blob: 49fa43ff02ba09dc63db471b4219e6b4db385cbf [file] [log] [blame]
/*
* Copyright © 2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
*/
#include <drm/drm_print.h>
#include "i915_drv.h"
#include "i915_reset.h"
#include "intel_ringbuffer.h"
#include "intel_lrc.h"
/* Haswell does have the CXT_SIZE register however it does not appear to be
* valid. Now, docs explain in dwords what is in the context object. The full
* size is 70720 bytes, however, the power context and execlist context will
* never be saved (power context is stored elsewhere, and execlists don't work
* on HSW) - so the final size, including the extra state required for the
* Resource Streamer, is 66944 bytes, which rounds to 17 pages.
*/
#define HSW_CXT_TOTAL_SIZE (17 * PAGE_SIZE)
#define DEFAULT_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
#define GEN10_LR_CONTEXT_RENDER_SIZE (18 * PAGE_SIZE)
#define GEN11_LR_CONTEXT_RENDER_SIZE (14 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE ( 2 * PAGE_SIZE)
struct engine_class_info {
const char *name;
int (*init_legacy)(struct intel_engine_cs *engine);
int (*init_execlists)(struct intel_engine_cs *engine);
u8 uabi_class;
};
static const struct engine_class_info intel_engine_classes[] = {
[RENDER_CLASS] = {
.name = "rcs",
.init_execlists = logical_render_ring_init,
.init_legacy = intel_init_render_ring_buffer,
.uabi_class = I915_ENGINE_CLASS_RENDER,
},
[COPY_ENGINE_CLASS] = {
.name = "bcs",
.init_execlists = logical_xcs_ring_init,
.init_legacy = intel_init_blt_ring_buffer,
.uabi_class = I915_ENGINE_CLASS_COPY,
},
[VIDEO_DECODE_CLASS] = {
.name = "vcs",
.init_execlists = logical_xcs_ring_init,
.init_legacy = intel_init_bsd_ring_buffer,
.uabi_class = I915_ENGINE_CLASS_VIDEO,
},
[VIDEO_ENHANCEMENT_CLASS] = {
.name = "vecs",
.init_execlists = logical_xcs_ring_init,
.init_legacy = intel_init_vebox_ring_buffer,
.uabi_class = I915_ENGINE_CLASS_VIDEO_ENHANCE,
},
};
#define MAX_MMIO_BASES 3
struct engine_info {
unsigned int hw_id;
unsigned int uabi_id;
u8 class;
u8 instance;
/* mmio bases table *must* be sorted in reverse gen order */
struct engine_mmio_base {
u32 gen : 8;
u32 base : 24;
} mmio_bases[MAX_MMIO_BASES];
};
static const struct engine_info intel_engines[] = {
[RCS] = {
.hw_id = RCS_HW,
.uabi_id = I915_EXEC_RENDER,
.class = RENDER_CLASS,
.instance = 0,
.mmio_bases = {
{ .gen = 1, .base = RENDER_RING_BASE }
},
},
[BCS] = {
.hw_id = BCS_HW,
.uabi_id = I915_EXEC_BLT,
.class = COPY_ENGINE_CLASS,
.instance = 0,
.mmio_bases = {
{ .gen = 6, .base = BLT_RING_BASE }
},
},
[VCS] = {
.hw_id = VCS_HW,
.uabi_id = I915_EXEC_BSD,
.class = VIDEO_DECODE_CLASS,
.instance = 0,
.mmio_bases = {
{ .gen = 11, .base = GEN11_BSD_RING_BASE },
{ .gen = 6, .base = GEN6_BSD_RING_BASE },
{ .gen = 4, .base = BSD_RING_BASE }
},
},
[VCS2] = {
.hw_id = VCS2_HW,
.uabi_id = I915_EXEC_BSD,
.class = VIDEO_DECODE_CLASS,
.instance = 1,
.mmio_bases = {
{ .gen = 11, .base = GEN11_BSD2_RING_BASE },
{ .gen = 8, .base = GEN8_BSD2_RING_BASE }
},
},
[VCS3] = {
.hw_id = VCS3_HW,
.uabi_id = I915_EXEC_BSD,
.class = VIDEO_DECODE_CLASS,
.instance = 2,
.mmio_bases = {
{ .gen = 11, .base = GEN11_BSD3_RING_BASE }
},
},
[VCS4] = {
.hw_id = VCS4_HW,
.uabi_id = I915_EXEC_BSD,
.class = VIDEO_DECODE_CLASS,
.instance = 3,
.mmio_bases = {
{ .gen = 11, .base = GEN11_BSD4_RING_BASE }
},
},
[VECS] = {
.hw_id = VECS_HW,
.uabi_id = I915_EXEC_VEBOX,
.class = VIDEO_ENHANCEMENT_CLASS,
.instance = 0,
.mmio_bases = {
{ .gen = 11, .base = GEN11_VEBOX_RING_BASE },
{ .gen = 7, .base = VEBOX_RING_BASE }
},
},
[VECS2] = {
.hw_id = VECS2_HW,
.uabi_id = I915_EXEC_VEBOX,
.class = VIDEO_ENHANCEMENT_CLASS,
.instance = 1,
.mmio_bases = {
{ .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
},
},
};
/**
* ___intel_engine_context_size() - return the size of the context for an engine
* @dev_priv: i915 device private
* @class: engine class
*
* Each engine class may require a different amount of space for a context
* image.
*
* Return: size (in bytes) of an engine class specific context image
*
* Note: this size includes the HWSP, which is part of the context image
* in LRC mode, but does not include the "shared data page" used with
* GuC submission. The caller should account for this if using the GuC.
*/
static u32
__intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
{
u32 cxt_size;
BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
switch (class) {
case RENDER_CLASS:
switch (INTEL_GEN(dev_priv)) {
default:
MISSING_CASE(INTEL_GEN(dev_priv));
return DEFAULT_LR_CONTEXT_RENDER_SIZE;
case 11:
return GEN11_LR_CONTEXT_RENDER_SIZE;
case 10:
return GEN10_LR_CONTEXT_RENDER_SIZE;
case 9:
return GEN9_LR_CONTEXT_RENDER_SIZE;
case 8:
return GEN8_LR_CONTEXT_RENDER_SIZE;
case 7:
if (IS_HASWELL(dev_priv))
return HSW_CXT_TOTAL_SIZE;
cxt_size = I915_READ(GEN7_CXT_SIZE);
return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
PAGE_SIZE);
case 6:
cxt_size = I915_READ(CXT_SIZE);
return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
PAGE_SIZE);
case 5:
case 4:
case 3:
case 2:
/* For the special day when i810 gets merged. */
case 1:
return 0;
}
break;
default:
MISSING_CASE(class);
/* fall through */
case VIDEO_DECODE_CLASS:
case VIDEO_ENHANCEMENT_CLASS:
case COPY_ENGINE_CLASS:
if (INTEL_GEN(dev_priv) < 8)
return 0;
return GEN8_LR_CONTEXT_OTHER_SIZE;
}
}
static u32 __engine_mmio_base(struct drm_i915_private *i915,
const struct engine_mmio_base *bases)
{
int i;
for (i = 0; i < MAX_MMIO_BASES; i++)
if (INTEL_GEN(i915) >= bases[i].gen)
break;
GEM_BUG_ON(i == MAX_MMIO_BASES);
GEM_BUG_ON(!bases[i].base);
return bases[i].base;
}
static void __sprint_engine_name(char *name, const struct engine_info *info)
{
WARN_ON(snprintf(name, INTEL_ENGINE_CS_MAX_NAME, "%s%u",
intel_engine_classes[info->class].name,
info->instance) >= INTEL_ENGINE_CS_MAX_NAME);
}
void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
{
struct drm_i915_private *dev_priv = engine->i915;
i915_reg_t hwstam;
/*
* Though they added more rings on g4x/ilk, they did not add
* per-engine HWSTAM until gen6.
*/
if (INTEL_GEN(dev_priv) < 6 && engine->class != RENDER_CLASS)
return;
hwstam = RING_HWSTAM(engine->mmio_base);
if (INTEL_GEN(dev_priv) >= 3)
I915_WRITE(hwstam, mask);
else
I915_WRITE16(hwstam, mask);
}
static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
{
/* Mask off all writes into the unknown HWSP */
intel_engine_set_hwsp_writemask(engine, ~0u);
}
static int
intel_engine_setup(struct drm_i915_private *dev_priv,
enum intel_engine_id id)
{
const struct engine_info *info = &intel_engines[id];
struct intel_engine_cs *engine;
GEM_BUG_ON(info->class >= ARRAY_SIZE(intel_engine_classes));
BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
return -EINVAL;
if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
return -EINVAL;
if (GEM_DEBUG_WARN_ON(dev_priv->engine_class[info->class][info->instance]))
return -EINVAL;
GEM_BUG_ON(dev_priv->engine[id]);
engine = kzalloc(sizeof(*engine), GFP_KERNEL);
if (!engine)
return -ENOMEM;
engine->id = id;
engine->i915 = dev_priv;
__sprint_engine_name(engine->name, info);
engine->hw_id = engine->guc_id = info->hw_id;
engine->mmio_base = __engine_mmio_base(dev_priv, info->mmio_bases);
engine->class = info->class;
engine->instance = info->instance;
engine->uabi_id = info->uabi_id;
engine->uabi_class = intel_engine_classes[info->class].uabi_class;
engine->context_size = __intel_engine_context_size(dev_priv,
engine->class);
if (WARN_ON(engine->context_size > BIT(20)))
engine->context_size = 0;
if (engine->context_size)
DRIVER_CAPS(dev_priv)->has_logical_contexts = true;
/* Nothing to do here, execute in order of dependencies */
engine->schedule = NULL;
seqlock_init(&engine->stats.lock);
ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
/* Scrub mmio state on takeover */
intel_engine_sanitize_mmio(engine);
dev_priv->engine_class[info->class][info->instance] = engine;
dev_priv->engine[id] = engine;
return 0;
}
/**
* intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
* @dev_priv: i915 device private
*
* Return: non-zero if the initialization failed.
*/
int intel_engines_init_mmio(struct drm_i915_private *dev_priv)
{
struct intel_device_info *device_info = mkwrite_device_info(dev_priv);
const unsigned int ring_mask = INTEL_INFO(dev_priv)->ring_mask;
struct intel_engine_cs *engine;
enum intel_engine_id id;
unsigned int mask = 0;
unsigned int i;
int err;
WARN_ON(ring_mask == 0);
WARN_ON(ring_mask &
GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
if (i915_inject_load_failure())
return -ENODEV;
for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
if (!HAS_ENGINE(dev_priv, i))
continue;
err = intel_engine_setup(dev_priv, i);
if (err)
goto cleanup;
mask |= ENGINE_MASK(i);
}
/*
* Catch failures to update intel_engines table when the new engines
* are added to the driver by a warning and disabling the forgotten
* engines.
*/
if (WARN_ON(mask != ring_mask))
device_info->ring_mask = mask;
/* We always presume we have at least RCS available for later probing */
if (WARN_ON(!HAS_ENGINE(dev_priv, RCS))) {
err = -ENODEV;
goto cleanup;
}
RUNTIME_INFO(dev_priv)->num_rings = hweight32(mask);
i915_check_and_clear_faults(dev_priv);
return 0;
cleanup:
for_each_engine(engine, dev_priv, id)
kfree(engine);
return err;
}
/**
* intel_engines_init() - init the Engine Command Streamers
* @dev_priv: i915 device private
*
* Return: non-zero if the initialization failed.
*/
int intel_engines_init(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id, err_id;
int err;
for_each_engine(engine, dev_priv, id) {
const struct engine_class_info *class_info =
&intel_engine_classes[engine->class];
int (*init)(struct intel_engine_cs *engine);
if (HAS_EXECLISTS(dev_priv))
init = class_info->init_execlists;
else
init = class_info->init_legacy;
err = -EINVAL;
err_id = id;
if (GEM_DEBUG_WARN_ON(!init))
goto cleanup;
err = init(engine);
if (err)
goto cleanup;
GEM_BUG_ON(!engine->submit_request);
}
return 0;
cleanup:
for_each_engine(engine, dev_priv, id) {
if (id >= err_id) {
kfree(engine);
dev_priv->engine[id] = NULL;
} else {
dev_priv->gt.cleanup_engine(engine);
}
}
return err;
}
void intel_engine_write_global_seqno(struct intel_engine_cs *engine, u32 seqno)
{
intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
GEM_BUG_ON(intel_engine_get_seqno(engine) != seqno);
}
static void intel_engine_init_batch_pool(struct intel_engine_cs *engine)
{
i915_gem_batch_pool_init(&engine->batch_pool, engine);
}
static void intel_engine_init_execlist(struct intel_engine_cs *engine)
{
struct intel_engine_execlists * const execlists = &engine->execlists;
execlists->port_mask = 1;
GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
execlists->queue_priority_hint = INT_MIN;
execlists->queue = RB_ROOT_CACHED;
}
static void cleanup_status_page(struct intel_engine_cs *engine)
{
struct i915_vma *vma;
/* Prevent writes into HWSP after returning the page to the system */
intel_engine_set_hwsp_writemask(engine, ~0u);
vma = fetch_and_zero(&engine->status_page.vma);
if (!vma)
return;
if (!HWS_NEEDS_PHYSICAL(engine->i915))
i915_vma_unpin(vma);
i915_gem_object_unpin_map(vma->obj);
__i915_gem_object_release_unless_active(vma->obj);
}
static int pin_ggtt_status_page(struct intel_engine_cs *engine,
struct i915_vma *vma)
{
unsigned int flags;
flags = PIN_GLOBAL;
if (!HAS_LLC(engine->i915))
/*
* On g33, we cannot place HWS above 256MiB, so
* restrict its pinning to the low mappable arena.
* Though this restriction is not documented for
* gen4, gen5, or byt, they also behave similarly
* and hang if the HWS is placed at the top of the
* GTT. To generalise, it appears that all !llc
* platforms have issues with us placing the HWS
* above the mappable region (even though we never
* actually map it).
*/
flags |= PIN_MAPPABLE;
else
flags |= PIN_HIGH;
return i915_vma_pin(vma, 0, 0, flags);
}
static int init_status_page(struct intel_engine_cs *engine)
{
struct drm_i915_gem_object *obj;
struct i915_vma *vma;
void *vaddr;
int ret;
/*
* Though the HWS register does support 36bit addresses, historically
* we have had hangs and corruption reported due to wild writes if
* the HWS is placed above 4G. We only allow objects to be allocated
* in GFP_DMA32 for i965, and no earlier physical address users had
* access to more than 4G.
*/
obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
if (IS_ERR(obj)) {
DRM_ERROR("Failed to allocate status page\n");
return PTR_ERR(obj);
}
ret = i915_gem_object_set_cache_level(obj, I915_CACHE_LLC);
if (ret)
goto err;
vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err;
}
vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto err;
}
engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
engine->status_page.vma = vma;
if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
ret = pin_ggtt_status_page(engine, vma);
if (ret)
goto err_unpin;
}
return 0;
err_unpin:
i915_gem_object_unpin_map(obj);
err:
i915_gem_object_put(obj);
return ret;
}
/**
* intel_engines_setup_common - setup engine state not requiring hw access
* @engine: Engine to setup.
*
* Initializes @engine@ structure members shared between legacy and execlists
* submission modes which do not require hardware access.
*
* Typically done early in the submission mode specific engine setup stage.
*/
int intel_engine_setup_common(struct intel_engine_cs *engine)
{
int err;
err = init_status_page(engine);
if (err)
return err;
err = i915_timeline_init(engine->i915,
&engine->timeline,
engine->name,
engine->status_page.vma);
if (err)
goto err_hwsp;
i915_timeline_set_subclass(&engine->timeline, TIMELINE_ENGINE);
intel_engine_init_breadcrumbs(engine);
intel_engine_init_execlist(engine);
intel_engine_init_hangcheck(engine);
intel_engine_init_batch_pool(engine);
intel_engine_init_cmd_parser(engine);
return 0;
err_hwsp:
cleanup_status_page(engine);
return err;
}
static void __intel_context_unpin(struct i915_gem_context *ctx,
struct intel_engine_cs *engine)
{
intel_context_unpin(to_intel_context(ctx, engine));
}
struct measure_breadcrumb {
struct i915_request rq;
struct i915_timeline timeline;
struct intel_ring ring;
u32 cs[1024];
};
static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
{
struct measure_breadcrumb *frame;
int dw = -ENOMEM;
GEM_BUG_ON(!engine->i915->gt.scratch);
frame = kzalloc(sizeof(*frame), GFP_KERNEL);
if (!frame)
return -ENOMEM;
if (i915_timeline_init(engine->i915,
&frame->timeline, "measure",
engine->status_page.vma))
goto out_frame;
INIT_LIST_HEAD(&frame->ring.request_list);
frame->ring.timeline = &frame->timeline;
frame->ring.vaddr = frame->cs;
frame->ring.size = sizeof(frame->cs);
frame->ring.effective_size = frame->ring.size;
intel_ring_update_space(&frame->ring);
frame->rq.i915 = engine->i915;
frame->rq.engine = engine;
frame->rq.ring = &frame->ring;
frame->rq.timeline = &frame->timeline;
dw = i915_timeline_pin(&frame->timeline);
if (dw < 0)
goto out_timeline;
dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
i915_timeline_unpin(&frame->timeline);
out_timeline:
i915_timeline_fini(&frame->timeline);
out_frame:
kfree(frame);
return dw;
}
/**
* intel_engines_init_common - initialize cengine state which might require hw access
* @engine: Engine to initialize.
*
* Initializes @engine@ structure members shared between legacy and execlists
* submission modes which do require hardware access.
*
* Typcally done at later stages of submission mode specific engine setup.
*
* Returns zero on success or an error code on failure.
*/
int intel_engine_init_common(struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
struct intel_context *ce;
int ret;
engine->set_default_submission(engine);
/* We may need to do things with the shrinker which
* require us to immediately switch back to the default
* context. This can cause a problem as pinning the
* default context also requires GTT space which may not
* be available. To avoid this we always pin the default
* context.
*/
ce = intel_context_pin(i915->kernel_context, engine);
if (IS_ERR(ce))
return PTR_ERR(ce);
/*
* Similarly the preempt context must always be available so that
* we can interrupt the engine at any time.
*/
if (i915->preempt_context) {
ce = intel_context_pin(i915->preempt_context, engine);
if (IS_ERR(ce)) {
ret = PTR_ERR(ce);
goto err_unpin_kernel;
}
}
ret = measure_breadcrumb_dw(engine);
if (ret < 0)
goto err_unpin_preempt;
engine->emit_fini_breadcrumb_dw = ret;
return 0;
err_unpin_preempt:
if (i915->preempt_context)
__intel_context_unpin(i915->preempt_context, engine);
err_unpin_kernel:
__intel_context_unpin(i915->kernel_context, engine);
return ret;
}
/**
* intel_engines_cleanup_common - cleans up the engine state created by
* the common initiailizers.
* @engine: Engine to cleanup.
*
* This cleans up everything created by the common helpers.
*/
void intel_engine_cleanup_common(struct intel_engine_cs *engine)
{
struct drm_i915_private *i915 = engine->i915;
cleanup_status_page(engine);
intel_engine_fini_breadcrumbs(engine);
intel_engine_cleanup_cmd_parser(engine);
i915_gem_batch_pool_fini(&engine->batch_pool);
if (engine->default_state)
i915_gem_object_put(engine->default_state);
if (i915->preempt_context)
__intel_context_unpin(i915->preempt_context, engine);
__intel_context_unpin(i915->kernel_context, engine);
i915_timeline_fini(&engine->timeline);
intel_wa_list_free(&engine->ctx_wa_list);
intel_wa_list_free(&engine->wa_list);
intel_wa_list_free(&engine->whitelist);
}
u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
u64 acthd;
if (INTEL_GEN(dev_priv) >= 8)
acthd = I915_READ64_2x32(RING_ACTHD(engine->mmio_base),
RING_ACTHD_UDW(engine->mmio_base));
else if (INTEL_GEN(dev_priv) >= 4)
acthd = I915_READ(RING_ACTHD(engine->mmio_base));
else
acthd = I915_READ(ACTHD);
return acthd;
}
u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
u64 bbaddr;
if (INTEL_GEN(dev_priv) >= 8)
bbaddr = I915_READ64_2x32(RING_BBADDR(engine->mmio_base),
RING_BBADDR_UDW(engine->mmio_base));
else
bbaddr = I915_READ(RING_BBADDR(engine->mmio_base));
return bbaddr;
}
int intel_engine_stop_cs(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
const u32 base = engine->mmio_base;
const i915_reg_t mode = RING_MI_MODE(base);
int err;
if (INTEL_GEN(dev_priv) < 3)
return -ENODEV;
GEM_TRACE("%s\n", engine->name);
I915_WRITE_FW(mode, _MASKED_BIT_ENABLE(STOP_RING));
err = 0;
if (__intel_wait_for_register_fw(dev_priv,
mode, MODE_IDLE, MODE_IDLE,
1000, 0,
NULL)) {
GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
err = -ETIMEDOUT;
}
/* A final mmio read to let GPU writes be hopefully flushed to memory */
POSTING_READ_FW(mode);
return err;
}
void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
GEM_TRACE("%s\n", engine->name);
I915_WRITE_FW(RING_MI_MODE(engine->mmio_base),
_MASKED_BIT_DISABLE(STOP_RING));
}
const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
{
switch (type) {
case I915_CACHE_NONE: return " uncached";
case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
case I915_CACHE_L3_LLC: return " L3+LLC";
case I915_CACHE_WT: return " WT";
default: return "";
}
}
u32 intel_calculate_mcr_s_ss_select(struct drm_i915_private *dev_priv)
{
const struct sseu_dev_info *sseu = &RUNTIME_INFO(dev_priv)->sseu;
u32 mcr_s_ss_select;
u32 slice = fls(sseu->slice_mask);
u32 subslice = fls(sseu->subslice_mask[slice]);
if (IS_GEN(dev_priv, 10))
mcr_s_ss_select = GEN8_MCR_SLICE(slice) |
GEN8_MCR_SUBSLICE(subslice);
else if (INTEL_GEN(dev_priv) >= 11)
mcr_s_ss_select = GEN11_MCR_SLICE(slice) |
GEN11_MCR_SUBSLICE(subslice);
else
mcr_s_ss_select = 0;
return mcr_s_ss_select;
}
static inline u32
read_subslice_reg(struct drm_i915_private *dev_priv, int slice,
int subslice, i915_reg_t reg)
{
u32 mcr_slice_subslice_mask;
u32 mcr_slice_subslice_select;
u32 default_mcr_s_ss_select;
u32 mcr;
u32 ret;
enum forcewake_domains fw_domains;
if (INTEL_GEN(dev_priv) >= 11) {
mcr_slice_subslice_mask = GEN11_MCR_SLICE_MASK |
GEN11_MCR_SUBSLICE_MASK;
mcr_slice_subslice_select = GEN11_MCR_SLICE(slice) |
GEN11_MCR_SUBSLICE(subslice);
} else {
mcr_slice_subslice_mask = GEN8_MCR_SLICE_MASK |
GEN8_MCR_SUBSLICE_MASK;
mcr_slice_subslice_select = GEN8_MCR_SLICE(slice) |
GEN8_MCR_SUBSLICE(subslice);
}
default_mcr_s_ss_select = intel_calculate_mcr_s_ss_select(dev_priv);
fw_domains = intel_uncore_forcewake_for_reg(dev_priv, reg,
FW_REG_READ);
fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
GEN8_MCR_SELECTOR,
FW_REG_READ | FW_REG_WRITE);
spin_lock_irq(&dev_priv->uncore.lock);
intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
mcr = I915_READ_FW(GEN8_MCR_SELECTOR);
WARN_ON_ONCE((mcr & mcr_slice_subslice_mask) !=
default_mcr_s_ss_select);
mcr &= ~mcr_slice_subslice_mask;
mcr |= mcr_slice_subslice_select;
I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);
ret = I915_READ_FW(reg);
mcr &= ~mcr_slice_subslice_mask;
mcr |= default_mcr_s_ss_select;
I915_WRITE_FW(GEN8_MCR_SELECTOR, mcr);
intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
spin_unlock_irq(&dev_priv->uncore.lock);
return ret;
}
/* NB: please notice the memset */
void intel_engine_get_instdone(struct intel_engine_cs *engine,
struct intel_instdone *instdone)
{
struct drm_i915_private *dev_priv = engine->i915;
u32 mmio_base = engine->mmio_base;
int slice;
int subslice;
memset(instdone, 0, sizeof(*instdone));
switch (INTEL_GEN(dev_priv)) {
default:
instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));
if (engine->id != RCS)
break;
instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
for_each_instdone_slice_subslice(dev_priv, slice, subslice) {
instdone->sampler[slice][subslice] =
read_subslice_reg(dev_priv, slice, subslice,
GEN7_SAMPLER_INSTDONE);
instdone->row[slice][subslice] =
read_subslice_reg(dev_priv, slice, subslice,
GEN7_ROW_INSTDONE);
}
break;
case 7:
instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));
if (engine->id != RCS)
break;
instdone->slice_common = I915_READ(GEN7_SC_INSTDONE);
instdone->sampler[0][0] = I915_READ(GEN7_SAMPLER_INSTDONE);
instdone->row[0][0] = I915_READ(GEN7_ROW_INSTDONE);
break;
case 6:
case 5:
case 4:
instdone->instdone = I915_READ(RING_INSTDONE(mmio_base));
if (engine->id == RCS)
/* HACK: Using the wrong struct member */
instdone->slice_common = I915_READ(GEN4_INSTDONE1);
break;
case 3:
case 2:
instdone->instdone = I915_READ(GEN2_INSTDONE);
break;
}
}
static bool ring_is_idle(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
intel_wakeref_t wakeref;
bool idle = true;
if (I915_SELFTEST_ONLY(!engine->mmio_base))
return true;
/* If the whole device is asleep, the engine must be idle */
wakeref = intel_runtime_pm_get_if_in_use(dev_priv);
if (!wakeref)
return true;
/* First check that no commands are left in the ring */
if ((I915_READ_HEAD(engine) & HEAD_ADDR) !=
(I915_READ_TAIL(engine) & TAIL_ADDR))
idle = false;
/* No bit for gen2, so assume the CS parser is idle */
if (INTEL_GEN(dev_priv) > 2 && !(I915_READ_MODE(engine) & MODE_IDLE))
idle = false;
intel_runtime_pm_put(dev_priv, wakeref);
return idle;
}
/**
* intel_engine_is_idle() - Report if the engine has finished process all work
* @engine: the intel_engine_cs
*
* Return true if there are no requests pending, nothing left to be submitted
* to hardware, and that the engine is idle.
*/
bool intel_engine_is_idle(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->i915;
/* More white lies, if wedged, hw state is inconsistent */
if (i915_terminally_wedged(&dev_priv->gpu_error))
return true;
/* Any inflight/incomplete requests? */
if (!intel_engine_signaled(engine, intel_engine_last_submit(engine)))
return false;
/* Waiting to drain ELSP? */
if (READ_ONCE(engine->execlists.active)) {
struct tasklet_struct *t = &engine->execlists.tasklet;
local_bh_disable();
if (tasklet_trylock(t)) {
/* Must wait for any GPU reset in progress. */
if (__tasklet_is_enabled(t))
t->func(t->data);
tasklet_unlock(t);
}
local_bh_enable();
/* Otherwise flush the tasklet if it was on another cpu */
tasklet_unlock_wait(t);
if (READ_ONCE(engine->execlists.active))
return false;
}
/* ELSP is empty, but there are ready requests? E.g. after reset */
if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
return false;
/* Ring stopped? */
return ring_is_idle(engine);
}
bool intel_engines_are_idle(struct drm_i915_private *dev_priv)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
/*
* If the driver is wedged, HW state may be very inconsistent and
* report that it is still busy, even though we have stopped using it.
*/
if (i915_terminally_wedged(&dev_priv->gpu_error))
return true;
for_each_engine(engine, dev_priv, id) {
if (!intel_engine_is_idle(engine))
return false;
}
return true;
}
/**
* intel_engine_has_kernel_context:
* @engine: the engine
*
* Returns true if the last context to be executed on this engine, or has been
* executed if the engine is already idle, is the kernel context
* (#i915.kernel_context).
*/
bool intel_engine_has_kernel_context(const struct intel_engine_cs *engine)
{
const struct intel_context *kernel_context =
to_intel_context(engine->i915->kernel_context, engine);
struct i915_request *rq;
lockdep_assert_held(&engine->i915->drm.struct_mutex);
/*
* Check the last context seen by the engine. If active, it will be
* the last request that remains in the timeline. When idle, it is
* the last executed context as tracked by retirement.
*/
rq = __i915_active_request_peek(&engine->timeline.last_request);
if (rq)
return rq->hw_context == kernel_context;
else
return engine->last_retired_context == kernel_context;
}
void intel_engines_reset_default_submission(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, i915, id)
engine->set_default_submission(engine);
}
static bool reset_engines(struct drm_i915_private *i915)
{
if (INTEL_INFO(i915)->gpu_reset_clobbers_display)
return false;
return intel_gpu_reset(i915, ALL_ENGINES) == 0;
}
/**
* intel_engines_sanitize: called after the GPU has lost power
* @i915: the i915 device
* @force: ignore a failed reset and sanitize engine state anyway
*
* Anytime we reset the GPU, either with an explicit GPU reset or through a
* PCI power cycle, the GPU loses state and we must reset our state tracking
* to match. Note that calling intel_engines_sanitize() if the GPU has not
* been reset results in much confusion!
*/
void intel_engines_sanitize(struct drm_i915_private *i915, bool force)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
GEM_TRACE("\n");
if (!reset_engines(i915) && !force)
return;
for_each_engine(engine, i915, id)
intel_engine_reset(engine, false);
}
/**
* intel_engines_park: called when the GT is transitioning from busy->idle
* @i915: the i915 device
*
* The GT is now idle and about to go to sleep (maybe never to wake again?).
* Time for us to tidy and put away our toys (release resources back to the
* system).
*/
void intel_engines_park(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, i915, id) {
/* Flush the residual irq tasklets first. */
intel_engine_disarm_breadcrumbs(engine);
tasklet_kill(&engine->execlists.tasklet);
/*
* We are committed now to parking the engines, make sure there
* will be no more interrupts arriving later and the engines
* are truly idle.
*/
if (wait_for(intel_engine_is_idle(engine), 10)) {
struct drm_printer p = drm_debug_printer(__func__);
dev_err(i915->drm.dev,
"%s is not idle before parking\n",
engine->name);
intel_engine_dump(engine, &p, NULL);
}
/* Must be reset upon idling, or we may miss the busy wakeup. */
GEM_BUG_ON(engine->execlists.queue_priority_hint != INT_MIN);
if (engine->park)
engine->park(engine);
if (engine->pinned_default_state) {
i915_gem_object_unpin_map(engine->default_state);
engine->pinned_default_state = NULL;
}
i915_gem_batch_pool_fini(&engine->batch_pool);
engine->execlists.no_priolist = false;
}
}
/**
* intel_engines_unpark: called when the GT is transitioning from idle->busy
* @i915: the i915 device
*
* The GT was idle and now about to fire up with some new user requests.
*/
void intel_engines_unpark(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
for_each_engine(engine, i915, id) {
void *map;
/* Pin the default state for fast resets from atomic context. */
map = NULL;
if (engine->default_state)
map = i915_gem_object_pin_map(engine->default_state,
I915_MAP_WB);
if (!IS_ERR_OR_NULL(map))
engine->pinned_default_state = map;
if (engine->unpark)
engine->unpark(engine);
intel_engine_init_hangcheck(engine);
}
}
/**
* intel_engine_lost_context: called when the GPU is reset into unknown state
* @engine: the engine
*
* We have either reset the GPU or otherwise about to lose state tracking of
* the current GPU logical state (e.g. suspend). On next use, it is therefore
* imperative that we make no presumptions about the current state and load
* from scratch.
*/
void intel_engine_lost_context(struct intel_engine_cs *engine)
{
struct intel_context *ce;
lockdep_assert_held(&engine->i915->drm.struct_mutex);
ce = fetch_and_zero(&engine->last_retired_context);
if (ce)
intel_context_unpin(ce);
}
bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
{
switch (INTEL_GEN(engine->i915)) {
case 2:
return false; /* uses physical not virtual addresses */
case 3:
/* maybe only uses physical not virtual addresses */
return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
case 6:
return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
default:
return true;
}
}
unsigned int intel_engines_has_context_isolation(struct drm_i915_private *i915)
{
struct intel_engine_cs *engine;
enum intel_engine_id id;
unsigned int which;
which = 0;
for_each_engine(engine, i915, id)
if (engine->default_state)
which |= BIT(engine->uabi_class);
return which;
}
static int print_sched_attr(struct drm_i915_private *i915,
const struct i915_sched_attr *attr,
char *buf, int x, int len)
{
if (attr->priority == I915_PRIORITY_INVALID)
return x;
x += snprintf(buf + x, len - x,
" prio=%d", attr->priority);
return x;
}
static void print_request(struct drm_printer *m,
struct i915_request *rq,
const char *prefix)
{
const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
char buf[80] = "";
int x = 0;
x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
drm_printf(m, "%s%x%s%s [%llx:%llx]%s @ %dms: %s\n",
prefix,
rq->global_seqno,
i915_request_completed(rq) ? "!" :
i915_request_started(rq) ? "*" :
"",
test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
&rq->fence.flags) ? "+" : "",
rq->fence.context, rq->fence.seqno,
buf,
jiffies_to_msecs(jiffies - rq->emitted_jiffies),
name);
}
static void hexdump(struct drm_printer *m, const void *buf, size_t len)
{
const size_t rowsize = 8 * sizeof(u32);
const void *prev = NULL;
bool skip = false;
size_t pos;
for (pos = 0; pos < len; pos += rowsize) {
char line[128];
if (prev && !memcmp(prev, buf + pos, rowsize)) {
if (!skip) {
drm_printf(m, "*\n");
skip = true;
}
continue;
}
WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
rowsize, sizeof(u32),
line, sizeof(line),
false) >= sizeof(line));
drm_printf(m, "[%04zx] %s\n", pos, line);
prev = buf + pos;
skip = false;
}
}
static void intel_engine_print_registers(const struct intel_engine_cs *engine,
struct drm_printer *m)
{
struct drm_i915_private *dev_priv = engine->i915;
const struct intel_engine_execlists * const execlists =
&engine->execlists;
u64 addr;
if (engine->id == RCS && IS_GEN_RANGE(dev_priv, 4, 7))
drm_printf(m, "\tCCID: 0x%08x\n", I915_READ(CCID));
drm_printf(m, "\tRING_START: 0x%08x\n",
I915_READ(RING_START(engine->mmio_base)));
drm_printf(m, "\tRING_HEAD: 0x%08x\n",
I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR);
drm_printf(m, "\tRING_TAIL: 0x%08x\n",
I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR);
drm_printf(m, "\tRING_CTL: 0x%08x%s\n",
I915_READ(RING_CTL(engine->mmio_base)),
I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
if (INTEL_GEN(engine->i915) > 2) {
drm_printf(m, "\tRING_MODE: 0x%08x%s\n",
I915_READ(RING_MI_MODE(engine->mmio_base)),
I915_READ(RING_MI_MODE(engine->mmio_base)) & (MODE_IDLE) ? " [idle]" : "");
}
if (INTEL_GEN(dev_priv) >= 6) {
drm_printf(m, "\tRING_IMR: %08x\n", I915_READ_IMR(engine));
}
addr = intel_engine_get_active_head(engine);
drm_printf(m, "\tACTHD: 0x%08x_%08x\n",
upper_32_bits(addr), lower_32_bits(addr));
addr = intel_engine_get_last_batch_head(engine);
drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
upper_32_bits(addr), lower_32_bits(addr));
if (INTEL_GEN(dev_priv) >= 8)
addr = I915_READ64_2x32(RING_DMA_FADD(engine->mmio_base),
RING_DMA_FADD_UDW(engine->mmio_base));
else if (INTEL_GEN(dev_priv) >= 4)
addr = I915_READ(RING_DMA_FADD(engine->mmio_base));
else
addr = I915_READ(DMA_FADD_I8XX);
drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
upper_32_bits(addr), lower_32_bits(addr));
if (INTEL_GEN(dev_priv) >= 4) {
drm_printf(m, "\tIPEIR: 0x%08x\n",
I915_READ(RING_IPEIR(engine->mmio_base)));
drm_printf(m, "\tIPEHR: 0x%08x\n",
I915_READ(RING_IPEHR(engine->mmio_base)));
} else {
drm_printf(m, "\tIPEIR: 0x%08x\n", I915_READ(IPEIR));
drm_printf(m, "\tIPEHR: 0x%08x\n", I915_READ(IPEHR));
}
if (HAS_EXECLISTS(dev_priv)) {
const u32 *hws =
&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
unsigned int idx;
u8 read, write;
drm_printf(m, "\tExeclist status: 0x%08x %08x\n",
I915_READ(RING_EXECLIST_STATUS_LO(engine)),
I915_READ(RING_EXECLIST_STATUS_HI(engine)));
read = execlists->csb_head;
write = READ_ONCE(*execlists->csb_write);
drm_printf(m, "\tExeclist CSB read %d, write %d [mmio:%d], tasklet queued? %s (%s)\n",
read, write,
GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine))),
yesno(test_bit(TASKLET_STATE_SCHED,
&engine->execlists.tasklet.state)),
enableddisabled(!atomic_read(&engine->execlists.tasklet.count)));
if (read >= GEN8_CSB_ENTRIES)
read = 0;
if (write >= GEN8_CSB_ENTRIES)
write = 0;
if (read > write)
write += GEN8_CSB_ENTRIES;
while (read < write) {
idx = ++read % GEN8_CSB_ENTRIES;
drm_printf(m, "\tExeclist CSB[%d]: 0x%08x [mmio:0x%08x], context: %d [mmio:%d]\n",
idx,
hws[idx * 2],
I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
hws[idx * 2 + 1],
I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
}
rcu_read_lock();
for (idx = 0; idx < execlists_num_ports(execlists); idx++) {
struct i915_request *rq;
unsigned int count;
rq = port_unpack(&execlists->port[idx], &count);
if (rq) {
char hdr[80];
snprintf(hdr, sizeof(hdr),
"\t\tELSP[%d] count=%d, ring:{start:%08x, hwsp:%08x}, rq: ",
idx, count,
i915_ggtt_offset(rq->ring->vma),
rq->timeline->hwsp_offset);
print_request(m, rq, hdr);
} else {
drm_printf(m, "\t\tELSP[%d] idle\n", idx);
}
}
drm_printf(m, "\t\tHW active? 0x%x\n", execlists->active);
rcu_read_unlock();
} else if (INTEL_GEN(dev_priv) > 6) {
drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
I915_READ(RING_PP_DIR_BASE(engine)));
drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
I915_READ(RING_PP_DIR_BASE_READ(engine)));
drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
I915_READ(RING_PP_DIR_DCLV(engine)));
}
}
static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
{
void *ring;
int size;
drm_printf(m,
"[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
rq->head, rq->postfix, rq->tail,
rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
size = rq->tail - rq->head;
if (rq->tail < rq->head)
size += rq->ring->size;
ring = kmalloc(size, GFP_ATOMIC);
if (ring) {
const void *vaddr = rq->ring->vaddr;
unsigned int head = rq->head;
unsigned int len = 0;
if (rq->tail < head) {
len = rq->ring->size - head;
memcpy(ring, vaddr + head, len);
head = 0;
}
memcpy(ring + len, vaddr + head, size - len);
hexdump(m, ring, size);
kfree(ring);
}
}
void intel_engine_dump(struct intel_engine_cs *engine,
struct drm_printer *m,
const char *header, ...)
{
struct i915_gpu_error * const error = &engine->i915->gpu_error;
struct i915_request *rq;
intel_wakeref_t wakeref;
if (header) {
va_list ap;
va_start(ap, header);
drm_vprintf(m, header, &ap);
va_end(ap);
}
if (i915_terminally_wedged(&engine->i915->gpu_error))
drm_printf(m, "*** WEDGED ***\n");
drm_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [%d ms]\n",
intel_engine_get_seqno(engine),
intel_engine_last_submit(engine),
engine->hangcheck.seqno,
jiffies_to_msecs(jiffies - engine->hangcheck.action_timestamp));
drm_printf(m, "\tReset count: %d (global %d)\n",
i915_reset_engine_count(error, engine),
i915_reset_count(error));
rcu_read_lock();
drm_printf(m, "\tRequests:\n");
rq = list_first_entry(&engine->timeline.requests,
struct i915_request, link);
if (&rq->link != &engine->timeline.requests)
print_request(m, rq, "\t\tfirst ");
rq = list_last_entry(&engine->timeline.requests,
struct i915_request, link);
if (&rq->link != &engine->timeline.requests)
print_request(m, rq, "\t\tlast ");
rq = i915_gem_find_active_request(engine);
if (rq) {
print_request(m, rq, "\t\tactive ");
drm_printf(m, "\t\tring->start: 0x%08x\n",
i915_ggtt_offset(rq->ring->vma));
drm_printf(m, "\t\tring->head: 0x%08x\n",
rq->ring->head);
drm_printf(m, "\t\tring->tail: 0x%08x\n",
rq->ring->tail);
drm_printf(m, "\t\tring->emit: 0x%08x\n",
rq->ring->emit);
drm_printf(m, "\t\tring->space: 0x%08x\n",
rq->ring->space);
drm_printf(m, "\t\tring->hwsp: 0x%08x\n",
rq->timeline->hwsp_offset);
print_request_ring(m, rq);
}
rcu_read_unlock();
wakeref = intel_runtime_pm_get_if_in_use(engine->i915);
if (wakeref) {
intel_engine_print_registers(engine, m);
intel_runtime_pm_put(engine->i915, wakeref);
} else {
drm_printf(m, "\tDevice is asleep; skipping register dump\n");
}
intel_execlists_show_requests(engine, m, print_request, 8);
drm_printf(m, "HWSP:\n");
hexdump(m, engine->status_page.addr, PAGE_SIZE);
drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
intel_engine_print_breadcrumbs(engine, m);
}
static u8 user_class_map[] = {
[I915_ENGINE_CLASS_RENDER] = RENDER_CLASS,
[I915_ENGINE_CLASS_COPY] = COPY_ENGINE_CLASS,
[I915_ENGINE_CLASS_VIDEO] = VIDEO_DECODE_CLASS,
[I915_ENGINE_CLASS_VIDEO_ENHANCE] = VIDEO_ENHANCEMENT_CLASS,
};
struct intel_engine_cs *
intel_engine_lookup_user(struct drm_i915_private *i915, u8 class, u8 instance)
{
if (class >= ARRAY_SIZE(user_class_map))
return NULL;
class = user_class_map[class];
GEM_BUG_ON(class > MAX_ENGINE_CLASS);
if (instance > MAX_ENGINE_INSTANCE)
return NULL;
return i915->engine_class[class][instance];
}
/**
* intel_enable_engine_stats() - Enable engine busy tracking on engine
* @engine: engine to enable stats collection
*
* Start collecting the engine busyness data for @engine.
*
* Returns 0 on success or a negative error code.
*/
int intel_enable_engine_stats(struct intel_engine_cs *engine)
{
struct intel_engine_execlists *execlists = &engine->execlists;
unsigned long flags;
int err = 0;
if (!intel_engine_supports_stats(engine))
return -ENODEV;
spin_lock_irqsave(&engine->timeline.lock, flags);
write_seqlock(&engine->stats.lock);
if (unlikely(engine->stats.enabled == ~0)) {
err = -EBUSY;
goto unlock;
}
if (engine->stats.enabled++ == 0) {
const struct execlist_port *port = execlists->port;
unsigned int num_ports = execlists_num_ports(execlists);
engine->stats.enabled_at = ktime_get();
/* XXX submission method oblivious? */
while (num_ports-- && port_isset(port)) {
engine->stats.active++;
port++;
}
if (engine->stats.active)
engine->stats.start = engine->stats.enabled_at;
}
unlock:
write_sequnlock(&engine->stats.lock);
spin_unlock_irqrestore(&engine->timeline.lock, flags);
return err;
}
static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
ktime_t total = engine->stats.total;
/*
* If the engine is executing something at the moment
* add it to the total.
*/
if (engine->stats.active)
total = ktime_add(total,
ktime_sub(ktime_get(), engine->stats.start));
return total;
}
/**
* intel_engine_get_busy_time() - Return current accumulated engine busyness
* @engine: engine to report on
*
* Returns accumulated time @engine was busy since engine stats were enabled.
*/
ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
{
unsigned int seq;
ktime_t total;
do {
seq = read_seqbegin(&engine->stats.lock);
total = __intel_engine_get_busy_time(engine);
} while (read_seqretry(&engine->stats.lock, seq));
return total;
}
/**
* intel_disable_engine_stats() - Disable engine busy tracking on engine
* @engine: engine to disable stats collection
*
* Stops collecting the engine busyness data for @engine.
*/
void intel_disable_engine_stats(struct intel_engine_cs *engine)
{
unsigned long flags;
if (!intel_engine_supports_stats(engine))
return;
write_seqlock_irqsave(&engine->stats.lock, flags);
WARN_ON_ONCE(engine->stats.enabled == 0);
if (--engine->stats.enabled == 0) {
engine->stats.total = __intel_engine_get_busy_time(engine);
engine->stats.active = 0;
}
write_sequnlock_irqrestore(&engine->stats.lock, flags);
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/mock_engine.c"
#include "selftests/intel_engine_cs.c"
#endif