| // SPDX-License-Identifier: GPL-2.0-or-later |
| /* |
| * Glue code for SHA-1 implementation for SPE instructions (PPC) |
| * |
| * Based on generic implementation. |
| * |
| * Copyright (c) 2015 Markus Stockhausen <stockhausen@collogia.de> |
| */ |
| |
| #include <crypto/internal/hash.h> |
| #include <linux/init.h> |
| #include <linux/module.h> |
| #include <linux/mm.h> |
| #include <linux/cryptohash.h> |
| #include <linux/types.h> |
| #include <crypto/sha.h> |
| #include <asm/byteorder.h> |
| #include <asm/switch_to.h> |
| #include <linux/hardirq.h> |
| |
| /* |
| * MAX_BYTES defines the number of bytes that are allowed to be processed |
| * between preempt_disable() and preempt_enable(). SHA1 takes ~1000 |
| * operations per 64 bytes. e500 cores can issue two arithmetic instructions |
| * per clock cycle using one 32/64 bit unit (SU1) and one 32 bit unit (SU2). |
| * Thus 2KB of input data will need an estimated maximum of 18,000 cycles. |
| * Headroom for cache misses included. Even with the low end model clocked |
| * at 667 MHz this equals to a critical time window of less than 27us. |
| * |
| */ |
| #define MAX_BYTES 2048 |
| |
| extern void ppc_spe_sha1_transform(u32 *state, const u8 *src, u32 blocks); |
| |
| static void spe_begin(void) |
| { |
| /* We just start SPE operations and will save SPE registers later. */ |
| preempt_disable(); |
| enable_kernel_spe(); |
| } |
| |
| static void spe_end(void) |
| { |
| disable_kernel_spe(); |
| /* reenable preemption */ |
| preempt_enable(); |
| } |
| |
| static inline void ppc_sha1_clear_context(struct sha1_state *sctx) |
| { |
| int count = sizeof(struct sha1_state) >> 2; |
| u32 *ptr = (u32 *)sctx; |
| |
| /* make sure we can clear the fast way */ |
| BUILD_BUG_ON(sizeof(struct sha1_state) % 4); |
| do { *ptr++ = 0; } while (--count); |
| } |
| |
| static int ppc_spe_sha1_init(struct shash_desc *desc) |
| { |
| struct sha1_state *sctx = shash_desc_ctx(desc); |
| |
| sctx->state[0] = SHA1_H0; |
| sctx->state[1] = SHA1_H1; |
| sctx->state[2] = SHA1_H2; |
| sctx->state[3] = SHA1_H3; |
| sctx->state[4] = SHA1_H4; |
| sctx->count = 0; |
| |
| return 0; |
| } |
| |
| static int ppc_spe_sha1_update(struct shash_desc *desc, const u8 *data, |
| unsigned int len) |
| { |
| struct sha1_state *sctx = shash_desc_ctx(desc); |
| const unsigned int offset = sctx->count & 0x3f; |
| const unsigned int avail = 64 - offset; |
| unsigned int bytes; |
| const u8 *src = data; |
| |
| if (avail > len) { |
| sctx->count += len; |
| memcpy((char *)sctx->buffer + offset, src, len); |
| return 0; |
| } |
| |
| sctx->count += len; |
| |
| if (offset) { |
| memcpy((char *)sctx->buffer + offset, src, avail); |
| |
| spe_begin(); |
| ppc_spe_sha1_transform(sctx->state, (const u8 *)sctx->buffer, 1); |
| spe_end(); |
| |
| len -= avail; |
| src += avail; |
| } |
| |
| while (len > 63) { |
| bytes = (len > MAX_BYTES) ? MAX_BYTES : len; |
| bytes = bytes & ~0x3f; |
| |
| spe_begin(); |
| ppc_spe_sha1_transform(sctx->state, src, bytes >> 6); |
| spe_end(); |
| |
| src += bytes; |
| len -= bytes; |
| }; |
| |
| memcpy((char *)sctx->buffer, src, len); |
| return 0; |
| } |
| |
| static int ppc_spe_sha1_final(struct shash_desc *desc, u8 *out) |
| { |
| struct sha1_state *sctx = shash_desc_ctx(desc); |
| const unsigned int offset = sctx->count & 0x3f; |
| char *p = (char *)sctx->buffer + offset; |
| int padlen; |
| __be64 *pbits = (__be64 *)(((char *)&sctx->buffer) + 56); |
| __be32 *dst = (__be32 *)out; |
| |
| padlen = 55 - offset; |
| *p++ = 0x80; |
| |
| spe_begin(); |
| |
| if (padlen < 0) { |
| memset(p, 0x00, padlen + sizeof (u64)); |
| ppc_spe_sha1_transform(sctx->state, sctx->buffer, 1); |
| p = (char *)sctx->buffer; |
| padlen = 56; |
| } |
| |
| memset(p, 0, padlen); |
| *pbits = cpu_to_be64(sctx->count << 3); |
| ppc_spe_sha1_transform(sctx->state, sctx->buffer, 1); |
| |
| spe_end(); |
| |
| dst[0] = cpu_to_be32(sctx->state[0]); |
| dst[1] = cpu_to_be32(sctx->state[1]); |
| dst[2] = cpu_to_be32(sctx->state[2]); |
| dst[3] = cpu_to_be32(sctx->state[3]); |
| dst[4] = cpu_to_be32(sctx->state[4]); |
| |
| ppc_sha1_clear_context(sctx); |
| return 0; |
| } |
| |
| static int ppc_spe_sha1_export(struct shash_desc *desc, void *out) |
| { |
| struct sha1_state *sctx = shash_desc_ctx(desc); |
| |
| memcpy(out, sctx, sizeof(*sctx)); |
| return 0; |
| } |
| |
| static int ppc_spe_sha1_import(struct shash_desc *desc, const void *in) |
| { |
| struct sha1_state *sctx = shash_desc_ctx(desc); |
| |
| memcpy(sctx, in, sizeof(*sctx)); |
| return 0; |
| } |
| |
| static struct shash_alg alg = { |
| .digestsize = SHA1_DIGEST_SIZE, |
| .init = ppc_spe_sha1_init, |
| .update = ppc_spe_sha1_update, |
| .final = ppc_spe_sha1_final, |
| .export = ppc_spe_sha1_export, |
| .import = ppc_spe_sha1_import, |
| .descsize = sizeof(struct sha1_state), |
| .statesize = sizeof(struct sha1_state), |
| .base = { |
| .cra_name = "sha1", |
| .cra_driver_name= "sha1-ppc-spe", |
| .cra_priority = 300, |
| .cra_blocksize = SHA1_BLOCK_SIZE, |
| .cra_module = THIS_MODULE, |
| } |
| }; |
| |
| static int __init ppc_spe_sha1_mod_init(void) |
| { |
| return crypto_register_shash(&alg); |
| } |
| |
| static void __exit ppc_spe_sha1_mod_fini(void) |
| { |
| crypto_unregister_shash(&alg); |
| } |
| |
| module_init(ppc_spe_sha1_mod_init); |
| module_exit(ppc_spe_sha1_mod_fini); |
| |
| MODULE_LICENSE("GPL"); |
| MODULE_DESCRIPTION("SHA1 Secure Hash Algorithm, SPE optimized"); |
| |
| MODULE_ALIAS_CRYPTO("sha1"); |
| MODULE_ALIAS_CRYPTO("sha1-ppc-spe"); |