| /** |
| * @file arch/alpha/oprofile/op_model_ev5.c |
| * |
| * @remark Copyright 2002 OProfile authors |
| * @remark Read the file COPYING |
| * |
| * @author Richard Henderson <rth@twiddle.net> |
| */ |
| |
| #include <linux/oprofile.h> |
| #include <linux/init.h> |
| #include <linux/smp.h> |
| #include <asm/ptrace.h> |
| #include <asm/system.h> |
| |
| #include "op_impl.h" |
| |
| |
| /* Compute all of the registers in preparation for enabling profiling. |
| |
| The 21164 (EV5) and 21164PC (PCA65) vary in the bit placement and |
| meaning of the "CBOX" events. Given that we don't care about meaning |
| at this point, arrange for the difference in bit placement to be |
| handled by common code. */ |
| |
| static void |
| common_reg_setup(struct op_register_config *reg, |
| struct op_counter_config *ctr, |
| struct op_system_config *sys, |
| int cbox1_ofs, int cbox2_ofs) |
| { |
| int i, ctl, reset, need_reset; |
| |
| /* Select desired events. The event numbers are selected such |
| that they map directly into the event selection fields: |
| |
| PCSEL0: 0, 1 |
| PCSEL1: 24-39 |
| CBOX1: 40-47 |
| PCSEL2: 48-63 |
| CBOX2: 64-71 |
| |
| There are two special cases, in that CYCLES can be measured |
| on PCSEL[02], and SCACHE_WRITE can be measured on CBOX[12]. |
| These event numbers are canonicalizes to their first appearance. */ |
| |
| ctl = 0; |
| for (i = 0; i < 3; ++i) { |
| unsigned long event = ctr[i].event; |
| if (!ctr[i].enabled) |
| continue; |
| |
| /* Remap the duplicate events, as described above. */ |
| if (i == 2) { |
| if (event == 0) |
| event = 12+48; |
| else if (event == 2+41) |
| event = 4+65; |
| } |
| |
| /* Convert the event numbers onto mux_select bit mask. */ |
| if (event < 2) |
| ctl |= event << 31; |
| else if (event < 24) |
| /* error */; |
| else if (event < 40) |
| ctl |= (event - 24) << 4; |
| else if (event < 48) |
| ctl |= (event - 40) << cbox1_ofs | 15 << 4; |
| else if (event < 64) |
| ctl |= event - 48; |
| else if (event < 72) |
| ctl |= (event - 64) << cbox2_ofs | 15; |
| } |
| reg->mux_select = ctl; |
| |
| /* Select processor mode. */ |
| /* ??? Need to come up with some mechanism to trace only selected |
| processes. For now select from pal, kernel and user mode. */ |
| ctl = 0; |
| ctl |= !sys->enable_pal << 9; |
| ctl |= !sys->enable_kernel << 8; |
| ctl |= !sys->enable_user << 30; |
| reg->proc_mode = ctl; |
| |
| /* Select interrupt frequencies. Take the interrupt count selected |
| by the user, and map it onto one of the possible counter widths. |
| If the user value is in between, compute a value to which the |
| counter is reset at each interrupt. */ |
| |
| ctl = reset = need_reset = 0; |
| for (i = 0; i < 3; ++i) { |
| unsigned long max, hilo, count = ctr[i].count; |
| if (!ctr[i].enabled) |
| continue; |
| |
| if (count <= 256) |
| count = 256, hilo = 3, max = 256; |
| else { |
| max = (i == 2 ? 16384 : 65536); |
| hilo = 2; |
| if (count > max) |
| count = max; |
| } |
| ctr[i].count = count; |
| |
| ctl |= hilo << (8 - i*2); |
| reset |= (max - count) << (48 - 16*i); |
| if (count != max) |
| need_reset |= 1 << i; |
| } |
| reg->freq = ctl; |
| reg->reset_values = reset; |
| reg->need_reset = need_reset; |
| } |
| |
| static void |
| ev5_reg_setup(struct op_register_config *reg, |
| struct op_counter_config *ctr, |
| struct op_system_config *sys) |
| { |
| common_reg_setup(reg, ctr, sys, 19, 22); |
| } |
| |
| static void |
| pca56_reg_setup(struct op_register_config *reg, |
| struct op_counter_config *ctr, |
| struct op_system_config *sys) |
| { |
| common_reg_setup(reg, ctr, sys, 8, 11); |
| } |
| |
| /* Program all of the registers in preparation for enabling profiling. */ |
| |
| static void |
| ev5_cpu_setup (void *x) |
| { |
| struct op_register_config *reg = x; |
| |
| wrperfmon(2, reg->mux_select); |
| wrperfmon(3, reg->proc_mode); |
| wrperfmon(4, reg->freq); |
| wrperfmon(6, reg->reset_values); |
| } |
| |
| /* CTR is a counter for which the user has requested an interrupt count |
| in between one of the widths selectable in hardware. Reset the count |
| for CTR to the value stored in REG->RESET_VALUES. |
| |
| For EV5, this means disabling profiling, reading the current values, |
| masking in the value for the desired register, writing, then turning |
| profiling back on. |
| |
| This can be streamlined if profiling is only enabled for user mode. |
| In that case we know that the counters are not currently incrementing |
| (due to being in kernel mode). */ |
| |
| static void |
| ev5_reset_ctr(struct op_register_config *reg, unsigned long ctr) |
| { |
| unsigned long values, mask, not_pk, reset_values; |
| |
| mask = (ctr == 0 ? 0xfffful << 48 |
| : ctr == 1 ? 0xfffful << 32 |
| : 0x3fff << 16); |
| |
| not_pk = 1 << 9 | 1 << 8; |
| |
| reset_values = reg->reset_values; |
| |
| if ((reg->proc_mode & not_pk) == not_pk) { |
| values = wrperfmon(5, 0); |
| values = (reset_values & mask) | (values & ~mask & -2); |
| wrperfmon(6, values); |
| } else { |
| wrperfmon(0, -1); |
| values = wrperfmon(5, 0); |
| values = (reset_values & mask) | (values & ~mask & -2); |
| wrperfmon(6, values); |
| wrperfmon(1, reg->enable); |
| } |
| } |
| |
| static void |
| ev5_handle_interrupt(unsigned long which, struct pt_regs *regs, |
| struct op_counter_config *ctr) |
| { |
| /* Record the sample. */ |
| oprofile_add_sample(regs, which); |
| } |
| |
| |
| struct op_axp_model op_model_ev5 = { |
| .reg_setup = ev5_reg_setup, |
| .cpu_setup = ev5_cpu_setup, |
| .reset_ctr = ev5_reset_ctr, |
| .handle_interrupt = ev5_handle_interrupt, |
| .cpu_type = "alpha/ev5", |
| .num_counters = 3, |
| .can_set_proc_mode = 1, |
| }; |
| |
| struct op_axp_model op_model_pca56 = { |
| .reg_setup = pca56_reg_setup, |
| .cpu_setup = ev5_cpu_setup, |
| .reset_ctr = ev5_reset_ctr, |
| .handle_interrupt = ev5_handle_interrupt, |
| .cpu_type = "alpha/pca56", |
| .num_counters = 3, |
| .can_set_proc_mode = 1, |
| }; |