_id;
int res = -ENODEV;
BUG_ON(!gpu);
down_write(&topology_lock);
list_for_each_entry(dev, &topology_device_list, list)
if (dev->gpu == gpu) {
gpu_id = dev->gpu_id;
kfd_remove_sysfs_node_entry(dev);
kfd_release_topology_device(dev);
res = 0;
if (kfd_topology_update_sysfs() < 0)
kfd_topology_release_sysfs();
break;
}
up_write(&topology_lock);
if (res == 0)
kfd_notify_gpu_change(gpu_id, 0);
return res;
}
/*
* When idx is out of bounds, the function will return NULL
*/
struct kfd_dev *kfd_topology_enum_kfd_devices(uint8_t idx)
{
struct kfd_topology_device *top_dev;
struct kfd_dev *device = NULL;
uint8_t device_idx = 0;
down_read(&topology_lock);
list_for_each_entry(top_dev, &topology_device_list, list) {
if (device_idx == idx) {
device = top_dev->gpu;
break;
}
device_idx++;
}
up_read(&topology_lock);
return device;
}