| /* |
| * Copyright (c) 2014-2016, NVIDIA CORPORATION. All rights reserved. |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a |
| * copy of this software and associated documentation files (the "Software"), |
| * to deal in the Software without restriction, including without limitation |
| * the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| * and/or sell copies of the Software, and to permit persons to whom the |
| * Software is furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
| * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER |
| * DEALINGS IN THE SOFTWARE. |
| * |
| * Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c |
| * |
| */ |
| #include "priv.h" |
| #include "gk20a.h" |
| |
| #include <core/tegra.h> |
| #include <subdev/timer.h> |
| |
| static const u8 _pl_to_div[] = { |
| /* PL: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 */ |
| /* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32, |
| }; |
| |
| static u32 pl_to_div(u32 pl) |
| { |
| if (pl >= ARRAY_SIZE(_pl_to_div)) |
| return 1; |
| |
| return _pl_to_div[pl]; |
| } |
| |
| static u32 div_to_pl(u32 div) |
| { |
| u32 pl; |
| |
| for (pl = 0; pl < ARRAY_SIZE(_pl_to_div) - 1; pl++) { |
| if (_pl_to_div[pl] >= div) |
| return pl; |
| } |
| |
| return ARRAY_SIZE(_pl_to_div) - 1; |
| } |
| |
| static const struct gk20a_clk_pllg_params gk20a_pllg_params = { |
| .min_vco = 1000000, .max_vco = 2064000, |
| .min_u = 12000, .max_u = 38000, |
| .min_m = 1, .max_m = 255, |
| .min_n = 8, .max_n = 255, |
| .min_pl = 1, .max_pl = 32, |
| }; |
| |
| void |
| gk20a_pllg_read_mnp(struct gk20a_clk *clk, struct gk20a_pll *pll) |
| { |
| struct nvkm_device *device = clk->base.subdev.device; |
| u32 val; |
| |
| val = nvkm_rd32(device, GPCPLL_COEFF); |
| pll->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH); |
| pll->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH); |
| pll->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH); |
| } |
| |
| void |
| gk20a_pllg_write_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll) |
| { |
| struct nvkm_device *device = clk->base.subdev.device; |
| u32 val; |
| |
| val = (pll->m & MASK(GPCPLL_COEFF_M_WIDTH)) << GPCPLL_COEFF_M_SHIFT; |
| val |= (pll->n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT; |
| val |= (pll->pl & MASK(GPCPLL_COEFF_P_WIDTH)) << GPCPLL_COEFF_P_SHIFT; |
| nvkm_wr32(device, GPCPLL_COEFF, val); |
| } |
| |
| u32 |
| gk20a_pllg_calc_rate(struct gk20a_clk *clk, struct gk20a_pll *pll) |
| { |
| u32 rate; |
| u32 divider; |
| |
| rate = clk->parent_rate * pll->n; |
| divider = pll->m * clk->pl_to_div(pll->pl); |
| |
| return rate / divider / 2; |
| } |
| |
| int |
| gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate, |
| struct gk20a_pll *pll) |
| { |
| struct nvkm_subdev *subdev = &clk->base.subdev; |
| u32 target_clk_f, ref_clk_f, target_freq; |
| u32 min_vco_f, max_vco_f; |
| u32 low_pl, high_pl, best_pl; |
| u32 target_vco_f; |
| u32 best_m, best_n; |
| u32 best_delta = ~0; |
| u32 pl; |
| |
| target_clk_f = rate * 2 / KHZ; |
| ref_clk_f = clk->parent_rate / KHZ; |
| |
| target_vco_f = target_clk_f + target_clk_f / 50; |
| max_vco_f = max(clk->params->max_vco, target_vco_f); |
| min_vco_f = clk->params->min_vco; |
| best_m = clk->params->max_m; |
| best_n = clk->params->min_n; |
| best_pl = clk->params->min_pl; |
| |
| /* min_pl <= high_pl <= max_pl */ |
| high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f; |
| high_pl = min(high_pl, clk->params->max_pl); |
| high_pl = max(high_pl, clk->params->min_pl); |
| high_pl = clk->div_to_pl(high_pl); |
| |
| /* min_pl <= low_pl <= max_pl */ |
| low_pl = min_vco_f / target_vco_f; |
| low_pl = min(low_pl, clk->params->max_pl); |
| low_pl = max(low_pl, clk->params->min_pl); |
| low_pl = clk->div_to_pl(low_pl); |
| |
| nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl, |
| clk->pl_to_div(low_pl), high_pl, clk->pl_to_div(high_pl)); |
| |
| /* Select lowest possible VCO */ |
| for (pl = low_pl; pl <= high_pl; pl++) { |
| u32 m, n, n2; |
| |
| target_vco_f = target_clk_f * clk->pl_to_div(pl); |
| |
| for (m = clk->params->min_m; m <= clk->params->max_m; m++) { |
| u32 u_f = ref_clk_f / m; |
| |
| if (u_f < clk->params->min_u) |
| break; |
| if (u_f > clk->params->max_u) |
| continue; |
| |
| n = (target_vco_f * m) / ref_clk_f; |
| n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f; |
| |
| if (n > clk->params->max_n) |
| break; |
| |
| for (; n <= n2; n++) { |
| u32 vco_f; |
| |
| if (n < clk->params->min_n) |
| continue; |
| if (n > clk->params->max_n) |
| break; |
| |
| vco_f = ref_clk_f * n / m; |
| |
| if (vco_f >= min_vco_f && vco_f <= max_vco_f) { |
| u32 delta, lwv; |
| |
| lwv = (vco_f + (clk->pl_to_div(pl) / 2)) |
| / clk->pl_to_div(pl); |
| delta = abs(lwv - target_clk_f); |
| |
| if (delta < best_delta) { |
| best_delta = delta; |
| best_m = m; |
| best_n = n; |
| best_pl = pl; |
| |
| if (best_delta == 0) |
| goto found_match; |
| } |
| } |
| } |
| } |
| } |
| |
| found_match: |
| WARN_ON(best_delta == ~0); |
| |
| if (best_delta != 0) |
| nvkm_debug(subdev, |
| "no best match for target @ %dMHz on gpc_pll", |
| target_clk_f / KHZ); |
| |
| pll->m = best_m; |
| pll->n = best_n; |
| pll->pl = best_pl; |
| |
| target_freq = gk20a_pllg_calc_rate(clk, pll); |
| |
| nvkm_debug(subdev, |
| "actual target freq %d KHz, M %d, N %d, PL %d(div%d)\n", |
| target_freq / KHZ, pll->m, pll->n, pll->pl, |
| clk->pl_to_div(pll->pl)); |
| return 0; |
| } |
| |
| static int |
| gk20a_pllg_slide(struct gk20a_clk *clk, u32 n) |
| { |
| struct nvkm_subdev *subdev = &clk->base.subdev; |
| struct nvkm_device *device = subdev->device; |
| struct gk20a_pll pll; |
| int ret = 0; |
| |
| /* get old coefficients */ |
| gk20a_pllg_read_mnp(clk, &pll); |
| /* do nothing if NDIV is the same */ |
| if (n == pll.n) |
| return 0; |
| |
| /* pll slowdown mode */ |
| nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, |
| BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT), |
| BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT)); |
| |
| /* new ndiv ready for ramp */ |
| pll.n = n; |
| udelay(1); |
| gk20a_pllg_write_mnp(clk, &pll); |
| |
| /* dynamic ramp to new ndiv */ |
| udelay(1); |
| nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, |
| BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), |
| BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT)); |
| |
| /* wait for ramping to complete */ |
| if (nvkm_wait_usec(device, 500, GPC_BCAST_NDIV_SLOWDOWN_DEBUG, |
| GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK, |
| GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK) < 0) |
| ret = -ETIMEDOUT; |
| |
| /* exit slowdown mode */ |
| nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN, |
| BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) | |
| BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0); |
| nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN); |
| |
| return ret; |
| } |
| |
| static int |
| gk20a_pllg_enable(struct gk20a_clk *clk) |
| { |
| struct nvkm_device *device = clk->base.subdev.device; |
| u32 val; |
| |
| nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE); |
| nvkm_rd32(device, GPCPLL_CFG); |
| |
| /* enable lock detection */ |
| val = nvkm_rd32(device, GPCPLL_CFG); |
| if (val & GPCPLL_CFG_LOCK_DET_OFF) { |
| val &= ~GPCPLL_CFG_LOCK_DET_OFF; |
| nvkm_wr32(device, GPCPLL_CFG, val); |
| } |
| |
| /* wait for lock */ |
| if (nvkm_wait_usec(device, 300, GPCPLL_CFG, GPCPLL_CFG_LOCK, |
| GPCPLL_CFG_LOCK) < 0) |
| return -ETIMEDOUT; |
| |
| /* switch to VCO mode */ |
| nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), |
| BIT(SEL_VCO_GPC2CLK_OUT_SHIFT)); |
| |
| return 0; |
| } |
| |
| static void |
| gk20a_pllg_disable(struct gk20a_clk *clk) |
| { |
| struct nvkm_device *device = clk->base.subdev.device; |
| |
| /* put PLL in bypass before disabling it */ |
| nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0); |
| |
| nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0); |
| nvkm_rd32(device, GPCPLL_CFG); |
| } |
| |
| static int |
| gk20a_pllg_program_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll) |
| { |
| struct nvkm_subdev *subdev = &clk->base.subdev; |
| struct nvkm_device *device = subdev->device; |
| struct gk20a_pll cur_pll; |
| int ret; |
| |
| gk20a_pllg_read_mnp(clk, &cur_pll); |
| |
| /* split VCO-to-bypass jump in half by setting out divider 1:2 */ |
| nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, |
| GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT); |
| /* Intentional 2nd write to assure linear divider operation */ |
| nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, |
| GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT); |
| nvkm_rd32(device, GPC2CLK_OUT); |
| udelay(2); |
| |
| gk20a_pllg_disable(clk); |
| |
| gk20a_pllg_write_mnp(clk, pll); |
| |
| ret = gk20a_pllg_enable(clk); |
| if (ret) |
| return ret; |
| |
| /* restore out divider 1:1 */ |
| udelay(2); |
| nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, |
| GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT); |
| /* Intentional 2nd write to assure linear divider operation */ |
| nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK, |
| GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT); |
| nvkm_rd32(device, GPC2CLK_OUT); |
| |
| return 0; |
| } |
| |
| static int |
| gk20a_pllg_program_mnp_slide(struct gk20a_clk *clk, const struct gk20a_pll *pll) |
| { |
| struct gk20a_pll cur_pll; |
| int ret; |
| |
| if (gk20a_pllg_is_enabled(clk)) { |
| gk20a_pllg_read_mnp(clk, &cur_pll); |
| |
| /* just do NDIV slide if there is no change to M and PL */ |
| if (pll->m == cur_pll.m && pll->pl == cur_pll.pl) |
| return gk20a_pllg_slide(clk, pll->n); |
| |
| /* slide down to current NDIV_LO */ |
| cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll); |
| ret = gk20a_pllg_slide(clk, cur_pll.n); |
| if (ret) |
| return ret; |
| } |
| |
| /* program MNP with the new clock parameters and new NDIV_LO */ |
| cur_pll = *pll; |
| cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll); |
| ret = gk20a_pllg_program_mnp(clk, &cur_pll); |
| if (ret) |
| return ret; |
| |
| /* slide up to new NDIV */ |
| return gk20a_pllg_slide(clk, pll->n); |
| } |
| |
| static struct nvkm_pstate |
| gk20a_pstates[] = { |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 72000, |
| .voltage = 0, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 108000, |
| .voltage = 1, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 180000, |
| .voltage = 2, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 252000, |
| .voltage = 3, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 324000, |
| .voltage = 4, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 396000, |
| .voltage = 5, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 468000, |
| .voltage = 6, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 540000, |
| .voltage = 7, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 612000, |
| .voltage = 8, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 648000, |
| .voltage = 9, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 684000, |
| .voltage = 10, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 708000, |
| .voltage = 11, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 756000, |
| .voltage = 12, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 804000, |
| .voltage = 13, |
| }, |
| }, |
| { |
| .base = { |
| .domain[nv_clk_src_gpc] = 852000, |
| .voltage = 14, |
| }, |
| }, |
| }; |
| |
| int |
| gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src) |
| { |
| struct gk20a_clk *clk = gk20a_clk(base); |
| struct nvkm_subdev *subdev = &clk->base.subdev; |
| struct nvkm_device *device = subdev->device; |
| struct gk20a_pll pll; |
| |
| switch (src) { |
| case nv_clk_src_crystal: |
| return device->crystal; |
| case nv_clk_src_gpc: |
| gk20a_pllg_read_mnp(clk, &pll); |
| return gk20a_pllg_calc_rate(clk, &pll) / GK20A_CLK_GPC_MDIV; |
| default: |
| nvkm_error(subdev, "invalid clock source %d\n", src); |
| return -EINVAL; |
| } |
| } |
| |
| int |
| gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate) |
| { |
| struct gk20a_clk *clk = gk20a_clk(base); |
| |
| return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] * |
| GK20A_CLK_GPC_MDIV, &clk->pll); |
| } |
| |
| int |
| gk20a_clk_prog(struct nvkm_clk *base) |
| { |
| struct gk20a_clk *clk = gk20a_clk(base); |
| int ret; |
| |
| ret = gk20a_pllg_program_mnp_slide(clk, &clk->pll); |
| if (ret) |
| ret = gk20a_pllg_program_mnp(clk, &clk->pll); |
| |
| return ret; |
| } |
| |
| void |
| gk20a_clk_tidy(struct nvkm_clk *base) |
| { |
| } |
| |
| int |
| gk20a_clk_setup_slide(struct gk20a_clk *clk) |
| { |
| struct nvkm_subdev *subdev = &clk->base.subdev; |
| struct nvkm_device *device = subdev->device; |
| u32 step_a, step_b; |
| |
| switch (clk->parent_rate) { |
| case 12000000: |
| case 12800000: |
| case 13000000: |
| step_a = 0x2b; |
| step_b = 0x0b; |
| break; |
| case 19200000: |
| step_a = 0x12; |
| step_b = 0x08; |
| break; |
| case 38400000: |
| step_a = 0x04; |
| step_b = 0x05; |
| break; |
| default: |
| nvkm_error(subdev, "invalid parent clock rate %u KHz", |
| clk->parent_rate / KHZ); |
| return -EINVAL; |
| } |
| |
| nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT, |
| step_a << GPCPLL_CFG2_PLL_STEPA_SHIFT); |
| nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT, |
| step_b << GPCPLL_CFG3_PLL_STEPB_SHIFT); |
| |
| return 0; |
| } |
| |
| void |
| gk20a_clk_fini(struct nvkm_clk *base) |
| { |
| struct nvkm_device *device = base->subdev.device; |
| struct gk20a_clk *clk = gk20a_clk(base); |
| |
| /* slide to VCO min */ |
| if (gk20a_pllg_is_enabled(clk)) { |
| struct gk20a_pll pll; |
| u32 n_lo; |
| |
| gk20a_pllg_read_mnp(clk, &pll); |
| n_lo = gk20a_pllg_n_lo(clk, &pll); |
| gk20a_pllg_slide(clk, n_lo); |
| } |
| |
| gk20a_pllg_disable(clk); |
| |
| /* set IDDQ */ |
| nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 1); |
| } |
| |
| static int |
| gk20a_clk_init(struct nvkm_clk *base) |
| { |
| struct gk20a_clk *clk = gk20a_clk(base); |
| struct nvkm_subdev *subdev = &clk->base.subdev; |
| struct nvkm_device *device = subdev->device; |
| int ret; |
| |
| /* get out from IDDQ */ |
| nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 0); |
| nvkm_rd32(device, GPCPLL_CFG); |
| udelay(5); |
| |
| nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, |
| GPC2CLK_OUT_INIT_VAL); |
| |
| ret = gk20a_clk_setup_slide(clk); |
| if (ret) |
| return ret; |
| |
| /* Start with lowest frequency */ |
| base->func->calc(base, &base->func->pstates[0].base); |
| ret = base->func->prog(&clk->base); |
| if (ret) { |
| nvkm_error(subdev, "cannot initialize clock\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static const struct nvkm_clk_func |
| gk20a_clk = { |
| .init = gk20a_clk_init, |
| .fini = gk20a_clk_fini, |
| .read = gk20a_clk_read, |
| .calc = gk20a_clk_calc, |
| .prog = gk20a_clk_prog, |
| .tidy = gk20a_clk_tidy, |
| .pstates = gk20a_pstates, |
| .nr_pstates = ARRAY_SIZE(gk20a_pstates), |
| .domains = { |
| { nv_clk_src_crystal, 0xff }, |
| { nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV }, |
| { nv_clk_src_max } |
| } |
| }; |
| |
| int |
| gk20a_clk_ctor(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, |
| const struct nvkm_clk_func *func, const struct gk20a_clk_pllg_params *params, |
| struct gk20a_clk *clk) |
| { |
| struct nvkm_device_tegra *tdev = device->func->tegra(device); |
| int ret; |
| int i; |
| |
| /* Finish initializing the pstates */ |
| for (i = 0; i < func->nr_pstates; i++) { |
| INIT_LIST_HEAD(&func->pstates[i].list); |
| func->pstates[i].pstate = i + 1; |
| } |
| |
| clk->params = params; |
| clk->parent_rate = clk_get_rate(tdev->clk); |
| |
| ret = nvkm_clk_ctor(func, device, type, inst, true, &clk->base); |
| if (ret) |
| return ret; |
| |
| nvkm_debug(&clk->base.subdev, "parent clock rate: %d Khz\n", |
| clk->parent_rate / KHZ); |
| |
| return 0; |
| } |
| |
| int |
| gk20a_clk_new(struct nvkm_device *device, enum nvkm_subdev_type type, int inst, |
| struct nvkm_clk **pclk) |
| { |
| struct gk20a_clk *clk; |
| int ret; |
| |
| clk = kzalloc(sizeof(*clk), GFP_KERNEL); |
| if (!clk) |
| return -ENOMEM; |
| *pclk = &clk->base; |
| |
| ret = gk20a_clk_ctor(device, type, inst, &gk20a_clk, &gk20a_pllg_params, clk); |
| |
| clk->pl_to_div = pl_to_div; |
| clk->div_to_pl = div_to_pl; |
| return ret; |
| } |