blob: 947ef7981d92e42013257649a63dd2484644bcd4 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* linux/arch/arm/common/sa1111.c
*
* SA1111 support
*
* Original code by John Dorsey
*
* This file contains all generic SA1111 support.
*
* All initialization functions provided here are intended to be called
* from machine specific code with proper arguments when required.
*/
#include <linux/module.h>
#include <linux/gpio/driver.h>
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/dma-mapping.h>
#include <linux/clk.h>
#include <linux/io.h>
#include <mach/hardware.h>
#include <asm/mach/irq.h>
#include <asm/mach-types.h>
#include <linux/sizes.h>
#include <asm/hardware/sa1111.h>
/* SA1111 IRQs */
#define IRQ_GPAIN0 (0)
#define IRQ_GPAIN1 (1)
#define IRQ_GPAIN2 (2)
#define IRQ_GPAIN3 (3)
#define IRQ_GPBIN0 (4)
#define IRQ_GPBIN1 (5)
#define IRQ_GPBIN2 (6)
#define IRQ_GPBIN3 (7)
#define IRQ_GPBIN4 (8)
#define IRQ_GPBIN5 (9)
#define IRQ_GPCIN0 (10)
#define IRQ_GPCIN1 (11)
#define IRQ_GPCIN2 (12)
#define IRQ_GPCIN3 (13)
#define IRQ_GPCIN4 (14)
#define IRQ_GPCIN5 (15)
#define IRQ_GPCIN6 (16)
#define IRQ_GPCIN7 (17)
#define IRQ_MSTXINT (18)
#define IRQ_MSRXINT (19)
#define IRQ_MSSTOPERRINT (20)
#define IRQ_TPTXINT (21)
#define IRQ_TPRXINT (22)
#define IRQ_TPSTOPERRINT (23)
#define SSPXMTINT (24)
#define SSPRCVINT (25)
#define SSPROR (26)
#define AUDXMTDMADONEA (32)
#define AUDRCVDMADONEA (33)
#define AUDXMTDMADONEB (34)
#define AUDRCVDMADONEB (35)
#define AUDTFSR (36)
#define AUDRFSR (37)
#define AUDTUR (38)
#define AUDROR (39)
#define AUDDTS (40)
#define AUDRDD (41)
#define AUDSTO (42)
#define IRQ_USBPWR (43)
#define IRQ_HCIM (44)
#define IRQ_HCIBUFFACC (45)
#define IRQ_HCIRMTWKP (46)
#define IRQ_NHCIMFCIR (47)
#define IRQ_USB_PORT_RESUME (48)
#define IRQ_S0_READY_NINT (49)
#define IRQ_S1_READY_NINT (50)
#define IRQ_S0_CD_VALID (51)
#define IRQ_S1_CD_VALID (52)
#define IRQ_S0_BVD1_STSCHG (53)
#define IRQ_S1_BVD1_STSCHG (54)
#define SA1111_IRQ_NR (55)
extern void sa1110_mb_enable(void);
extern void sa1110_mb_disable(void);
/*
* We keep the following data for the overall SA1111. Note that the
* struct device and struct resource are "fake"; they should be supplied
* by the bus above us. However, in the interests of getting all SA1111
* drivers converted over to the device model, we provide this as an
* anchor point for all the other drivers.
*/
struct sa1111 {
struct device *dev;
struct clk *clk;
unsigned long phys;
int irq;
int irq_base; /* base for cascaded on-chip IRQs */
spinlock_t lock;
void __iomem *base;
struct sa1111_platform_data *pdata;
struct irq_domain *irqdomain;
struct gpio_chip gc;
#ifdef CONFIG_PM
void *saved_state;
#endif
};
/*
* We _really_ need to eliminate this. Its only users
* are the PWM and DMA checking code.
*/
static struct sa1111 *g_sa1111;
struct sa1111_dev_info {
unsigned long offset;
unsigned long skpcr_mask;
bool dma;
unsigned int devid;
unsigned int hwirq[6];
};
static struct sa1111_dev_info sa1111_devices[] = {
{
.offset = SA1111_USB,
.skpcr_mask = SKPCR_UCLKEN,
.dma = true,
.devid = SA1111_DEVID_USB,
.hwirq = {
IRQ_USBPWR,
IRQ_HCIM,
IRQ_HCIBUFFACC,
IRQ_HCIRMTWKP,
IRQ_NHCIMFCIR,
IRQ_USB_PORT_RESUME
},
},
{
.offset = 0x0600,
.skpcr_mask = SKPCR_I2SCLKEN | SKPCR_L3CLKEN,
.dma = true,
.devid = SA1111_DEVID_SAC,
.hwirq = {
AUDXMTDMADONEA,
AUDXMTDMADONEB,
AUDRCVDMADONEA,
AUDRCVDMADONEB
},
},
{
.offset = 0x0800,
.skpcr_mask = SKPCR_SCLKEN,
.devid = SA1111_DEVID_SSP,
},
{
.offset = SA1111_KBD,
.skpcr_mask = SKPCR_PTCLKEN,
.devid = SA1111_DEVID_PS2_KBD,
.hwirq = {
IRQ_TPRXINT,
IRQ_TPTXINT
},
},
{
.offset = SA1111_MSE,
.skpcr_mask = SKPCR_PMCLKEN,
.devid = SA1111_DEVID_PS2_MSE,
.hwirq = {
IRQ_MSRXINT,
IRQ_MSTXINT
},
},
{
.offset = 0x1800,
.skpcr_mask = 0,
.devid = SA1111_DEVID_PCMCIA,
.hwirq = {
IRQ_S0_READY_NINT,
IRQ_S0_CD_VALID,
IRQ_S0_BVD1_STSCHG,
IRQ_S1_READY_NINT,
IRQ_S1_CD_VALID,
IRQ_S1_BVD1_STSCHG,
},
},
};
static int sa1111_map_irq(struct sa1111 *sachip, irq_hw_number_t hwirq)
{
return irq_create_mapping(sachip->irqdomain, hwirq);
}
static void sa1111_handle_irqdomain(struct irq_domain *irqdomain, int irq)
{
struct irq_desc *d = irq_to_desc(irq_linear_revmap(irqdomain, irq));
if (d)
generic_handle_irq_desc(d);
}
/*
* SA1111 interrupt support. Since clearing an IRQ while there are
* active IRQs causes the interrupt output to pulse, the upper levels
* will call us again if there are more interrupts to process.
*/
static void sa1111_irq_handler(struct irq_desc *desc)
{
unsigned int stat0, stat1, i;
struct sa1111 *sachip = irq_desc_get_handler_data(desc);
struct irq_domain *irqdomain;
void __iomem *mapbase = sachip->base + SA1111_INTC;
stat0 = readl_relaxed(mapbase + SA1111_INTSTATCLR0);
stat1 = readl_relaxed(mapbase + SA1111_INTSTATCLR1);
writel_relaxed(stat0, mapbase + SA1111_INTSTATCLR0);
desc->irq_data.chip->irq_ack(&desc->irq_data);
writel_relaxed(stat1, mapbase + SA1111_INTSTATCLR1);
if (stat0 == 0 && stat1 == 0) {
do_bad_IRQ(desc);
return;
}
irqdomain = sachip->irqdomain;
for (i = 0; stat0; i++, stat0 >>= 1)
if (stat0 & 1)
sa1111_handle_irqdomain(irqdomain, i);
for (i = 32; stat1; i++, stat1 >>= 1)
if (stat1 & 1)
sa1111_handle_irqdomain(irqdomain, i);
/* For level-based interrupts */
desc->irq_data.chip->irq_unmask(&desc->irq_data);
}
static u32 sa1111_irqmask(struct irq_data *d)
{
return BIT(irqd_to_hwirq(d) & 31);
}
static int sa1111_irqbank(struct irq_data *d)
{
return (irqd_to_hwirq(d) / 32) * 4;
}
static void sa1111_ack_irq(struct irq_data *d)
{
}
static void sa1111_mask_irq(struct irq_data *d)
{
struct sa1111 *sachip = irq_data_get_irq_chip_data(d);
void __iomem *mapbase = sachip->base + SA1111_INTC + sa1111_irqbank(d);
u32 ie;
ie = readl_relaxed(mapbase + SA1111_INTEN0);
ie &= ~sa1111_irqmask(d);
writel(ie, mapbase + SA1111_INTEN0);
}
static void sa1111_unmask_irq(struct irq_data *d)
{
struct sa1111 *sachip = irq_data_get_irq_chip_data(d);
void __iomem *mapbase = sachip->base + SA1111_INTC + sa1111_irqbank(d);
u32 ie;
ie = readl_relaxed(mapbase + SA1111_INTEN0);
ie |= sa1111_irqmask(d);
writel_relaxed(ie, mapbase + SA1111_INTEN0);
}
/*
* Attempt to re-trigger the interrupt. The SA1111 contains a register
* (INTSET) which claims to do this. However, in practice no amount of
* manipulation of INTEN and INTSET guarantees that the interrupt will
* be triggered. In fact, its very difficult, if not impossible to get
* INTSET to re-trigger the interrupt.
*/
static int sa1111_retrigger_irq(struct irq_data *d)
{
struct sa1111 *sachip = irq_data_get_irq_chip_data(d);
void __iomem *mapbase = sachip->base + SA1111_INTC + sa1111_irqbank(d);
u32 ip, mask = sa1111_irqmask(d);
int i;
ip = readl_relaxed(mapbase + SA1111_INTPOL0);
for (i = 0; i < 8; i++) {
writel_relaxed(ip ^ mask, mapbase + SA1111_INTPOL0);
writel_relaxed(ip, mapbase + SA1111_INTPOL0);
if (readl_relaxed(mapbase + SA1111_INTSTATCLR0) & mask)
break;
}
if (i == 8)
pr_err("Danger Will Robinson: failed to re-trigger IRQ%d\n",
d->irq);
return i == 8 ? -1 : 0;
}
static int sa1111_type_irq(struct irq_data *d, unsigned int flags)
{
struct sa1111 *sachip = irq_data_get_irq_chip_data(d);
void __iomem *mapbase = sachip->base + SA1111_INTC + sa1111_irqbank(d);
u32 ip, mask = sa1111_irqmask(d);
if (flags == IRQ_TYPE_PROBE)
return 0;
if ((!(flags & IRQ_TYPE_EDGE_RISING) ^ !(flags & IRQ_TYPE_EDGE_FALLING)) == 0)
return -EINVAL;
ip = readl_relaxed(mapbase + SA1111_INTPOL0);
if (flags & IRQ_TYPE_EDGE_RISING)
ip &= ~mask;
else
ip |= mask;
writel_relaxed(ip, mapbase + SA1111_INTPOL0);
writel_relaxed(ip, mapbase + SA1111_WAKEPOL0);
return 0;
}
static int sa1111_wake_irq(struct irq_data *d, unsigned int on)
{
struct sa1111 *sachip = irq_data_get_irq_chip_data(d);
void __iomem *mapbase = sachip->base + SA1111_INTC + sa1111_irqbank(d);
u32 we, mask = sa1111_irqmask(d);
we = readl_relaxed(mapbase + SA1111_WAKEEN0);
if (on)
we |= mask;
else
we &= ~mask;
writel_relaxed(we, mapbase + SA1111_WAKEEN0);
return 0;
}
static struct irq_chip sa1111_irq_chip = {
.name = "SA1111",
.irq_ack = sa1111_ack_irq,
.irq_mask = sa1111_mask_irq,
.irq_unmask = sa1111_unmask_irq,
.irq_retrigger = sa1111_retrigger_irq,
.irq_set_type = sa1111_type_irq,
.irq_set_wake = sa1111_wake_irq,
};
static int sa1111_irqdomain_map(struct irq_domain *d, unsigned int irq,
irq_hw_number_t hwirq)
{
struct sa1111 *sachip = d->host_data;
/* Disallow unavailable interrupts */
if (hwirq > SSPROR && hwirq < AUDXMTDMADONEA)
return -EINVAL;
irq_set_chip_data(irq, sachip);
irq_set_chip_and_handler(irq, &sa1111_irq_chip, handle_edge_irq);
irq_clear_status_flags(irq, IRQ_NOREQUEST | IRQ_NOPROBE);
return 0;
}
static const struct irq_domain_ops sa1111_irqdomain_ops = {
.map = sa1111_irqdomain_map,
.xlate = irq_domain_xlate_twocell,
};
static int sa1111_setup_irq(struct sa1111 *sachip, unsigned irq_base)
{
void __iomem *irqbase = sachip->base + SA1111_INTC;
int ret;
/*
* We're guaranteed that this region hasn't been taken.
*/
request_mem_region(sachip->phys + SA1111_INTC, 512, "irq");
ret = irq_alloc_descs(-1, irq_base, SA1111_IRQ_NR, -1);
if (ret <= 0) {
dev_err(sachip->dev, "unable to allocate %u irqs: %d\n",
SA1111_IRQ_NR, ret);
if (ret == 0)
ret = -EINVAL;
return ret;
}
sachip->irq_base = ret;
/* disable all IRQs */
writel_relaxed(0, irqbase + SA1111_INTEN0);
writel_relaxed(0, irqbase + SA1111_INTEN1);
writel_relaxed(0, irqbase + SA1111_WAKEEN0);
writel_relaxed(0, irqbase + SA1111_WAKEEN1);
/*
* detect on rising edge. Note: Feb 2001 Errata for SA1111
* specifies that S0ReadyInt and S1ReadyInt should be '1'.
*/
writel_relaxed(0, irqbase + SA1111_INTPOL0);
writel_relaxed(BIT(IRQ_S0_READY_NINT & 31) |
BIT(IRQ_S1_READY_NINT & 31),
irqbase + SA1111_INTPOL1);
/* clear all IRQs */
writel_relaxed(~0, irqbase + SA1111_INTSTATCLR0);
writel_relaxed(~0, irqbase + SA1111_INTSTATCLR1);
sachip->irqdomain = irq_domain_add_linear(NULL, SA1111_IRQ_NR,
&sa1111_irqdomain_ops,
sachip);
if (!sachip->irqdomain) {
irq_free_descs(sachip->irq_base, SA1111_IRQ_NR);
return -ENOMEM;
}
irq_domain_associate_many(sachip->irqdomain,
sachip->irq_base + IRQ_GPAIN0,
IRQ_GPAIN0, SSPROR + 1 - IRQ_GPAIN0);
irq_domain_associate_many(sachip->irqdomain,
sachip->irq_base + AUDXMTDMADONEA,
AUDXMTDMADONEA,
IRQ_S1_BVD1_STSCHG + 1 - AUDXMTDMADONEA);
/*
* Register SA1111 interrupt
*/
irq_set_irq_type(sachip->irq, IRQ_TYPE_EDGE_RISING);
irq_set_chained_handler_and_data(sachip->irq, sa1111_irq_handler,
sachip);
dev_info(sachip->dev, "Providing IRQ%u-%u\n",
sachip->irq_base, sachip->irq_base + SA1111_IRQ_NR - 1);
return 0;
}
static void sa1111_remove_irq(struct sa1111 *sachip)
{
struct irq_domain *domain = sachip->irqdomain;
void __iomem *irqbase = sachip->base + SA1111_INTC;
int i;
/* disable all IRQs */
writel_relaxed(0, irqbase + SA1111_INTEN0);
writel_relaxed(0, irqbase + SA1111_INTEN1);
writel_relaxed(0, irqbase + SA1111_WAKEEN0);
writel_relaxed(0, irqbase + SA1111_WAKEEN1);
irq_set_chained_handler_and_data(sachip->irq, NULL, NULL);
for (i = 0; i < SA1111_IRQ_NR; i++)
irq_dispose_mapping(irq_find_mapping(domain, i));
irq_domain_remove(domain);
release_mem_region(sachip->phys + SA1111_INTC, 512);
}
enum {
SA1111_GPIO_PXDDR = (SA1111_GPIO_PADDR - SA1111_GPIO_PADDR),
SA1111_GPIO_PXDRR = (SA1111_GPIO_PADRR - SA1111_GPIO_PADDR),
SA1111_GPIO_PXDWR = (SA1111_GPIO_PADWR - SA1111_GPIO_PADDR),
SA1111_GPIO_PXSDR = (SA1111_GPIO_PASDR - SA1111_GPIO_PADDR),
SA1111_GPIO_PXSSR = (SA1111_GPIO_PASSR - SA1111_GPIO_PADDR),
};
static struct sa1111 *gc_to_sa1111(struct gpio_chip *gc)
{
return container_of(gc, struct sa1111, gc);
}
static void __iomem *sa1111_gpio_map_reg(struct sa1111 *sachip, unsigned offset)
{
void __iomem *reg = sachip->base + SA1111_GPIO;
if (offset < 4)
return reg + SA1111_GPIO_PADDR;
if (offset < 10)
return reg + SA1111_GPIO_PBDDR;
if (offset < 18)
return reg + SA1111_GPIO_PCDDR;
return NULL;
}
static u32 sa1111_gpio_map_bit(unsigned offset)
{
if (offset < 4)
return BIT(offset);
if (offset < 10)
return BIT(offset - 4);
if (offset < 18)
return BIT(offset - 10);
return 0;
}
static void sa1111_gpio_modify(void __iomem *reg, u32 mask, u32 set)
{
u32 val;
val = readl_relaxed(reg);
val &= ~mask;
val |= mask & set;
writel_relaxed(val, reg);
}
static int sa1111_gpio_get_direction(struct gpio_chip *gc, unsigned offset)
{
struct sa1111 *sachip = gc_to_sa1111(gc);
void __iomem *reg = sa1111_gpio_map_reg(sachip, offset);
u32 mask = sa1111_gpio_map_bit(offset);
return !!(readl_relaxed(reg + SA1111_GPIO_PXDDR) & mask);
}
static int sa1111_gpio_direction_input(struct gpio_chip *gc, unsigned offset)
{
struct sa1111 *sachip = gc_to_sa1111(gc);
unsigned long flags;
void __iomem *reg = sa1111_gpio_map_reg(sachip, offset);
u32 mask = sa1111_gpio_map_bit(offset);
spin_lock_irqsave(&sachip->lock, flags);
sa1111_gpio_modify(reg + SA1111_GPIO_PXDDR, mask, mask);
sa1111_gpio_modify(reg + SA1111_GPIO_PXSDR, mask, mask);
spin_unlock_irqrestore(&sachip->lock, flags);
return 0;
}
static int sa1111_gpio_direction_output(struct gpio_chip *gc, unsigned offset,
int value)
{
struct sa1111 *sachip = gc_to_sa1111(gc);
unsigned long flags;
void __iomem *reg = sa1111_gpio_map_reg(sachip, offset);
u32 mask = sa1111_gpio_map_bit(offset);
spin_lock_irqsave(&sachip->lock, flags);
sa1111_gpio_modify(reg + SA1111_GPIO_PXDWR, mask, value ? mask : 0);
sa1111_gpio_modify(reg + SA1111_GPIO_PXSSR, mask, value ? mask : 0);
sa1111_gpio_modify(reg + SA1111_GPIO_PXDDR, mask, 0);
sa1111_gpio_modify(reg + SA1111_GPIO_PXSDR, mask, 0);
spin_unlock_irqrestore(&sachip->lock, flags);
return 0;
}
static int sa1111_gpio_get(struct gpio_chip *gc, unsigned offset)
{
struct sa1111 *sachip = gc_to_sa1111(gc);
void __iomem *reg = sa1111_gpio_map_reg(sachip, offset);
u32 mask = sa1111_gpio_map_bit(offset);
return !!(readl_relaxed(reg + SA1111_GPIO_PXDRR) & mask);
}
static void sa1111_gpio_set(struct gpio_chip *gc, unsigned offset, int value)
{
struct sa1111 *sachip = gc_to_sa1111(gc);
unsigned long flags;
void __iomem *reg = sa1111_gpio_map_reg(sachip, offset);
u32 mask = sa1111_gpio_map_bit(offset);
spin_lock_irqsave(&sachip->lock, flags);
sa1111_gpio_modify(reg + SA1111_GPIO_PXDWR, mask, value ? mask : 0);
sa1111_gpio_modify(reg + SA1111_GPIO_PXSSR, mask, value ? mask : 0);
spin_unlock_irqrestore(&sachip->lock, flags);
}
static void sa1111_gpio_set_multiple(struct gpio_chip *gc, unsigned long *mask,
unsigned long *bits)
{
struct sa1111 *sachip = gc_to_sa1111(gc);
unsigned long flags;
void __iomem *reg = sachip->base + SA1111_GPIO;
u32 msk, val;
msk = *mask;
val = *bits;
spin_lock_irqsave(&sachip->lock, flags);
sa1111_gpio_modify(reg + SA1111_GPIO_PADWR, msk & 15, val);
sa1111_gpio_modify(reg + SA1111_GPIO_PASSR, msk & 15, val);
sa1111_gpio_modify(reg + SA1111_GPIO_PBDWR, (msk >> 4) & 255, val >> 4);
sa1111_gpio_modify(reg + SA1111_GPIO_PBSSR, (msk >> 4) & 255, val >> 4);
sa1111_gpio_modify(reg + SA1111_GPIO_PCDWR, (msk >> 12) & 255, val >> 12);
sa1111_gpio_modify(reg + SA1111_GPIO_PCSSR, (msk >> 12) & 255, val >> 12);
spin_unlock_irqrestore(&sachip->lock, flags);
}
static int sa1111_gpio_to_irq(struct gpio_chip *gc, unsigned offset)
{
struct sa1111 *sachip = gc_to_sa1111(gc);
return sa1111_map_irq(sachip, offset);
}
static int sa1111_setup_gpios(struct sa1111 *sachip)
{
sachip->gc.label = "sa1111";
sachip->gc.parent = sachip->dev;
sachip->gc.owner = THIS_MODULE;
sachip->gc.get_direction = sa1111_gpio_get_direction;
sachip->gc.direction_input = sa1111_gpio_direction_input;
sachip->gc.direction_output = sa1111_gpio_direction_output;
sachip->gc.get = sa1111_gpio_get;
sachip->gc.set = sa1111_gpio_set;
sachip->gc.set_multiple = sa1111_gpio_set_multiple;
sachip->gc.to_irq = sa1111_gpio_to_irq;
sachip->gc.base = -1;
sachip->gc.ngpio = 18;
return devm_gpiochip_add_data(sachip->dev, &sachip->gc, sachip);
}
/*
* Bring the SA1111 out of reset. This requires a set procedure:
* 1. nRESET asserted (by hardware)
* 2. CLK turned on from SA1110
* 3. nRESET deasserted
* 4. VCO turned on, PLL_BYPASS turned off
* 5. Wait lock time, then assert RCLKEn
* 7. PCR set to allow clocking of individual functions
*
* Until we've done this, the only registers we can access are:
* SBI_SKCR
* SBI_SMCR
* SBI_SKID
*/
static void sa1111_wake(struct sa1111 *sachip)
{
unsigned long flags, r;
spin_lock_irqsave(&sachip->lock, flags);
clk_enable(sachip->clk);
/*
* Turn VCO on, and disable PLL Bypass.
*/
r = readl_relaxed(sachip->base + SA1111_SKCR);
r &= ~SKCR_VCO_OFF;
writel_relaxed(r, sachip->base + SA1111_SKCR);
r |= SKCR_PLL_BYPASS | SKCR_OE_EN;
writel_relaxed(r, sachip->base + SA1111_SKCR);
/*
* Wait lock time. SA1111 manual _doesn't_
* specify a figure for this! We choose 100us.
*/
udelay(100);
/*
* Enable RCLK. We also ensure that RDYEN is set.
*/
r |= SKCR_RCLKEN | SKCR_RDYEN;
writel_relaxed(r, sachip->base + SA1111_SKCR);
/*
* Wait 14 RCLK cycles for the chip to finish coming out
* of reset. (RCLK=24MHz). This is 590ns.
*/
udelay(1);
/*
* Ensure all clocks are initially off.
*/
writel_relaxed(0, sachip->base + SA1111_SKPCR);
spin_unlock_irqrestore(&sachip->lock, flags);
}
#ifdef CONFIG_ARCH_SA1100
static u32 sa1111_dma_mask[] = {
~0,
~(1 << 20),
~(1 << 23),
~(1 << 24),
~(1 << 25),
~(1 << 20),
~(1 << 20),
0,
};
/*
* Configure the SA1111 shared memory controller.
*/
void
sa1111_configure_smc(struct sa1111 *sachip, int sdram, unsigned int drac,
unsigned int cas_latency)
{
unsigned int smcr = SMCR_DTIM | SMCR_MBGE | FInsrt(drac, SMCR_DRAC);
if (cas_latency == 3)
smcr |= SMCR_CLAT;
writel_relaxed(smcr, sachip->base + SA1111_SMCR);
/*
* Now clear the bits in the DMA mask to work around the SA1111
* DMA erratum (Intel StrongARM SA-1111 Microprocessor Companion
* Chip Specification Update, June 2000, Erratum #7).
*/
if (sachip->dev->dma_mask)
*sachip->dev->dma_mask &= sa1111_dma_mask[drac >> 2];
sachip->dev->coherent_dma_mask &= sa1111_dma_mask[drac >> 2];
}
#endif
static void sa1111_dev_release(struct device *_dev)
{
struct sa1111_dev *dev = to_sa1111_device(_dev);
kfree(dev);
}
static int
sa1111_init_one_child(struct sa1111 *sachip, struct resource *parent,
struct sa1111_dev_info *info)
{
struct sa1111_dev *dev;
unsigned i;
int ret;
dev = kzalloc(sizeof(struct sa1111_dev), GFP_KERNEL);
if (!dev) {
ret = -ENOMEM;
goto err_alloc;
}
device_initialize(&dev->dev);
dev_set_name(&dev->dev, "%4.4lx", info->offset);
dev->devid = info->devid;
dev->dev.parent = sachip->dev;
dev->dev.bus = &sa1111_bus_type;
dev->dev.release = sa1111_dev_release;
dev->res.start = sachip->phys + info->offset;
dev->res.end = dev->res.start + 511;
dev->res.name = dev_name(&dev->dev);
dev->res.flags = IORESOURCE_MEM;
dev->mapbase = sachip->base + info->offset;
dev->skpcr_mask = info->skpcr_mask;
for (i = 0; i < ARRAY_SIZE(info->hwirq); i++)
dev->hwirq[i] = info->hwirq[i];
/*
* If the parent device has a DMA mask associated with it, and
* this child supports DMA, propagate it down to the children.
*/
if (info->dma && sachip->dev->dma_mask) {
dev->dma_mask = *sachip->dev->dma_mask;
dev->dev.dma_mask = &dev->dma_mask;
dev->dev.coherent_dma_mask = sachip->dev->coherent_dma_mask;
}
ret = request_resource(parent, &dev->res);
if (ret) {
dev_err(sachip->dev, "failed to allocate resource for %s\n",
dev->res.name);
goto err_resource;
}
ret = device_add(&dev->dev);
if (ret)
goto err_add;
return 0;
err_add:
release_resource(&dev->res);
err_resource:
put_device(&dev->dev);
err_alloc:
return ret;
}
/**
* sa1111_probe - probe for a single SA1111 chip.
* @phys_addr: physical address of device.
*
* Probe for a SA1111 chip. This must be called
* before any other SA1111-specific code.
*
* Returns:
* %-ENODEV device not found.
* %-EBUSY physical address already marked in-use.
* %-EINVAL no platform data passed
* %0 successful.
*/
static int __sa1111_probe(struct device *me, struct resource *mem, int irq)
{
struct sa1111_platform_data *pd = me->platform_data;
struct sa1111 *sachip;
unsigned long id;
unsigned int has_devs;
int i, ret = -ENODEV;
if (!pd)
return -EINVAL;
sachip = devm_kzalloc(me, sizeof(struct sa1111), GFP_KERNEL);
if (!sachip)
return -ENOMEM;
sachip->clk = devm_clk_get(me, "SA1111_CLK");
if (IS_ERR(sachip->clk))
return PTR_ERR(sachip->clk);
ret = clk_prepare(sachip->clk);
if (ret)
return ret;
spin_lock_init(&sachip->lock);
sachip->dev = me;
dev_set_drvdata(sachip->dev, sachip);
sachip->pdata = pd;
sachip->phys = mem->start;
sachip->irq = irq;
/*
* Map the whole region. This also maps the
* registers for our children.
*/
sachip->base = ioremap(mem->start, PAGE_SIZE * 2);
if (!sachip->base) {
ret = -ENOMEM;
goto err_clk_unprep;
}
/*
* Probe for the chip. Only touch the SBI registers.
*/
id = readl_relaxed(sachip->base + SA1111_SKID);
if ((id & SKID_ID_MASK) != SKID_SA1111_ID) {
printk(KERN_DEBUG "SA1111 not detected: ID = %08lx\n", id);
ret = -ENODEV;
goto err_unmap;
}
pr_info("SA1111 Microprocessor Companion Chip: silicon revision %lx, metal revision %lx\n",
(id & SKID_SIREV_MASK) >> 4, id & SKID_MTREV_MASK);
/*
* We found it. Wake the chip up, and initialise.
*/
sa1111_wake(sachip);
/*
* The interrupt controller must be initialised before any
* other device to ensure that the interrupts are available.
*/
ret = sa1111_setup_irq(sachip, pd->irq_base);
if (ret)
goto err_clk;
/* Setup the GPIOs - should really be done after the IRQ setup */
ret = sa1111_setup_gpios(sachip);
if (ret)
goto err_irq;
#ifdef CONFIG_ARCH_SA1100
{
unsigned int val;
/*
* The SDRAM configuration of the SA1110 and the SA1111 must
* match. This is very important to ensure that SA1111 accesses
* don't corrupt the SDRAM. Note that this ungates the SA1111's
* MBGNT signal, so we must have called sa1110_mb_disable()
* beforehand.
*/
sa1111_configure_smc(sachip, 1,
FExtr(MDCNFG, MDCNFG_SA1110_DRAC0),
FExtr(MDCNFG, MDCNFG_SA1110_TDL0));
/*
* We only need to turn on DCLK whenever we want to use the
* DMA. It can otherwise be held firmly in the off position.
* (currently, we always enable it.)
*/
val = readl_relaxed(sachip->base + SA1111_SKPCR);
writel_relaxed(val | SKPCR_DCLKEN, sachip->base + SA1111_SKPCR);
/*
* Enable the SA1110 memory bus request and grant signals.
*/
sa1110_mb_enable();
}
#endif
g_sa1111 = sachip;
has_devs = ~0;
if (pd)
has_devs &= ~pd->disable_devs;
for (i = 0; i < ARRAY_SIZE(sa1111_devices); i++)
if (sa1111_devices[i].devid & has_devs)
sa1111_init_one_child(sachip, mem, &sa1111_devices[i]);
return 0;
err_irq:
sa1111_remove_irq(sachip);
err_clk:
clk_disable(sachip->clk);
err_unmap:
iounmap(sachip->base);
err_clk_unprep:
clk_unprepare(sachip->clk);
return ret;
}
static int sa1111_remove_one(struct device *dev, void *data)
{
struct sa1111_dev *sadev = to_sa1111_device(dev);
if (dev->bus != &sa1111_bus_type)
return 0;
device_del(&sadev->dev);
release_resource(&sadev->res);
put_device(&sadev->dev);
return 0;
}
static void __sa1111_remove(struct sa1111 *sachip)
{
device_for_each_child(sachip->dev, NULL, sa1111_remove_one);
sa1111_remove_irq(sachip);
clk_disable(sachip->clk);
clk_unprepare(sachip->clk);
iounmap(sachip->base);
}
struct sa1111_save_data {
unsigned int skcr;
unsigned int skpcr;
unsigned int skcdr;
unsigned char skaud;
unsigned char skpwm0;
unsigned char skpwm1;
/*
* Interrupt controller
*/
unsigned int intpol0;
unsigned int intpol1;
unsigned int inten0;
unsigned int inten1;
unsigned int wakepol0;
unsigned int wakepol1;
unsigned int wakeen0;
unsigned int wakeen1;
};
#ifdef CONFIG_PM
static int sa1111_suspend_noirq(struct device *dev)
{
struct sa1111 *sachip = dev_get_drvdata(dev);
struct sa1111_save_data *save;
unsigned long flags;
unsigned int val;
void __iomem *base;
save = kmalloc(sizeof(struct sa1111_save_data), GFP_KERNEL);
if (!save)
return -ENOMEM;
sachip->saved_state = save;
spin_lock_irqsave(&sachip->lock, flags);
/*
* Save state.
*/
base = sachip->base;
save->skcr = readl_relaxed(base + SA1111_SKCR);
save->skpcr = readl_relaxed(base + SA1111_SKPCR);
save->skcdr = readl_relaxed(base + SA1111_SKCDR);
save->skaud = readl_relaxed(base + SA1111_SKAUD);
save->skpwm0 = readl_relaxed(base + SA1111_SKPWM0);
save->skpwm1 = readl_relaxed(base + SA1111_SKPWM1);
writel_relaxed(0, sachip->base + SA1111_SKPWM0);
writel_relaxed(0, sachip->base + SA1111_SKPWM1);
base = sachip->base + SA1111_INTC;
save->intpol0 = readl_relaxed(base + SA1111_INTPOL0);
save->intpol1 = readl_relaxed(base + SA1111_INTPOL1);
save->inten0 = readl_relaxed(base + SA1111_INTEN0);
save->inten1 = readl_relaxed(base + SA1111_INTEN1);
save->wakepol0 = readl_relaxed(base + SA1111_WAKEPOL0);
save->wakepol1 = readl_relaxed(base + SA1111_WAKEPOL1);
save->wakeen0 = readl_relaxed(base + SA1111_WAKEEN0);
save->wakeen1 = readl_relaxed(base + SA1111_WAKEEN1);
/*
* Disable.
*/
val = readl_relaxed(sachip->base + SA1111_SKCR);
writel_relaxed(val | SKCR_SLEEP, sachip->base + SA1111_SKCR);
clk_disable(sachip->clk);
spin_unlock_irqrestore(&sachip->lock, flags);
#ifdef CONFIG_ARCH_SA1100
sa1110_mb_disable();
#endif
return 0;
}
/*
* sa1111_resume - Restore the SA1111 device state.
* @dev: device to restore
*
* Restore the general state of the SA1111; clock control and
* interrupt controller. Other parts of the SA1111 must be
* restored by their respective drivers, and must be called
* via LDM after this function.
*/
static int sa1111_resume_noirq(struct device *dev)
{
struct sa1111 *sachip = dev_get_drvdata(dev);
struct sa1111_save_data *save;
unsigned long flags, id;
void __iomem *base;
save = sachip->saved_state;
if (!save)
return 0;
/*
* Ensure that the SA1111 is still here.
* FIXME: shouldn't do this here.
*/
id = readl_relaxed(sachip->base + SA1111_SKID);
if ((id & SKID_ID_MASK) != SKID_SA1111_ID) {
__sa1111_remove(sachip);
dev_set_drvdata(dev, NULL);
kfree(save);
return 0;
}
/*
* First of all, wake up the chip.
*/
sa1111_wake(sachip);
#ifdef CONFIG_ARCH_SA1100
/* Enable the memory bus request/grant signals */
sa1110_mb_enable();
#endif
/*
* Only lock for write ops. Also, sa1111_wake must be called with
* released spinlock!
*/
spin_lock_irqsave(&sachip->lock, flags);
writel_relaxed(0, sachip->base + SA1111_INTC + SA1111_INTEN0);
writel_relaxed(0, sachip->base + SA1111_INTC + SA1111_INTEN1);
base = sachip->base;
writel_relaxed(save->skcr, base + SA1111_SKCR);
writel_relaxed(save->skpcr, base + SA1111_SKPCR);
writel_relaxed(save->skcdr, base + SA1111_SKCDR);
writel_relaxed(save->skaud, base + SA1111_SKAUD);
writel_relaxed(save->skpwm0, base + SA1111_SKPWM0);
writel_relaxed(save->skpwm1, base + SA1111_SKPWM1);
base = sachip->base + SA1111_INTC;
writel_relaxed(save->intpol0, base + SA1111_INTPOL0);
writel_relaxed(save->intpol1, base + SA1111_INTPOL1);
writel_relaxed(save->inten0, base + SA1111_INTEN0);
writel_relaxed(save->inten1, base + SA1111_INTEN1);
writel_relaxed(save->wakepol0, base + SA1111_WAKEPOL0);
writel_relaxed(save->wakepol1, base + SA1111_WAKEPOL1);
writel_relaxed(save->wakeen0, base + SA1111_WAKEEN0);
writel_relaxed(save->wakeen1, base + SA1111_WAKEEN1);
spin_unlock_irqrestore(&sachip->lock, flags);
sachip->saved_state = NULL;
kfree(save);
return 0;
}
#else
#define sa1111_suspend_noirq NULL
#define sa1111_resume_noirq NULL
#endif
static int sa1111_probe(struct platform_device *pdev)
{
struct resource *mem;
int irq;
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mem)
return -EINVAL;
irq = platform_get_irq(pdev, 0);
if (irq < 0)
return irq;
return __sa1111_probe(&pdev->dev, mem, irq);
}
static int sa1111_remove(struct platform_device *pdev)
{
struct sa1111 *sachip = platform_get_drvdata(pdev);
if (sachip) {
#ifdef CONFIG_PM
kfree(sachip->saved_state);
sachip->saved_state = NULL;
#endif
__sa1111_remove(sachip);
platform_set_drvdata(pdev, NULL);
}
return 0;
}
static struct dev_pm_ops sa1111_pm_ops = {
.suspend_noirq = sa1111_suspend_noirq,
.resume_noirq = sa1111_resume_noirq,
};
/*
* Not sure if this should be on the system bus or not yet.
* We really want some way to register a system device at
* the per-machine level, and then have this driver pick
* up the registered devices.
*
* We also need to handle the SDRAM configuration for
* PXA250/SA1110 machine classes.
*/
static struct platform_driver sa1111_device_driver = {
.probe = sa1111_probe,
.remove = sa1111_remove,
.driver = {
.name = "sa1111",
.pm = &sa1111_pm_ops,
},
};
/*
* Get the parent device driver (us) structure
* from a child function device
*/
static inline struct sa1111 *sa1111_chip_driver(struct sa1111_dev *sadev)
{
return (struct sa1111 *)dev_get_drvdata(sadev->dev.parent);
}
/*
* The bits in the opdiv field are non-linear.
*/
static unsigned char opdiv_table[] = { 1, 4, 2, 8 };
static unsigned int __sa1111_pll_clock(struct sa1111 *sachip)
{
unsigned int skcdr, fbdiv, ipdiv, opdiv;
skcdr = readl_relaxed(sachip->base + SA1111_SKCDR);
fbdiv = (skcdr & 0x007f) + 2;
ipdiv = ((skcdr & 0x0f80) >> 7) + 2;
opdiv = opdiv_table[(skcdr & 0x3000) >> 12];
return 3686400 * fbdiv / (ipdiv * opdiv);
}
/**
* sa1111_pll_clock - return the current PLL clock frequency.
* @sadev: SA1111 function block
*
* BUG: we should look at SKCR. We also blindly believe that
* the chip is being fed with the 3.6864MHz clock.
*
* Returns the PLL clock in Hz.
*/
unsigned int sa1111_pll_clock(struct sa1111_dev *sadev)
{
struct sa1111 *sachip = sa1111_chip_driver(sadev);
return __sa1111_pll_clock(sachip);
}
EXPORT_SYMBOL(sa1111_pll_clock);
/**
* sa1111_select_audio_mode - select I2S or AC link mode
* @sadev: SA1111 function block
* @mode: One of %SA1111_AUDIO_ACLINK or %SA1111_AUDIO_I2S
*
* Frob the SKCR to select AC Link mode or I2S mode for
* the audio block.
*/
void sa1111_select_audio_mode(struct sa1111_dev *sadev, int mode)
{
struct sa1111 *sachip = sa1111_chip_driver(sadev);
unsigned long flags;
unsigned int val;
spin_lock_irqsave(&sachip->lock, flags);
val = readl_relaxed(sachip->base + SA1111_SKCR);
if (mode == SA1111_AUDIO_I2S) {
val &= ~SKCR_SELAC;
} else {
val |= SKCR_SELAC;
}
writel_relaxed(val, sachip->base + SA1111_SKCR);
spin_unlock_irqrestore(&sachip->lock, flags);
}
EXPORT_SYMBOL(sa1111_select_audio_mode);
/**
* sa1111_set_audio_rate - set the audio sample rate
* @sadev: SA1111 SAC function block
* @rate: sample rate to select
*/
int sa1111_set_audio_rate(struct sa1111_dev *sadev, int rate)
{
struct sa1111 *sachip = sa1111_chip_driver(sadev);
unsigned int div;
if (sadev->devid != SA1111_DEVID_SAC)
return -EINVAL;
div = (__sa1111_pll_clock(sachip) / 256 + rate / 2) / rate;
if (div == 0)
div = 1;
if (div > 128)
div = 128;
writel_relaxed(div - 1, sachip->base + SA1111_SKAUD);
return 0;
}
EXPORT_SYMBOL(sa1111_set_audio_rate);
/**
* sa1111_get_audio_rate - get the audio sample rate
* @sadev: SA1111 SAC function block device
*/
int sa1111_get_audio_rate(struct sa1111_dev *sadev)
{
struct sa1111 *sachip = sa1111_chip_driver(sadev);
unsigned long div;
if (sadev->devid != SA1111_DEVID_SAC)
return -EINVAL;
div = readl_relaxed(sachip->base + SA1111_SKAUD) + 1;
return __sa1111_pll_clock(sachip) / (256 * div);
}
EXPORT_SYMBOL(sa1111_get_audio_rate);
/*
* Individual device operations.
*/
/**
* sa1111_enable_device - enable an on-chip SA1111 function block
* @sadev: SA1111 function block device to enable
*/
int sa1111_enable_device(struct sa1111_dev *sadev)
{
struct sa1111 *sachip = sa1111_chip_driver(sadev);
unsigned long flags;
unsigned int val;
int ret = 0;
if (sachip->pdata && sachip->pdata->enable)
ret = sachip->pdata->enable(sachip->pdata->data, sadev->devid);
if (ret == 0) {
spin_lock_irqsave(&sachip->lock, flags);
val = readl_relaxed(sachip->base + SA1111_SKPCR);
writel_relaxed(val | sadev->skpcr_mask, sachip->base + SA1111_SKPCR);
spin_unlock_irqrestore(&sachip->lock, flags);
}
return ret;
}
EXPORT_SYMBOL(sa1111_enable_device);
/**
* sa1111_disable_device - disable an on-chip SA1111 function block
* @sadev: SA1111 function block device to disable
*/
void sa1111_disable_device(struct sa1111_dev *sadev)
{
struct sa1111 *sachip = sa1111_chip_driver(sadev);
unsigned long flags;
unsigned int val;
spin_lock_irqsave(&sachip->lock, flags);
val = readl_relaxed(sachip->base + SA1111_SKPCR);
writel_relaxed(val & ~sadev->skpcr_mask, sachip->base + SA1111_SKPCR);
spin_unlock_irqrestore(&sachip->lock, flags);
if (sachip->pdata && sachip->pdata->disable)
sachip->pdata->disable(sachip->pdata->data, sadev->devid);
}
EXPORT_SYMBOL(sa1111_disable_device);
int sa1111_get_irq(struct sa1111_dev *sadev, unsigned num)
{
struct sa1111 *sachip = sa1111_chip_driver(sadev);
if (num >= ARRAY_SIZE(sadev->hwirq))
return -EINVAL;
return sa1111_map_irq(sachip, sadev->hwirq[num]);
}
EXPORT_SYMBOL_GPL(sa1111_get_irq);
/*
* SA1111 "Register Access Bus."
*
* We model this as a regular bus type, and hang devices directly
* off this.
*/
static int sa1111_match(struct device *_dev, struct device_driver *_drv)
{
struct sa1111_dev *dev = to_sa1111_device(_dev);
struct sa1111_driver *drv = SA1111_DRV(_drv);
return !!(dev->devid & drv->devid);
}
static int sa1111_bus_probe(struct device *dev)
{
struct sa1111_dev *sadev = to_sa1111_device(dev);
struct sa1111_driver *drv = SA1111_DRV(dev->driver);
int ret = -ENODEV;
if (drv->probe)
ret = drv->probe(sadev);
return ret;
}
static int sa1111_bus_remove(struct device *dev)
{
struct sa1111_dev *sadev = to_sa1111_device(dev);
struct sa1111_driver *drv = SA1111_DRV(dev->driver);
int ret = 0;
if (drv->remove)
ret = drv->remove(sadev);
return ret;
}
struct bus_type sa1111_bus_type = {
.name = "sa1111-rab",
.match = sa1111_match,
.probe = sa1111_bus_probe,
.remove = sa1111_bus_remove,
};
EXPORT_SYMBOL(sa1111_bus_type);
int sa1111_driver_register(struct sa1111_driver *driver)
{
driver->drv.bus = &sa1111_bus_type;
return driver_register(&driver->drv);
}
EXPORT_SYMBOL(sa1111_driver_register);
void sa1111_driver_unregister(struct sa1111_driver *driver)
{
driver_unregister(&driver->drv);
}
EXPORT_SYMBOL(sa1111_driver_unregister);
#ifdef CONFIG_DMABOUNCE
/*
* According to the "Intel StrongARM SA-1111 Microprocessor Companion
* Chip Specification Update" (June 2000), erratum #7, there is a
* significant bug in the SA1111 SDRAM shared memory controller. If
* an access to a region of memory above 1MB relative to the bank base,
* it is important that address bit 10 _NOT_ be asserted. Depending
* on the configuration of the RAM, bit 10 may correspond to one
* of several different (processor-relative) address bits.
*
* This routine only identifies whether or not a given DMA address
* is susceptible to the bug.
*
* This should only get called for sa1111_device types due to the
* way we configure our device dma_masks.
*/
static int sa1111_needs_bounce(struct device *dev, dma_addr_t addr, size_t size)
{
/*
* Section 4.6 of the "Intel StrongARM SA-1111 Development Module
* User's Guide" mentions that jumpers R51 and R52 control the
* target of SA-1111 DMA (either SDRAM bank 0 on Assabet, or
* SDRAM bank 1 on Neponset). The default configuration selects
* Assabet, so any address in bank 1 is necessarily invalid.
*/
return (machine_is_assabet() || machine_is_pfs168()) &&
(addr >= 0xc8000000 || (addr + size) >= 0xc8000000);
}
static int sa1111_notifier_call(struct notifier_block *n, unsigned long action,
void *data)
{
struct sa1111_dev *dev = to_sa1111_device(data);
switch (action) {
case BUS_NOTIFY_ADD_DEVICE:
if (dev->dev.dma_mask && dev->dma_mask < 0xffffffffUL) {
int ret = dmabounce_register_dev(&dev->dev, 1024, 4096,
sa1111_needs_bounce);
if (ret)
dev_err(&dev->dev, "failed to register with dmabounce: %d\n", ret);
}
break;
case BUS_NOTIFY_DEL_DEVICE:
if (dev->dev.dma_mask && dev->dma_mask < 0xffffffffUL)
dmabounce_unregister_dev(&dev->dev);
break;
}
return NOTIFY_OK;
}
static struct notifier_block sa1111_bus_notifier = {
.notifier_call = sa1111_notifier_call,
};
#endif
static int __init sa1111_init(void)
{
int ret = bus_register(&sa1111_bus_type);
#ifdef CONFIG_DMABOUNCE
if (ret == 0)
bus_register_notifier(&sa1111_bus_type, &sa1111_bus_notifier);
#endif
if (ret == 0)
platform_driver_register(&sa1111_device_driver);
return ret;
}
static void __exit sa1111_exit(void)
{
platform_driver_unregister(&sa1111_device_driver);
#ifdef CONFIG_DMABOUNCE
bus_unregister_notifier(&sa1111_bus_type, &sa1111_bus_notifier);
#endif
bus_unregister(&sa1111_bus_type);
}
subsys_initcall(sa1111_init);
module_exit(sa1111_exit);
MODULE_DESCRIPTION("Intel Corporation SA1111 core driver");
MODULE_LICENSE("GPL");