blob: 1cbb58240b8016383d9f1e9137b7190cff345935 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0-only
/*
* Generic OPP OF helpers
*
* Copyright (C) 2009-2010 Texas Instruments Incorporated.
* Nishanth Menon
* Romit Dasgupta
* Kevin Hilman
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/cpu.h>
#include <linux/errno.h>
#include <linux/device.h>
#include <linux/of_device.h>
#include <linux/pm_domain.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/energy_model.h>
#include "opp.h"
/*
* Returns opp descriptor node for a device node, caller must
* do of_node_put().
*/
static struct device_node *_opp_of_get_opp_desc_node(struct device_node *np,
int index)
{
/* "operating-points-v2" can be an array for power domain providers */
return of_parse_phandle(np, "operating-points-v2", index);
}
/* Returns opp descriptor node for a device, caller must do of_node_put() */
struct device_node *dev_pm_opp_of_get_opp_desc_node(struct device *dev)
{
return _opp_of_get_opp_desc_node(dev->of_node, 0);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_opp_desc_node);
struct opp_table *_managed_opp(struct device *dev, int index)
{
struct opp_table *opp_table, *managed_table = NULL;
struct device_node *np;
np = _opp_of_get_opp_desc_node(dev->of_node, index);
if (!np)
return NULL;
list_for_each_entry(opp_table, &opp_tables, node) {
if (opp_table->np == np) {
/*
* Multiple devices can point to the same OPP table and
* so will have same node-pointer, np.
*
* But the OPPs will be considered as shared only if the
* OPP table contains a "opp-shared" property.
*/
if (opp_table->shared_opp == OPP_TABLE_ACCESS_SHARED) {
_get_opp_table_kref(opp_table);
managed_table = opp_table;
}
break;
}
}
of_node_put(np);
return managed_table;
}
/* The caller must call dev_pm_opp_put() after the OPP is used */
static struct dev_pm_opp *_find_opp_of_np(struct opp_table *opp_table,
struct device_node *opp_np)
{
struct dev_pm_opp *opp;
mutex_lock(&opp_table->lock);
list_for_each_entry(opp, &opp_table->opp_list, node) {
if (opp->np == opp_np) {
dev_pm_opp_get(opp);
mutex_unlock(&opp_table->lock);
return opp;
}
}
mutex_unlock(&opp_table->lock);
return NULL;
}
static struct device_node *of_parse_required_opp(struct device_node *np,
int index)
{
struct device_node *required_np;
required_np = of_parse_phandle(np, "required-opps", index);
if (unlikely(!required_np)) {
pr_err("%s: Unable to parse required-opps: %pOF, index: %d\n",
__func__, np, index);
}
return required_np;
}
/* The caller must call dev_pm_opp_put_opp_table() after the table is used */
static struct opp_table *_find_table_of_opp_np(struct device_node *opp_np)
{
struct opp_table *opp_table;
struct device_node *opp_table_np;
lockdep_assert_held(&opp_table_lock);
opp_table_np = of_get_parent(opp_np);
if (!opp_table_np)
goto err;
/* It is safe to put the node now as all we need now is its address */
of_node_put(opp_table_np);
list_for_each_entry(opp_table, &opp_tables, node) {
if (opp_table_np == opp_table->np) {
_get_opp_table_kref(opp_table);
return opp_table;
}
}
err:
return ERR_PTR(-ENODEV);
}
/* Free resources previously acquired by _opp_table_alloc_required_tables() */
static void _opp_table_free_required_tables(struct opp_table *opp_table)
{
struct opp_table **required_opp_tables = opp_table->required_opp_tables;
int i;
if (!required_opp_tables)
return;
for (i = 0; i < opp_table->required_opp_count; i++) {
if (IS_ERR_OR_NULL(required_opp_tables[i]))
break;
dev_pm_opp_put_opp_table(required_opp_tables[i]);
}
kfree(required_opp_tables);
opp_table->required_opp_count = 0;
opp_table->required_opp_tables = NULL;
}
/*
* Populate all devices and opp tables which are part of "required-opps" list.
* Checking only the first OPP node should be enough.
*/
static void _opp_table_alloc_required_tables(struct opp_table *opp_table,
struct device *dev,
struct device_node *opp_np)
{
struct opp_table **required_opp_tables;
struct device_node *required_np, *np;
int count, i;
/* Traversing the first OPP node is all we need */
np = of_get_next_available_child(opp_np, NULL);
if (!np) {
dev_err(dev, "Empty OPP table\n");
return;
}
count = of_count_phandle_with_args(np, "required-opps", NULL);
if (!count)
goto put_np;
required_opp_tables = kcalloc(count, sizeof(*required_opp_tables),
GFP_KERNEL);
if (!required_opp_tables)
goto put_np;
opp_table->required_opp_tables = required_opp_tables;
opp_table->required_opp_count = count;
for (i = 0; i < count; i++) {
required_np = of_parse_required_opp(np, i);
if (!required_np)
goto free_required_tables;
required_opp_tables[i] = _find_table_of_opp_np(required_np);
of_node_put(required_np);
if (IS_ERR(required_opp_tables[i]))
goto free_required_tables;
/*
* We only support genpd's OPPs in the "required-opps" for now,
* as we don't know how much about other cases. Error out if the
* required OPP doesn't belong to a genpd.
*/
if (!required_opp_tables[i]->is_genpd) {
dev_err(dev, "required-opp doesn't belong to genpd: %pOF\n",
required_np);
goto free_required_tables;
}
}
goto put_np;
free_required_tables:
_opp_table_free_required_tables(opp_table);
put_np:
of_node_put(np);
}
void _of_init_opp_table(struct opp_table *opp_table, struct device *dev,
int index)
{
struct device_node *np, *opp_np;
u32 val;
/*
* Only required for backward compatibility with v1 bindings, but isn't
* harmful for other cases. And so we do it unconditionally.
*/
np = of_node_get(dev->of_node);
if (!np)
return;
if (!of_property_read_u32(np, "clock-latency", &val))
opp_table->clock_latency_ns_max = val;
of_property_read_u32(np, "voltage-tolerance",
&opp_table->voltage_tolerance_v1);
if (of_find_property(np, "#power-domain-cells", NULL))
opp_table->is_genpd = true;
/* Get OPP table node */
opp_np = _opp_of_get_opp_desc_node(np, index);
of_node_put(np);
if (!opp_np)
return;
if (of_property_read_bool(opp_np, "opp-shared"))
opp_table->shared_opp = OPP_TABLE_ACCESS_SHARED;
else
opp_table->shared_opp = OPP_TABLE_ACCESS_EXCLUSIVE;
opp_table->np = opp_np;
_opp_table_alloc_required_tables(opp_table, dev, opp_np);
of_node_put(opp_np);
}
void _of_clear_opp_table(struct opp_table *opp_table)
{
_opp_table_free_required_tables(opp_table);
}
/*
* Release all resources previously acquired with a call to
* _of_opp_alloc_required_opps().
*/
void _of_opp_free_required_opps(struct opp_table *opp_table,
struct dev_pm_opp *opp)
{
struct dev_pm_opp **required_opps = opp->required_opps;
int i;
if (!required_opps)
return;
for (i = 0; i < opp_table->required_opp_count; i++) {
if (!required_opps[i])
break;
/* Put the reference back */
dev_pm_opp_put(required_opps[i]);
}
kfree(required_opps);
opp->required_opps = NULL;
}
/* Populate all required OPPs which are part of "required-opps" list */
static int _of_opp_alloc_required_opps(struct opp_table *opp_table,
struct dev_pm_opp *opp)
{
struct dev_pm_opp **required_opps;
struct opp_table *required_table;
struct device_node *np;
int i, ret, count = opp_table->required_opp_count;
if (!count)
return 0;
required_opps = kcalloc(count, sizeof(*required_opps), GFP_KERNEL);
if (!required_opps)
return -ENOMEM;
opp->required_opps = required_opps;
for (i = 0; i < count; i++) {
required_table = opp_table->required_opp_tables[i];
np = of_parse_required_opp(opp->np, i);
if (unlikely(!np)) {
ret = -ENODEV;
goto free_required_opps;
}
required_opps[i] = _find_opp_of_np(required_table, np);
of_node_put(np);
if (!required_opps[i]) {
pr_err("%s: Unable to find required OPP node: %pOF (%d)\n",
__func__, opp->np, i);
ret = -ENODEV;
goto free_required_opps;
}
}
return 0;
free_required_opps:
_of_opp_free_required_opps(opp_table, opp);
return ret;
}
static bool _opp_is_supported(struct device *dev, struct opp_table *opp_table,
struct device_node *np)
{
unsigned int count = opp_table->supported_hw_count;
u32 version;
int ret;
if (!opp_table->supported_hw) {
/*
* In the case that no supported_hw has been set by the
* platform but there is an opp-supported-hw value set for
* an OPP then the OPP should not be enabled as there is
* no way to see if the hardware supports it.
*/
if (of_find_property(np, "opp-supported-hw", NULL))
return false;
else
return true;
}
while (count--) {
ret = of_property_read_u32_index(np, "opp-supported-hw", count,
&version);
if (ret) {
dev_warn(dev, "%s: failed to read opp-supported-hw property at index %d: %d\n",
__func__, count, ret);
return false;
}
/* Both of these are bitwise masks of the versions */
if (!(version & opp_table->supported_hw[count]))
return false;
}
return true;
}
static int opp_parse_supplies(struct dev_pm_opp *opp, struct device *dev,
struct opp_table *opp_table)
{
u32 *microvolt, *microamp = NULL;
int supplies = opp_table->regulator_count, vcount, icount, ret, i, j;
struct property *prop = NULL;
char name[NAME_MAX];
/* Search for "opp-microvolt-<name>" */
if (opp_table->prop_name) {
snprintf(name, sizeof(name), "opp-microvolt-%s",
opp_table->prop_name);
prop = of_find_property(opp->np, name, NULL);
}
if (!prop) {
/* Search for "opp-microvolt" */
sprintf(name, "opp-microvolt");
prop = of_find_property(opp->np, name, NULL);
/* Missing property isn't a problem, but an invalid entry is */
if (!prop) {
if (unlikely(supplies == -1)) {
/* Initialize regulator_count */
opp_table->regulator_count = 0;
return 0;
}
if (!supplies)
return 0;
dev_err(dev, "%s: opp-microvolt missing although OPP managing regulators\n",
__func__);
return -EINVAL;
}
}
if (unlikely(supplies == -1)) {
/* Initialize regulator_count */
supplies = opp_table->regulator_count = 1;
} else if (unlikely(!supplies)) {
dev_err(dev, "%s: opp-microvolt wasn't expected\n", __func__);
return -EINVAL;
}
vcount = of_property_count_u32_elems(opp->np, name);
if (vcount < 0) {
dev_err(dev, "%s: Invalid %s property (%d)\n",
__func__, name, vcount);
return vcount;
}
/* There can be one or three elements per supply */
if (vcount != supplies && vcount != supplies * 3) {
dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
__func__, name, vcount, supplies);
return -EINVAL;
}
microvolt = kmalloc_array(vcount, sizeof(*microvolt), GFP_KERNEL);
if (!microvolt)
return -ENOMEM;
ret = of_property_read_u32_array(opp->np, name, microvolt, vcount);
if (ret) {
dev_err(dev, "%s: error parsing %s: %d\n", __func__, name, ret);
ret = -EINVAL;
goto free_microvolt;
}
/* Search for "opp-microamp-<name>" */
prop = NULL;
if (opp_table->prop_name) {
snprintf(name, sizeof(name), "opp-microamp-%s",
opp_table->prop_name);
prop = of_find_property(opp->np, name, NULL);
}
if (!prop) {
/* Search for "opp-microamp" */
sprintf(name, "opp-microamp");
prop = of_find_property(opp->np, name, NULL);
}
if (prop) {
icount = of_property_count_u32_elems(opp->np, name);
if (icount < 0) {
dev_err(dev, "%s: Invalid %s property (%d)\n", __func__,
name, icount);
ret = icount;
goto free_microvolt;
}
if (icount != supplies) {
dev_err(dev, "%s: Invalid number of elements in %s property (%d) with supplies (%d)\n",
__func__, name, icount, supplies);
ret = -EINVAL;
goto free_microvolt;
}
microamp = kmalloc_array(icount, sizeof(*microamp), GFP_KERNEL);
if (!microamp) {
ret = -EINVAL;
goto free_microvolt;
}
ret = of_property_read_u32_array(opp->np, name, microamp,
icount);
if (ret) {
dev_err(dev, "%s: error parsing %s: %d\n", __func__,
name, ret);
ret = -EINVAL;
goto free_microamp;
}
}
for (i = 0, j = 0; i < supplies; i++) {
opp->supplies[i].u_volt = microvolt[j++];
if (vcount == supplies) {
opp->supplies[i].u_volt_min = opp->supplies[i].u_volt;
opp->supplies[i].u_volt_max = opp->supplies[i].u_volt;
} else {
opp->supplies[i].u_volt_min = microvolt[j++];
opp->supplies[i].u_volt_max = microvolt[j++];
}
if (microamp)
opp->supplies[i].u_amp = microamp[i];
}
free_microamp:
kfree(microamp);
free_microvolt:
kfree(microvolt);
return ret;
}
/**
* dev_pm_opp_of_remove_table() - Free OPP table entries created from static DT
* entries
* @dev: device pointer used to lookup OPP table.
*
* Free OPPs created using static entries present in DT.
*/
void dev_pm_opp_of_remove_table(struct device *dev)
{
_dev_pm_opp_find_and_remove_table(dev);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_remove_table);
/**
* _opp_add_static_v2() - Allocate static OPPs (As per 'v2' DT bindings)
* @opp_table: OPP table
* @dev: device for which we do this operation
* @np: device node
*
* This function adds an opp definition to the opp table and returns status. The
* opp can be controlled using dev_pm_opp_enable/disable functions and may be
* removed by dev_pm_opp_remove.
*
* Return:
* Valid OPP pointer:
* On success
* NULL:
* Duplicate OPPs (both freq and volt are same) and opp->available
* OR if the OPP is not supported by hardware.
* ERR_PTR(-EEXIST):
* Freq are same and volt are different OR
* Duplicate OPPs (both freq and volt are same) and !opp->available
* ERR_PTR(-ENOMEM):
* Memory allocation failure
* ERR_PTR(-EINVAL):
* Failed parsing the OPP node
*/
static struct dev_pm_opp *_opp_add_static_v2(struct opp_table *opp_table,
struct device *dev, struct device_node *np)
{
struct dev_pm_opp *new_opp;
u64 rate = 0;
u32 val;
int ret;
bool rate_not_available = false;
new_opp = _opp_allocate(opp_table);
if (!new_opp)
return ERR_PTR(-ENOMEM);
ret = of_property_read_u64(np, "opp-hz", &rate);
if (ret < 0) {
/* "opp-hz" is optional for devices like power domains. */
if (!opp_table->is_genpd) {
dev_err(dev, "%s: opp-hz not found\n", __func__);
goto free_opp;
}
rate_not_available = true;
} else {
/*
* Rate is defined as an unsigned long in clk API, and so
* casting explicitly to its type. Must be fixed once rate is 64
* bit guaranteed in clk API.
*/
new_opp->rate = (unsigned long)rate;
}
of_property_read_u32(np, "opp-level", &new_opp->level);
/* Check if the OPP supports hardware's hierarchy of versions or not */
if (!_opp_is_supported(dev, opp_table, np)) {
dev_dbg(dev, "OPP not supported by hardware: %llu\n", rate);
goto free_opp;
}
new_opp->turbo = of_property_read_bool(np, "turbo-mode");
new_opp->np = np;
new_opp->dynamic = false;
new_opp->available = true;
ret = _of_opp_alloc_required_opps(opp_table, new_opp);
if (ret)
goto free_opp;
if (!of_property_read_u32(np, "clock-latency-ns", &val))
new_opp->clock_latency_ns = val;
ret = opp_parse_supplies(new_opp, dev, opp_table);
if (ret)
goto free_required_opps;
if (opp_table->is_genpd)
new_opp->pstate = pm_genpd_opp_to_performance_state(dev, new_opp);
ret = _opp_add(dev, new_opp, opp_table, rate_not_available);
if (ret) {
/* Don't return error for duplicate OPPs */
if (ret == -EBUSY)
ret = 0;
goto free_required_opps;
}
/* OPP to select on device suspend */
if (of_property_read_bool(np, "opp-suspend")) {
if (opp_table->suspend_opp) {
/* Pick the OPP with higher rate as suspend OPP */
if (new_opp->rate > opp_table->suspend_opp->rate) {
opp_table->suspend_opp->suspend = false;
new_opp->suspend = true;
opp_table->suspend_opp = new_opp;
}
} else {
new_opp->suspend = true;
opp_table->suspend_opp = new_opp;
}
}
if (new_opp->clock_latency_ns > opp_table->clock_latency_ns_max)
opp_table->clock_latency_ns_max = new_opp->clock_latency_ns;
pr_debug("%s: turbo:%d rate:%lu uv:%lu uvmin:%lu uvmax:%lu latency:%lu\n",
__func__, new_opp->turbo, new_opp->rate,
new_opp->supplies[0].u_volt, new_opp->supplies[0].u_volt_min,
new_opp->supplies[0].u_volt_max, new_opp->clock_latency_ns);
/*
* Notify the changes in the availability of the operable
* frequency/voltage list.
*/
blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
return new_opp;
free_required_opps:
_of_opp_free_required_opps(opp_table, new_opp);
free_opp:
_opp_free(new_opp);
return ERR_PTR(ret);
}
/* Initializes OPP tables based on new bindings */
static int _of_add_opp_table_v2(struct device *dev, struct opp_table *opp_table)
{
struct device_node *np;
int ret, count = 0, pstate_count = 0;
struct dev_pm_opp *opp;
/* OPP table is already initialized for the device */
if (opp_table->parsed_static_opps) {
kref_get(&opp_table->list_kref);
return 0;
}
/*
* Re-initialize list_kref every time we add static OPPs to the OPP
* table as the reference count may be 0 after the last tie static OPPs
* were removed.
*/
kref_init(&opp_table->list_kref);
/* We have opp-table node now, iterate over it and add OPPs */
for_each_available_child_of_node(opp_table->np, np) {
opp = _opp_add_static_v2(opp_table, dev, np);
if (IS_ERR(opp)) {
ret = PTR_ERR(opp);
dev_err(dev, "%s: Failed to add OPP, %d\n", __func__,
ret);
of_node_put(np);
return ret;
} else if (opp) {
count++;
}
}
/* There should be one of more OPP defined */
if (WARN_ON(!count))
return -ENOENT;
list_for_each_entry(opp, &opp_table->opp_list, node)
pstate_count += !!opp->pstate;
/* Either all or none of the nodes shall have performance state set */
if (pstate_count && pstate_count != count) {
dev_err(dev, "Not all nodes have performance state set (%d: %d)\n",
count, pstate_count);
return -ENOENT;
}
if (pstate_count)
opp_table->genpd_performance_state = true;
opp_table->parsed_static_opps = true;
return 0;
}
/* Initializes OPP tables based on old-deprecated bindings */
static int _of_add_opp_table_v1(struct device *dev, struct opp_table *opp_table)
{
const struct property *prop;
const __be32 *val;
int nr, ret = 0;
prop = of_find_property(dev->of_node, "operating-points", NULL);
if (!prop)
return -ENODEV;
if (!prop->value)
return -ENODATA;
/*
* Each OPP is a set of tuples consisting of frequency and
* voltage like <freq-kHz vol-uV>.
*/
nr = prop->length / sizeof(u32);
if (nr % 2) {
dev_err(dev, "%s: Invalid OPP table\n", __func__);
return -EINVAL;
}
val = prop->value;
while (nr) {
unsigned long freq = be32_to_cpup(val++) * 1000;
unsigned long volt = be32_to_cpup(val++);
ret = _opp_add_v1(opp_table, dev, freq, volt, false);
if (ret) {
dev_err(dev, "%s: Failed to add OPP %ld (%d)\n",
__func__, freq, ret);
return ret;
}
nr -= 2;
}
return ret;
}
/**
* dev_pm_opp_of_add_table() - Initialize opp table from device tree
* @dev: device pointer used to lookup OPP table.
*
* Register the initial OPP table with the OPP library for given device.
*
* Return:
* 0 On success OR
* Duplicate OPPs (both freq and volt are same) and opp->available
* -EEXIST Freq are same and volt are different OR
* Duplicate OPPs (both freq and volt are same) and !opp->available
* -ENOMEM Memory allocation failure
* -ENODEV when 'operating-points' property is not found or is invalid data
* in device node.
* -ENODATA when empty 'operating-points' property is found
* -EINVAL when invalid entries are found in opp-v2 table
*/
int dev_pm_opp_of_add_table(struct device *dev)
{
struct opp_table *opp_table;
int ret;
opp_table = dev_pm_opp_get_opp_table_indexed(dev, 0);
if (!opp_table)
return -ENOMEM;
/*
* OPPs have two version of bindings now. Also try the old (v1)
* bindings for backward compatibility with older dtbs.
*/
if (opp_table->np)
ret = _of_add_opp_table_v2(dev, opp_table);
else
ret = _of_add_opp_table_v1(dev, opp_table);
if (ret)
dev_pm_opp_put_opp_table(opp_table);
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table);
/**
* dev_pm_opp_of_add_table_indexed() - Initialize indexed opp table from device tree
* @dev: device pointer used to lookup OPP table.
* @index: Index number.
*
* Register the initial OPP table with the OPP library for given device only
* using the "operating-points-v2" property.
*
* Return:
* 0 On success OR
* Duplicate OPPs (both freq and volt are same) and opp->available
* -EEXIST Freq are same and volt are different OR
* Duplicate OPPs (both freq and volt are same) and !opp->available
* -ENOMEM Memory allocation failure
* -ENODEV when 'operating-points' property is not found or is invalid data
* in device node.
* -ENODATA when empty 'operating-points' property is found
* -EINVAL when invalid entries are found in opp-v2 table
*/
int dev_pm_opp_of_add_table_indexed(struct device *dev, int index)
{
struct opp_table *opp_table;
int ret, count;
if (index) {
/*
* If only one phandle is present, then the same OPP table
* applies for all index requests.
*/
count = of_count_phandle_with_args(dev->of_node,
"operating-points-v2", NULL);
if (count == 1)
index = 0;
}
opp_table = dev_pm_opp_get_opp_table_indexed(dev, index);
if (!opp_table)
return -ENOMEM;
ret = _of_add_opp_table_v2(dev, opp_table);
if (ret)
dev_pm_opp_put_opp_table(opp_table);
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_add_table_indexed);
/* CPU device specific helpers */
/**
* dev_pm_opp_of_cpumask_remove_table() - Removes OPP table for @cpumask
* @cpumask: cpumask for which OPP table needs to be removed
*
* This removes the OPP tables for CPUs present in the @cpumask.
* This should be used only to remove static entries created from DT.
*/
void dev_pm_opp_of_cpumask_remove_table(const struct cpumask *cpumask)
{
_dev_pm_opp_cpumask_remove_table(cpumask, -1);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_remove_table);
/**
* dev_pm_opp_of_cpumask_add_table() - Adds OPP table for @cpumask
* @cpumask: cpumask for which OPP table needs to be added.
*
* This adds the OPP tables for CPUs present in the @cpumask.
*/
int dev_pm_opp_of_cpumask_add_table(const struct cpumask *cpumask)
{
struct device *cpu_dev;
int cpu, ret;
if (WARN_ON(cpumask_empty(cpumask)))
return -ENODEV;
for_each_cpu(cpu, cpumask) {
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev) {
pr_err("%s: failed to get cpu%d device\n", __func__,
cpu);
ret = -ENODEV;
goto remove_table;
}
ret = dev_pm_opp_of_add_table(cpu_dev);
if (ret) {
/*
* OPP may get registered dynamically, don't print error
* message here.
*/
pr_debug("%s: couldn't find opp table for cpu:%d, %d\n",
__func__, cpu, ret);
goto remove_table;
}
}
return 0;
remove_table:
/* Free all other OPPs */
_dev_pm_opp_cpumask_remove_table(cpumask, cpu);
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_cpumask_add_table);
/*
* Works only for OPP v2 bindings.
*
* Returns -ENOENT if operating-points-v2 bindings aren't supported.
*/
/**
* dev_pm_opp_of_get_sharing_cpus() - Get cpumask of CPUs sharing OPPs with
* @cpu_dev using operating-points-v2
* bindings.
*
* @cpu_dev: CPU device for which we do this operation
* @cpumask: cpumask to update with information of sharing CPUs
*
* This updates the @cpumask with CPUs that are sharing OPPs with @cpu_dev.
*
* Returns -ENOENT if operating-points-v2 isn't present for @cpu_dev.
*/
int dev_pm_opp_of_get_sharing_cpus(struct device *cpu_dev,
struct cpumask *cpumask)
{
struct device_node *np, *tmp_np, *cpu_np;
int cpu, ret = 0;
/* Get OPP descriptor node */
np = dev_pm_opp_of_get_opp_desc_node(cpu_dev);
if (!np) {
dev_dbg(cpu_dev, "%s: Couldn't find opp node.\n", __func__);
return -ENOENT;
}
cpumask_set_cpu(cpu_dev->id, cpumask);
/* OPPs are shared ? */
if (!of_property_read_bool(np, "opp-shared"))
goto put_cpu_node;
for_each_possible_cpu(cpu) {
if (cpu == cpu_dev->id)
continue;
cpu_np = of_cpu_device_node_get(cpu);
if (!cpu_np) {
dev_err(cpu_dev, "%s: failed to get cpu%d node\n",
__func__, cpu);
ret = -ENOENT;
goto put_cpu_node;
}
/* Get OPP descriptor node */
tmp_np = _opp_of_get_opp_desc_node(cpu_np, 0);
of_node_put(cpu_np);
if (!tmp_np) {
pr_err("%pOF: Couldn't find opp node\n", cpu_np);
ret = -ENOENT;
goto put_cpu_node;
}
/* CPUs are sharing opp node */
if (np == tmp_np)
cpumask_set_cpu(cpu, cpumask);
of_node_put(tmp_np);
}
put_cpu_node:
of_node_put(np);
return ret;
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_get_sharing_cpus);
/**
* of_get_required_opp_performance_state() - Search for required OPP and return its performance state.
* @np: Node that contains the "required-opps" property.
* @index: Index of the phandle to parse.
*
* Returns the performance state of the OPP pointed out by the "required-opps"
* property at @index in @np.
*
* Return: Zero or positive performance state on success, otherwise negative
* value on errors.
*/
int of_get_required_opp_performance_state(struct device_node *np, int index)
{
struct dev_pm_opp *opp;
struct device_node *required_np;
struct opp_table *opp_table;
int pstate = -EINVAL;
required_np = of_parse_required_opp(np, index);
if (!required_np)
return -EINVAL;
opp_table = _find_table_of_opp_np(required_np);
if (IS_ERR(opp_table)) {
pr_err("%s: Failed to find required OPP table %pOF: %ld\n",
__func__, np, PTR_ERR(opp_table));
goto put_required_np;
}
opp = _find_opp_of_np(opp_table, required_np);
if (opp) {
pstate = opp->pstate;
dev_pm_opp_put(opp);
}
dev_pm_opp_put_opp_table(opp_table);
put_required_np:
of_node_put(required_np);
return pstate;
}
EXPORT_SYMBOL_GPL(of_get_required_opp_performance_state);
/**
* dev_pm_opp_get_of_node() - Gets the DT node corresponding to an opp
* @opp: opp for which DT node has to be returned for
*
* Return: DT node corresponding to the opp, else 0 on success.
*
* The caller needs to put the node with of_node_put() after using it.
*/
struct device_node *dev_pm_opp_get_of_node(struct dev_pm_opp *opp)
{
if (IS_ERR_OR_NULL(opp)) {
pr_err("%s: Invalid parameters\n", __func__);
return NULL;
}
return of_node_get(opp->np);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_get_of_node);
/*
* Callback function provided to the Energy Model framework upon registration.
* This computes the power estimated by @CPU at @kHz if it is the frequency
* of an existing OPP, or at the frequency of the first OPP above @kHz otherwise
* (see dev_pm_opp_find_freq_ceil()). This function updates @kHz to the ceiled
* frequency and @mW to the associated power. The power is estimated as
* P = C * V^2 * f with C being the CPU's capacitance and V and f respectively
* the voltage and frequency of the OPP.
*
* Returns -ENODEV if the CPU device cannot be found, -EINVAL if the power
* calculation failed because of missing parameters, 0 otherwise.
*/
static int __maybe_unused _get_cpu_power(unsigned long *mW, unsigned long *kHz,
int cpu)
{
struct device *cpu_dev;
struct dev_pm_opp *opp;
struct device_node *np;
unsigned long mV, Hz;
u32 cap;
u64 tmp;
int ret;
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev)
return -ENODEV;
np = of_node_get(cpu_dev->of_node);
if (!np)
return -EINVAL;
ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
of_node_put(np);
if (ret)
return -EINVAL;
Hz = *kHz * 1000;
opp = dev_pm_opp_find_freq_ceil(cpu_dev, &Hz);
if (IS_ERR(opp))
return -EINVAL;
mV = dev_pm_opp_get_voltage(opp) / 1000;
dev_pm_opp_put(opp);
if (!mV)
return -EINVAL;
tmp = (u64)cap * mV * mV * (Hz / 1000000);
do_div(tmp, 1000000000);
*mW = (unsigned long)tmp;
*kHz = Hz / 1000;
return 0;
}
/**
* dev_pm_opp_of_register_em() - Attempt to register an Energy Model
* @cpus : CPUs for which an Energy Model has to be registered
*
* This checks whether the "dynamic-power-coefficient" devicetree property has
* been specified, and tries to register an Energy Model with it if it has.
*/
void dev_pm_opp_of_register_em(struct cpumask *cpus)
{
struct em_data_callback em_cb = EM_DATA_CB(_get_cpu_power);
int ret, nr_opp, cpu = cpumask_first(cpus);
struct device *cpu_dev;
struct device_node *np;
u32 cap;
cpu_dev = get_cpu_device(cpu);
if (!cpu_dev)
return;
nr_opp = dev_pm_opp_get_opp_count(cpu_dev);
if (nr_opp <= 0)
return;
np = of_node_get(cpu_dev->of_node);
if (!np)
return;
/*
* Register an EM only if the 'dynamic-power-coefficient' property is
* set in devicetree. It is assumed the voltage values are known if that
* property is set since it is useless otherwise. If voltages are not
* known, just let the EM registration fail with an error to alert the
* user about the inconsistent configuration.
*/
ret = of_property_read_u32(np, "dynamic-power-coefficient", &cap);
of_node_put(np);
if (ret || !cap)
return;
em_register_perf_domain(cpus, nr_opp, &em_cb);
}
EXPORT_SYMBOL_GPL(dev_pm_opp_of_register_em);