blob: 66b67402f1acd57dcf367b8e742b8c5ea45aae23 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* i.MX8 NWL MIPI DSI host driver
*
* Copyright (C) 2017 NXP
* Copyright (C) 2020 Purism SPC
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/irq.h>
#include <linux/math64.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/mux/consumer.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/phy/phy.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/sys_soc.h>
#include <linux/time64.h>
#include <drm/drm_bridge.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_of.h>
#include <drm/drm_panel.h>
#include <drm/drm_print.h>
#include <video/mipi_display.h>
#include "nwl-dsi.h"
#define DRV_NAME "nwl-dsi"
/* i.MX8 NWL quirks */
/* i.MX8MQ errata E11418 */
#define E11418_HS_MODE_QUIRK BIT(0)
#define NWL_DSI_MIPI_FIFO_TIMEOUT msecs_to_jiffies(500)
enum transfer_direction {
DSI_PACKET_SEND,
DSI_PACKET_RECEIVE,
};
#define NWL_DSI_ENDPOINT_LCDIF 0
#define NWL_DSI_ENDPOINT_DCSS 1
struct nwl_dsi_plat_clk_config {
const char *id;
struct clk *clk;
bool present;
};
struct nwl_dsi_transfer {
const struct mipi_dsi_msg *msg;
struct mipi_dsi_packet packet;
struct completion completed;
int status; /* status of transmission */
enum transfer_direction direction;
bool need_bta;
u8 cmd;
u16 rx_word_count;
size_t tx_len; /* in bytes */
size_t rx_len; /* in bytes */
};
struct nwl_dsi {
struct drm_bridge bridge;
struct mipi_dsi_host dsi_host;
struct drm_bridge *panel_bridge;
struct device *dev;
struct phy *phy;
union phy_configure_opts phy_cfg;
unsigned int quirks;
struct regmap *regmap;
int irq;
/*
* The DSI host controller needs this reset sequence according to NWL:
* 1. Deassert pclk reset to get access to DSI regs
* 2. Configure DSI Host and DPHY and enable DPHY
* 3. Deassert ESC and BYTE resets to allow host TX operations)
* 4. Send DSI cmds to configure peripheral (handled by panel drv)
* 5. Deassert DPI reset so DPI receives pixels and starts sending
* DSI data
*
* TODO: Since panel_bridges do their DSI setup in enable we
* currently have 4. and 5. swapped.
*/
struct reset_control *rst_byte;
struct reset_control *rst_esc;
struct reset_control *rst_dpi;
struct reset_control *rst_pclk;
struct mux_control *mux;
/* DSI clocks */
struct clk *phy_ref_clk;
struct clk *rx_esc_clk;
struct clk *tx_esc_clk;
struct clk *core_clk;
/*
* hardware bug: the i.MX8MQ needs this clock on during reset
* even when not using LCDIF.
*/
struct clk *lcdif_clk;
/* dsi lanes */
u32 lanes;
enum mipi_dsi_pixel_format format;
struct drm_display_mode mode;
unsigned long dsi_mode_flags;
int error;
struct nwl_dsi_transfer *xfer;
};
static const struct regmap_config nwl_dsi_regmap_config = {
.reg_bits = 16,
.val_bits = 32,
.reg_stride = 4,
.max_register = NWL_DSI_IRQ_MASK2,
.name = DRV_NAME,
};
static inline struct nwl_dsi *bridge_to_dsi(struct drm_bridge *bridge)
{
return container_of(bridge, struct nwl_dsi, bridge);
}
static int nwl_dsi_clear_error(struct nwl_dsi *dsi)
{
int ret = dsi->error;
dsi->error = 0;
return ret;
}
static void nwl_dsi_write(struct nwl_dsi *dsi, unsigned int reg, u32 val)
{
int ret;
if (dsi->error)
return;
ret = regmap_write(dsi->regmap, reg, val);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev,
"Failed to write NWL DSI reg 0x%x: %d\n", reg,
ret);
dsi->error = ret;
}
}
static u32 nwl_dsi_read(struct nwl_dsi *dsi, u32 reg)
{
unsigned int val;
int ret;
if (dsi->error)
return 0;
ret = regmap_read(dsi->regmap, reg, &val);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to read NWL DSI reg 0x%x: %d\n",
reg, ret);
dsi->error = ret;
}
return val;
}
static int nwl_dsi_get_dpi_pixel_format(enum mipi_dsi_pixel_format format)
{
switch (format) {
case MIPI_DSI_FMT_RGB565:
return NWL_DSI_PIXEL_FORMAT_16;
case MIPI_DSI_FMT_RGB666:
return NWL_DSI_PIXEL_FORMAT_18L;
case MIPI_DSI_FMT_RGB666_PACKED:
return NWL_DSI_PIXEL_FORMAT_18;
case MIPI_DSI_FMT_RGB888:
return NWL_DSI_PIXEL_FORMAT_24;
default:
return -EINVAL;
}
}
/*
* ps2bc - Picoseconds to byte clock cycles
*/
static u32 ps2bc(struct nwl_dsi *dsi, unsigned long long ps)
{
u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
return DIV64_U64_ROUND_UP(ps * dsi->mode.clock * bpp,
dsi->lanes * 8 * NSEC_PER_SEC);
}
/*
* ui2bc - UI time periods to byte clock cycles
*/
static u32 ui2bc(struct nwl_dsi *dsi, unsigned long long ui)
{
u32 bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
return DIV64_U64_ROUND_UP(ui * dsi->lanes,
dsi->mode.clock * 1000 * bpp);
}
/*
* us2bc - micro seconds to lp clock cycles
*/
static u32 us2lp(u32 lp_clk_rate, unsigned long us)
{
return DIV_ROUND_UP(us * lp_clk_rate, USEC_PER_SEC);
}
static int nwl_dsi_config_host(struct nwl_dsi *dsi)
{
u32 cycles;
struct phy_configure_opts_mipi_dphy *cfg = &dsi->phy_cfg.mipi_dphy;
if (dsi->lanes < 1 || dsi->lanes > 4)
return -EINVAL;
DRM_DEV_DEBUG_DRIVER(dsi->dev, "DSI Lanes %d\n", dsi->lanes);
nwl_dsi_write(dsi, NWL_DSI_CFG_NUM_LANES, dsi->lanes - 1);
if (dsi->dsi_mode_flags & MIPI_DSI_CLOCK_NON_CONTINUOUS) {
nwl_dsi_write(dsi, NWL_DSI_CFG_NONCONTINUOUS_CLK, 0x01);
nwl_dsi_write(dsi, NWL_DSI_CFG_AUTOINSERT_EOTP, 0x01);
} else {
nwl_dsi_write(dsi, NWL_DSI_CFG_NONCONTINUOUS_CLK, 0x00);
nwl_dsi_write(dsi, NWL_DSI_CFG_AUTOINSERT_EOTP, 0x00);
}
/* values in byte clock cycles */
cycles = ui2bc(dsi, cfg->clk_pre);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "cfg_t_pre: 0x%x\n", cycles);
nwl_dsi_write(dsi, NWL_DSI_CFG_T_PRE, cycles);
cycles = ps2bc(dsi, cfg->lpx + cfg->clk_prepare + cfg->clk_zero);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "cfg_tx_gap (pre): 0x%x\n", cycles);
cycles += ui2bc(dsi, cfg->clk_pre);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "cfg_t_post: 0x%x\n", cycles);
nwl_dsi_write(dsi, NWL_DSI_CFG_T_POST, cycles);
cycles = ps2bc(dsi, cfg->hs_exit);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "cfg_tx_gap: 0x%x\n", cycles);
nwl_dsi_write(dsi, NWL_DSI_CFG_TX_GAP, cycles);
nwl_dsi_write(dsi, NWL_DSI_CFG_EXTRA_CMDS_AFTER_EOTP, 0x01);
nwl_dsi_write(dsi, NWL_DSI_CFG_HTX_TO_COUNT, 0x00);
nwl_dsi_write(dsi, NWL_DSI_CFG_LRX_H_TO_COUNT, 0x00);
nwl_dsi_write(dsi, NWL_DSI_CFG_BTA_H_TO_COUNT, 0x00);
/* In LP clock cycles */
cycles = us2lp(cfg->lp_clk_rate, cfg->wakeup);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "cfg_twakeup: 0x%x\n", cycles);
nwl_dsi_write(dsi, NWL_DSI_CFG_TWAKEUP, cycles);
return nwl_dsi_clear_error(dsi);
}
static int nwl_dsi_config_dpi(struct nwl_dsi *dsi)
{
u32 mode;
int color_format;
bool burst_mode;
int hfront_porch, hback_porch, vfront_porch, vback_porch;
int hsync_len, vsync_len;
hfront_porch = dsi->mode.hsync_start - dsi->mode.hdisplay;
hsync_len = dsi->mode.hsync_end - dsi->mode.hsync_start;
hback_porch = dsi->mode.htotal - dsi->mode.hsync_end;
vfront_porch = dsi->mode.vsync_start - dsi->mode.vdisplay;
vsync_len = dsi->mode.vsync_end - dsi->mode.vsync_start;
vback_porch = dsi->mode.vtotal - dsi->mode.vsync_end;
DRM_DEV_DEBUG_DRIVER(dsi->dev, "hfront_porch = %d\n", hfront_porch);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "hback_porch = %d\n", hback_porch);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "hsync_len = %d\n", hsync_len);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "hdisplay = %d\n", dsi->mode.hdisplay);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "vfront_porch = %d\n", vfront_porch);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "vback_porch = %d\n", vback_porch);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "vsync_len = %d\n", vsync_len);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "vactive = %d\n", dsi->mode.vdisplay);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "clock = %d kHz\n", dsi->mode.clock);
color_format = nwl_dsi_get_dpi_pixel_format(dsi->format);
if (color_format < 0) {
DRM_DEV_ERROR(dsi->dev, "Invalid color format 0x%x\n",
dsi->format);
return color_format;
}
DRM_DEV_DEBUG_DRIVER(dsi->dev, "pixel fmt = %d\n", dsi->format);
nwl_dsi_write(dsi, NWL_DSI_INTERFACE_COLOR_CODING, NWL_DSI_DPI_24_BIT);
nwl_dsi_write(dsi, NWL_DSI_PIXEL_FORMAT, color_format);
/*
* Adjusting input polarity based on the video mode results in
* a black screen so always pick active low:
*/
nwl_dsi_write(dsi, NWL_DSI_VSYNC_POLARITY,
NWL_DSI_VSYNC_POLARITY_ACTIVE_LOW);
nwl_dsi_write(dsi, NWL_DSI_HSYNC_POLARITY,
NWL_DSI_HSYNC_POLARITY_ACTIVE_LOW);
burst_mode = (dsi->dsi_mode_flags & MIPI_DSI_MODE_VIDEO_BURST) &&
!(dsi->dsi_mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE);
if (burst_mode) {
nwl_dsi_write(dsi, NWL_DSI_VIDEO_MODE, NWL_DSI_VM_BURST_MODE);
nwl_dsi_write(dsi, NWL_DSI_PIXEL_FIFO_SEND_LEVEL, 256);
} else {
mode = ((dsi->dsi_mode_flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) ?
NWL_DSI_VM_BURST_MODE_WITH_SYNC_PULSES :
NWL_DSI_VM_NON_BURST_MODE_WITH_SYNC_EVENTS);
nwl_dsi_write(dsi, NWL_DSI_VIDEO_MODE, mode);
nwl_dsi_write(dsi, NWL_DSI_PIXEL_FIFO_SEND_LEVEL,
dsi->mode.hdisplay);
}
nwl_dsi_write(dsi, NWL_DSI_HFP, hfront_porch);
nwl_dsi_write(dsi, NWL_DSI_HBP, hback_porch);
nwl_dsi_write(dsi, NWL_DSI_HSA, hsync_len);
nwl_dsi_write(dsi, NWL_DSI_ENABLE_MULT_PKTS, 0x0);
nwl_dsi_write(dsi, NWL_DSI_BLLP_MODE, 0x1);
nwl_dsi_write(dsi, NWL_DSI_USE_NULL_PKT_BLLP, 0x0);
nwl_dsi_write(dsi, NWL_DSI_VC, 0x0);
nwl_dsi_write(dsi, NWL_DSI_PIXEL_PAYLOAD_SIZE, dsi->mode.hdisplay);
nwl_dsi_write(dsi, NWL_DSI_VACTIVE, dsi->mode.vdisplay - 1);
nwl_dsi_write(dsi, NWL_DSI_VBP, vback_porch);
nwl_dsi_write(dsi, NWL_DSI_VFP, vfront_porch);
return nwl_dsi_clear_error(dsi);
}
static int nwl_dsi_init_interrupts(struct nwl_dsi *dsi)
{
u32 irq_enable;
nwl_dsi_write(dsi, NWL_DSI_IRQ_MASK, 0xffffffff);
nwl_dsi_write(dsi, NWL_DSI_IRQ_MASK2, 0x7);
irq_enable = ~(u32)(NWL_DSI_TX_PKT_DONE_MASK |
NWL_DSI_RX_PKT_HDR_RCVD_MASK |
NWL_DSI_TX_FIFO_OVFLW_MASK |
NWL_DSI_HS_TX_TIMEOUT_MASK);
nwl_dsi_write(dsi, NWL_DSI_IRQ_MASK, irq_enable);
return nwl_dsi_clear_error(dsi);
}
static int nwl_dsi_host_attach(struct mipi_dsi_host *dsi_host,
struct mipi_dsi_device *device)
{
struct nwl_dsi *dsi = container_of(dsi_host, struct nwl_dsi, dsi_host);
struct device *dev = dsi->dev;
DRM_DEV_INFO(dev, "lanes=%u, format=0x%x flags=0x%lx\n", device->lanes,
device->format, device->mode_flags);
if (device->lanes < 1 || device->lanes > 4)
return -EINVAL;
dsi->lanes = device->lanes;
dsi->format = device->format;
dsi->dsi_mode_flags = device->mode_flags;
return 0;
}
static bool nwl_dsi_read_packet(struct nwl_dsi *dsi, u32 status)
{
struct device *dev = dsi->dev;
struct nwl_dsi_transfer *xfer = dsi->xfer;
int err;
u8 *payload = xfer->msg->rx_buf;
u32 val;
u16 word_count;
u8 channel;
u8 data_type;
xfer->status = 0;
if (xfer->rx_word_count == 0) {
if (!(status & NWL_DSI_RX_PKT_HDR_RCVD))
return false;
/* Get the RX header and parse it */
val = nwl_dsi_read(dsi, NWL_DSI_RX_PKT_HEADER);
err = nwl_dsi_clear_error(dsi);
if (err)
xfer->status = err;
word_count = NWL_DSI_WC(val);
channel = NWL_DSI_RX_VC(val);
data_type = NWL_DSI_RX_DT(val);
if (channel != xfer->msg->channel) {
DRM_DEV_ERROR(dev,
"[%02X] Channel mismatch (%u != %u)\n",
xfer->cmd, channel, xfer->msg->channel);
xfer->status = -EINVAL;
return true;
}
switch (data_type) {
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_2BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
if (xfer->msg->rx_len > 1) {
/* read second byte */
payload[1] = word_count >> 8;
++xfer->rx_len;
}
fallthrough;
case MIPI_DSI_RX_GENERIC_SHORT_READ_RESPONSE_1BYTE:
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
if (xfer->msg->rx_len > 0) {
/* read first byte */
payload[0] = word_count & 0xff;
++xfer->rx_len;
}
xfer->status = xfer->rx_len;
return true;
case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
word_count &= 0xff;
DRM_DEV_ERROR(dev, "[%02X] DSI error report: 0x%02x\n",
xfer->cmd, word_count);
xfer->status = -EPROTO;
return true;
}
if (word_count > xfer->msg->rx_len) {
DRM_DEV_ERROR(dev,
"[%02X] Receive buffer too small: %zu (< %u)\n",
xfer->cmd, xfer->msg->rx_len, word_count);
xfer->status = -EINVAL;
return true;
}
xfer->rx_word_count = word_count;
} else {
/* Set word_count from previous header read */
word_count = xfer->rx_word_count;
}
/* If RX payload is not yet received, wait for it */
if (!(status & NWL_DSI_RX_PKT_PAYLOAD_DATA_RCVD))
return false;
/* Read the RX payload */
while (word_count >= 4) {
val = nwl_dsi_read(dsi, NWL_DSI_RX_PAYLOAD);
payload[0] = (val >> 0) & 0xff;
payload[1] = (val >> 8) & 0xff;
payload[2] = (val >> 16) & 0xff;
payload[3] = (val >> 24) & 0xff;
payload += 4;
xfer->rx_len += 4;
word_count -= 4;
}
if (word_count > 0) {
val = nwl_dsi_read(dsi, NWL_DSI_RX_PAYLOAD);
switch (word_count) {
case 3:
payload[2] = (val >> 16) & 0xff;
++xfer->rx_len;
fallthrough;
case 2:
payload[1] = (val >> 8) & 0xff;
++xfer->rx_len;
fallthrough;
case 1:
payload[0] = (val >> 0) & 0xff;
++xfer->rx_len;
break;
}
}
xfer->status = xfer->rx_len;
err = nwl_dsi_clear_error(dsi);
if (err)
xfer->status = err;
return true;
}
static void nwl_dsi_finish_transmission(struct nwl_dsi *dsi, u32 status)
{
struct nwl_dsi_transfer *xfer = dsi->xfer;
bool end_packet = false;
if (!xfer)
return;
if (xfer->direction == DSI_PACKET_SEND &&
status & NWL_DSI_TX_PKT_DONE) {
xfer->status = xfer->tx_len;
end_packet = true;
} else if (status & NWL_DSI_DPHY_DIRECTION &&
((status & (NWL_DSI_RX_PKT_HDR_RCVD |
NWL_DSI_RX_PKT_PAYLOAD_DATA_RCVD)))) {
end_packet = nwl_dsi_read_packet(dsi, status);
}
if (end_packet)
complete(&xfer->completed);
}
static void nwl_dsi_begin_transmission(struct nwl_dsi *dsi)
{
struct nwl_dsi_transfer *xfer = dsi->xfer;
struct mipi_dsi_packet *pkt = &xfer->packet;
const u8 *payload;
size_t length;
u16 word_count;
u8 hs_mode;
u32 val;
u32 hs_workaround = 0;
/* Send the payload, if any */
length = pkt->payload_length;
payload = pkt->payload;
while (length >= 4) {
val = *(u32 *)payload;
hs_workaround |= !(val & 0xFFFF00);
nwl_dsi_write(dsi, NWL_DSI_TX_PAYLOAD, val);
payload += 4;
length -= 4;
}
/* Send the rest of the payload */
val = 0;
switch (length) {
case 3:
val |= payload[2] << 16;
fallthrough;
case 2:
val |= payload[1] << 8;
hs_workaround |= !(val & 0xFFFF00);
fallthrough;
case 1:
val |= payload[0];
nwl_dsi_write(dsi, NWL_DSI_TX_PAYLOAD, val);
break;
}
xfer->tx_len = pkt->payload_length;
/*
* Send the header
* header[0] = Virtual Channel + Data Type
* header[1] = Word Count LSB (LP) or first param (SP)
* header[2] = Word Count MSB (LP) or second param (SP)
*/
word_count = pkt->header[1] | (pkt->header[2] << 8);
if (hs_workaround && (dsi->quirks & E11418_HS_MODE_QUIRK)) {
DRM_DEV_DEBUG_DRIVER(dsi->dev,
"Using hs mode workaround for cmd 0x%x\n",
xfer->cmd);
hs_mode = 1;
} else {
hs_mode = (xfer->msg->flags & MIPI_DSI_MSG_USE_LPM) ? 0 : 1;
}
val = NWL_DSI_WC(word_count) | NWL_DSI_TX_VC(xfer->msg->channel) |
NWL_DSI_TX_DT(xfer->msg->type) | NWL_DSI_HS_SEL(hs_mode) |
NWL_DSI_BTA_TX(xfer->need_bta);
nwl_dsi_write(dsi, NWL_DSI_PKT_CONTROL, val);
/* Send packet command */
nwl_dsi_write(dsi, NWL_DSI_SEND_PACKET, 0x1);
}
static ssize_t nwl_dsi_host_transfer(struct mipi_dsi_host *dsi_host,
const struct mipi_dsi_msg *msg)
{
struct nwl_dsi *dsi = container_of(dsi_host, struct nwl_dsi, dsi_host);
struct nwl_dsi_transfer xfer;
ssize_t ret = 0;
/* Create packet to be sent */
dsi->xfer = &xfer;
ret = mipi_dsi_create_packet(&xfer.packet, msg);
if (ret < 0) {
dsi->xfer = NULL;
return ret;
}
if ((msg->type & MIPI_DSI_GENERIC_READ_REQUEST_0_PARAM ||
msg->type & MIPI_DSI_GENERIC_READ_REQUEST_1_PARAM ||
msg->type & MIPI_DSI_GENERIC_READ_REQUEST_2_PARAM ||
msg->type & MIPI_DSI_DCS_READ) &&
msg->rx_len > 0 && msg->rx_buf)
xfer.direction = DSI_PACKET_RECEIVE;
else
xfer.direction = DSI_PACKET_SEND;
xfer.need_bta = (xfer.direction == DSI_PACKET_RECEIVE);
xfer.need_bta |= (msg->flags & MIPI_DSI_MSG_REQ_ACK) ? 1 : 0;
xfer.msg = msg;
xfer.status = -ETIMEDOUT;
xfer.rx_word_count = 0;
xfer.rx_len = 0;
xfer.cmd = 0x00;
if (msg->tx_len > 0)
xfer.cmd = ((u8 *)(msg->tx_buf))[0];
init_completion(&xfer.completed);
ret = clk_prepare_enable(dsi->rx_esc_clk);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to enable rx_esc clk: %zd\n",
ret);
return ret;
}
DRM_DEV_DEBUG_DRIVER(dsi->dev, "Enabled rx_esc clk @%lu Hz\n",
clk_get_rate(dsi->rx_esc_clk));
/* Initiate the DSI packet transmision */
nwl_dsi_begin_transmission(dsi);
if (!wait_for_completion_timeout(&xfer.completed,
NWL_DSI_MIPI_FIFO_TIMEOUT)) {
DRM_DEV_ERROR(dsi_host->dev, "[%02X] DSI transfer timed out\n",
xfer.cmd);
ret = -ETIMEDOUT;
} else {
ret = xfer.status;
}
clk_disable_unprepare(dsi->rx_esc_clk);
return ret;
}
static const struct mipi_dsi_host_ops nwl_dsi_host_ops = {
.attach = nwl_dsi_host_attach,
.transfer = nwl_dsi_host_transfer,
};
static irqreturn_t nwl_dsi_irq_handler(int irq, void *data)
{
u32 irq_status;
struct nwl_dsi *dsi = data;
irq_status = nwl_dsi_read(dsi, NWL_DSI_IRQ_STATUS);
if (irq_status & NWL_DSI_TX_FIFO_OVFLW)
DRM_DEV_ERROR_RATELIMITED(dsi->dev, "tx fifo overflow\n");
if (irq_status & NWL_DSI_HS_TX_TIMEOUT)
DRM_DEV_ERROR_RATELIMITED(dsi->dev, "HS tx timeout\n");
if (irq_status & NWL_DSI_TX_PKT_DONE ||
irq_status & NWL_DSI_RX_PKT_HDR_RCVD ||
irq_status & NWL_DSI_RX_PKT_PAYLOAD_DATA_RCVD)
nwl_dsi_finish_transmission(dsi, irq_status);
return IRQ_HANDLED;
}
static int nwl_dsi_enable(struct nwl_dsi *dsi)
{
struct device *dev = dsi->dev;
union phy_configure_opts *phy_cfg = &dsi->phy_cfg;
int ret;
if (!dsi->lanes) {
DRM_DEV_ERROR(dev, "Need DSI lanes: %d\n", dsi->lanes);
return -EINVAL;
}
ret = phy_init(dsi->phy);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to init DSI phy: %d\n", ret);
return ret;
}
ret = phy_configure(dsi->phy, phy_cfg);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to configure DSI phy: %d\n", ret);
goto uninit_phy;
}
ret = clk_prepare_enable(dsi->tx_esc_clk);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to enable tx_esc clk: %d\n",
ret);
goto uninit_phy;
}
DRM_DEV_DEBUG_DRIVER(dsi->dev, "Enabled tx_esc clk @%lu Hz\n",
clk_get_rate(dsi->tx_esc_clk));
ret = nwl_dsi_config_host(dsi);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to set up DSI: %d", ret);
goto disable_clock;
}
ret = nwl_dsi_config_dpi(dsi);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to set up DPI: %d", ret);
goto disable_clock;
}
ret = phy_power_on(dsi->phy);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to power on DPHY (%d)\n", ret);
goto disable_clock;
}
ret = nwl_dsi_init_interrupts(dsi);
if (ret < 0)
goto power_off_phy;
return ret;
power_off_phy:
phy_power_off(dsi->phy);
disable_clock:
clk_disable_unprepare(dsi->tx_esc_clk);
uninit_phy:
phy_exit(dsi->phy);
return ret;
}
static int nwl_dsi_disable(struct nwl_dsi *dsi)
{
struct device *dev = dsi->dev;
DRM_DEV_DEBUG_DRIVER(dev, "Disabling clocks and phy\n");
phy_power_off(dsi->phy);
phy_exit(dsi->phy);
/* Disabling the clock before the phy breaks enabling dsi again */
clk_disable_unprepare(dsi->tx_esc_clk);
return 0;
}
static void nwl_dsi_bridge_disable(struct drm_bridge *bridge)
{
struct nwl_dsi *dsi = bridge_to_dsi(bridge);
int ret;
nwl_dsi_disable(dsi);
ret = reset_control_assert(dsi->rst_dpi);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to assert DPI: %d\n", ret);
return;
}
ret = reset_control_assert(dsi->rst_byte);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to assert ESC: %d\n", ret);
return;
}
ret = reset_control_assert(dsi->rst_esc);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to assert BYTE: %d\n", ret);
return;
}
ret = reset_control_assert(dsi->rst_pclk);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to assert PCLK: %d\n", ret);
return;
}
clk_disable_unprepare(dsi->core_clk);
clk_disable_unprepare(dsi->lcdif_clk);
pm_runtime_put(dsi->dev);
}
static int nwl_dsi_get_dphy_params(struct nwl_dsi *dsi,
const struct drm_display_mode *mode,
union phy_configure_opts *phy_opts)
{
unsigned long rate;
int ret;
if (dsi->lanes < 1 || dsi->lanes > 4)
return -EINVAL;
/*
* So far the DPHY spec minimal timings work for both mixel
* dphy and nwl dsi host
*/
ret = phy_mipi_dphy_get_default_config(mode->clock * 1000,
mipi_dsi_pixel_format_to_bpp(dsi->format), dsi->lanes,
&phy_opts->mipi_dphy);
if (ret < 0)
return ret;
rate = clk_get_rate(dsi->tx_esc_clk);
DRM_DEV_DEBUG_DRIVER(dsi->dev, "LP clk is @%lu Hz\n", rate);
phy_opts->mipi_dphy.lp_clk_rate = rate;
return 0;
}
static bool nwl_dsi_bridge_mode_fixup(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
/* At least LCDIF + NWL needs active high sync */
adjusted_mode->flags |= (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_PVSYNC);
adjusted_mode->flags &= ~(DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC);
return true;
}
static enum drm_mode_status
nwl_dsi_bridge_mode_valid(struct drm_bridge *bridge,
const struct drm_display_info *info,
const struct drm_display_mode *mode)
{
struct nwl_dsi *dsi = bridge_to_dsi(bridge);
int bpp = mipi_dsi_pixel_format_to_bpp(dsi->format);
if (mode->clock * bpp > 15000000 * dsi->lanes)
return MODE_CLOCK_HIGH;
if (mode->clock * bpp < 80000 * dsi->lanes)
return MODE_CLOCK_LOW;
return MODE_OK;
}
static void
nwl_dsi_bridge_mode_set(struct drm_bridge *bridge,
const struct drm_display_mode *mode,
const struct drm_display_mode *adjusted_mode)
{
struct nwl_dsi *dsi = bridge_to_dsi(bridge);
struct device *dev = dsi->dev;
union phy_configure_opts new_cfg;
unsigned long phy_ref_rate;
int ret;
ret = nwl_dsi_get_dphy_params(dsi, adjusted_mode, &new_cfg);
if (ret < 0)
return;
/*
* If hs clock is unchanged, we're all good - all parameters are
* derived from it atm.
*/
if (new_cfg.mipi_dphy.hs_clk_rate == dsi->phy_cfg.mipi_dphy.hs_clk_rate)
return;
phy_ref_rate = clk_get_rate(dsi->phy_ref_clk);
DRM_DEV_DEBUG_DRIVER(dev, "PHY at ref rate: %lu\n", phy_ref_rate);
/* Save the new desired phy config */
memcpy(&dsi->phy_cfg, &new_cfg, sizeof(new_cfg));
memcpy(&dsi->mode, adjusted_mode, sizeof(dsi->mode));
drm_mode_debug_printmodeline(adjusted_mode);
}
static void nwl_dsi_bridge_pre_enable(struct drm_bridge *bridge)
{
struct nwl_dsi *dsi = bridge_to_dsi(bridge);
int ret;
pm_runtime_get_sync(dsi->dev);
if (clk_prepare_enable(dsi->lcdif_clk) < 0)
return;
if (clk_prepare_enable(dsi->core_clk) < 0)
return;
/* Step 1 from DSI reset-out instructions */
ret = reset_control_deassert(dsi->rst_pclk);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to deassert PCLK: %d\n", ret);
return;
}
/* Step 2 from DSI reset-out instructions */
nwl_dsi_enable(dsi);
/* Step 3 from DSI reset-out instructions */
ret = reset_control_deassert(dsi->rst_esc);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to deassert ESC: %d\n", ret);
return;
}
ret = reset_control_deassert(dsi->rst_byte);
if (ret < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to deassert BYTE: %d\n", ret);
return;
}
}
static void nwl_dsi_bridge_enable(struct drm_bridge *bridge)
{
struct nwl_dsi *dsi = bridge_to_dsi(bridge);
int ret;
/* Step 5 from DSI reset-out instructions */
ret = reset_control_deassert(dsi->rst_dpi);
if (ret < 0)
DRM_DEV_ERROR(dsi->dev, "Failed to deassert DPI: %d\n", ret);
}
static int nwl_dsi_bridge_attach(struct drm_bridge *bridge,
enum drm_bridge_attach_flags flags)
{
struct nwl_dsi *dsi = bridge_to_dsi(bridge);
struct drm_bridge *panel_bridge;
struct drm_panel *panel;
int ret;
ret = drm_of_find_panel_or_bridge(dsi->dev->of_node, 1, 0, &panel,
&panel_bridge);
if (ret)
return ret;
if (panel) {
panel_bridge = drm_panel_bridge_add(panel);
if (IS_ERR(panel_bridge))
return PTR_ERR(panel_bridge);
}
dsi->panel_bridge = panel_bridge;
if (!dsi->panel_bridge)
return -EPROBE_DEFER;
return drm_bridge_attach(bridge->encoder, dsi->panel_bridge, bridge,
flags);
}
static void nwl_dsi_bridge_detach(struct drm_bridge *bridge)
{ struct nwl_dsi *dsi = bridge_to_dsi(bridge);
drm_of_panel_bridge_remove(dsi->dev->of_node, 1, 0);
}
static const struct drm_bridge_funcs nwl_dsi_bridge_funcs = {
.pre_enable = nwl_dsi_bridge_pre_enable,
.enable = nwl_dsi_bridge_enable,
.disable = nwl_dsi_bridge_disable,
.mode_fixup = nwl_dsi_bridge_mode_fixup,
.mode_set = nwl_dsi_bridge_mode_set,
.mode_valid = nwl_dsi_bridge_mode_valid,
.attach = nwl_dsi_bridge_attach,
.detach = nwl_dsi_bridge_detach,
};
static int nwl_dsi_parse_dt(struct nwl_dsi *dsi)
{
struct platform_device *pdev = to_platform_device(dsi->dev);
struct clk *clk;
void __iomem *base;
int ret;
dsi->phy = devm_phy_get(dsi->dev, "dphy");
if (IS_ERR(dsi->phy)) {
ret = PTR_ERR(dsi->phy);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dsi->dev, "Could not get PHY: %d\n", ret);
return ret;
}
clk = devm_clk_get(dsi->dev, "lcdif");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
DRM_DEV_ERROR(dsi->dev, "Failed to get lcdif clock: %d\n",
ret);
return ret;
}
dsi->lcdif_clk = clk;
clk = devm_clk_get(dsi->dev, "core");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
DRM_DEV_ERROR(dsi->dev, "Failed to get core clock: %d\n",
ret);
return ret;
}
dsi->core_clk = clk;
clk = devm_clk_get(dsi->dev, "phy_ref");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
DRM_DEV_ERROR(dsi->dev, "Failed to get phy_ref clock: %d\n",
ret);
return ret;
}
dsi->phy_ref_clk = clk;
clk = devm_clk_get(dsi->dev, "rx_esc");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
DRM_DEV_ERROR(dsi->dev, "Failed to get rx_esc clock: %d\n",
ret);
return ret;
}
dsi->rx_esc_clk = clk;
clk = devm_clk_get(dsi->dev, "tx_esc");
if (IS_ERR(clk)) {
ret = PTR_ERR(clk);
DRM_DEV_ERROR(dsi->dev, "Failed to get tx_esc clock: %d\n",
ret);
return ret;
}
dsi->tx_esc_clk = clk;
dsi->mux = devm_mux_control_get(dsi->dev, NULL);
if (IS_ERR(dsi->mux)) {
ret = PTR_ERR(dsi->mux);
if (ret != -EPROBE_DEFER)
DRM_DEV_ERROR(dsi->dev, "Failed to get mux: %d\n", ret);
return ret;
}
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return PTR_ERR(base);
dsi->regmap =
devm_regmap_init_mmio(dsi->dev, base, &nwl_dsi_regmap_config);
if (IS_ERR(dsi->regmap)) {
ret = PTR_ERR(dsi->regmap);
DRM_DEV_ERROR(dsi->dev, "Failed to create NWL DSI regmap: %d\n",
ret);
return ret;
}
dsi->irq = platform_get_irq(pdev, 0);
if (dsi->irq < 0) {
DRM_DEV_ERROR(dsi->dev, "Failed to get device IRQ: %d\n",
dsi->irq);
return dsi->irq;
}
dsi->rst_pclk = devm_reset_control_get_exclusive(dsi->dev, "pclk");
if (IS_ERR(dsi->rst_pclk)) {
DRM_DEV_ERROR(dsi->dev, "Failed to get pclk reset: %ld\n",
PTR_ERR(dsi->rst_pclk));
return PTR_ERR(dsi->rst_pclk);
}
dsi->rst_byte = devm_reset_control_get_exclusive(dsi->dev, "byte");
if (IS_ERR(dsi->rst_byte)) {
DRM_DEV_ERROR(dsi->dev, "Failed to get byte reset: %ld\n",
PTR_ERR(dsi->rst_byte));
return PTR_ERR(dsi->rst_byte);
}
dsi->rst_esc = devm_reset_control_get_exclusive(dsi->dev, "esc");
if (IS_ERR(dsi->rst_esc)) {
DRM_DEV_ERROR(dsi->dev, "Failed to get esc reset: %ld\n",
PTR_ERR(dsi->rst_esc));
return PTR_ERR(dsi->rst_esc);
}
dsi->rst_dpi = devm_reset_control_get_exclusive(dsi->dev, "dpi");
if (IS_ERR(dsi->rst_dpi)) {
DRM_DEV_ERROR(dsi->dev, "Failed to get dpi reset: %ld\n",
PTR_ERR(dsi->rst_dpi));
return PTR_ERR(dsi->rst_dpi);
}
return 0;
}
static int nwl_dsi_select_input(struct nwl_dsi *dsi)
{
struct device_node *remote;
u32 use_dcss = 1;
int ret;
remote = of_graph_get_remote_node(dsi->dev->of_node, 0,
NWL_DSI_ENDPOINT_LCDIF);
if (remote) {
use_dcss = 0;
} else {
remote = of_graph_get_remote_node(dsi->dev->of_node, 0,
NWL_DSI_ENDPOINT_DCSS);
if (!remote) {
DRM_DEV_ERROR(dsi->dev,
"No valid input endpoint found\n");
return -EINVAL;
}
}
DRM_DEV_INFO(dsi->dev, "Using %s as input source\n",
(use_dcss) ? "DCSS" : "LCDIF");
ret = mux_control_try_select(dsi->mux, use_dcss);
if (ret < 0)
DRM_DEV_ERROR(dsi->dev, "Failed to select input: %d\n", ret);
of_node_put(remote);
return ret;
}
static int nwl_dsi_deselect_input(struct nwl_dsi *dsi)
{
int ret;
ret = mux_control_deselect(dsi->mux);
if (ret < 0)
DRM_DEV_ERROR(dsi->dev, "Failed to deselect input: %d\n", ret);
return ret;
}
static const struct drm_bridge_timings nwl_dsi_timings = {
.input_bus_flags = DRM_BUS_FLAG_DE_LOW,
};
static const struct of_device_id nwl_dsi_dt_ids[] = {
{ .compatible = "fsl,imx8mq-nwl-dsi", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, nwl_dsi_dt_ids);
static const struct soc_device_attribute nwl_dsi_quirks_match[] = {
{ .soc_id = "i.MX8MQ", .revision = "2.0",
.data = (void *)E11418_HS_MODE_QUIRK },
{ /* sentinel. */ },
};
static int nwl_dsi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
const struct soc_device_attribute *attr;
struct nwl_dsi *dsi;
int ret;
dsi = devm_kzalloc(dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
dsi->dev = dev;
ret = nwl_dsi_parse_dt(dsi);
if (ret)
return ret;
ret = devm_request_irq(dev, dsi->irq, nwl_dsi_irq_handler, 0,
dev_name(dev), dsi);
if (ret < 0) {
DRM_DEV_ERROR(dev, "Failed to request IRQ %d: %d\n", dsi->irq,
ret);
return ret;
}
dsi->dsi_host.ops = &nwl_dsi_host_ops;
dsi->dsi_host.dev = dev;
ret = mipi_dsi_host_register(&dsi->dsi_host);
if (ret) {
DRM_DEV_ERROR(dev, "Failed to register MIPI host: %d\n", ret);
return ret;
}
attr = soc_device_match(nwl_dsi_quirks_match);
if (attr)
dsi->quirks = (uintptr_t)attr->data;
dsi->bridge.driver_private = dsi;
dsi->bridge.funcs = &nwl_dsi_bridge_funcs;
dsi->bridge.of_node = dev->of_node;
dsi->bridge.timings = &nwl_dsi_timings;
dev_set_drvdata(dev, dsi);
pm_runtime_enable(dev);
ret = nwl_dsi_select_input(dsi);
if (ret < 0) {
mipi_dsi_host_unregister(&dsi->dsi_host);
return ret;
}
drm_bridge_add(&dsi->bridge);
return 0;
}
static int nwl_dsi_remove(struct platform_device *pdev)
{
struct nwl_dsi *dsi = platform_get_drvdata(pdev);
nwl_dsi_deselect_input(dsi);
mipi_dsi_host_unregister(&dsi->dsi_host);
drm_bridge_remove(&dsi->bridge);
pm_runtime_disable(&pdev->dev);
return 0;
}
static struct platform_driver nwl_dsi_driver = {
.probe = nwl_dsi_probe,
.remove = nwl_dsi_remove,
.driver = {
.of_match_table = nwl_dsi_dt_ids,
.name = DRV_NAME,
},
};
module_platform_driver(nwl_dsi_driver);
MODULE_AUTHOR("NXP Semiconductor");
MODULE_AUTHOR("Purism SPC");
MODULE_DESCRIPTION("Northwest Logic MIPI-DSI driver");
MODULE_LICENSE("GPL"); /* GPLv2 or later */