blob: 0e0ddf2e681521915b9255cf1a03dfaf79e3578e [file] [log] [blame]
/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2008-2018 Intel Corporation
*/
#include <linux/sched/mm.h>
#include <linux/stop_machine.h>
#include "i915_drv.h"
#include "i915_gpu_error.h"
#include "i915_reset.h"
#include "intel_guc.h"
#define RESET_MAX_RETRIES 3
/* XXX How to handle concurrent GGTT updates using tiling registers? */
#define RESET_UNDER_STOP_MACHINE 0
static void engine_skip_context(struct i915_request *rq)
{
struct intel_engine_cs *engine = rq->engine;
struct i915_gem_context *hung_ctx = rq->gem_context;
struct i915_timeline *timeline = rq->timeline;
lockdep_assert_held(&engine->timeline.lock);
GEM_BUG_ON(timeline == &engine->timeline);
spin_lock(&timeline->lock);
if (i915_request_is_active(rq)) {
list_for_each_entry_continue(rq,
&engine->timeline.requests, link)
if (rq->gem_context == hung_ctx)
i915_request_skip(rq, -EIO);
}
list_for_each_entry(rq, &timeline->requests, link)
i915_request_skip(rq, -EIO);
spin_unlock(&timeline->lock);
}
static void client_mark_guilty(struct drm_i915_file_private *file_priv,
const struct i915_gem_context *ctx)
{
unsigned int score;
unsigned long prev_hang;
if (i915_gem_context_is_banned(ctx))
score = I915_CLIENT_SCORE_CONTEXT_BAN;
else
score = 0;
prev_hang = xchg(&file_priv->hang_timestamp, jiffies);
if (time_before(jiffies, prev_hang + I915_CLIENT_FAST_HANG_JIFFIES))
score += I915_CLIENT_SCORE_HANG_FAST;
if (score) {
atomic_add(score, &file_priv->ban_score);
DRM_DEBUG_DRIVER("client %s: gained %u ban score, now %u\n",
ctx->name, score,
atomic_read(&file_priv->ban_score));
}
}
static bool context_mark_guilty(struct i915_gem_context *ctx)
{
unsigned int score;
bool banned, bannable;
atomic_inc(&ctx->guilty_count);
bannable = i915_gem_context_is_bannable(ctx);
score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
banned = score >= CONTEXT_SCORE_BAN_THRESHOLD;
/* Cool contexts don't accumulate client ban score */
if (!bannable)
return false;
if (banned) {
DRM_DEBUG_DRIVER("context %s: guilty %d, score %u, banned\n",
ctx->name, atomic_read(&ctx->guilty_count),
score);
i915_gem_context_set_banned(ctx);
}
if (!IS_ERR_OR_NULL(ctx->file_priv))
client_mark_guilty(ctx->file_priv, ctx);
return banned;
}
static void context_mark_innocent(struct i915_gem_context *ctx)
{
atomic_inc(&ctx->active_count);
}
void i915_reset_request(struct i915_request *rq, bool guilty)
{
lockdep_assert_held(&rq->engine->timeline.lock);
GEM_BUG_ON(i915_request_completed(rq));
if (guilty) {
i915_request_skip(rq, -EIO);
if (context_mark_guilty(rq->gem_context))
engine_skip_context(rq);
} else {
dma_fence_set_error(&rq->fence, -EAGAIN);
context_mark_innocent(rq->gem_context);
}
}
static void gen3_stop_engine(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
const u32 base = engine->mmio_base;
if (intel_engine_stop_cs(engine))
DRM_DEBUG_DRIVER("%s: timed out on STOP_RING\n", engine->name);
I915_WRITE_FW(RING_HEAD(base), I915_READ_FW(RING_TAIL(base)));
POSTING_READ_FW(RING_HEAD(base)); /* paranoia */
I915_WRITE_FW(RING_HEAD(base), 0);
I915_WRITE_FW(RING_TAIL(base), 0);
POSTING_READ_FW(RING_TAIL(base));
/* The ring must be empty before it is disabled */
I915_WRITE_FW(RING_CTL(base), 0);
/* Check acts as a post */
if (I915_READ_FW(RING_HEAD(base)) != 0)
DRM_DEBUG_DRIVER("%s: ring head not parked\n",
engine->name);
}
static void i915_stop_engines(struct drm_i915_private *i915,
unsigned int engine_mask)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
if (INTEL_GEN(i915) < 3)
return;
for_each_engine_masked(engine, i915, engine_mask, id)
gen3_stop_engine(engine);
}
static bool i915_in_reset(struct pci_dev *pdev)
{
u8 gdrst;
pci_read_config_byte(pdev, I915_GDRST, &gdrst);
return gdrst & GRDOM_RESET_STATUS;
}
static int i915_do_reset(struct drm_i915_private *i915,
unsigned int engine_mask,
unsigned int retry)
{
struct pci_dev *pdev = i915->drm.pdev;
int err;
/* Assert reset for at least 20 usec, and wait for acknowledgement. */
pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
udelay(50);
err = wait_for_atomic(i915_in_reset(pdev), 50);
/* Clear the reset request. */
pci_write_config_byte(pdev, I915_GDRST, 0);
udelay(50);
if (!err)
err = wait_for_atomic(!i915_in_reset(pdev), 50);
return err;
}
static bool g4x_reset_complete(struct pci_dev *pdev)
{
u8 gdrst;
pci_read_config_byte(pdev, I915_GDRST, &gdrst);
return (gdrst & GRDOM_RESET_ENABLE) == 0;
}
static int g33_do_reset(struct drm_i915_private *i915,
unsigned int engine_mask,
unsigned int retry)
{
struct pci_dev *pdev = i915->drm.pdev;
pci_write_config_byte(pdev, I915_GDRST, GRDOM_RESET_ENABLE);
return wait_for_atomic(g4x_reset_complete(pdev), 50);
}
static int g4x_do_reset(struct drm_i915_private *dev_priv,
unsigned int engine_mask,
unsigned int retry)
{
struct pci_dev *pdev = dev_priv->drm.pdev;
int ret;
/* WaVcpClkGateDisableForMediaReset:ctg,elk */
I915_WRITE_FW(VDECCLK_GATE_D,
I915_READ(VDECCLK_GATE_D) | VCP_UNIT_CLOCK_GATE_DISABLE);
POSTING_READ_FW(VDECCLK_GATE_D);
pci_write_config_byte(pdev, I915_GDRST,
GRDOM_MEDIA | GRDOM_RESET_ENABLE);
ret = wait_for_atomic(g4x_reset_complete(pdev), 50);
if (ret) {
DRM_DEBUG_DRIVER("Wait for media reset failed\n");
goto out;
}
pci_write_config_byte(pdev, I915_GDRST,
GRDOM_RENDER | GRDOM_RESET_ENABLE);
ret = wait_for_atomic(g4x_reset_complete(pdev), 50);
if (ret) {
DRM_DEBUG_DRIVER("Wait for render reset failed\n");
goto out;
}
out:
pci_write_config_byte(pdev, I915_GDRST, 0);
I915_WRITE_FW(VDECCLK_GATE_D,
I915_READ(VDECCLK_GATE_D) & ~VCP_UNIT_CLOCK_GATE_DISABLE);
POSTING_READ_FW(VDECCLK_GATE_D);
return ret;
}
static int ironlake_do_reset(struct drm_i915_private *dev_priv,
unsigned int engine_mask,
unsigned int retry)
{
int ret;
I915_WRITE_FW(ILK_GDSR, ILK_GRDOM_RENDER | ILK_GRDOM_RESET_ENABLE);
ret = __intel_wait_for_register_fw(dev_priv, ILK_GDSR,
ILK_GRDOM_RESET_ENABLE, 0,
5000, 0,
NULL);
if (ret) {
DRM_DEBUG_DRIVER("Wait for render reset failed\n");
goto out;
}
I915_WRITE_FW(ILK_GDSR, ILK_GRDOM_MEDIA | ILK_GRDOM_RESET_ENABLE);
ret = __intel_wait_for_register_fw(dev_priv, ILK_GDSR,
ILK_GRDOM_RESET_ENABLE, 0,
5000, 0,
NULL);
if (ret) {
DRM_DEBUG_DRIVER("Wait for media reset failed\n");
goto out;
}
out:
I915_WRITE_FW(ILK_GDSR, 0);
POSTING_READ_FW(ILK_GDSR);
return ret;
}
/* Reset the hardware domains (GENX_GRDOM_*) specified by mask */
static int gen6_hw_domain_reset(struct drm_i915_private *dev_priv,
u32 hw_domain_mask)
{
int err;
/*
* GEN6_GDRST is not in the gt power well, no need to check
* for fifo space for the write or forcewake the chip for
* the read
*/
I915_WRITE_FW(GEN6_GDRST, hw_domain_mask);
/* Wait for the device to ack the reset requests */
err = __intel_wait_for_register_fw(dev_priv,
GEN6_GDRST, hw_domain_mask, 0,
500, 0,
NULL);
if (err)
DRM_DEBUG_DRIVER("Wait for 0x%08x engines reset failed\n",
hw_domain_mask);
return err;
}
static int gen6_reset_engines(struct drm_i915_private *i915,
unsigned int engine_mask,
unsigned int retry)
{
struct intel_engine_cs *engine;
const u32 hw_engine_mask[I915_NUM_ENGINES] = {
[RCS] = GEN6_GRDOM_RENDER,
[BCS] = GEN6_GRDOM_BLT,
[VCS] = GEN6_GRDOM_MEDIA,
[VCS2] = GEN8_GRDOM_MEDIA2,
[VECS] = GEN6_GRDOM_VECS,
};
u32 hw_mask;
if (engine_mask == ALL_ENGINES) {
hw_mask = GEN6_GRDOM_FULL;
} else {
unsigned int tmp;
hw_mask = 0;
for_each_engine_masked(engine, i915, engine_mask, tmp)
hw_mask |= hw_engine_mask[engine->id];
}
return gen6_hw_domain_reset(i915, hw_mask);
}
static u32 gen11_lock_sfc(struct drm_i915_private *dev_priv,
struct intel_engine_cs *engine)
{
u8 vdbox_sfc_access = RUNTIME_INFO(dev_priv)->vdbox_sfc_access;
i915_reg_t sfc_forced_lock, sfc_forced_lock_ack;
u32 sfc_forced_lock_bit, sfc_forced_lock_ack_bit;
i915_reg_t sfc_usage;
u32 sfc_usage_bit;
u32 sfc_reset_bit;
switch (engine->class) {
case VIDEO_DECODE_CLASS:
if ((BIT(engine->instance) & vdbox_sfc_access) == 0)
return 0;
sfc_forced_lock = GEN11_VCS_SFC_FORCED_LOCK(engine);
sfc_forced_lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT;
sfc_forced_lock_ack = GEN11_VCS_SFC_LOCK_STATUS(engine);
sfc_forced_lock_ack_bit = GEN11_VCS_SFC_LOCK_ACK_BIT;
sfc_usage = GEN11_VCS_SFC_LOCK_STATUS(engine);
sfc_usage_bit = GEN11_VCS_SFC_USAGE_BIT;
sfc_reset_bit = GEN11_VCS_SFC_RESET_BIT(engine->instance);
break;
case VIDEO_ENHANCEMENT_CLASS:
sfc_forced_lock = GEN11_VECS_SFC_FORCED_LOCK(engine);
sfc_forced_lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT;
sfc_forced_lock_ack = GEN11_VECS_SFC_LOCK_ACK(engine);
sfc_forced_lock_ack_bit = GEN11_VECS_SFC_LOCK_ACK_BIT;
sfc_usage = GEN11_VECS_SFC_USAGE(engine);
sfc_usage_bit = GEN11_VECS_SFC_USAGE_BIT;
sfc_reset_bit = GEN11_VECS_SFC_RESET_BIT(engine->instance);
break;
default:
return 0;
}
/*
* Tell the engine that a software reset is going to happen. The engine
* will then try to force lock the SFC (if currently locked, it will
* remain so until we tell the engine it is safe to unlock; if currently
* unlocked, it will ignore this and all new lock requests). If SFC
* ends up being locked to the engine we want to reset, we have to reset
* it as well (we will unlock it once the reset sequence is completed).
*/
I915_WRITE_FW(sfc_forced_lock,
I915_READ_FW(sfc_forced_lock) | sfc_forced_lock_bit);
if (__intel_wait_for_register_fw(dev_priv,
sfc_forced_lock_ack,
sfc_forced_lock_ack_bit,
sfc_forced_lock_ack_bit,
1000, 0, NULL)) {
DRM_DEBUG_DRIVER("Wait for SFC forced lock ack failed\n");
return 0;
}
if (I915_READ_FW(sfc_usage) & sfc_usage_bit)
return sfc_reset_bit;
return 0;
}
static void gen11_unlock_sfc(struct drm_i915_private *dev_priv,
struct intel_engine_cs *engine)
{
u8 vdbox_sfc_access = RUNTIME_INFO(dev_priv)->vdbox_sfc_access;
i915_reg_t sfc_forced_lock;
u32 sfc_forced_lock_bit;
switch (engine->class) {
case VIDEO_DECODE_CLASS:
if ((BIT(engine->instance) & vdbox_sfc_access) == 0)
return;
sfc_forced_lock = GEN11_VCS_SFC_FORCED_LOCK(engine);
sfc_forced_lock_bit = GEN11_VCS_SFC_FORCED_LOCK_BIT;
break;
case VIDEO_ENHANCEMENT_CLASS:
sfc_forced_lock = GEN11_VECS_SFC_FORCED_LOCK(engine);
sfc_forced_lock_bit = GEN11_VECS_SFC_FORCED_LOCK_BIT;
break;
default:
return;
}
I915_WRITE_FW(sfc_forced_lock,
I915_READ_FW(sfc_forced_lock) & ~sfc_forced_lock_bit);
}
static int gen11_reset_engines(struct drm_i915_private *i915,
unsigned int engine_mask,
unsigned int retry)
{
const u32 hw_engine_mask[I915_NUM_ENGINES] = {
[RCS] = GEN11_GRDOM_RENDER,
[BCS] = GEN11_GRDOM_BLT,
[VCS] = GEN11_GRDOM_MEDIA,
[VCS2] = GEN11_GRDOM_MEDIA2,
[VCS3] = GEN11_GRDOM_MEDIA3,
[VCS4] = GEN11_GRDOM_MEDIA4,
[VECS] = GEN11_GRDOM_VECS,
[VECS2] = GEN11_GRDOM_VECS2,
};
struct intel_engine_cs *engine;
unsigned int tmp;
u32 hw_mask;
int ret;
BUILD_BUG_ON(VECS2 + 1 != I915_NUM_ENGINES);
if (engine_mask == ALL_ENGINES) {
hw_mask = GEN11_GRDOM_FULL;
} else {
hw_mask = 0;
for_each_engine_masked(engine, i915, engine_mask, tmp) {
hw_mask |= hw_engine_mask[engine->id];
hw_mask |= gen11_lock_sfc(i915, engine);
}
}
ret = gen6_hw_domain_reset(i915, hw_mask);
if (engine_mask != ALL_ENGINES)
for_each_engine_masked(engine, i915, engine_mask, tmp)
gen11_unlock_sfc(i915, engine);
return ret;
}
static int gen8_engine_reset_prepare(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
int ret;
I915_WRITE_FW(RING_RESET_CTL(engine->mmio_base),
_MASKED_BIT_ENABLE(RESET_CTL_REQUEST_RESET));
ret = __intel_wait_for_register_fw(dev_priv,
RING_RESET_CTL(engine->mmio_base),
RESET_CTL_READY_TO_RESET,
RESET_CTL_READY_TO_RESET,
700, 0,
NULL);
if (ret)
DRM_ERROR("%s: reset request timeout\n", engine->name);
return ret;
}
static void gen8_engine_reset_cancel(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
I915_WRITE_FW(RING_RESET_CTL(engine->mmio_base),
_MASKED_BIT_DISABLE(RESET_CTL_REQUEST_RESET));
}
static int gen8_reset_engines(struct drm_i915_private *i915,
unsigned int engine_mask,
unsigned int retry)
{
struct intel_engine_cs *engine;
const bool reset_non_ready = retry >= 1;
unsigned int tmp;
int ret;
for_each_engine_masked(engine, i915, engine_mask, tmp) {
ret = gen8_engine_reset_prepare(engine);
if (ret && !reset_non_ready)
goto skip_reset;
/*
* If this is not the first failed attempt to prepare,
* we decide to proceed anyway.
*
* By doing so we risk context corruption and with
* some gens (kbl), possible system hang if reset
* happens during active bb execution.
*
* We rather take context corruption instead of
* failed reset with a wedged driver/gpu. And
* active bb execution case should be covered by
* i915_stop_engines we have before the reset.
*/
}
if (INTEL_GEN(i915) >= 11)
ret = gen11_reset_engines(i915, engine_mask, retry);
else
ret = gen6_reset_engines(i915, engine_mask, retry);
skip_reset:
for_each_engine_masked(engine, i915, engine_mask, tmp)
gen8_engine_reset_cancel(engine);
return ret;
}
typedef int (*reset_func)(struct drm_i915_private *,
unsigned int engine_mask,
unsigned int retry);
static reset_func intel_get_gpu_reset(struct drm_i915_private *i915)
{
if (!i915_modparams.reset)
return NULL;
if (INTEL_GEN(i915) >= 8)
return gen8_reset_engines;
else if (INTEL_GEN(i915) >= 6)
return gen6_reset_engines;
else if (INTEL_GEN(i915) >= 5)
return ironlake_do_reset;
else if (IS_G4X(i915))
return g4x_do_reset;
else if (IS_G33(i915) || IS_PINEVIEW(i915))
return g33_do_reset;
else if (INTEL_GEN(i915) >= 3)
return i915_do_reset;
else
return NULL;
}
int intel_gpu_reset(struct drm_i915_private *i915, unsigned int engine_mask)
{
const int retries = engine_mask == ALL_ENGINES ? RESET_MAX_RETRIES : 1;
reset_func reset;
int ret = -ETIMEDOUT;
int retry;
reset = intel_get_gpu_reset(i915);
if (!reset)
return -ENODEV;
/*
* If the power well sleeps during the reset, the reset
* request may be dropped and never completes (causing -EIO).
*/
intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
for (retry = 0; ret == -ETIMEDOUT && retry < retries; retry++) {
/*
* We stop engines, otherwise we might get failed reset and a
* dead gpu (on elk). Also as modern gpu as kbl can suffer
* from system hang if batchbuffer is progressing when
* the reset is issued, regardless of READY_TO_RESET ack.
* Thus assume it is best to stop engines on all gens
* where we have a gpu reset.
*
* WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
*
* WaMediaResetMainRingCleanup:ctg,elk (presumably)
*
* FIXME: Wa for more modern gens needs to be validated
*/
i915_stop_engines(i915, engine_mask);
GEM_TRACE("engine_mask=%x\n", engine_mask);
preempt_disable();
ret = reset(i915, engine_mask, retry);
preempt_enable();
}
intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
return ret;
}
bool intel_has_gpu_reset(struct drm_i915_private *i915)
{
if (USES_GUC(i915))
return false;
return intel_get_gpu_reset(i915);
}
bool intel_has_reset_engine(struct drm_i915_private *i915)
{
return INTEL_INFO(i915)->has_reset_engine && i915_modparams.reset >= 2;
}
int intel_reset_guc(struct drm_i915_private *i915)
{
u32 guc_domain =
INTEL_GEN(i915) >= 11 ? GEN11_GRDOM_GUC : GEN9_GRDOM_GUC;
int ret;
GEM_BUG_ON(!HAS_GUC(i915));
intel_uncore_forcewake_get(i915, FORCEWAKE_ALL);
ret = gen6_hw_domain_reset(i915, guc_domain);
intel_uncore_forcewake_put(i915, FORCEWAKE_ALL);
return ret;
}
/*
* Ensure irq handler finishes, and not run again.
* Also return the active request so that we only search for it once.
*/
static void reset_prepare_engine(struct intel_engine_cs *engine)
{
/*
* During the reset sequence, we must prevent the engine from
* entering RC6. As the context state is undefined until we restart
* the engine, if it does enter RC6 during the reset, the state
* written to the powercontext is undefined and so we may lose
* GPU state upon resume, i.e. fail to restart after a reset.
*/
intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
engine->reset.prepare(engine);
}
static void reset_prepare(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, i915, id)
reset_prepare_engine(engine);
intel_uc_sanitize(i915);
}
static int gt_reset(struct drm_i915_private *i915, unsigned int stalled_mask)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
int err;
/*
* Everything depends on having the GTT running, so we need to start
* there.
*/
err = i915_ggtt_enable_hw(i915);
if (err)
return err;
for_each_engine(engine, i915, id)
intel_engine_reset(engine, stalled_mask & ENGINE_MASK(id));
i915_gem_restore_fences(i915);
return err;
}
static void reset_finish_engine(struct intel_engine_cs *engine)
{
engine->reset.finish(engine);
intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
}
struct i915_gpu_restart {
struct work_struct work;
struct drm_i915_private *i915;
};
static void restart_work(struct work_struct *work)
{
struct i915_gpu_restart *arg = container_of(work, typeof(*arg), work);
struct drm_i915_private *i915 = arg->i915;
struct intel_engine_cs *engine;
enum intel_engine_id id;
intel_wakeref_t wakeref;
wakeref = intel_runtime_pm_get(i915);
mutex_lock(&i915->drm.struct_mutex);
WRITE_ONCE(i915->gpu_error.restart, NULL);
for_each_engine(engine, i915, id) {
struct i915_request *rq;
/*
* Ostensibily, we always want a context loaded for powersaving,
* so if the engine is idle after the reset, send a request
* to load our scratch kernel_context.
*/
if (!intel_engine_is_idle(engine))
continue;
rq = i915_request_alloc(engine, i915->kernel_context);
if (!IS_ERR(rq))
i915_request_add(rq);
}
mutex_unlock(&i915->drm.struct_mutex);
intel_runtime_pm_put(i915, wakeref);
kfree(arg);
}
static void reset_finish(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, i915, id)
reset_finish_engine(engine);
}
static void reset_restart(struct drm_i915_private *i915)
{
struct i915_gpu_restart *arg;
/*
* Following the reset, ensure that we always reload context for
* powersaving, and to correct engine->last_retired_context. Since
* this requires us to submit a request, queue a worker to do that
* task for us to evade any locking here.
*/
if (READ_ONCE(i915->gpu_error.restart))
return;
arg = kmalloc(sizeof(*arg), GFP_KERNEL);
if (arg) {
arg->i915 = i915;
INIT_WORK(&arg->work, restart_work);
WRITE_ONCE(i915->gpu_error.restart, arg);
queue_work(i915->wq, &arg->work);
}
}
static void nop_submit_request(struct i915_request *request)
{
struct intel_engine_cs *engine = request->engine;
unsigned long flags;
GEM_TRACE("%s fence %llx:%lld -> -EIO\n",
engine->name, request->fence.context, request->fence.seqno);
dma_fence_set_error(&request->fence, -EIO);
spin_lock_irqsave(&engine->timeline.lock, flags);
__i915_request_submit(request);
i915_request_mark_complete(request);
intel_engine_write_global_seqno(engine, request->global_seqno);
spin_unlock_irqrestore(&engine->timeline.lock, flags);
intel_engine_queue_breadcrumbs(engine);
}
void i915_gem_set_wedged(struct drm_i915_private *i915)
{
struct i915_gpu_error *error = &i915->gpu_error;
struct intel_engine_cs *engine;
enum intel_engine_id id;
mutex_lock(&error->wedge_mutex);
if (test_bit(I915_WEDGED, &error->flags)) {
mutex_unlock(&error->wedge_mutex);
return;
}
if (GEM_SHOW_DEBUG() && !intel_engines_are_idle(i915)) {
struct drm_printer p = drm_debug_printer(__func__);
for_each_engine(engine, i915, id)
intel_engine_dump(engine, &p, "%s\n", engine->name);
}
GEM_TRACE("start\n");
/*
* First, stop submission to hw, but do not yet complete requests by
* rolling the global seqno forward (since this would complete requests
* for which we haven't set the fence error to EIO yet).
*/
for_each_engine(engine, i915, id)
reset_prepare_engine(engine);
/* Even if the GPU reset fails, it should still stop the engines */
if (INTEL_GEN(i915) >= 5)
intel_gpu_reset(i915, ALL_ENGINES);
for_each_engine(engine, i915, id) {
engine->submit_request = nop_submit_request;
engine->schedule = NULL;
}
i915->caps.scheduler = 0;
/*
* Make sure no request can slip through without getting completed by
* either this call here to intel_engine_write_global_seqno, or the one
* in nop_submit_request.
*/
synchronize_rcu();
/* Mark all executing requests as skipped */
for_each_engine(engine, i915, id)
engine->cancel_requests(engine);
for_each_engine(engine, i915, id) {
reset_finish_engine(engine);
intel_engine_signal_breadcrumbs(engine);
}
smp_mb__before_atomic();
set_bit(I915_WEDGED, &error->flags);
GEM_TRACE("end\n");
mutex_unlock(&error->wedge_mutex);
wake_up_all(&error->reset_queue);
}
bool i915_gem_unset_wedged(struct drm_i915_private *i915)
{
struct i915_gpu_error *error = &i915->gpu_error;
struct i915_timeline *tl;
bool ret = false;
if (!test_bit(I915_WEDGED, &error->flags))
return true;
if (!i915->gt.scratch) /* Never full initialised, recovery impossible */
return false;
mutex_lock(&error->wedge_mutex);
GEM_TRACE("start\n");
/*
* Before unwedging, make sure that all pending operations
* are flushed and errored out - we may have requests waiting upon
* third party fences. We marked all inflight requests as EIO, and
* every execbuf since returned EIO, for consistency we want all
* the currently pending requests to also be marked as EIO, which
* is done inside our nop_submit_request - and so we must wait.
*
* No more can be submitted until we reset the wedged bit.
*/
mutex_lock(&i915->gt.timelines.mutex);
list_for_each_entry(tl, &i915->gt.timelines.active_list, link) {
struct i915_request *rq;
long timeout;
rq = i915_active_request_get_unlocked(&tl->last_request);
if (!rq)
continue;
/*
* We can't use our normal waiter as we want to
* avoid recursively trying to handle the current
* reset. The basic dma_fence_default_wait() installs
* a callback for dma_fence_signal(), which is
* triggered by our nop handler (indirectly, the
* callback enables the signaler thread which is
* woken by the nop_submit_request() advancing the seqno
* and when the seqno passes the fence, the signaler
* then signals the fence waking us up).
*/
timeout = dma_fence_default_wait(&rq->fence, true,
MAX_SCHEDULE_TIMEOUT);
i915_request_put(rq);
if (timeout < 0) {
mutex_unlock(&i915->gt.timelines.mutex);
goto unlock;
}
}
mutex_unlock(&i915->gt.timelines.mutex);
intel_engines_sanitize(i915, false);
/*
* Undo nop_submit_request. We prevent all new i915 requests from
* being queued (by disallowing execbuf whilst wedged) so having
* waited for all active requests above, we know the system is idle
* and do not have to worry about a thread being inside
* engine->submit_request() as we swap over. So unlike installing
* the nop_submit_request on reset, we can do this from normal
* context and do not require stop_machine().
*/
intel_engines_reset_default_submission(i915);
GEM_TRACE("end\n");
smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
clear_bit(I915_WEDGED, &i915->gpu_error.flags);
ret = true;
unlock:
mutex_unlock(&i915->gpu_error.wedge_mutex);
return ret;
}
struct __i915_reset {
struct drm_i915_private *i915;
unsigned int stalled_mask;
};
static int __i915_reset__BKL(void *data)
{
struct __i915_reset *arg = data;
int err;
err = intel_gpu_reset(arg->i915, ALL_ENGINES);
if (err)
return err;
return gt_reset(arg->i915, arg->stalled_mask);
}
#if RESET_UNDER_STOP_MACHINE
/*
* XXX An alternative to using stop_machine would be to park only the
* processes that have a GGTT mmap. By remote parking the threads (SIGSTOP)
* we should be able to prevent their memmory accesses via the lost fence
* registers over the course of the reset without the potential recursive
* of mutexes between the pagefault handler and reset.
*
* See igt/gem_mmap_gtt/hang
*/
#define __do_reset(fn, arg) stop_machine(fn, arg, NULL)
#else
#define __do_reset(fn, arg) fn(arg)
#endif
static int do_reset(struct drm_i915_private *i915, unsigned int stalled_mask)
{
struct __i915_reset arg = { i915, stalled_mask };
int err, i;
err = __do_reset(__i915_reset__BKL, &arg);
for (i = 0; err && i < RESET_MAX_RETRIES; i++) {
msleep(100);
err = __do_reset(__i915_reset__BKL, &arg);
}
return err;
}
/**
* i915_reset - reset chip after a hang
* @i915: #drm_i915_private to reset
* @stalled_mask: mask of the stalled engines with the guilty requests
* @reason: user error message for why we are resetting
*
* Reset the chip. Useful if a hang is detected. Marks the device as wedged
* on failure.
*
* Caller must hold the struct_mutex.
*
* Procedure is fairly simple:
* - reset the chip using the reset reg
* - re-init context state
* - re-init hardware status page
* - re-init ring buffer
* - re-init interrupt state
* - re-init display
*/
void i915_reset(struct drm_i915_private *i915,
unsigned int stalled_mask,
const char *reason)
{
struct i915_gpu_error *error = &i915->gpu_error;
int ret;
GEM_TRACE("flags=%lx\n", error->flags);
might_sleep();
assert_rpm_wakelock_held(i915);
GEM_BUG_ON(!test_bit(I915_RESET_BACKOFF, &error->flags));
/* Clear any previous failed attempts at recovery. Time to try again. */
if (!i915_gem_unset_wedged(i915))
return;
if (reason)
dev_notice(i915->drm.dev, "Resetting chip for %s\n", reason);
error->reset_count++;
reset_prepare(i915);
if (!intel_has_gpu_reset(i915)) {
if (i915_modparams.reset)
dev_err(i915->drm.dev, "GPU reset not supported\n");
else
DRM_DEBUG_DRIVER("GPU reset disabled\n");
goto error;
}
if (do_reset(i915, stalled_mask)) {
dev_err(i915->drm.dev, "Failed to reset chip\n");
goto taint;
}
intel_overlay_reset(i915);
/*
* Next we need to restore the context, but we don't use those
* yet either...
*
* Ring buffer needs to be re-initialized in the KMS case, or if X
* was running at the time of the reset (i.e. we weren't VT
* switched away).
*/
ret = i915_gem_init_hw(i915);
if (ret) {
DRM_ERROR("Failed to initialise HW following reset (%d)\n",
ret);
goto error;
}
i915_queue_hangcheck(i915);
finish:
reset_finish(i915);
if (!i915_terminally_wedged(error))
reset_restart(i915);
return;
taint:
/*
* History tells us that if we cannot reset the GPU now, we
* never will. This then impacts everything that is run
* subsequently. On failing the reset, we mark the driver
* as wedged, preventing further execution on the GPU.
* We also want to go one step further and add a taint to the
* kernel so that any subsequent faults can be traced back to
* this failure. This is important for CI, where if the
* GPU/driver fails we would like to reboot and restart testing
* rather than continue on into oblivion. For everyone else,
* the system should still plod along, but they have been warned!
*/
add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
error:
i915_gem_set_wedged(i915);
goto finish;
}
static inline int intel_gt_reset_engine(struct drm_i915_private *i915,
struct intel_engine_cs *engine)
{
return intel_gpu_reset(i915, intel_engine_flag(engine));
}
/**
* i915_reset_engine - reset GPU engine to recover from a hang
* @engine: engine to reset
* @msg: reason for GPU reset; or NULL for no dev_notice()
*
* Reset a specific GPU engine. Useful if a hang is detected.
* Returns zero on successful reset or otherwise an error code.
*
* Procedure is:
* - identifies the request that caused the hang and it is dropped
* - reset engine (which will force the engine to idle)
* - re-init/configure engine
*/
int i915_reset_engine(struct intel_engine_cs *engine, const char *msg)
{
struct i915_gpu_error *error = &engine->i915->gpu_error;
int ret;
GEM_TRACE("%s flags=%lx\n", engine->name, error->flags);
GEM_BUG_ON(!test_bit(I915_RESET_ENGINE + engine->id, &error->flags));
reset_prepare_engine(engine);
if (msg)
dev_notice(engine->i915->drm.dev,
"Resetting %s for %s\n", engine->name, msg);
error->reset_engine_count[engine->id]++;
if (!engine->i915->guc.execbuf_client)
ret = intel_gt_reset_engine(engine->i915, engine);
else
ret = intel_guc_reset_engine(&engine->i915->guc, engine);
if (ret) {
/* If we fail here, we expect to fallback to a global reset */
DRM_DEBUG_DRIVER("%sFailed to reset %s, ret=%d\n",
engine->i915->guc.execbuf_client ? "GuC " : "",
engine->name, ret);
goto out;
}
/*
* The request that caused the hang is stuck on elsp, we know the
* active request and can drop it, adjust head to skip the offending
* request to resume executing remaining requests in the queue.
*/
intel_engine_reset(engine, true);
/*
* The engine and its registers (and workarounds in case of render)
* have been reset to their default values. Follow the init_ring
* process to program RING_MODE, HWSP and re-enable submission.
*/
ret = engine->init_hw(engine);
if (ret)
goto out;
out:
intel_engine_cancel_stop_cs(engine);
reset_finish_engine(engine);
return ret;
}
static void i915_reset_device(struct drm_i915_private *i915,
u32 engine_mask,
const char *reason)
{
struct i915_gpu_error *error = &i915->gpu_error;
struct kobject *kobj = &i915->drm.primary->kdev->kobj;
char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
struct i915_wedge_me w;
kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
DRM_DEBUG_DRIVER("resetting chip\n");
kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
/* Use a watchdog to ensure that our reset completes */
i915_wedge_on_timeout(&w, i915, 5 * HZ) {
intel_prepare_reset(i915);
i915_reset(i915, engine_mask, reason);
intel_finish_reset(i915);
}
if (!test_bit(I915_WEDGED, &error->flags))
kobject_uevent_env(kobj, KOBJ_CHANGE, reset_done_event);
}
void i915_clear_error_registers(struct drm_i915_private *dev_priv)
{
u32 eir;
if (!IS_GEN(dev_priv, 2))
I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
if (INTEL_GEN(dev_priv) < 4)
I915_WRITE(IPEIR, I915_READ(IPEIR));
else
I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
I915_WRITE(EIR, I915_READ(EIR));
eir = I915_READ(EIR);
if (eir) {
/*
* some errors might have become stuck,
* mask them.
*/
DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
I915_WRITE(EMR, I915_READ(EMR) | eir);
I915_WRITE(IIR, I915_MASTER_ERROR_INTERRUPT);
}
if (INTEL_GEN(dev_priv) >= 8) {
I915_WRITE(GEN8_RING_FAULT_REG,
I915_READ(GEN8_RING_FAULT_REG) & ~RING_FAULT_VALID);
POSTING_READ(GEN8_RING_FAULT_REG);
} else if (INTEL_GEN(dev_priv) >= 6) {
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, dev_priv, id) {
I915_WRITE(RING_FAULT_REG(engine),
I915_READ(RING_FAULT_REG(engine)) &
~RING_FAULT_VALID);
}
POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS]));
}
}
/**
* i915_handle_error - handle a gpu error
* @i915: i915 device private
* @engine_mask: mask representing engines that are hung
* @flags: control flags
* @fmt: Error message format string
*
* Do some basic checking of register state at error time and
* dump it to the syslog. Also call i915_capture_error_state() to make
* sure we get a record and make it available in debugfs. Fire a uevent
* so userspace knows something bad happened (should trigger collection
* of a ring dump etc.).
*/
void i915_handle_error(struct drm_i915_private *i915,
u32 engine_mask,
unsigned long flags,
const char *fmt, ...)
{
struct intel_engine_cs *engine;
intel_wakeref_t wakeref;
unsigned int tmp;
char error_msg[80];
char *msg = NULL;
if (fmt) {
va_list args;
va_start(args, fmt);
vscnprintf(error_msg, sizeof(error_msg), fmt, args);
va_end(args);
msg = error_msg;
}
/*
* In most cases it's guaranteed that we get here with an RPM
* reference held, for example because there is a pending GPU
* request that won't finish until the reset is done. This
* isn't the case at least when we get here by doing a
* simulated reset via debugfs, so get an RPM reference.
*/
wakeref = intel_runtime_pm_get(i915);
engine_mask &= INTEL_INFO(i915)->ring_mask;
if (flags & I915_ERROR_CAPTURE) {
i915_capture_error_state(i915, engine_mask, msg);
i915_clear_error_registers(i915);
}
/*
* Try engine reset when available. We fall back to full reset if
* single reset fails.
*/
if (intel_has_reset_engine(i915) &&
!i915_terminally_wedged(&i915->gpu_error)) {
for_each_engine_masked(engine, i915, engine_mask, tmp) {
BUILD_BUG_ON(I915_RESET_MODESET >= I915_RESET_ENGINE);
if (test_and_set_bit(I915_RESET_ENGINE + engine->id,
&i915->gpu_error.flags))
continue;
if (i915_reset_engine(engine, msg) == 0)
engine_mask &= ~intel_engine_flag(engine);
clear_bit(I915_RESET_ENGINE + engine->id,
&i915->gpu_error.flags);
wake_up_bit(&i915->gpu_error.flags,
I915_RESET_ENGINE + engine->id);
}
}
if (!engine_mask)
goto out;
/* Full reset needs the mutex, stop any other user trying to do so. */
if (test_and_set_bit(I915_RESET_BACKOFF, &i915->gpu_error.flags)) {
wait_event(i915->gpu_error.reset_queue,
!test_bit(I915_RESET_BACKOFF,
&i915->gpu_error.flags));
goto out;
}
/* Prevent any other reset-engine attempt. */
for_each_engine(engine, i915, tmp) {
while (test_and_set_bit(I915_RESET_ENGINE + engine->id,
&i915->gpu_error.flags))
wait_on_bit(&i915->gpu_error.flags,
I915_RESET_ENGINE + engine->id,
TASK_UNINTERRUPTIBLE);
}
i915_reset_device(i915, engine_mask, msg);
for_each_engine(engine, i915, tmp) {
clear_bit(I915_RESET_ENGINE + engine->id,
&i915->gpu_error.flags);
}
clear_bit(I915_RESET_BACKOFF, &i915->gpu_error.flags);
wake_up_all(&i915->gpu_error.reset_queue);
out:
intel_runtime_pm_put(i915, wakeref);
}
bool i915_reset_flush(struct drm_i915_private *i915)
{
int err;
cancel_delayed_work_sync(&i915->gpu_error.hangcheck_work);
flush_workqueue(i915->wq);
GEM_BUG_ON(READ_ONCE(i915->gpu_error.restart));
mutex_lock(&i915->drm.struct_mutex);
err = i915_gem_wait_for_idle(i915,
I915_WAIT_LOCKED |
I915_WAIT_FOR_IDLE_BOOST,
MAX_SCHEDULE_TIMEOUT);
mutex_unlock(&i915->drm.struct_mutex);
return !err;
}
static void i915_wedge_me(struct work_struct *work)
{
struct i915_wedge_me *w = container_of(work, typeof(*w), work.work);
dev_err(w->i915->drm.dev,
"%s timed out, cancelling all in-flight rendering.\n",
w->name);
i915_gem_set_wedged(w->i915);
}
void __i915_init_wedge(struct i915_wedge_me *w,
struct drm_i915_private *i915,
long timeout,
const char *name)
{
w->i915 = i915;
w->name = name;
INIT_DELAYED_WORK_ONSTACK(&w->work, i915_wedge_me);
schedule_delayed_work(&w->work, timeout);
}
void __i915_fini_wedge(struct i915_wedge_me *w)
{
cancel_delayed_work_sync(&w->work);
destroy_delayed_work_on_stack(&w->work);
w->i915 = NULL;
}