| /* SPDX-License-Identifier: GPL-2.0 */ |
| #ifndef _BCACHEFS_FORMAT_H |
| #define _BCACHEFS_FORMAT_H |
| |
| /* |
| * bcachefs on disk data structures |
| * |
| * OVERVIEW: |
| * |
| * There are three main types of on disk data structures in bcachefs (this is |
| * reduced from 5 in bcache) |
| * |
| * - superblock |
| * - journal |
| * - btree |
| * |
| * The btree is the primary structure; most metadata exists as keys in the |
| * various btrees. There are only a small number of btrees, they're not |
| * sharded - we have one btree for extents, another for inodes, et cetera. |
| * |
| * SUPERBLOCK: |
| * |
| * The superblock contains the location of the journal, the list of devices in |
| * the filesystem, and in general any metadata we need in order to decide |
| * whether we can start a filesystem or prior to reading the journal/btree |
| * roots. |
| * |
| * The superblock is extensible, and most of the contents of the superblock are |
| * in variable length, type tagged fields; see struct bch_sb_field. |
| * |
| * Backup superblocks do not reside in a fixed location; also, superblocks do |
| * not have a fixed size. To locate backup superblocks we have struct |
| * bch_sb_layout; we store a copy of this inside every superblock, and also |
| * before the first superblock. |
| * |
| * JOURNAL: |
| * |
| * The journal primarily records btree updates in the order they occurred; |
| * journal replay consists of just iterating over all the keys in the open |
| * journal entries and re-inserting them into the btrees. |
| * |
| * The journal also contains entry types for the btree roots, and blacklisted |
| * journal sequence numbers (see journal_seq_blacklist.c). |
| * |
| * BTREE: |
| * |
| * bcachefs btrees are copy on write b+ trees, where nodes are big (typically |
| * 128k-256k) and log structured. We use struct btree_node for writing the first |
| * entry in a given node (offset 0), and struct btree_node_entry for all |
| * subsequent writes. |
| * |
| * After the header, btree node entries contain a list of keys in sorted order. |
| * Values are stored inline with the keys; since values are variable length (and |
| * keys effectively are variable length too, due to packing) we can't do random |
| * access without building up additional in memory tables in the btree node read |
| * path. |
| * |
| * BTREE KEYS (struct bkey): |
| * |
| * The various btrees share a common format for the key - so as to avoid |
| * switching in fastpath lookup/comparison code - but define their own |
| * structures for the key values. |
| * |
| * The size of a key/value pair is stored as a u8 in units of u64s, so the max |
| * size is just under 2k. The common part also contains a type tag for the |
| * value, and a format field indicating whether the key is packed or not (and |
| * also meant to allow adding new key fields in the future, if desired). |
| * |
| * bkeys, when stored within a btree node, may also be packed. In that case, the |
| * bkey_format in that node is used to unpack it. Packed bkeys mean that we can |
| * be generous with field sizes in the common part of the key format (64 bit |
| * inode number, 64 bit offset, 96 bit version field, etc.) for negligible cost. |
| */ |
| |
| #include <asm/types.h> |
| #include <asm/byteorder.h> |
| #include <linux/kernel.h> |
| #include <linux/uuid.h> |
| |
| #ifdef __KERNEL__ |
| typedef uuid_t __uuid_t; |
| #endif |
| |
| #define LE_BITMASK(_bits, name, type, field, offset, end) \ |
| static const unsigned name##_OFFSET = offset; \ |
| static const unsigned name##_BITS = (end - offset); \ |
| static const __u##_bits name##_MAX = (1ULL << (end - offset)) - 1; \ |
| \ |
| static inline __u64 name(const type *k) \ |
| { \ |
| return (__le##_bits##_to_cpu(k->field) >> offset) & \ |
| ~(~0ULL << (end - offset)); \ |
| } \ |
| \ |
| static inline void SET_##name(type *k, __u64 v) \ |
| { \ |
| __u##_bits new = __le##_bits##_to_cpu(k->field); \ |
| \ |
| new &= ~(~(~0ULL << (end - offset)) << offset); \ |
| new |= (v & ~(~0ULL << (end - offset))) << offset; \ |
| k->field = __cpu_to_le##_bits(new); \ |
| } |
| |
| #define LE16_BITMASK(n, t, f, o, e) LE_BITMASK(16, n, t, f, o, e) |
| #define LE32_BITMASK(n, t, f, o, e) LE_BITMASK(32, n, t, f, o, e) |
| #define LE64_BITMASK(n, t, f, o, e) LE_BITMASK(64, n, t, f, o, e) |
| |
| struct bkey_format { |
| __u8 key_u64s; |
| __u8 nr_fields; |
| /* One unused slot for now: */ |
| __u8 bits_per_field[6]; |
| __le64 field_offset[6]; |
| }; |
| |
| /* Btree keys - all units are in sectors */ |
| |
| struct bpos { |
| /* |
| * Word order matches machine byte order - btree code treats a bpos as a |
| * single large integer, for search/comparison purposes |
| * |
| * Note that wherever a bpos is embedded in another on disk data |
| * structure, it has to be byte swabbed when reading in metadata that |
| * wasn't written in native endian order: |
| */ |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| __u32 snapshot; |
| __u64 offset; |
| __u64 inode; |
| #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ |
| __u64 inode; |
| __u64 offset; /* Points to end of extent - sectors */ |
| __u32 snapshot; |
| #else |
| #error edit for your odd byteorder. |
| #endif |
| } __attribute__((packed, aligned(4))); |
| |
| #define KEY_INODE_MAX ((__u64)~0ULL) |
| #define KEY_OFFSET_MAX ((__u64)~0ULL) |
| #define KEY_SNAPSHOT_MAX ((__u32)~0U) |
| #define KEY_SIZE_MAX ((__u32)~0U) |
| |
| static inline struct bpos POS(__u64 inode, __u64 offset) |
| { |
| struct bpos ret; |
| |
| ret.inode = inode; |
| ret.offset = offset; |
| ret.snapshot = 0; |
| |
| return ret; |
| } |
| |
| #define POS_MIN POS(0, 0) |
| #define POS_MAX POS(KEY_INODE_MAX, KEY_OFFSET_MAX) |
| |
| /* Empty placeholder struct, for container_of() */ |
| struct bch_val { |
| __u64 __nothing[0]; |
| }; |
| |
| struct bversion { |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| __u64 lo; |
| __u32 hi; |
| #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ |
| __u32 hi; |
| __u64 lo; |
| #endif |
| } __attribute__((packed, aligned(4))); |
| |
| struct bkey { |
| /* Size of combined key and value, in u64s */ |
| __u8 u64s; |
| |
| /* Format of key (0 for format local to btree node) */ |
| #if defined(__LITTLE_ENDIAN_BITFIELD) |
| __u8 format:7, |
| needs_whiteout:1; |
| #elif defined (__BIG_ENDIAN_BITFIELD) |
| __u8 needs_whiteout:1, |
| format:7; |
| #else |
| #error edit for your odd byteorder. |
| #endif |
| |
| /* Type of the value */ |
| __u8 type; |
| |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ |
| __u8 pad[1]; |
| |
| struct bversion version; |
| __u32 size; /* extent size, in sectors */ |
| struct bpos p; |
| #elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ |
| struct bpos p; |
| __u32 size; /* extent size, in sectors */ |
| struct bversion version; |
| |
| __u8 pad[1]; |
| #endif |
| } __attribute__((packed, aligned(8))); |
| |
| struct bkey_packed { |
| __u64 _data[0]; |
| |
| /* Size of combined key and value, in u64s */ |
| __u8 u64s; |
| |
| /* Format of key (0 for format local to btree node) */ |
| |
| /* |
| * XXX: next incompat on disk format change, switch format and |
| * needs_whiteout - bkey_packed() will be cheaper if format is the high |
| * bits of the bitfield |
| */ |
| #if defined(__LITTLE_ENDIAN_BITFIELD) |
| __u8 format:7, |
| needs_whiteout:1; |
| #elif defined (__BIG_ENDIAN_BITFIELD) |
| __u8 needs_whiteout:1, |
| format:7; |
| #endif |
| |
| /* Type of the value */ |
| __u8 type; |
| __u8 key_start[0]; |
| |
| /* |
| * We copy bkeys with struct assignment in various places, and while |
| * that shouldn't be done with packed bkeys we can't disallow it in C, |
| * and it's legal to cast a bkey to a bkey_packed - so padding it out |
| * to the same size as struct bkey should hopefully be safest. |
| */ |
| __u8 pad[sizeof(struct bkey) - 3]; |
| } __attribute__((packed, aligned(8))); |
| |
| #define BKEY_U64s (sizeof(struct bkey) / sizeof(__u64)) |
| #define BKEY_U64s_MAX U8_MAX |
| #define BKEY_VAL_U64s_MAX (BKEY_U64s_MAX - BKEY_U64s) |
| |
| #define KEY_PACKED_BITS_START 24 |
| |
| #define KEY_FORMAT_LOCAL_BTREE 0 |
| #define KEY_FORMAT_CURRENT 1 |
| |
| enum bch_bkey_fields { |
| BKEY_FIELD_INODE, |
| BKEY_FIELD_OFFSET, |
| BKEY_FIELD_SNAPSHOT, |
| BKEY_FIELD_SIZE, |
| BKEY_FIELD_VERSION_HI, |
| BKEY_FIELD_VERSION_LO, |
| BKEY_NR_FIELDS, |
| }; |
| |
| #define bkey_format_field(name, field) \ |
| [BKEY_FIELD_##name] = (sizeof(((struct bkey *) NULL)->field) * 8) |
| |
| #define BKEY_FORMAT_CURRENT \ |
| ((struct bkey_format) { \ |
| .key_u64s = BKEY_U64s, \ |
| .nr_fields = BKEY_NR_FIELDS, \ |
| .bits_per_field = { \ |
| bkey_format_field(INODE, p.inode), \ |
| bkey_format_field(OFFSET, p.offset), \ |
| bkey_format_field(SNAPSHOT, p.snapshot), \ |
| bkey_format_field(SIZE, size), \ |
| bkey_format_field(VERSION_HI, version.hi), \ |
| bkey_format_field(VERSION_LO, version.lo), \ |
| }, \ |
| }) |
| |
| /* bkey with inline value */ |
| struct bkey_i { |
| __u64 _data[0]; |
| |
| union { |
| struct { |
| /* Size of combined key and value, in u64s */ |
| __u8 u64s; |
| }; |
| struct { |
| struct bkey k; |
| struct bch_val v; |
| }; |
| }; |
| }; |
| |
| #define KEY(_inode, _offset, _size) \ |
| ((struct bkey) { \ |
| .u64s = BKEY_U64s, \ |
| .format = KEY_FORMAT_CURRENT, \ |
| .p = POS(_inode, _offset), \ |
| .size = _size, \ |
| }) |
| |
| static inline void bkey_init(struct bkey *k) |
| { |
| *k = KEY(0, 0, 0); |
| } |
| |
| #define bkey_bytes(_k) ((_k)->u64s * sizeof(__u64)) |
| |
| #define __BKEY_PADDED(key, pad) \ |
| struct { struct bkey_i key; __u64 key ## _pad[pad]; } |
| |
| /* |
| * - DELETED keys are used internally to mark keys that should be ignored but |
| * override keys in composition order. Their version number is ignored. |
| * |
| * - DISCARDED keys indicate that the data is all 0s because it has been |
| * discarded. DISCARDs may have a version; if the version is nonzero the key |
| * will be persistent, otherwise the key will be dropped whenever the btree |
| * node is rewritten (like DELETED keys). |
| * |
| * - ERROR: any read of the data returns a read error, as the data was lost due |
| * to a failing device. Like DISCARDED keys, they can be removed (overridden) |
| * by new writes or cluster-wide GC. Node repair can also overwrite them with |
| * the same or a more recent version number, but not with an older version |
| * number. |
| * |
| * - WHITEOUT: for hash table btrees |
| */ |
| #define BCH_BKEY_TYPES() \ |
| x(deleted, 0) \ |
| x(discard, 1) \ |
| x(error, 2) \ |
| x(cookie, 3) \ |
| x(whiteout, 4) \ |
| x(btree_ptr, 5) \ |
| x(extent, 6) \ |
| x(reservation, 7) \ |
| x(inode, 8) \ |
| x(inode_generation, 9) \ |
| x(dirent, 10) \ |
| x(xattr, 11) \ |
| x(alloc, 12) \ |
| x(quota, 13) \ |
| x(stripe, 14) \ |
| x(reflink_p, 15) \ |
| x(reflink_v, 16) \ |
| x(inline_data, 17) \ |
| x(btree_ptr_v2, 18) |
| |
| enum bch_bkey_type { |
| #define x(name, nr) KEY_TYPE_##name = nr, |
| BCH_BKEY_TYPES() |
| #undef x |
| KEY_TYPE_MAX, |
| }; |
| |
| struct bch_cookie { |
| struct bch_val v; |
| __le64 cookie; |
| }; |
| |
| /* Extents */ |
| |
| /* |
| * In extent bkeys, the value is a list of pointers (bch_extent_ptr), optionally |
| * preceded by checksum/compression information (bch_extent_crc32 or |
| * bch_extent_crc64). |
| * |
| * One major determining factor in the format of extents is how we handle and |
| * represent extents that have been partially overwritten and thus trimmed: |
| * |
| * If an extent is not checksummed or compressed, when the extent is trimmed we |
| * don't have to remember the extent we originally allocated and wrote: we can |
| * merely adjust ptr->offset to point to the start of the data that is currently |
| * live. The size field in struct bkey records the current (live) size of the |
| * extent, and is also used to mean "size of region on disk that we point to" in |
| * this case. |
| * |
| * Thus an extent that is not checksummed or compressed will consist only of a |
| * list of bch_extent_ptrs, with none of the fields in |
| * bch_extent_crc32/bch_extent_crc64. |
| * |
| * When an extent is checksummed or compressed, it's not possible to read only |
| * the data that is currently live: we have to read the entire extent that was |
| * originally written, and then return only the part of the extent that is |
| * currently live. |
| * |
| * Thus, in addition to the current size of the extent in struct bkey, we need |
| * to store the size of the originally allocated space - this is the |
| * compressed_size and uncompressed_size fields in bch_extent_crc32/64. Also, |
| * when the extent is trimmed, instead of modifying the offset field of the |
| * pointer, we keep a second smaller offset field - "offset into the original |
| * extent of the currently live region". |
| * |
| * The other major determining factor is replication and data migration: |
| * |
| * Each pointer may have its own bch_extent_crc32/64. When doing a replicated |
| * write, we will initially write all the replicas in the same format, with the |
| * same checksum type and compression format - however, when copygc runs later (or |
| * tiering/cache promotion, anything that moves data), it is not in general |
| * going to rewrite all the pointers at once - one of the replicas may be in a |
| * bucket on one device that has very little fragmentation while another lives |
| * in a bucket that has become heavily fragmented, and thus is being rewritten |
| * sooner than the rest. |
| * |
| * Thus it will only move a subset of the pointers (or in the case of |
| * tiering/cache promotion perhaps add a single pointer without dropping any |
| * current pointers), and if the extent has been partially overwritten it must |
| * write only the currently live portion (or copygc would not be able to reduce |
| * fragmentation!) - which necessitates a different bch_extent_crc format for |
| * the new pointer. |
| * |
| * But in the interests of space efficiency, we don't want to store one |
| * bch_extent_crc for each pointer if we don't have to. |
| * |
| * Thus, a bch_extent consists of bch_extent_crc32s, bch_extent_crc64s, and |
| * bch_extent_ptrs appended arbitrarily one after the other. We determine the |
| * type of a given entry with a scheme similar to utf8 (except we're encoding a |
| * type, not a size), encoding the type in the position of the first set bit: |
| * |
| * bch_extent_crc32 - 0b1 |
| * bch_extent_ptr - 0b10 |
| * bch_extent_crc64 - 0b100 |
| * |
| * We do it this way because bch_extent_crc32 is _very_ constrained on bits (and |
| * bch_extent_crc64 is the least constrained). |
| * |
| * Then, each bch_extent_crc32/64 applies to the pointers that follow after it, |
| * until the next bch_extent_crc32/64. |
| * |
| * If there are no bch_extent_crcs preceding a bch_extent_ptr, then that pointer |
| * is neither checksummed nor compressed. |
| */ |
| |
| /* 128 bits, sufficient for cryptographic MACs: */ |
| struct bch_csum { |
| __le64 lo; |
| __le64 hi; |
| } __attribute__((packed, aligned(8))); |
| |
| #define BCH_EXTENT_ENTRY_TYPES() \ |
| x(ptr, 0) \ |
| x(crc32, 1) \ |
| x(crc64, 2) \ |
| x(crc128, 3) \ |
| x(stripe_ptr, 4) |
| #define BCH_EXTENT_ENTRY_MAX 5 |
| |
| enum bch_extent_entry_type { |
| #define x(f, n) BCH_EXTENT_ENTRY_##f = n, |
| BCH_EXTENT_ENTRY_TYPES() |
| #undef x |
| }; |
| |
| /* Compressed/uncompressed size are stored biased by 1: */ |
| struct bch_extent_crc32 { |
| #if defined(__LITTLE_ENDIAN_BITFIELD) |
| __u32 type:2, |
| _compressed_size:7, |
| _uncompressed_size:7, |
| offset:7, |
| _unused:1, |
| csum_type:4, |
| compression_type:4; |
| __u32 csum; |
| #elif defined (__BIG_ENDIAN_BITFIELD) |
| __u32 csum; |
| __u32 compression_type:4, |
| csum_type:4, |
| _unused:1, |
| offset:7, |
| _uncompressed_size:7, |
| _compressed_size:7, |
| type:2; |
| #endif |
| } __attribute__((packed, aligned(8))); |
| |
| #define CRC32_SIZE_MAX (1U << 7) |
| #define CRC32_NONCE_MAX 0 |
| |
| struct bch_extent_crc64 { |
| #if defined(__LITTLE_ENDIAN_BITFIELD) |
| __u64 type:3, |
| _compressed_size:9, |
| _uncompressed_size:9, |
| offset:9, |
| nonce:10, |
| csum_type:4, |
| compression_type:4, |
| csum_hi:16; |
| #elif defined (__BIG_ENDIAN_BITFIELD) |
| __u64 csum_hi:16, |
| compression_type:4, |
| csum_type:4, |
| nonce:10, |
| offset:9, |
| _uncompressed_size:9, |
| _compressed_size:9, |
| type:3; |
| #endif |
| __u64 csum_lo; |
| } __attribute__((packed, aligned(8))); |
| |
| #define CRC64_SIZE_MAX (1U << 9) |
| #define CRC64_NONCE_MAX ((1U << 10) - 1) |
| |
| struct bch_extent_crc128 { |
| #if defined(__LITTLE_ENDIAN_BITFIELD) |
| __u64 type:4, |
| _compressed_size:13, |
| _uncompressed_size:13, |
| offset:13, |
| nonce:13, |
| csum_type:4, |
| compression_type:4; |
| #elif defined (__BIG_ENDIAN_BITFIELD) |
| __u64 compression_type:4, |
| csum_type:4, |
| nonce:13, |
| offset:13, |
| _uncompressed_size:13, |
| _compressed_size:13, |
| type:4; |
| #endif |
| struct bch_csum csum; |
| } __attribute__((packed, aligned(8))); |
| |
| #define CRC128_SIZE_MAX (1U << 13) |
| #define CRC128_NONCE_MAX ((1U << 13) - 1) |
| |
| /* |
| * @reservation - pointer hasn't been written to, just reserved |
| */ |
| struct bch_extent_ptr { |
| #if defined(__LITTLE_ENDIAN_BITFIELD) |
| __u64 type:1, |
| cached:1, |
| unused:1, |
| reservation:1, |
| offset:44, /* 8 petabytes */ |
| dev:8, |
| gen:8; |
| #elif defined (__BIG_ENDIAN_BITFIELD) |
| __u64 gen:8, |
| dev:8, |
| offset:44, |
| reservation:1, |
| unused:1, |
| cached:1, |
| type:1; |
| #endif |
| } __attribute__((packed, aligned(8))); |
| |
| struct bch_extent_stripe_ptr { |
| #if defined(__LITTLE_ENDIAN_BITFIELD) |
| __u64 type:5, |
| block:8, |
| idx:51; |
| #elif defined (__BIG_ENDIAN_BITFIELD) |
| __u64 idx:51, |
| block:8, |
| type:5; |
| #endif |
| }; |
| |
| struct bch_extent_reservation { |
| #if defined(__LITTLE_ENDIAN_BITFIELD) |
| __u64 type:6, |
| unused:22, |
| replicas:4, |
| generation:32; |
| #elif defined (__BIG_ENDIAN_BITFIELD) |
| __u64 generation:32, |
| replicas:4, |
| unused:22, |
| type:6; |
| #endif |
| }; |
| |
| union bch_extent_entry { |
| #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ || __BITS_PER_LONG == 64 |
| unsigned long type; |
| #elif __BITS_PER_LONG == 32 |
| struct { |
| unsigned long pad; |
| unsigned long type; |
| }; |
| #else |
| #error edit for your odd byteorder. |
| #endif |
| |
| #define x(f, n) struct bch_extent_##f f; |
| BCH_EXTENT_ENTRY_TYPES() |
| #undef x |
| }; |
| |
| struct bch_btree_ptr { |
| struct bch_val v; |
| |
| __u64 _data[0]; |
| struct bch_extent_ptr start[]; |
| } __attribute__((packed, aligned(8))); |
| |
| struct bch_btree_ptr_v2 { |
| struct bch_val v; |
| |
| __u64 mem_ptr; |
| __le64 seq; |
| __le16 sectors_written; |
| /* In case we ever decide to do variable size btree nodes: */ |
| __le16 sectors; |
| struct bpos min_key; |
| __u64 _data[0]; |
| struct bch_extent_ptr start[]; |
| } __attribute__((packed, aligned(8))); |
| |
| struct bch_extent { |
| struct bch_val v; |
| |
| __u64 _data[0]; |
| union bch_extent_entry start[]; |
| } __attribute__((packed, aligned(8))); |
| |
| struct bch_reservation { |
| struct bch_val v; |
| |
| __le32 generation; |
| __u8 nr_replicas; |
| __u8 pad[3]; |
| } __attribute__((packed, aligned(8))); |
| |
| /* Maximum size (in u64s) a single pointer could be: */ |
| #define BKEY_EXTENT_PTR_U64s_MAX\ |
| ((sizeof(struct bch_extent_crc128) + \ |
| sizeof(struct bch_extent_ptr)) / sizeof(u64)) |
| |
| /* Maximum possible size of an entire extent value: */ |
| #define BKEY_EXTENT_VAL_U64s_MAX \ |
| (1 + BKEY_EXTENT_PTR_U64s_MAX * (BCH_REPLICAS_MAX + 1)) |
| |
| #define BKEY_PADDED(key) __BKEY_PADDED(key, BKEY_EXTENT_VAL_U64s_MAX) |
| |
| /* * Maximum possible size of an entire extent, key + value: */ |
| #define BKEY_EXTENT_U64s_MAX (BKEY_U64s + BKEY_EXTENT_VAL_U64s_MAX) |
| |
| /* Btree pointers don't carry around checksums: */ |
| #define BKEY_BTREE_PTR_VAL_U64s_MAX \ |
| ((sizeof(struct bch_btree_ptr_v2) + \ |
| sizeof(struct bch_extent_ptr) * BCH_REPLICAS_MAX) / sizeof(u64)) |
| #define BKEY_BTREE_PTR_U64s_MAX \ |
| (BKEY_U64s + BKEY_BTREE_PTR_VAL_U64s_MAX) |
| |
| /* Inodes */ |
| |
| #define BLOCKDEV_INODE_MAX 4096 |
| |
| #define BCACHEFS_ROOT_INO 4096 |
| |
| struct bch_inode { |
| struct bch_val v; |
| |
| __le64 bi_hash_seed; |
| __le32 bi_flags; |
| __le16 bi_mode; |
| __u8 fields[0]; |
| } __attribute__((packed, aligned(8))); |
| |
| struct bch_inode_generation { |
| struct bch_val v; |
| |
| __le32 bi_generation; |
| __le32 pad; |
| } __attribute__((packed, aligned(8))); |
| |
| #define BCH_INODE_FIELDS() \ |
| x(bi_atime, 64) \ |
| x(bi_ctime, 64) \ |
| x(bi_mtime, 64) \ |
| x(bi_otime, 64) \ |
| x(bi_size, 64) \ |
| x(bi_sectors, 64) \ |
| x(bi_uid, 32) \ |
| x(bi_gid, 32) \ |
| x(bi_nlink, 32) \ |
| x(bi_generation, 32) \ |
| x(bi_dev, 32) \ |
| x(bi_data_checksum, 8) \ |
| x(bi_compression, 8) \ |
| x(bi_project, 32) \ |
| x(bi_background_compression, 8) \ |
| x(bi_data_replicas, 8) \ |
| x(bi_promote_target, 16) \ |
| x(bi_foreground_target, 16) \ |
| x(bi_background_target, 16) \ |
| x(bi_erasure_code, 16) \ |
| x(bi_fields_set, 16) |
| |
| /* subset of BCH_INODE_FIELDS */ |
| #define BCH_INODE_OPTS() \ |
| x(data_checksum, 8) \ |
| x(compression, 8) \ |
| x(project, 32) \ |
| x(background_compression, 8) \ |
| x(data_replicas, 8) \ |
| x(promote_target, 16) \ |
| x(foreground_target, 16) \ |
| x(background_target, 16) \ |
| x(erasure_code, 16) |
| |
| enum inode_opt_id { |
| #define x(name, ...) \ |
| Inode_opt_##name, |
| BCH_INODE_OPTS() |
| #undef x |
| Inode_opt_nr, |
| }; |
| |
| enum { |
| /* |
| * User flags (get/settable with FS_IOC_*FLAGS, correspond to FS_*_FL |
| * flags) |
| */ |
| __BCH_INODE_SYNC = 0, |
| __BCH_INODE_IMMUTABLE = 1, |
| __BCH_INODE_APPEND = 2, |
| __BCH_INODE_NODUMP = 3, |
| __BCH_INODE_NOATIME = 4, |
| |
| __BCH_INODE_I_SIZE_DIRTY= 5, |
| __BCH_INODE_I_SECTORS_DIRTY= 6, |
| __BCH_INODE_UNLINKED = 7, |
| |
| /* bits 20+ reserved for packed fields below: */ |
| }; |
| |
| #define BCH_INODE_SYNC (1 << __BCH_INODE_SYNC) |
| #define BCH_INODE_IMMUTABLE (1 << __BCH_INODE_IMMUTABLE) |
| #define BCH_INODE_APPEND (1 << __BCH_INODE_APPEND) |
| #define BCH_INODE_NODUMP (1 << __BCH_INODE_NODUMP) |
| #define BCH_INODE_NOATIME (1 << __BCH_INODE_NOATIME) |
| #define BCH_INODE_I_SIZE_DIRTY (1 << __BCH_INODE_I_SIZE_DIRTY) |
| #define BCH_INODE_I_SECTORS_DIRTY (1 << __BCH_INODE_I_SECTORS_DIRTY) |
| #define BCH_INODE_UNLINKED (1 << __BCH_INODE_UNLINKED) |
| |
| LE32_BITMASK(INODE_STR_HASH, struct bch_inode, bi_flags, 20, 24); |
| LE32_BITMASK(INODE_NR_FIELDS, struct bch_inode, bi_flags, 24, 32); |
| |
| /* Dirents */ |
| |
| /* |
| * Dirents (and xattrs) have to implement string lookups; since our b-tree |
| * doesn't support arbitrary length strings for the key, we instead index by a |
| * 64 bit hash (currently truncated sha1) of the string, stored in the offset |
| * field of the key - using linear probing to resolve hash collisions. This also |
| * provides us with the readdir cookie posix requires. |
| * |
| * Linear probing requires us to use whiteouts for deletions, in the event of a |
| * collision: |
| */ |
| |
| struct bch_dirent { |
| struct bch_val v; |
| |
| /* Target inode number: */ |
| __le64 d_inum; |
| |
| /* |
| * Copy of mode bits 12-15 from the target inode - so userspace can get |
| * the filetype without having to do a stat() |
| */ |
| __u8 d_type; |
| |
| __u8 d_name[]; |
| } __attribute__((packed, aligned(8))); |
| |
| #define BCH_NAME_MAX (U8_MAX * sizeof(u64) - \ |
| sizeof(struct bkey) - \ |
| offsetof(struct bch_dirent, d_name)) |
| |
| |
| /* Xattrs */ |
| |
| #define KEY_TYPE_XATTR_INDEX_USER 0 |
| #define KEY_TYPE_XATTR_INDEX_POSIX_ACL_ACCESS 1 |
| #define KEY_TYPE_XATTR_INDEX_POSIX_ACL_DEFAULT 2 |
| #define KEY_TYPE_XATTR_INDEX_TRUSTED 3 |
| #define KEY_TYPE_XATTR_INDEX_SECURITY 4 |
| |
| struct bch_xattr { |
| struct bch_val v; |
| __u8 x_type; |
| __u8 x_name_len; |
| __le16 x_val_len; |
| __u8 x_name[]; |
| } __attribute__((packed, aligned(8))); |
| |
| /* Bucket/allocation information: */ |
| |
| struct bch_alloc { |
| struct bch_val v; |
| __u8 fields; |
| __u8 gen; |
| __u8 data[]; |
| } __attribute__((packed, aligned(8))); |
| |
| #define BCH_ALLOC_FIELDS() \ |
| x(read_time, 16) \ |
| x(write_time, 16) \ |
| x(data_type, 8) \ |
| x(dirty_sectors, 16) \ |
| x(cached_sectors, 16) \ |
| x(oldest_gen, 8) |
| |
| enum { |
| #define x(name, bytes) BCH_ALLOC_FIELD_##name, |
| BCH_ALLOC_FIELDS() |
| #undef x |
| BCH_ALLOC_FIELD_NR |
| }; |
| |
| static const unsigned BCH_ALLOC_FIELD_BYTES[] = { |
| #define x(name, bits) [BCH_ALLOC_FIELD_##name] = bits / 8, |
| BCH_ALLOC_FIELDS() |
| #undef x |
| }; |
| |
| #define x(name, bits) + (bits / 8) |
| static const unsigned BKEY_ALLOC_VAL_U64s_MAX = |
| DIV_ROUND_UP(offsetof(struct bch_alloc, data) |
| BCH_ALLOC_FIELDS(), sizeof(u64)); |
| #undef x |
| |
| #define BKEY_ALLOC_U64s_MAX (BKEY_U64s + BKEY_ALLOC_VAL_U64s_MAX) |
| |
| /* Quotas: */ |
| |
| enum quota_types { |
| QTYP_USR = 0, |
| QTYP_GRP = 1, |
| QTYP_PRJ = 2, |
| QTYP_NR = 3, |
| }; |
| |
| enum quota_counters { |
| Q_SPC = 0, |
| Q_INO = 1, |
| Q_COUNTERS = 2, |
| }; |
| |
| struct bch_quota_counter { |
| __le64 hardlimit; |
| __le64 softlimit; |
| }; |
| |
| struct bch_quota { |
| struct bch_val v; |
| struct bch_quota_counter c[Q_COUNTERS]; |
| } __attribute__((packed, aligned(8))); |
| |
| /* Erasure coding */ |
| |
| struct bch_stripe { |
| struct bch_val v; |
| __le16 sectors; |
| __u8 algorithm; |
| __u8 nr_blocks; |
| __u8 nr_redundant; |
| |
| __u8 csum_granularity_bits; |
| __u8 csum_type; |
| __u8 pad; |
| |
| struct bch_extent_ptr ptrs[0]; |
| } __attribute__((packed, aligned(8))); |
| |
| /* Reflink: */ |
| |
| struct bch_reflink_p { |
| struct bch_val v; |
| __le64 idx; |
| |
| __le32 reservation_generation; |
| __u8 nr_replicas; |
| __u8 pad[3]; |
| }; |
| |
| struct bch_reflink_v { |
| struct bch_val v; |
| __le64 refcount; |
| union bch_extent_entry start[0]; |
| __u64 _data[0]; |
| }; |
| |
| /* Inline data */ |
| |
| struct bch_inline_data { |
| struct bch_val v; |
| u8 data[0]; |
| }; |
| |
| /* Optional/variable size superblock sections: */ |
| |
| struct bch_sb_field { |
| __u64 _data[0]; |
| __le32 u64s; |
| __le32 type; |
| }; |
| |
| #define BCH_SB_FIELDS() \ |
| x(journal, 0) \ |
| x(members, 1) \ |
| x(crypt, 2) \ |
| x(replicas_v0, 3) \ |
| x(quota, 4) \ |
| x(disk_groups, 5) \ |
| x(clean, 6) \ |
| x(replicas, 7) \ |
| x(journal_seq_blacklist, 8) |
| |
| enum bch_sb_field_type { |
| #define x(f, nr) BCH_SB_FIELD_##f = nr, |
| BCH_SB_FIELDS() |
| #undef x |
| BCH_SB_FIELD_NR |
| }; |
| |
| /* BCH_SB_FIELD_journal: */ |
| |
| struct bch_sb_field_journal { |
| struct bch_sb_field field; |
| __le64 buckets[0]; |
| }; |
| |
| /* BCH_SB_FIELD_members: */ |
| |
| #define BCH_MIN_NR_NBUCKETS (1 << 6) |
| |
| struct bch_member { |
| __uuid_t uuid; |
| __le64 nbuckets; /* device size */ |
| __le16 first_bucket; /* index of first bucket used */ |
| __le16 bucket_size; /* sectors */ |
| __le32 pad; |
| __le64 last_mount; /* time_t */ |
| |
| __le64 flags[2]; |
| }; |
| |
| LE64_BITMASK(BCH_MEMBER_STATE, struct bch_member, flags[0], 0, 4) |
| /* 4-10 unused, was TIER, HAS_(META)DATA */ |
| LE64_BITMASK(BCH_MEMBER_REPLACEMENT, struct bch_member, flags[0], 10, 14) |
| LE64_BITMASK(BCH_MEMBER_DISCARD, struct bch_member, flags[0], 14, 15) |
| LE64_BITMASK(BCH_MEMBER_DATA_ALLOWED, struct bch_member, flags[0], 15, 20) |
| LE64_BITMASK(BCH_MEMBER_GROUP, struct bch_member, flags[0], 20, 28) |
| LE64_BITMASK(BCH_MEMBER_DURABILITY, struct bch_member, flags[0], 28, 30) |
| |
| #define BCH_TIER_MAX 4U |
| |
| #if 0 |
| LE64_BITMASK(BCH_MEMBER_NR_READ_ERRORS, struct bch_member, flags[1], 0, 20); |
| LE64_BITMASK(BCH_MEMBER_NR_WRITE_ERRORS,struct bch_member, flags[1], 20, 40); |
| #endif |
| |
| enum bch_member_state { |
| BCH_MEMBER_STATE_RW = 0, |
| BCH_MEMBER_STATE_RO = 1, |
| BCH_MEMBER_STATE_FAILED = 2, |
| BCH_MEMBER_STATE_SPARE = 3, |
| BCH_MEMBER_STATE_NR = 4, |
| }; |
| |
| enum cache_replacement { |
| CACHE_REPLACEMENT_LRU = 0, |
| CACHE_REPLACEMENT_FIFO = 1, |
| CACHE_REPLACEMENT_RANDOM = 2, |
| CACHE_REPLACEMENT_NR = 3, |
| }; |
| |
| struct bch_sb_field_members { |
| struct bch_sb_field field; |
| struct bch_member members[0]; |
| }; |
| |
| /* BCH_SB_FIELD_crypt: */ |
| |
| struct nonce { |
| __le32 d[4]; |
| }; |
| |
| struct bch_key { |
| __le64 key[4]; |
| }; |
| |
| #define BCH_KEY_MAGIC \ |
| (((u64) 'b' << 0)|((u64) 'c' << 8)| \ |
| ((u64) 'h' << 16)|((u64) '*' << 24)| \ |
| ((u64) '*' << 32)|((u64) 'k' << 40)| \ |
| ((u64) 'e' << 48)|((u64) 'y' << 56)) |
| |
| struct bch_encrypted_key { |
| __le64 magic; |
| struct bch_key key; |
| }; |
| |
| /* |
| * If this field is present in the superblock, it stores an encryption key which |
| * is used encrypt all other data/metadata. The key will normally be encrypted |
| * with the key userspace provides, but if encryption has been turned off we'll |
| * just store the master key unencrypted in the superblock so we can access the |
| * previously encrypted data. |
| */ |
| struct bch_sb_field_crypt { |
| struct bch_sb_field field; |
| |
| __le64 flags; |
| __le64 kdf_flags; |
| struct bch_encrypted_key key; |
| }; |
| |
| LE64_BITMASK(BCH_CRYPT_KDF_TYPE, struct bch_sb_field_crypt, flags, 0, 4); |
| |
| enum bch_kdf_types { |
| BCH_KDF_SCRYPT = 0, |
| BCH_KDF_NR = 1, |
| }; |
| |
| /* stored as base 2 log of scrypt params: */ |
| LE64_BITMASK(BCH_KDF_SCRYPT_N, struct bch_sb_field_crypt, kdf_flags, 0, 16); |
| LE64_BITMASK(BCH_KDF_SCRYPT_R, struct bch_sb_field_crypt, kdf_flags, 16, 32); |
| LE64_BITMASK(BCH_KDF_SCRYPT_P, struct bch_sb_field_crypt, kdf_flags, 32, 48); |
| |
| /* BCH_SB_FIELD_replicas: */ |
| |
| #define BCH_DATA_TYPES() \ |
| x(none, 0) \ |
| x(sb, 1) \ |
| x(journal, 2) \ |
| x(btree, 3) \ |
| x(user, 4) \ |
| x(cached, 5) \ |
| x(parity, 6) |
| |
| enum bch_data_type { |
| #define x(t, n) BCH_DATA_##t, |
| BCH_DATA_TYPES() |
| #undef x |
| BCH_DATA_NR |
| }; |
| |
| struct bch_replicas_entry_v0 { |
| __u8 data_type; |
| __u8 nr_devs; |
| __u8 devs[]; |
| } __attribute__((packed)); |
| |
| struct bch_sb_field_replicas_v0 { |
| struct bch_sb_field field; |
| struct bch_replicas_entry_v0 entries[]; |
| } __attribute__((packed, aligned(8))); |
| |
| struct bch_replicas_entry { |
| __u8 data_type; |
| __u8 nr_devs; |
| __u8 nr_required; |
| __u8 devs[]; |
| } __attribute__((packed)); |
| |
| #define replicas_entry_bytes(_i) \ |
| (offsetof(typeof(*(_i)), devs) + (_i)->nr_devs) |
| |
| struct bch_sb_field_replicas { |
| struct bch_sb_field field; |
| struct bch_replicas_entry entries[]; |
| } __attribute__((packed, aligned(8))); |
| |
| /* BCH_SB_FIELD_quota: */ |
| |
| struct bch_sb_quota_counter { |
| __le32 timelimit; |
| __le32 warnlimit; |
| }; |
| |
| struct bch_sb_quota_type { |
| __le64 flags; |
| struct bch_sb_quota_counter c[Q_COUNTERS]; |
| }; |
| |
| struct bch_sb_field_quota { |
| struct bch_sb_field field; |
| struct bch_sb_quota_type q[QTYP_NR]; |
| } __attribute__((packed, aligned(8))); |
| |
| /* BCH_SB_FIELD_disk_groups: */ |
| |
| #define BCH_SB_LABEL_SIZE 32 |
| |
| struct bch_disk_group { |
| __u8 label[BCH_SB_LABEL_SIZE]; |
| __le64 flags[2]; |
| } __attribute__((packed, aligned(8))); |
| |
| LE64_BITMASK(BCH_GROUP_DELETED, struct bch_disk_group, flags[0], 0, 1) |
| LE64_BITMASK(BCH_GROUP_DATA_ALLOWED, struct bch_disk_group, flags[0], 1, 6) |
| LE64_BITMASK(BCH_GROUP_PARENT, struct bch_disk_group, flags[0], 6, 24) |
| |
| struct bch_sb_field_disk_groups { |
| struct bch_sb_field field; |
| struct bch_disk_group entries[0]; |
| } __attribute__((packed, aligned(8))); |
| |
| /* |
| * On clean shutdown, store btree roots and current journal sequence number in |
| * the superblock: |
| */ |
| struct jset_entry { |
| __le16 u64s; |
| __u8 btree_id; |
| __u8 level; |
| __u8 type; /* designates what this jset holds */ |
| __u8 pad[3]; |
| |
| union { |
| struct bkey_i start[0]; |
| __u64 _data[0]; |
| }; |
| }; |
| |
| struct bch_sb_field_clean { |
| struct bch_sb_field field; |
| |
| __le32 flags; |
| __le16 read_clock; |
| __le16 write_clock; |
| __le64 journal_seq; |
| |
| union { |
| struct jset_entry start[0]; |
| __u64 _data[0]; |
| }; |
| }; |
| |
| struct journal_seq_blacklist_entry { |
| __le64 start; |
| __le64 end; |
| }; |
| |
| struct bch_sb_field_journal_seq_blacklist { |
| struct bch_sb_field field; |
| |
| union { |
| struct journal_seq_blacklist_entry start[0]; |
| __u64 _data[0]; |
| }; |
| }; |
| |
| /* Superblock: */ |
| |
| /* |
| * New versioning scheme: |
| * One common version number for all on disk data structures - superblock, btree |
| * nodes, journal entries |
| */ |
| #define BCH_JSET_VERSION_OLD 2 |
| #define BCH_BSET_VERSION_OLD 3 |
| |
| enum bcachefs_metadata_version { |
| bcachefs_metadata_version_min = 9, |
| bcachefs_metadata_version_new_versioning = 10, |
| bcachefs_metadata_version_bkey_renumber = 10, |
| bcachefs_metadata_version_inode_btree_change = 11, |
| bcachefs_metadata_version_max = 12, |
| }; |
| |
| #define bcachefs_metadata_version_current (bcachefs_metadata_version_max - 1) |
| |
| #define BCH_SB_SECTOR 8 |
| #define BCH_SB_MEMBERS_MAX 64 /* XXX kill */ |
| |
| struct bch_sb_layout { |
| __uuid_t magic; /* bcachefs superblock UUID */ |
| __u8 layout_type; |
| __u8 sb_max_size_bits; /* base 2 of 512 byte sectors */ |
| __u8 nr_superblocks; |
| __u8 pad[5]; |
| __le64 sb_offset[61]; |
| } __attribute__((packed, aligned(8))); |
| |
| #define BCH_SB_LAYOUT_SECTOR 7 |
| |
| /* |
| * @offset - sector where this sb was written |
| * @version - on disk format version |
| * @version_min - Oldest metadata version this filesystem contains; so we can |
| * safely drop compatibility code and refuse to mount filesystems |
| * we'd need it for |
| * @magic - identifies as a bcachefs superblock (BCACHE_MAGIC) |
| * @seq - incremented each time superblock is written |
| * @uuid - used for generating various magic numbers and identifying |
| * member devices, never changes |
| * @user_uuid - user visible UUID, may be changed |
| * @label - filesystem label |
| * @seq - identifies most recent superblock, incremented each time |
| * superblock is written |
| * @features - enabled incompatible features |
| */ |
| struct bch_sb { |
| struct bch_csum csum; |
| __le16 version; |
| __le16 version_min; |
| __le16 pad[2]; |
| __uuid_t magic; |
| __uuid_t uuid; |
| __uuid_t user_uuid; |
| __u8 label[BCH_SB_LABEL_SIZE]; |
| __le64 offset; |
| __le64 seq; |
| |
| __le16 block_size; |
| __u8 dev_idx; |
| __u8 nr_devices; |
| __le32 u64s; |
| |
| __le64 time_base_lo; |
| __le32 time_base_hi; |
| __le32 time_precision; |
| |
| __le64 flags[8]; |
| __le64 features[2]; |
| __le64 compat[2]; |
| |
| struct bch_sb_layout layout; |
| |
| union { |
| struct bch_sb_field start[0]; |
| __le64 _data[0]; |
| }; |
| } __attribute__((packed, aligned(8))); |
| |
| /* |
| * Flags: |
| * BCH_SB_INITALIZED - set on first mount |
| * BCH_SB_CLEAN - did we shut down cleanly? Just a hint, doesn't affect |
| * behaviour of mount/recovery path: |
| * BCH_SB_INODE_32BIT - limit inode numbers to 32 bits |
| * BCH_SB_128_BIT_MACS - 128 bit macs instead of 80 |
| * BCH_SB_ENCRYPTION_TYPE - if nonzero encryption is enabled; overrides |
| * DATA/META_CSUM_TYPE. Also indicates encryption |
| * algorithm in use, if/when we get more than one |
| */ |
| |
| LE16_BITMASK(BCH_SB_BLOCK_SIZE, struct bch_sb, block_size, 0, 16); |
| |
| LE64_BITMASK(BCH_SB_INITIALIZED, struct bch_sb, flags[0], 0, 1); |
| LE64_BITMASK(BCH_SB_CLEAN, struct bch_sb, flags[0], 1, 2); |
| LE64_BITMASK(BCH_SB_CSUM_TYPE, struct bch_sb, flags[0], 2, 8); |
| LE64_BITMASK(BCH_SB_ERROR_ACTION, struct bch_sb, flags[0], 8, 12); |
| |
| LE64_BITMASK(BCH_SB_BTREE_NODE_SIZE, struct bch_sb, flags[0], 12, 28); |
| |
| LE64_BITMASK(BCH_SB_GC_RESERVE, struct bch_sb, flags[0], 28, 33); |
| LE64_BITMASK(BCH_SB_ROOT_RESERVE, struct bch_sb, flags[0], 33, 40); |
| |
| LE64_BITMASK(BCH_SB_META_CSUM_TYPE, struct bch_sb, flags[0], 40, 44); |
| LE64_BITMASK(BCH_SB_DATA_CSUM_TYPE, struct bch_sb, flags[0], 44, 48); |
| |
| LE64_BITMASK(BCH_SB_META_REPLICAS_WANT, struct bch_sb, flags[0], 48, 52); |
| LE64_BITMASK(BCH_SB_DATA_REPLICAS_WANT, struct bch_sb, flags[0], 52, 56); |
| |
| LE64_BITMASK(BCH_SB_POSIX_ACL, struct bch_sb, flags[0], 56, 57); |
| LE64_BITMASK(BCH_SB_USRQUOTA, struct bch_sb, flags[0], 57, 58); |
| LE64_BITMASK(BCH_SB_GRPQUOTA, struct bch_sb, flags[0], 58, 59); |
| LE64_BITMASK(BCH_SB_PRJQUOTA, struct bch_sb, flags[0], 59, 60); |
| |
| LE64_BITMASK(BCH_SB_HAS_ERRORS, struct bch_sb, flags[0], 60, 61); |
| |
| LE64_BITMASK(BCH_SB_REFLINK, struct bch_sb, flags[0], 61, 62); |
| |
| /* 61-64 unused */ |
| |
| LE64_BITMASK(BCH_SB_STR_HASH_TYPE, struct bch_sb, flags[1], 0, 4); |
| LE64_BITMASK(BCH_SB_COMPRESSION_TYPE, struct bch_sb, flags[1], 4, 8); |
| LE64_BITMASK(BCH_SB_INODE_32BIT, struct bch_sb, flags[1], 8, 9); |
| |
| LE64_BITMASK(BCH_SB_128_BIT_MACS, struct bch_sb, flags[1], 9, 10); |
| LE64_BITMASK(BCH_SB_ENCRYPTION_TYPE, struct bch_sb, flags[1], 10, 14); |
| |
| /* |
| * Max size of an extent that may require bouncing to read or write |
| * (checksummed, compressed): 64k |
| */ |
| LE64_BITMASK(BCH_SB_ENCODED_EXTENT_MAX_BITS, |
| struct bch_sb, flags[1], 14, 20); |
| |
| LE64_BITMASK(BCH_SB_META_REPLICAS_REQ, struct bch_sb, flags[1], 20, 24); |
| LE64_BITMASK(BCH_SB_DATA_REPLICAS_REQ, struct bch_sb, flags[1], 24, 28); |
| |
| LE64_BITMASK(BCH_SB_PROMOTE_TARGET, struct bch_sb, flags[1], 28, 40); |
| LE64_BITMASK(BCH_SB_FOREGROUND_TARGET, struct bch_sb, flags[1], 40, 52); |
| LE64_BITMASK(BCH_SB_BACKGROUND_TARGET, struct bch_sb, flags[1], 52, 64); |
| |
| LE64_BITMASK(BCH_SB_BACKGROUND_COMPRESSION_TYPE, |
| struct bch_sb, flags[2], 0, 4); |
| LE64_BITMASK(BCH_SB_GC_RESERVE_BYTES, struct bch_sb, flags[2], 4, 64); |
| |
| LE64_BITMASK(BCH_SB_ERASURE_CODE, struct bch_sb, flags[3], 0, 16); |
| |
| /* |
| * Features: |
| * |
| * journal_seq_blacklist_v3: gates BCH_SB_FIELD_journal_seq_blacklist |
| * reflink: gates KEY_TYPE_reflink |
| * inline_data: gates KEY_TYPE_inline_data |
| * new_siphash: gates BCH_STR_HASH_SIPHASH |
| * new_extent_overwrite: gates BTREE_NODE_NEW_EXTENT_OVERWRITE |
| */ |
| #define BCH_SB_FEATURES() \ |
| x(lz4, 0) \ |
| x(gzip, 1) \ |
| x(zstd, 2) \ |
| x(atomic_nlink, 3) \ |
| x(ec, 4) \ |
| x(journal_seq_blacklist_v3, 5) \ |
| x(reflink, 6) \ |
| x(new_siphash, 7) \ |
| x(inline_data, 8) \ |
| x(new_extent_overwrite, 9) \ |
| x(incompressible, 10) \ |
| x(btree_ptr_v2, 11) \ |
| x(extents_above_btree_updates, 12) \ |
| x(btree_updates_journalled, 13) |
| |
| #define BCH_SB_FEATURES_ALL \ |
| ((1ULL << BCH_FEATURE_new_siphash)| \ |
| (1ULL << BCH_FEATURE_new_extent_overwrite)| \ |
| (1ULL << BCH_FEATURE_btree_ptr_v2)| \ |
| (1ULL << BCH_FEATURE_extents_above_btree_updates)) |
| |
| enum bch_sb_feature { |
| #define x(f, n) BCH_FEATURE_##f, |
| BCH_SB_FEATURES() |
| #undef x |
| BCH_FEATURE_NR, |
| }; |
| |
| enum bch_sb_compat { |
| BCH_COMPAT_FEAT_ALLOC_INFO = 0, |
| BCH_COMPAT_FEAT_ALLOC_METADATA = 1, |
| }; |
| |
| /* options: */ |
| |
| #define BCH_REPLICAS_MAX 4U |
| |
| enum bch_error_actions { |
| BCH_ON_ERROR_CONTINUE = 0, |
| BCH_ON_ERROR_RO = 1, |
| BCH_ON_ERROR_PANIC = 2, |
| BCH_NR_ERROR_ACTIONS = 3, |
| }; |
| |
| enum bch_str_hash_type { |
| BCH_STR_HASH_CRC32C = 0, |
| BCH_STR_HASH_CRC64 = 1, |
| BCH_STR_HASH_SIPHASH_OLD = 2, |
| BCH_STR_HASH_SIPHASH = 3, |
| BCH_STR_HASH_NR = 4, |
| }; |
| |
| enum bch_str_hash_opts { |
| BCH_STR_HASH_OPT_CRC32C = 0, |
| BCH_STR_HASH_OPT_CRC64 = 1, |
| BCH_STR_HASH_OPT_SIPHASH = 2, |
| BCH_STR_HASH_OPT_NR = 3, |
| }; |
| |
| enum bch_csum_type { |
| BCH_CSUM_NONE = 0, |
| BCH_CSUM_CRC32C_NONZERO = 1, |
| BCH_CSUM_CRC64_NONZERO = 2, |
| BCH_CSUM_CHACHA20_POLY1305_80 = 3, |
| BCH_CSUM_CHACHA20_POLY1305_128 = 4, |
| BCH_CSUM_CRC32C = 5, |
| BCH_CSUM_CRC64 = 6, |
| BCH_CSUM_NR = 7, |
| }; |
| |
| static const unsigned bch_crc_bytes[] = { |
| [BCH_CSUM_NONE] = 0, |
| [BCH_CSUM_CRC32C_NONZERO] = 4, |
| [BCH_CSUM_CRC32C] = 4, |
| [BCH_CSUM_CRC64_NONZERO] = 8, |
| [BCH_CSUM_CRC64] = 8, |
| [BCH_CSUM_CHACHA20_POLY1305_80] = 10, |
| [BCH_CSUM_CHACHA20_POLY1305_128] = 16, |
| }; |
| |
| static inline _Bool bch2_csum_type_is_encryption(enum bch_csum_type type) |
| { |
| switch (type) { |
| case BCH_CSUM_CHACHA20_POLY1305_80: |
| case BCH_CSUM_CHACHA20_POLY1305_128: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| enum bch_csum_opts { |
| BCH_CSUM_OPT_NONE = 0, |
| BCH_CSUM_OPT_CRC32C = 1, |
| BCH_CSUM_OPT_CRC64 = 2, |
| BCH_CSUM_OPT_NR = 3, |
| }; |
| |
| #define BCH_COMPRESSION_TYPES() \ |
| x(none, 0) \ |
| x(lz4_old, 1) \ |
| x(gzip, 2) \ |
| x(lz4, 3) \ |
| x(zstd, 4) \ |
| x(incompressible, 5) |
| |
| enum bch_compression_type { |
| #define x(t, n) BCH_COMPRESSION_TYPE_##t, |
| BCH_COMPRESSION_TYPES() |
| #undef x |
| BCH_COMPRESSION_TYPE_NR |
| }; |
| |
| #define BCH_COMPRESSION_OPTS() \ |
| x(none, 0) \ |
| x(lz4, 1) \ |
| x(gzip, 2) \ |
| x(zstd, 3) |
| |
| enum bch_compression_opts { |
| #define x(t, n) BCH_COMPRESSION_OPT_##t, |
| BCH_COMPRESSION_OPTS() |
| #undef x |
| BCH_COMPRESSION_OPT_NR |
| }; |
| |
| /* |
| * Magic numbers |
| * |
| * The various other data structures have their own magic numbers, which are |
| * xored with the first part of the cache set's UUID |
| */ |
| |
| #define BCACHE_MAGIC \ |
| UUID_INIT(0xc68573f6, 0x4e1a, 0x45ca, \ |
| 0x82, 0x65, 0xf5, 0x7f, 0x48, 0xba, 0x6d, 0x81) |
| #define BCHFS_MAGIC \ |
| UUID_INIT(0xc68573f6, 0x66ce, 0x90a9, \ |
| 0xd9, 0x6a, 0x60, 0xcf, 0x80, 0x3d, 0xf7, 0xef) |
| |
| #define BCACHEFS_STATFS_MAGIC 0xca451a4e |
| |
| #define JSET_MAGIC __cpu_to_le64(0x245235c1a3625032ULL) |
| #define BSET_MAGIC __cpu_to_le64(0x90135c78b99e07f5ULL) |
| |
| static inline __le64 __bch2_sb_magic(struct bch_sb *sb) |
| { |
| __le64 ret; |
| memcpy(&ret, &sb->uuid, sizeof(ret)); |
| return ret; |
| } |
| |
| static inline __u64 __jset_magic(struct bch_sb *sb) |
| { |
| return __le64_to_cpu(__bch2_sb_magic(sb) ^ JSET_MAGIC); |
| } |
| |
| static inline __u64 __bset_magic(struct bch_sb *sb) |
| { |
| return __le64_to_cpu(__bch2_sb_magic(sb) ^ BSET_MAGIC); |
| } |
| |
| /* Journal */ |
| |
| #define JSET_KEYS_U64s (sizeof(struct jset_entry) / sizeof(__u64)) |
| |
| #define BCH_JSET_ENTRY_TYPES() \ |
| x(btree_keys, 0) \ |
| x(btree_root, 1) \ |
| x(prio_ptrs, 2) \ |
| x(blacklist, 3) \ |
| x(blacklist_v2, 4) \ |
| x(usage, 5) \ |
| x(data_usage, 6) |
| |
| enum { |
| #define x(f, nr) BCH_JSET_ENTRY_##f = nr, |
| BCH_JSET_ENTRY_TYPES() |
| #undef x |
| BCH_JSET_ENTRY_NR |
| }; |
| |
| /* |
| * Journal sequence numbers can be blacklisted: bsets record the max sequence |
| * number of all the journal entries they contain updates for, so that on |
| * recovery we can ignore those bsets that contain index updates newer that what |
| * made it into the journal. |
| * |
| * This means that we can't reuse that journal_seq - we have to skip it, and |
| * then record that we skipped it so that the next time we crash and recover we |
| * don't think there was a missing journal entry. |
| */ |
| struct jset_entry_blacklist { |
| struct jset_entry entry; |
| __le64 seq; |
| }; |
| |
| struct jset_entry_blacklist_v2 { |
| struct jset_entry entry; |
| __le64 start; |
| __le64 end; |
| }; |
| |
| enum { |
| FS_USAGE_RESERVED = 0, |
| FS_USAGE_INODES = 1, |
| FS_USAGE_KEY_VERSION = 2, |
| FS_USAGE_NR = 3 |
| }; |
| |
| struct jset_entry_usage { |
| struct jset_entry entry; |
| __le64 v; |
| } __attribute__((packed)); |
| |
| struct jset_entry_data_usage { |
| struct jset_entry entry; |
| __le64 v; |
| struct bch_replicas_entry r; |
| } __attribute__((packed)); |
| |
| /* |
| * On disk format for a journal entry: |
| * seq is monotonically increasing; every journal entry has its own unique |
| * sequence number. |
| * |
| * last_seq is the oldest journal entry that still has keys the btree hasn't |
| * flushed to disk yet. |
| * |
| * version is for on disk format changes. |
| */ |
| struct jset { |
| struct bch_csum csum; |
| |
| __le64 magic; |
| __le64 seq; |
| __le32 version; |
| __le32 flags; |
| |
| __le32 u64s; /* size of d[] in u64s */ |
| |
| __u8 encrypted_start[0]; |
| |
| __le16 read_clock; |
| __le16 write_clock; |
| |
| /* Sequence number of oldest dirty journal entry */ |
| __le64 last_seq; |
| |
| |
| union { |
| struct jset_entry start[0]; |
| __u64 _data[0]; |
| }; |
| } __attribute__((packed, aligned(8))); |
| |
| LE32_BITMASK(JSET_CSUM_TYPE, struct jset, flags, 0, 4); |
| LE32_BITMASK(JSET_BIG_ENDIAN, struct jset, flags, 4, 5); |
| |
| #define BCH_JOURNAL_BUCKETS_MIN 8 |
| |
| /* Btree: */ |
| |
| #define BCH_BTREE_IDS() \ |
| x(EXTENTS, 0, "extents") \ |
| x(INODES, 1, "inodes") \ |
| x(DIRENTS, 2, "dirents") \ |
| x(XATTRS, 3, "xattrs") \ |
| x(ALLOC, 4, "alloc") \ |
| x(QUOTAS, 5, "quotas") \ |
| x(EC, 6, "stripes") \ |
| x(REFLINK, 7, "reflink") |
| |
| enum btree_id { |
| #define x(kwd, val, name) BTREE_ID_##kwd = val, |
| BCH_BTREE_IDS() |
| #undef x |
| BTREE_ID_NR |
| }; |
| |
| #define BTREE_MAX_DEPTH 4U |
| |
| /* Btree nodes */ |
| |
| /* |
| * Btree nodes |
| * |
| * On disk a btree node is a list/log of these; within each set the keys are |
| * sorted |
| */ |
| struct bset { |
| __le64 seq; |
| |
| /* |
| * Highest journal entry this bset contains keys for. |
| * If on recovery we don't see that journal entry, this bset is ignored: |
| * this allows us to preserve the order of all index updates after a |
| * crash, since the journal records a total order of all index updates |
| * and anything that didn't make it to the journal doesn't get used. |
| */ |
| __le64 journal_seq; |
| |
| __le32 flags; |
| __le16 version; |
| __le16 u64s; /* count of d[] in u64s */ |
| |
| union { |
| struct bkey_packed start[0]; |
| __u64 _data[0]; |
| }; |
| } __attribute__((packed, aligned(8))); |
| |
| LE32_BITMASK(BSET_CSUM_TYPE, struct bset, flags, 0, 4); |
| |
| LE32_BITMASK(BSET_BIG_ENDIAN, struct bset, flags, 4, 5); |
| LE32_BITMASK(BSET_SEPARATE_WHITEOUTS, |
| struct bset, flags, 5, 6); |
| |
| struct btree_node { |
| struct bch_csum csum; |
| __le64 magic; |
| |
| /* this flags field is encrypted, unlike bset->flags: */ |
| __le64 flags; |
| |
| /* Closed interval: */ |
| struct bpos min_key; |
| struct bpos max_key; |
| struct bch_extent_ptr ptr; |
| struct bkey_format format; |
| |
| union { |
| struct bset keys; |
| struct { |
| __u8 pad[22]; |
| __le16 u64s; |
| __u64 _data[0]; |
| |
| }; |
| }; |
| } __attribute__((packed, aligned(8))); |
| |
| LE64_BITMASK(BTREE_NODE_ID, struct btree_node, flags, 0, 4); |
| LE64_BITMASK(BTREE_NODE_LEVEL, struct btree_node, flags, 4, 8); |
| LE64_BITMASK(BTREE_NODE_NEW_EXTENT_OVERWRITE, |
| struct btree_node, flags, 8, 9); |
| /* 9-32 unused */ |
| LE64_BITMASK(BTREE_NODE_SEQ, struct btree_node, flags, 32, 64); |
| |
| struct btree_node_entry { |
| struct bch_csum csum; |
| |
| union { |
| struct bset keys; |
| struct { |
| __u8 pad[22]; |
| __le16 u64s; |
| __u64 _data[0]; |
| |
| }; |
| }; |
| } __attribute__((packed, aligned(8))); |
| |
| #endif /* _BCACHEFS_FORMAT_H */ |