blob: bc10cb264b7aed5d34ada8b610c20b18789f6d60 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Cadence MHDP DisplayPort SD0801 PHY driver.
*
* Copyright 2018 Cadence Design Systems, Inc.
*
*/
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/phy/phy.h>
#include <linux/platform_device.h>
#define DEFAULT_NUM_LANES 2
#define MAX_NUM_LANES 4
#define DEFAULT_MAX_BIT_RATE 8100 /* in Mbps */
#define POLL_TIMEOUT_US 2000
#define LANE_MASK 0x7
/*
* register offsets from DPTX PHY register block base (i.e MHDP
* register base + 0x30a00)
*/
#define PHY_AUX_CONFIG 0x00
#define PHY_AUX_CTRL 0x04
#define PHY_RESET 0x20
#define PHY_PMA_XCVR_PLLCLK_EN 0x24
#define PHY_PMA_XCVR_PLLCLK_EN_ACK 0x28
#define PHY_PMA_XCVR_POWER_STATE_REQ 0x2c
#define PHY_POWER_STATE_LN_0 0x0000
#define PHY_POWER_STATE_LN_1 0x0008
#define PHY_POWER_STATE_LN_2 0x0010
#define PHY_POWER_STATE_LN_3 0x0018
#define PHY_PMA_XCVR_POWER_STATE_ACK 0x30
#define PHY_PMA_CMN_READY 0x34
#define PHY_PMA_XCVR_TX_VMARGIN 0x38
#define PHY_PMA_XCVR_TX_DEEMPH 0x3c
/*
* register offsets from SD0801 PHY register block base (i.e MHDP
* register base + 0x500000)
*/
#define CMN_SSM_BANDGAP_TMR 0x00084
#define CMN_SSM_BIAS_TMR 0x00088
#define CMN_PLLSM0_PLLPRE_TMR 0x000a8
#define CMN_PLLSM0_PLLLOCK_TMR 0x000b0
#define CMN_PLLSM1_PLLPRE_TMR 0x000c8
#define CMN_PLLSM1_PLLLOCK_TMR 0x000d0
#define CMN_BGCAL_INIT_TMR 0x00190
#define CMN_BGCAL_ITER_TMR 0x00194
#define CMN_IBCAL_INIT_TMR 0x001d0
#define CMN_PLL0_VCOCAL_INIT_TMR 0x00210
#define CMN_PLL0_VCOCAL_ITER_TMR 0x00214
#define CMN_PLL0_VCOCAL_REFTIM_START 0x00218
#define CMN_PLL0_VCOCAL_PLLCNT_START 0x00220
#define CMN_PLL0_INTDIV_M0 0x00240
#define CMN_PLL0_FRACDIVL_M0 0x00244
#define CMN_PLL0_FRACDIVH_M0 0x00248
#define CMN_PLL0_HIGH_THR_M0 0x0024c
#define CMN_PLL0_DSM_DIAG_M0 0x00250
#define CMN_PLL0_LOCK_PLLCNT_START 0x00278
#define CMN_PLL1_VCOCAL_INIT_TMR 0x00310
#define CMN_PLL1_VCOCAL_ITER_TMR 0x00314
#define CMN_PLL1_DSM_DIAG_M0 0x00350
#define CMN_TXPUCAL_INIT_TMR 0x00410
#define CMN_TXPUCAL_ITER_TMR 0x00414
#define CMN_TXPDCAL_INIT_TMR 0x00430
#define CMN_TXPDCAL_ITER_TMR 0x00434
#define CMN_RXCAL_INIT_TMR 0x00450
#define CMN_RXCAL_ITER_TMR 0x00454
#define CMN_SD_CAL_INIT_TMR 0x00490
#define CMN_SD_CAL_ITER_TMR 0x00494
#define CMN_SD_CAL_REFTIM_START 0x00498
#define CMN_SD_CAL_PLLCNT_START 0x004a0
#define CMN_PDIAG_PLL0_CTRL_M0 0x00680
#define CMN_PDIAG_PLL0_CLK_SEL_M0 0x00684
#define CMN_PDIAG_PLL0_CP_PADJ_M0 0x00690
#define CMN_PDIAG_PLL0_CP_IADJ_M0 0x00694
#define CMN_PDIAG_PLL0_FILT_PADJ_M0 0x00698
#define CMN_PDIAG_PLL0_CP_PADJ_M1 0x006d0
#define CMN_PDIAG_PLL0_CP_IADJ_M1 0x006d4
#define CMN_PDIAG_PLL1_CLK_SEL_M0 0x00704
#define XCVR_DIAG_PLLDRC_CTRL 0x10394
#define XCVR_DIAG_HSCLK_SEL 0x10398
#define XCVR_DIAG_HSCLK_DIV 0x1039c
#define TX_PSC_A0 0x10400
#define TX_PSC_A1 0x10404
#define TX_PSC_A2 0x10408
#define TX_PSC_A3 0x1040c
#define RX_PSC_A0 0x20000
#define RX_PSC_A1 0x20004
#define RX_PSC_A2 0x20008
#define RX_PSC_A3 0x2000c
#define PHY_PLL_CFG 0x30038
struct cdns_dp_phy {
void __iomem *base; /* DPTX registers base */
void __iomem *sd_base; /* SD0801 registers base */
u32 num_lanes; /* Number of lanes to use */
u32 max_bit_rate; /* Maximum link bit rate to use (in Mbps) */
struct device *dev;
};
static int cdns_dp_phy_init(struct phy *phy);
static void cdns_dp_phy_run(struct cdns_dp_phy *cdns_phy);
static void cdns_dp_phy_wait_pma_cmn_ready(struct cdns_dp_phy *cdns_phy);
static void cdns_dp_phy_pma_cfg(struct cdns_dp_phy *cdns_phy);
static void cdns_dp_phy_pma_cmn_cfg_25mhz(struct cdns_dp_phy *cdns_phy);
static void cdns_dp_phy_pma_lane_cfg(struct cdns_dp_phy *cdns_phy,
unsigned int lane);
static void cdns_dp_phy_pma_cmn_vco_cfg_25mhz(struct cdns_dp_phy *cdns_phy);
static void cdns_dp_phy_pma_cmn_rate(struct cdns_dp_phy *cdns_phy);
static void cdns_dp_phy_write_field(struct cdns_dp_phy *cdns_phy,
unsigned int offset,
unsigned char start_bit,
unsigned char num_bits,
unsigned int val);
static const struct phy_ops cdns_dp_phy_ops = {
.init = cdns_dp_phy_init,
.owner = THIS_MODULE,
};
static int cdns_dp_phy_init(struct phy *phy)
{
unsigned char lane_bits;
struct cdns_dp_phy *cdns_phy = phy_get_drvdata(phy);
writel(0x0003, cdns_phy->base + PHY_AUX_CTRL); /* enable AUX */
/* PHY PMA registers configuration function */
cdns_dp_phy_pma_cfg(cdns_phy);
/*
* Set lines power state to A0
* Set lines pll clk enable to 0
*/
cdns_dp_phy_write_field(cdns_phy, PHY_PMA_XCVR_POWER_STATE_REQ,
PHY_POWER_STATE_LN_0, 6, 0x0000);
if (cdns_phy->num_lanes >= 2) {
cdns_dp_phy_write_field(cdns_phy,
PHY_PMA_XCVR_POWER_STATE_REQ,
PHY_POWER_STATE_LN_1, 6, 0x0000);
if (cdns_phy->num_lanes == 4) {
cdns_dp_phy_write_field(cdns_phy,
PHY_PMA_XCVR_POWER_STATE_REQ,
PHY_POWER_STATE_LN_2, 6, 0);
cdns_dp_phy_write_field(cdns_phy,
PHY_PMA_XCVR_POWER_STATE_REQ,
PHY_POWER_STATE_LN_3, 6, 0);
}
}
cdns_dp_phy_write_field(cdns_phy, PHY_PMA_XCVR_PLLCLK_EN,
0, 1, 0x0000);
if (cdns_phy->num_lanes >= 2) {
cdns_dp_phy_write_field(cdns_phy, PHY_PMA_XCVR_PLLCLK_EN,
1, 1, 0x0000);
if (cdns_phy->num_lanes == 4) {
cdns_dp_phy_write_field(cdns_phy,
PHY_PMA_XCVR_PLLCLK_EN,
2, 1, 0x0000);
cdns_dp_phy_write_field(cdns_phy,
PHY_PMA_XCVR_PLLCLK_EN,
3, 1, 0x0000);
}
}
/*
* release phy_l0*_reset_n and pma_tx_elec_idle_ln_* based on
* used lanes
*/
lane_bits = (1 << cdns_phy->num_lanes) - 1;
writel(((0xF & ~lane_bits) << 4) | (0xF & lane_bits),
cdns_phy->base + PHY_RESET);
/* release pma_xcvr_pllclk_en_ln_*, only for the master lane */
writel(0x0001, cdns_phy->base + PHY_PMA_XCVR_PLLCLK_EN);
/* PHY PMA registers configuration functions */
cdns_dp_phy_pma_cmn_vco_cfg_25mhz(cdns_phy);
cdns_dp_phy_pma_cmn_rate(cdns_phy);
/* take out of reset */
cdns_dp_phy_write_field(cdns_phy, PHY_RESET, 8, 1, 1);
cdns_dp_phy_wait_pma_cmn_ready(cdns_phy);
cdns_dp_phy_run(cdns_phy);
return 0;
}
static void cdns_dp_phy_wait_pma_cmn_ready(struct cdns_dp_phy *cdns_phy)
{
unsigned int reg;
int ret;
ret = readl_poll_timeout(cdns_phy->base + PHY_PMA_CMN_READY, reg,
reg & 1, 0, 500);
if (ret == -ETIMEDOUT)
dev_err(cdns_phy->dev,
"timeout waiting for PMA common ready\n");
}
static void cdns_dp_phy_pma_cfg(struct cdns_dp_phy *cdns_phy)
{
unsigned int i;
/* PMA common configuration */
cdns_dp_phy_pma_cmn_cfg_25mhz(cdns_phy);
/* PMA lane configuration to deal with multi-link operation */
for (i = 0; i < cdns_phy->num_lanes; i++)
cdns_dp_phy_pma_lane_cfg(cdns_phy, i);
}
static void cdns_dp_phy_pma_cmn_cfg_25mhz(struct cdns_dp_phy *cdns_phy)
{
/* refclock registers - assumes 25 MHz refclock */
writel(0x0019, cdns_phy->sd_base + CMN_SSM_BIAS_TMR);
writel(0x0032, cdns_phy->sd_base + CMN_PLLSM0_PLLPRE_TMR);
writel(0x00D1, cdns_phy->sd_base + CMN_PLLSM0_PLLLOCK_TMR);
writel(0x0032, cdns_phy->sd_base + CMN_PLLSM1_PLLPRE_TMR);
writel(0x00D1, cdns_phy->sd_base + CMN_PLLSM1_PLLLOCK_TMR);
writel(0x007D, cdns_phy->sd_base + CMN_BGCAL_INIT_TMR);
writel(0x007D, cdns_phy->sd_base + CMN_BGCAL_ITER_TMR);
writel(0x0019, cdns_phy->sd_base + CMN_IBCAL_INIT_TMR);
writel(0x001E, cdns_phy->sd_base + CMN_TXPUCAL_INIT_TMR);
writel(0x0006, cdns_phy->sd_base + CMN_TXPUCAL_ITER_TMR);
writel(0x001E, cdns_phy->sd_base + CMN_TXPDCAL_INIT_TMR);
writel(0x0006, cdns_phy->sd_base + CMN_TXPDCAL_ITER_TMR);
writel(0x02EE, cdns_phy->sd_base + CMN_RXCAL_INIT_TMR);
writel(0x0006, cdns_phy->sd_base + CMN_RXCAL_ITER_TMR);
writel(0x0002, cdns_phy->sd_base + CMN_SD_CAL_INIT_TMR);
writel(0x0002, cdns_phy->sd_base + CMN_SD_CAL_ITER_TMR);
writel(0x000E, cdns_phy->sd_base + CMN_SD_CAL_REFTIM_START);
writel(0x012B, cdns_phy->sd_base + CMN_SD_CAL_PLLCNT_START);
/* PLL registers */
writel(0x0409, cdns_phy->sd_base + CMN_PDIAG_PLL0_CP_PADJ_M0);
writel(0x1001, cdns_phy->sd_base + CMN_PDIAG_PLL0_CP_IADJ_M0);
writel(0x0F08, cdns_phy->sd_base + CMN_PDIAG_PLL0_FILT_PADJ_M0);
writel(0x0004, cdns_phy->sd_base + CMN_PLL0_DSM_DIAG_M0);
writel(0x00FA, cdns_phy->sd_base + CMN_PLL0_VCOCAL_INIT_TMR);
writel(0x0004, cdns_phy->sd_base + CMN_PLL0_VCOCAL_ITER_TMR);
writel(0x00FA, cdns_phy->sd_base + CMN_PLL1_VCOCAL_INIT_TMR);
writel(0x0004, cdns_phy->sd_base + CMN_PLL1_VCOCAL_ITER_TMR);
writel(0x0318, cdns_phy->sd_base + CMN_PLL0_VCOCAL_REFTIM_START);
}
static void cdns_dp_phy_pma_cmn_vco_cfg_25mhz(struct cdns_dp_phy *cdns_phy)
{
/* Assumes 25 MHz refclock */
switch (cdns_phy->max_bit_rate) {
/* Setting VCO for 10.8GHz */
case 2700:
case 5400:
writel(0x01B0, cdns_phy->sd_base + CMN_PLL0_INTDIV_M0);
writel(0x0000, cdns_phy->sd_base + CMN_PLL0_FRACDIVL_M0);
writel(0x0002, cdns_phy->sd_base + CMN_PLL0_FRACDIVH_M0);
writel(0x0120, cdns_phy->sd_base + CMN_PLL0_HIGH_THR_M0);
break;
/* Setting VCO for 9.72GHz */
case 2430:
case 3240:
writel(0x0184, cdns_phy->sd_base + CMN_PLL0_INTDIV_M0);
writel(0xCCCD, cdns_phy->sd_base + CMN_PLL0_FRACDIVL_M0);
writel(0x0002, cdns_phy->sd_base + CMN_PLL0_FRACDIVH_M0);
writel(0x0104, cdns_phy->sd_base + CMN_PLL0_HIGH_THR_M0);
break;
/* Setting VCO for 8.64GHz */
case 2160:
case 4320:
writel(0x0159, cdns_phy->sd_base + CMN_PLL0_INTDIV_M0);
writel(0x999A, cdns_phy->sd_base + CMN_PLL0_FRACDIVL_M0);
writel(0x0002, cdns_phy->sd_base + CMN_PLL0_FRACDIVH_M0);
writel(0x00E7, cdns_phy->sd_base + CMN_PLL0_HIGH_THR_M0);
break;
/* Setting VCO for 8.1GHz */
case 8100:
writel(0x0144, cdns_phy->sd_base + CMN_PLL0_INTDIV_M0);
writel(0x0000, cdns_phy->sd_base + CMN_PLL0_FRACDIVL_M0);
writel(0x0002, cdns_phy->sd_base + CMN_PLL0_FRACDIVH_M0);
writel(0x00D8, cdns_phy->sd_base + CMN_PLL0_HIGH_THR_M0);
break;
}
writel(0x0002, cdns_phy->sd_base + CMN_PDIAG_PLL0_CTRL_M0);
writel(0x0318, cdns_phy->sd_base + CMN_PLL0_VCOCAL_PLLCNT_START);
}
static void cdns_dp_phy_pma_cmn_rate(struct cdns_dp_phy *cdns_phy)
{
unsigned int clk_sel_val = 0;
unsigned int hsclk_div_val = 0;
unsigned int i;
/* 16'h0000 for single DP link configuration */
writel(0x0000, cdns_phy->sd_base + PHY_PLL_CFG);
switch (cdns_phy->max_bit_rate) {
case 1620:
clk_sel_val = 0x0f01;
hsclk_div_val = 2;
break;
case 2160:
case 2430:
case 2700:
clk_sel_val = 0x0701;
hsclk_div_val = 1;
break;
case 3240:
clk_sel_val = 0x0b00;
hsclk_div_val = 2;
break;
case 4320:
case 5400:
clk_sel_val = 0x0301;
hsclk_div_val = 0;
break;
case 8100:
clk_sel_val = 0x0200;
hsclk_div_val = 0;
break;
}
writel(clk_sel_val, cdns_phy->sd_base + CMN_PDIAG_PLL0_CLK_SEL_M0);
/* PMA lane configuration to deal with multi-link operation */
for (i = 0; i < cdns_phy->num_lanes; i++) {
writel(hsclk_div_val,
cdns_phy->sd_base + (XCVR_DIAG_HSCLK_DIV | (i<<11)));
}
}
static void cdns_dp_phy_pma_lane_cfg(struct cdns_dp_phy *cdns_phy,
unsigned int lane)
{
unsigned int lane_bits = (lane & LANE_MASK) << 11;
/* Writing Tx/Rx Power State Controllers registers */
writel(0x00FB, cdns_phy->sd_base + (TX_PSC_A0 | lane_bits));
writel(0x04AA, cdns_phy->sd_base + (TX_PSC_A2 | lane_bits));
writel(0x04AA, cdns_phy->sd_base + (TX_PSC_A3 | lane_bits));
writel(0x0000, cdns_phy->sd_base + (RX_PSC_A0 | lane_bits));
writel(0x0000, cdns_phy->sd_base + (RX_PSC_A2 | lane_bits));
writel(0x0000, cdns_phy->sd_base + (RX_PSC_A3 | lane_bits));
writel(0x0001, cdns_phy->sd_base + (XCVR_DIAG_PLLDRC_CTRL | lane_bits));
writel(0x0000, cdns_phy->sd_base + (XCVR_DIAG_HSCLK_SEL | lane_bits));
}
static void cdns_dp_phy_run(struct cdns_dp_phy *cdns_phy)
{
unsigned int read_val;
u32 write_val1 = 0;
u32 write_val2 = 0;
u32 mask = 0;
int ret;
/*
* waiting for ACK of pma_xcvr_pllclk_en_ln_*, only for the
* master lane
*/
ret = readl_poll_timeout(cdns_phy->base + PHY_PMA_XCVR_PLLCLK_EN_ACK,
read_val, read_val & 1, 0, POLL_TIMEOUT_US);
if (ret == -ETIMEDOUT)
dev_err(cdns_phy->dev,
"timeout waiting for link PLL clock enable ack\n");
ndelay(100);
switch (cdns_phy->num_lanes) {
case 1: /* lane 0 */
write_val1 = 0x00000004;
write_val2 = 0x00000001;
mask = 0x0000003f;
break;
case 2: /* lane 0-1 */
write_val1 = 0x00000404;
write_val2 = 0x00000101;
mask = 0x00003f3f;
break;
case 4: /* lane 0-3 */
write_val1 = 0x04040404;
write_val2 = 0x01010101;
mask = 0x3f3f3f3f;
break;
}
writel(write_val1, cdns_phy->base + PHY_PMA_XCVR_POWER_STATE_REQ);
ret = readl_poll_timeout(cdns_phy->base + PHY_PMA_XCVR_POWER_STATE_ACK,
read_val, (read_val & mask) == write_val1, 0,
POLL_TIMEOUT_US);
if (ret == -ETIMEDOUT)
dev_err(cdns_phy->dev,
"timeout waiting for link power state ack\n");
writel(0, cdns_phy->base + PHY_PMA_XCVR_POWER_STATE_REQ);
ndelay(100);
writel(write_val2, cdns_phy->base + PHY_PMA_XCVR_POWER_STATE_REQ);
ret = readl_poll_timeout(cdns_phy->base + PHY_PMA_XCVR_POWER_STATE_ACK,
read_val, (read_val & mask) == write_val2, 0,
POLL_TIMEOUT_US);
if (ret == -ETIMEDOUT)
dev_err(cdns_phy->dev,
"timeout waiting for link power state ack\n");
writel(0, cdns_phy->base + PHY_PMA_XCVR_POWER_STATE_REQ);
ndelay(100);
}
static void cdns_dp_phy_write_field(struct cdns_dp_phy *cdns_phy,
unsigned int offset,
unsigned char start_bit,
unsigned char num_bits,
unsigned int val)
{
unsigned int read_val;
read_val = readl(cdns_phy->base + offset);
writel(((val << start_bit) | (read_val & ~(((1 << num_bits) - 1) <<
start_bit))), cdns_phy->base + offset);
}
static int cdns_dp_phy_probe(struct platform_device *pdev)
{
struct resource *regs;
struct cdns_dp_phy *cdns_phy;
struct device *dev = &pdev->dev;
struct phy_provider *phy_provider;
struct phy *phy;
int err;
cdns_phy = devm_kzalloc(dev, sizeof(*cdns_phy), GFP_KERNEL);
if (!cdns_phy)
return -ENOMEM;
cdns_phy->dev = &pdev->dev;
phy = devm_phy_create(dev, NULL, &cdns_dp_phy_ops);
if (IS_ERR(phy)) {
dev_err(dev, "failed to create DisplayPort PHY\n");
return PTR_ERR(phy);
}
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
cdns_phy->base = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(cdns_phy->base))
return PTR_ERR(cdns_phy->base);
regs = platform_get_resource(pdev, IORESOURCE_MEM, 1);
cdns_phy->sd_base = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(cdns_phy->sd_base))
return PTR_ERR(cdns_phy->sd_base);
err = device_property_read_u32(dev, "num_lanes",
&(cdns_phy->num_lanes));
if (err)
cdns_phy->num_lanes = DEFAULT_NUM_LANES;
switch (cdns_phy->num_lanes) {
case 1:
case 2:
case 4:
/* valid number of lanes */
break;
default:
dev_err(dev, "unsupported number of lanes: %d\n",
cdns_phy->num_lanes);
return -EINVAL;
}
err = device_property_read_u32(dev, "max_bit_rate",
&(cdns_phy->max_bit_rate));
if (err)
cdns_phy->max_bit_rate = DEFAULT_MAX_BIT_RATE;
switch (cdns_phy->max_bit_rate) {
case 2160:
case 2430:
case 2700:
case 3240:
case 4320:
case 5400:
case 8100:
/* valid bit rate */
break;
default:
dev_err(dev, "unsupported max bit rate: %dMbps\n",
cdns_phy->max_bit_rate);
return -EINVAL;
}
phy_set_drvdata(phy, cdns_phy);
phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
dev_info(dev, "%d lanes, max bit rate %d.%03d Gbps\n",
cdns_phy->num_lanes,
cdns_phy->max_bit_rate / 1000,
cdns_phy->max_bit_rate % 1000);
return PTR_ERR_OR_ZERO(phy_provider);
}
static const struct of_device_id cdns_dp_phy_of_match[] = {
{
.compatible = "cdns,dp-phy"
},
{}
};
MODULE_DEVICE_TABLE(of, cdns_dp_phy_of_match);
static struct platform_driver cdns_dp_phy_driver = {
.probe = cdns_dp_phy_probe,
.driver = {
.name = "cdns-dp-phy",
.of_match_table = cdns_dp_phy_of_match,
}
};
module_platform_driver(cdns_dp_phy_driver);
MODULE_AUTHOR("Cadence Design Systems, Inc.");
MODULE_DESCRIPTION("Cadence MHDP PHY driver");
MODULE_LICENSE("GPL v2");