| /* SPDX-License-Identifier: GPL-2.0-only */ |
| /* |
| * include/asm-xtensa/pgtable.h |
| * |
| * Copyright (C) 2001 - 2013 Tensilica Inc. |
| */ |
| |
| #ifndef _XTENSA_PGTABLE_H |
| #define _XTENSA_PGTABLE_H |
| |
| #include <asm/page.h> |
| #include <asm/kmem_layout.h> |
| #include <asm-generic/pgtable-nopmd.h> |
| |
| /* |
| * We only use two ring levels, user and kernel space. |
| */ |
| |
| #ifdef CONFIG_MMU |
| #define USER_RING 1 /* user ring level */ |
| #else |
| #define USER_RING 0 |
| #endif |
| #define KERNEL_RING 0 /* kernel ring level */ |
| |
| /* |
| * The Xtensa architecture port of Linux has a two-level page table system, |
| * i.e. the logical three-level Linux page table layout is folded. |
| * Each task has the following memory page tables: |
| * |
| * PGD table (page directory), ie. 3rd-level page table: |
| * One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables |
| * (Architectures that don't have the PMD folded point to the PMD tables) |
| * |
| * The pointer to the PGD table for a given task can be retrieved from |
| * the task structure (struct task_struct*) t, e.g. current(): |
| * (t->mm ? t->mm : t->active_mm)->pgd |
| * |
| * PMD tables (page middle-directory), ie. 2nd-level page tables: |
| * Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1). |
| * |
| * PTE tables (page table entry), ie. 1st-level page tables: |
| * One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE |
| * invalid_pte_table for absent mappings. |
| * |
| * The individual pages are 4 kB big with special pages for the empty_zero_page. |
| */ |
| |
| #define PGDIR_SHIFT 22 |
| #define PGDIR_SIZE (1UL << PGDIR_SHIFT) |
| #define PGDIR_MASK (~(PGDIR_SIZE-1)) |
| |
| /* |
| * Entries per page directory level: we use two-level, so |
| * we don't really have any PMD directory physically. |
| */ |
| #define PTRS_PER_PTE 1024 |
| #define PTRS_PER_PTE_SHIFT 10 |
| #define PTRS_PER_PGD 1024 |
| #define PGD_ORDER 0 |
| #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE) |
| #define FIRST_USER_ADDRESS 0UL |
| #define FIRST_USER_PGD_NR (FIRST_USER_ADDRESS >> PGDIR_SHIFT) |
| |
| #ifdef CONFIG_MMU |
| /* |
| * Virtual memory area. We keep a distance to other memory regions to be |
| * on the safe side. We also use this area for cache aliasing. |
| */ |
| #define VMALLOC_START (XCHAL_KSEG_CACHED_VADDR - 0x10000000) |
| #define VMALLOC_END (VMALLOC_START + 0x07FEFFFF) |
| #define TLBTEMP_BASE_1 (VMALLOC_END + 1) |
| #define TLBTEMP_BASE_2 (TLBTEMP_BASE_1 + DCACHE_WAY_SIZE) |
| #if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE |
| #define TLBTEMP_SIZE (2 * DCACHE_WAY_SIZE) |
| #else |
| #define TLBTEMP_SIZE ICACHE_WAY_SIZE |
| #endif |
| |
| #else |
| |
| #define VMALLOC_START __XTENSA_UL_CONST(0) |
| #define VMALLOC_END __XTENSA_UL_CONST(0xffffffff) |
| |
| #endif |
| |
| /* |
| * For the Xtensa architecture, the PTE layout is as follows: |
| * |
| * 31------12 11 10-9 8-6 5-4 3-2 1-0 |
| * +-----------------------------------------+ |
| * | | Software | HARDWARE | |
| * | PPN | ADW | RI |Attribute| |
| * +-----------------------------------------+ |
| * pte_none | MBZ | 01 | 11 | 00 | |
| * +-----------------------------------------+ |
| * present | PPN | 0 | 00 | ADW | RI | CA | wx | |
| * +- - - - - - - - - - - - - - - - - - - - -+ |
| * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 11 | 11 | |
| * +-----------------------------------------+ |
| * swap | index | type | 01 | 11 | 00 | |
| * +-----------------------------------------+ |
| * |
| * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE) |
| * +-----------------------------------------+ |
| * present | PPN | 0 | 00 | ADW | RI | CA | w1 | |
| * +-----------------------------------------+ |
| * (PAGE_NONE)| PPN | 0 | 00 | ADW | 01 | 01 | 00 | |
| * +-----------------------------------------+ |
| * |
| * Legend: |
| * PPN Physical Page Number |
| * ADW software: accessed (young) / dirty / writable |
| * RI ring (0=privileged, 1=user, 2 and 3 are unused) |
| * CA cache attribute: 00 bypass, 01 writeback, 10 writethrough |
| * (11 is invalid and used to mark pages that are not present) |
| * w page is writable (hw) |
| * x page is executable (hw) |
| * index swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB) |
| * (note that the index is always non-zero) |
| * type swap type (5 bits -> 32 types) |
| * |
| * Notes: |
| * - (PROT_NONE) is a special case of 'present' but causes an exception for |
| * any access (read, write, and execute). |
| * - 'multihit-exception' has the highest priority of all MMU exceptions, |
| * so the ring must be set to 'RING_USER' even for 'non-present' pages. |
| * - on older hardware, the exectuable flag was not supported and |
| * used as a 'valid' flag, so it needs to be always set. |
| * - we need to keep track of certain flags in software (dirty and young) |
| * to do this, we use write exceptions and have a separate software w-flag. |
| * - attribute value 1101 (and 1111 on T1050 and earlier) is reserved |
| */ |
| |
| #define _PAGE_ATTRIB_MASK 0xf |
| |
| #define _PAGE_HW_EXEC (1<<0) /* hardware: page is executable */ |
| #define _PAGE_HW_WRITE (1<<1) /* hardware: page is writable */ |
| |
| #define _PAGE_CA_BYPASS (0<<2) /* bypass, non-speculative */ |
| #define _PAGE_CA_WB (1<<2) /* write-back */ |
| #define _PAGE_CA_WT (2<<2) /* write-through */ |
| #define _PAGE_CA_MASK (3<<2) |
| #define _PAGE_CA_INVALID (3<<2) |
| |
| /* We use invalid attribute values to distinguish special pte entries */ |
| #if XCHAL_HW_VERSION_MAJOR < 2000 |
| #define _PAGE_HW_VALID 0x01 /* older HW needed this bit set */ |
| #define _PAGE_NONE 0x04 |
| #else |
| #define _PAGE_HW_VALID 0x00 |
| #define _PAGE_NONE 0x0f |
| #endif |
| |
| #define _PAGE_USER (1<<4) /* user access (ring=1) */ |
| |
| /* Software */ |
| #define _PAGE_WRITABLE_BIT 6 |
| #define _PAGE_WRITABLE (1<<6) /* software: page writable */ |
| #define _PAGE_DIRTY (1<<7) /* software: page dirty */ |
| #define _PAGE_ACCESSED (1<<8) /* software: page accessed (read) */ |
| |
| #ifdef CONFIG_MMU |
| |
| #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) |
| #define _PAGE_PRESENT (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED) |
| |
| #define PAGE_NONE __pgprot(_PAGE_NONE | _PAGE_USER) |
| #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER) |
| #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC) |
| #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER) |
| #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC) |
| #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE) |
| #define PAGE_SHARED_EXEC \ |
| __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC) |
| #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE) |
| #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT) |
| #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC) |
| |
| #if (DCACHE_WAY_SIZE > PAGE_SIZE) |
| # define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS) |
| #else |
| # define _PAGE_DIRECTORY (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB) |
| #endif |
| |
| #else /* no mmu */ |
| |
| # define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY) |
| # define PAGE_NONE __pgprot(0) |
| # define PAGE_SHARED __pgprot(0) |
| # define PAGE_COPY __pgprot(0) |
| # define PAGE_READONLY __pgprot(0) |
| # define PAGE_KERNEL __pgprot(0) |
| |
| #endif |
| |
| /* |
| * On certain configurations of Xtensa MMUs (eg. the initial Linux config), |
| * the MMU can't do page protection for execute, and considers that the same as |
| * read. Also, write permissions may imply read permissions. |
| * What follows is the closest we can get by reasonable means.. |
| * See linux/mm/mmap.c for protection_map[] array that uses these definitions. |
| */ |
| #define __P000 PAGE_NONE /* private --- */ |
| #define __P001 PAGE_READONLY /* private --r */ |
| #define __P010 PAGE_COPY /* private -w- */ |
| #define __P011 PAGE_COPY /* private -wr */ |
| #define __P100 PAGE_READONLY_EXEC /* private x-- */ |
| #define __P101 PAGE_READONLY_EXEC /* private x-r */ |
| #define __P110 PAGE_COPY_EXEC /* private xw- */ |
| #define __P111 PAGE_COPY_EXEC /* private xwr */ |
| |
| #define __S000 PAGE_NONE /* shared --- */ |
| #define __S001 PAGE_READONLY /* shared --r */ |
| #define __S010 PAGE_SHARED /* shared -w- */ |
| #define __S011 PAGE_SHARED /* shared -wr */ |
| #define __S100 PAGE_READONLY_EXEC /* shared x-- */ |
| #define __S101 PAGE_READONLY_EXEC /* shared x-r */ |
| #define __S110 PAGE_SHARED_EXEC /* shared xw- */ |
| #define __S111 PAGE_SHARED_EXEC /* shared xwr */ |
| |
| #ifndef __ASSEMBLY__ |
| |
| #define pte_ERROR(e) \ |
| printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) |
| #define pgd_ERROR(e) \ |
| printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e)) |
| |
| extern unsigned long empty_zero_page[1024]; |
| |
| #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) |
| |
| #ifdef CONFIG_MMU |
| extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)]; |
| extern void paging_init(void); |
| #else |
| # define swapper_pg_dir NULL |
| static inline void paging_init(void) { } |
| #endif |
| |
| /* |
| * The pmd contains the kernel virtual address of the pte page. |
| */ |
| #define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK)) |
| #define pmd_page(pmd) virt_to_page(pmd_val(pmd)) |
| |
| /* |
| * pte status. |
| */ |
| # define pte_none(pte) (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER)) |
| #if XCHAL_HW_VERSION_MAJOR < 2000 |
| # define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) |
| #else |
| # define pte_present(pte) \ |
| (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID) \ |
| || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE)) |
| #endif |
| #define pte_clear(mm,addr,ptep) \ |
| do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0) |
| |
| #define pmd_none(pmd) (!pmd_val(pmd)) |
| #define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK) |
| #define pmd_bad(pmd) (pmd_val(pmd) & ~PAGE_MASK) |
| #define pmd_clear(pmdp) do { set_pmd(pmdp, __pmd(0)); } while (0) |
| |
| static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; } |
| static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } |
| static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } |
| |
| static inline pte_t pte_wrprotect(pte_t pte) |
| { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; } |
| static inline pte_t pte_mkclean(pte_t pte) |
| { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; } |
| static inline pte_t pte_mkold(pte_t pte) |
| { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } |
| static inline pte_t pte_mkdirty(pte_t pte) |
| { pte_val(pte) |= _PAGE_DIRTY; return pte; } |
| static inline pte_t pte_mkyoung(pte_t pte) |
| { pte_val(pte) |= _PAGE_ACCESSED; return pte; } |
| static inline pte_t pte_mkwrite(pte_t pte) |
| { pte_val(pte) |= _PAGE_WRITABLE; return pte; } |
| |
| #define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) & ~_PAGE_CA_MASK)) |
| |
| /* |
| * Conversion functions: convert a page and protection to a page entry, |
| * and a page entry and page directory to the page they refer to. |
| */ |
| |
| #define pte_pfn(pte) (pte_val(pte) >> PAGE_SHIFT) |
| #define pte_same(a,b) (pte_val(a) == pte_val(b)) |
| #define pte_page(x) pfn_to_page(pte_pfn(x)) |
| #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot)) |
| #define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) |
| |
| static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) |
| { |
| return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); |
| } |
| |
| /* |
| * Certain architectures need to do special things when pte's |
| * within a page table are directly modified. Thus, the following |
| * hook is made available. |
| */ |
| static inline void update_pte(pte_t *ptep, pte_t pteval) |
| { |
| *ptep = pteval; |
| #if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK |
| __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep)); |
| #endif |
| |
| } |
| |
| struct mm_struct; |
| |
| static inline void |
| set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval) |
| { |
| update_pte(ptep, pteval); |
| } |
| |
| static inline void set_pte(pte_t *ptep, pte_t pteval) |
| { |
| update_pte(ptep, pteval); |
| } |
| |
| static inline void |
| set_pmd(pmd_t *pmdp, pmd_t pmdval) |
| { |
| *pmdp = pmdval; |
| } |
| |
| struct vm_area_struct; |
| |
| static inline int |
| ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, |
| pte_t *ptep) |
| { |
| pte_t pte = *ptep; |
| if (!pte_young(pte)) |
| return 0; |
| update_pte(ptep, pte_mkold(pte)); |
| return 1; |
| } |
| |
| static inline pte_t |
| ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| pte_t pte = *ptep; |
| pte_clear(mm, addr, ptep); |
| return pte; |
| } |
| |
| static inline void |
| ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) |
| { |
| pte_t pte = *ptep; |
| update_pte(ptep, pte_wrprotect(pte)); |
| } |
| |
| /* |
| * Encode and decode a swap and file entry. |
| */ |
| #define SWP_TYPE_BITS 5 |
| #define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS) |
| |
| #define __swp_type(entry) (((entry).val >> 6) & 0x1f) |
| #define __swp_offset(entry) ((entry).val >> 11) |
| #define __swp_entry(type,offs) \ |
| ((swp_entry_t){((type) << 6) | ((offs) << 11) | \ |
| _PAGE_CA_INVALID | _PAGE_USER}) |
| #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) |
| #define __swp_entry_to_pte(x) ((pte_t) { (x).val }) |
| |
| #endif /* !defined (__ASSEMBLY__) */ |
| |
| |
| #ifdef __ASSEMBLY__ |
| |
| /* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long), |
| * _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long), |
| * _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long) |
| * _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long) |
| * |
| * Note: We require an additional temporary register which can be the same as |
| * the register that holds the address. |
| * |
| * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr)) |
| * |
| */ |
| #define _PGD_INDEX(rt,rs) extui rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT |
| #define _PTE_INDEX(rt,rs) extui rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT |
| |
| #define _PGD_OFFSET(mm,adr,tmp) l32i mm, mm, MM_PGD; \ |
| _PGD_INDEX(tmp, adr); \ |
| addx4 mm, tmp, mm |
| |
| #define _PTE_OFFSET(pmd,adr,tmp) _PTE_INDEX(tmp, adr); \ |
| srli pmd, pmd, PAGE_SHIFT; \ |
| slli pmd, pmd, PAGE_SHIFT; \ |
| addx4 pmd, tmp, pmd |
| |
| #else |
| |
| #define kern_addr_valid(addr) (1) |
| |
| extern void update_mmu_cache(struct vm_area_struct * vma, |
| unsigned long address, pte_t *ptep); |
| |
| typedef pte_t *pte_addr_t; |
| |
| #endif /* !defined (__ASSEMBLY__) */ |
| |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT |
| #define __HAVE_ARCH_PTEP_MKDIRTY |
| #define __HAVE_ARCH_PTE_SAME |
| /* We provide our own get_unmapped_area to cope with |
| * SHM area cache aliasing for userland. |
| */ |
| #define HAVE_ARCH_UNMAPPED_AREA |
| |
| #endif /* _XTENSA_PGTABLE_H */ |