| /* |
| * This file contains the code that gets mapped at the upper end of each task's text |
| * region. For now, it contains the signal trampoline code only. |
| * |
| * Copyright (C) 1999-2003 Hewlett-Packard Co |
| * David Mosberger-Tang <davidm@hpl.hp.com> |
| */ |
| |
| |
| #include <asm/asmmacro.h> |
| #include <asm/errno.h> |
| #include <asm/asm-offsets.h> |
| #include <asm/sigcontext.h> |
| #include <asm/unistd.h> |
| #include <asm/kregs.h> |
| #include <asm/page.h> |
| #include <asm/native/inst.h> |
| |
| /* |
| * We can't easily refer to symbols inside the kernel. To avoid full runtime relocation, |
| * complications with the linker (which likes to create PLT stubs for branches |
| * to targets outside the shared object) and to avoid multi-phase kernel builds, we |
| * simply create minimalistic "patch lists" in special ELF sections. |
| */ |
| .section ".data..patch.fsyscall_table", "a" |
| .previous |
| #define LOAD_FSYSCALL_TABLE(reg) \ |
| [1:] movl reg=0; \ |
| .xdata4 ".data..patch.fsyscall_table", 1b-. |
| |
| .section ".data..patch.brl_fsys_bubble_down", "a" |
| .previous |
| #define BRL_COND_FSYS_BUBBLE_DOWN(pr) \ |
| [1:](pr)brl.cond.sptk 0; \ |
| ;; \ |
| .xdata4 ".data..patch.brl_fsys_bubble_down", 1b-. |
| |
| GLOBAL_ENTRY(__kernel_syscall_via_break) |
| .prologue |
| .altrp b6 |
| .body |
| /* |
| * Note: for (fast) syscall restart to work, the break instruction must be |
| * the first one in the bundle addressed by syscall_via_break. |
| */ |
| { .mib |
| break 0x100000 |
| nop.i 0 |
| br.ret.sptk.many b6 |
| } |
| END(__kernel_syscall_via_break) |
| |
| # define ARG0_OFF (16 + IA64_SIGFRAME_ARG0_OFFSET) |
| # define ARG1_OFF (16 + IA64_SIGFRAME_ARG1_OFFSET) |
| # define ARG2_OFF (16 + IA64_SIGFRAME_ARG2_OFFSET) |
| # define SIGHANDLER_OFF (16 + IA64_SIGFRAME_HANDLER_OFFSET) |
| # define SIGCONTEXT_OFF (16 + IA64_SIGFRAME_SIGCONTEXT_OFFSET) |
| |
| # define FLAGS_OFF IA64_SIGCONTEXT_FLAGS_OFFSET |
| # define CFM_OFF IA64_SIGCONTEXT_CFM_OFFSET |
| # define FR6_OFF IA64_SIGCONTEXT_FR6_OFFSET |
| # define BSP_OFF IA64_SIGCONTEXT_AR_BSP_OFFSET |
| # define RNAT_OFF IA64_SIGCONTEXT_AR_RNAT_OFFSET |
| # define UNAT_OFF IA64_SIGCONTEXT_AR_UNAT_OFFSET |
| # define FPSR_OFF IA64_SIGCONTEXT_AR_FPSR_OFFSET |
| # define PR_OFF IA64_SIGCONTEXT_PR_OFFSET |
| # define RP_OFF IA64_SIGCONTEXT_IP_OFFSET |
| # define SP_OFF IA64_SIGCONTEXT_R12_OFFSET |
| # define RBS_BASE_OFF IA64_SIGCONTEXT_RBS_BASE_OFFSET |
| # define LOADRS_OFF IA64_SIGCONTEXT_LOADRS_OFFSET |
| # define base0 r2 |
| # define base1 r3 |
| /* |
| * When we get here, the memory stack looks like this: |
| * |
| * +===============================+ |
| * | | |
| * // struct sigframe // |
| * | | |
| * +-------------------------------+ <-- sp+16 |
| * | 16 byte of scratch | |
| * | space | |
| * +-------------------------------+ <-- sp |
| * |
| * The register stack looks _exactly_ the way it looked at the time the signal |
| * occurred. In other words, we're treading on a potential mine-field: each |
| * incoming general register may be a NaT value (including sp, in which case the |
| * process ends up dying with a SIGSEGV). |
| * |
| * The first thing need to do is a cover to get the registers onto the backing |
| * store. Once that is done, we invoke the signal handler which may modify some |
| * of the machine state. After returning from the signal handler, we return |
| * control to the previous context by executing a sigreturn system call. A signal |
| * handler may call the rt_sigreturn() function to directly return to a given |
| * sigcontext. However, the user-level sigreturn() needs to do much more than |
| * calling the rt_sigreturn() system call as it needs to unwind the stack to |
| * restore preserved registers that may have been saved on the signal handler's |
| * call stack. |
| */ |
| |
| #define SIGTRAMP_SAVES \ |
| .unwabi 3, 's'; /* mark this as a sigtramp handler (saves scratch regs) */ \ |
| .unwabi @svr4, 's'; /* backwards compatibility with old unwinders (remove in v2.7) */ \ |
| .savesp ar.unat, UNAT_OFF+SIGCONTEXT_OFF; \ |
| .savesp ar.fpsr, FPSR_OFF+SIGCONTEXT_OFF; \ |
| .savesp pr, PR_OFF+SIGCONTEXT_OFF; \ |
| .savesp rp, RP_OFF+SIGCONTEXT_OFF; \ |
| .savesp ar.pfs, CFM_OFF+SIGCONTEXT_OFF; \ |
| .vframesp SP_OFF+SIGCONTEXT_OFF |
| |
| GLOBAL_ENTRY(__kernel_sigtramp) |
| // describe the state that is active when we get here: |
| .prologue |
| SIGTRAMP_SAVES |
| .body |
| |
| .label_state 1 |
| |
| adds base0=SIGHANDLER_OFF,sp |
| adds base1=RBS_BASE_OFF+SIGCONTEXT_OFF,sp |
| br.call.sptk.many rp=1f |
| 1: |
| ld8 r17=[base0],(ARG0_OFF-SIGHANDLER_OFF) // get pointer to signal handler's plabel |
| ld8 r15=[base1] // get address of new RBS base (or NULL) |
| cover // push args in interrupted frame onto backing store |
| ;; |
| cmp.ne p1,p0=r15,r0 // do we need to switch rbs? (note: pr is saved by kernel) |
| mov.m r9=ar.bsp // fetch ar.bsp |
| .spillsp.p p1, ar.rnat, RNAT_OFF+SIGCONTEXT_OFF |
| (p1) br.cond.spnt setup_rbs // yup -> (clobbers p8, r14-r16, and r18-r20) |
| back_from_setup_rbs: |
| alloc r8=ar.pfs,0,0,3,0 |
| ld8 out0=[base0],16 // load arg0 (signum) |
| adds base1=(ARG1_OFF-(RBS_BASE_OFF+SIGCONTEXT_OFF)),base1 |
| ;; |
| ld8 out1=[base1] // load arg1 (siginfop) |
| ld8 r10=[r17],8 // get signal handler entry point |
| ;; |
| ld8 out2=[base0] // load arg2 (sigcontextp) |
| ld8 gp=[r17] // get signal handler's global pointer |
| adds base0=(BSP_OFF+SIGCONTEXT_OFF),sp |
| ;; |
| .spillsp ar.bsp, BSP_OFF+SIGCONTEXT_OFF |
| st8 [base0]=r9 // save sc_ar_bsp |
| adds base0=(FR6_OFF+SIGCONTEXT_OFF),sp |
| adds base1=(FR6_OFF+16+SIGCONTEXT_OFF),sp |
| ;; |
| stf.spill [base0]=f6,32 |
| stf.spill [base1]=f7,32 |
| ;; |
| stf.spill [base0]=f8,32 |
| stf.spill [base1]=f9,32 |
| mov b6=r10 |
| ;; |
| stf.spill [base0]=f10,32 |
| stf.spill [base1]=f11,32 |
| ;; |
| stf.spill [base0]=f12,32 |
| stf.spill [base1]=f13,32 |
| ;; |
| stf.spill [base0]=f14,32 |
| stf.spill [base1]=f15,32 |
| br.call.sptk.many rp=b6 // call the signal handler |
| .ret0: adds base0=(BSP_OFF+SIGCONTEXT_OFF),sp |
| ;; |
| ld8 r15=[base0] // fetch sc_ar_bsp |
| mov r14=ar.bsp |
| ;; |
| cmp.ne p1,p0=r14,r15 // do we need to restore the rbs? |
| (p1) br.cond.spnt restore_rbs // yup -> (clobbers r14-r18, f6 & f7) |
| ;; |
| back_from_restore_rbs: |
| adds base0=(FR6_OFF+SIGCONTEXT_OFF),sp |
| adds base1=(FR6_OFF+16+SIGCONTEXT_OFF),sp |
| ;; |
| ldf.fill f6=[base0],32 |
| ldf.fill f7=[base1],32 |
| ;; |
| ldf.fill f8=[base0],32 |
| ldf.fill f9=[base1],32 |
| ;; |
| ldf.fill f10=[base0],32 |
| ldf.fill f11=[base1],32 |
| ;; |
| ldf.fill f12=[base0],32 |
| ldf.fill f13=[base1],32 |
| ;; |
| ldf.fill f14=[base0],32 |
| ldf.fill f15=[base1],32 |
| mov r15=__NR_rt_sigreturn |
| .restore sp // pop .prologue |
| break __BREAK_SYSCALL |
| |
| .prologue |
| SIGTRAMP_SAVES |
| setup_rbs: |
| mov ar.rsc=0 // put RSE into enforced lazy mode |
| ;; |
| .save ar.rnat, r19 |
| mov r19=ar.rnat // save RNaT before switching backing store area |
| adds r14=(RNAT_OFF+SIGCONTEXT_OFF),sp |
| |
| mov r18=ar.bspstore |
| mov ar.bspstore=r15 // switch over to new register backing store area |
| ;; |
| |
| .spillsp ar.rnat, RNAT_OFF+SIGCONTEXT_OFF |
| st8 [r14]=r19 // save sc_ar_rnat |
| .body |
| mov.m r16=ar.bsp // sc_loadrs <- (new bsp - new bspstore) << 16 |
| adds r14=(LOADRS_OFF+SIGCONTEXT_OFF),sp |
| ;; |
| invala |
| sub r15=r16,r15 |
| extr.u r20=r18,3,6 |
| ;; |
| mov ar.rsc=0xf // set RSE into eager mode, pl 3 |
| cmp.eq p8,p0=63,r20 |
| shl r15=r15,16 |
| ;; |
| st8 [r14]=r15 // save sc_loadrs |
| (p8) st8 [r18]=r19 // if bspstore points at RNaT slot, store RNaT there now |
| .restore sp // pop .prologue |
| br.cond.sptk back_from_setup_rbs |
| |
| .prologue |
| SIGTRAMP_SAVES |
| .spillsp ar.rnat, RNAT_OFF+SIGCONTEXT_OFF |
| .body |
| restore_rbs: |
| // On input: |
| // r14 = bsp1 (bsp at the time of return from signal handler) |
| // r15 = bsp0 (bsp at the time the signal occurred) |
| // |
| // Here, we need to calculate bspstore0, the value that ar.bspstore needs |
| // to be set to, based on bsp0 and the size of the dirty partition on |
| // the alternate stack (sc_loadrs >> 16). This can be done with the |
| // following algorithm: |
| // |
| // bspstore0 = rse_skip_regs(bsp0, -rse_num_regs(bsp1 - (loadrs >> 19), bsp1)); |
| // |
| // This is what the code below does. |
| // |
| alloc r2=ar.pfs,0,0,0,0 // alloc null frame |
| adds r16=(LOADRS_OFF+SIGCONTEXT_OFF),sp |
| adds r18=(RNAT_OFF+SIGCONTEXT_OFF),sp |
| ;; |
| ld8 r17=[r16] |
| ld8 r16=[r18] // get new rnat |
| extr.u r18=r15,3,6 // r18 <- rse_slot_num(bsp0) |
| ;; |
| mov ar.rsc=r17 // put RSE into enforced lazy mode |
| shr.u r17=r17,16 |
| ;; |
| sub r14=r14,r17 // r14 (bspstore1) <- bsp1 - (sc_loadrs >> 16) |
| shr.u r17=r17,3 // r17 <- (sc_loadrs >> 19) |
| ;; |
| loadrs // restore dirty partition |
| extr.u r14=r14,3,6 // r14 <- rse_slot_num(bspstore1) |
| ;; |
| add r14=r14,r17 // r14 <- rse_slot_num(bspstore1) + (sc_loadrs >> 19) |
| ;; |
| shr.u r14=r14,6 // r14 <- (rse_slot_num(bspstore1) + (sc_loadrs >> 19))/0x40 |
| ;; |
| sub r14=r14,r17 // r14 <- -rse_num_regs(bspstore1, bsp1) |
| movl r17=0x8208208208208209 |
| ;; |
| add r18=r18,r14 // r18 (delta) <- rse_slot_num(bsp0) - rse_num_regs(bspstore1,bsp1) |
| setf.sig f7=r17 |
| cmp.lt p7,p0=r14,r0 // p7 <- (r14 < 0)? |
| ;; |
| (p7) adds r18=-62,r18 // delta -= 62 |
| ;; |
| setf.sig f6=r18 |
| ;; |
| xmpy.h f6=f6,f7 |
| ;; |
| getf.sig r17=f6 |
| ;; |
| add r17=r17,r18 |
| shr r18=r18,63 |
| ;; |
| shr r17=r17,5 |
| ;; |
| sub r17=r17,r18 // r17 = delta/63 |
| ;; |
| add r17=r14,r17 // r17 <- delta/63 - rse_num_regs(bspstore1, bsp1) |
| ;; |
| shladd r15=r17,3,r15 // r15 <- bsp0 + 8*(delta/63 - rse_num_regs(bspstore1, bsp1)) |
| ;; |
| mov ar.bspstore=r15 // switch back to old register backing store area |
| ;; |
| mov ar.rnat=r16 // restore RNaT |
| mov ar.rsc=0xf // (will be restored later on from sc_ar_rsc) |
| // invala not necessary as that will happen when returning to user-mode |
| br.cond.sptk back_from_restore_rbs |
| END(__kernel_sigtramp) |
| |
| /* |
| * On entry: |
| * r11 = saved ar.pfs |
| * r15 = system call # |
| * b0 = saved return address |
| * b6 = return address |
| * On exit: |
| * r11 = saved ar.pfs |
| * r15 = system call # |
| * b0 = saved return address |
| * all other "scratch" registers: undefined |
| * all "preserved" registers: same as on entry |
| */ |
| |
| GLOBAL_ENTRY(__kernel_syscall_via_epc) |
| .prologue |
| .altrp b6 |
| .body |
| { |
| /* |
| * Note: the kernel cannot assume that the first two instructions in this |
| * bundle get executed. The remaining code must be safe even if |
| * they do not get executed. |
| */ |
| adds r17=-1024,r15 // A |
| mov r10=0 // A default to successful syscall execution |
| epc // B causes split-issue |
| } |
| ;; |
| RSM_PSR_BE_I(r20, r22) // M2 (5 cyc to srlz.d) |
| LOAD_FSYSCALL_TABLE(r14) // X |
| ;; |
| mov r16=IA64_KR(CURRENT) // M2 (12 cyc) |
| shladd r18=r17,3,r14 // A |
| mov r19=NR_syscalls-1 // A |
| ;; |
| lfetch [r18] // M0|1 |
| MOV_FROM_PSR(p0, r29, r8) // M2 (12 cyc) |
| // If r17 is a NaT, p6 will be zero |
| cmp.geu p6,p7=r19,r17 // A (sysnr > 0 && sysnr < 1024+NR_syscalls)? |
| ;; |
| mov r21=ar.fpsr // M2 (12 cyc) |
| tnat.nz p10,p9=r15 // I0 |
| mov.i r26=ar.pfs // I0 (would stall anyhow due to srlz.d...) |
| ;; |
| srlz.d // M0 (forces split-issue) ensure PSR.BE==0 |
| (p6) ld8 r18=[r18] // M0|1 |
| nop.i 0 |
| ;; |
| nop.m 0 |
| (p6) tbit.z.unc p8,p0=r18,0 // I0 (dual-issues with "mov b7=r18"!) |
| nop.i 0 |
| ;; |
| SSM_PSR_I(p8, p14, r25) |
| (p6) mov b7=r18 // I0 |
| (p8) br.dptk.many b7 // B |
| |
| mov r27=ar.rsc // M2 (12 cyc) |
| /* |
| * brl.cond doesn't work as intended because the linker would convert this branch |
| * into a branch to a PLT. Perhaps there will be a way to avoid this with some |
| * future version of the linker. In the meantime, we just use an indirect branch |
| * instead. |
| */ |
| #ifdef CONFIG_ITANIUM |
| (p6) add r14=-8,r14 // r14 <- addr of fsys_bubble_down entry |
| ;; |
| (p6) ld8 r14=[r14] // r14 <- fsys_bubble_down |
| ;; |
| (p6) mov b7=r14 |
| (p6) br.sptk.many b7 |
| #else |
| BRL_COND_FSYS_BUBBLE_DOWN(p6) |
| #endif |
| SSM_PSR_I(p0, p14, r10) |
| mov r10=-1 |
| (p10) mov r8=EINVAL |
| (p9) mov r8=ENOSYS |
| FSYS_RETURN |
| |
| END(__kernel_syscall_via_epc) |