| // SPDX-License-Identifier: GPL-2.0+ |
| |
| /* |
| * NXP FlexSPI(FSPI) controller driver. |
| * |
| * Copyright 2019 NXP. |
| * |
| * FlexSPI is a flexsible SPI host controller which supports two SPI |
| * channels and up to 4 external devices. Each channel supports |
| * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional |
| * data lines). |
| * |
| * FlexSPI controller is driven by the LUT(Look-up Table) registers |
| * LUT registers are a look-up-table for sequences of instructions. |
| * A valid sequence consists of four LUT registers. |
| * Maximum 32 LUT sequences can be programmed simultaneously. |
| * |
| * LUTs are being created at run-time based on the commands passed |
| * from the spi-mem framework, thus using single LUT index. |
| * |
| * Software triggered Flash read/write access by IP Bus. |
| * |
| * Memory mapped read access by AHB Bus. |
| * |
| * Based on SPI MEM interface and spi-fsl-qspi.c driver. |
| * |
| * Author: |
| * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com> |
| * Boris Brezillon <bbrezillon@kernel.org> |
| * Frieder Schrempf <frieder.schrempf@kontron.de> |
| */ |
| |
| #include <linux/bitops.h> |
| #include <linux/clk.h> |
| #include <linux/completion.h> |
| #include <linux/delay.h> |
| #include <linux/err.h> |
| #include <linux/errno.h> |
| #include <linux/interrupt.h> |
| #include <linux/io.h> |
| #include <linux/iopoll.h> |
| #include <linux/jiffies.h> |
| #include <linux/kernel.h> |
| #include <linux/module.h> |
| #include <linux/mutex.h> |
| #include <linux/of.h> |
| #include <linux/of_device.h> |
| #include <linux/platform_device.h> |
| #include <linux/pm_qos.h> |
| #include <linux/sizes.h> |
| |
| #include <linux/spi/spi.h> |
| #include <linux/spi/spi-mem.h> |
| |
| /* |
| * The driver only uses one single LUT entry, that is updated on |
| * each call of exec_op(). Index 0 is preset at boot with a basic |
| * read operation, so let's use the last entry (31). |
| */ |
| #define SEQID_LUT 31 |
| |
| /* Registers used by the driver */ |
| #define FSPI_MCR0 0x00 |
| #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) |
| #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) |
| #define FSPI_MCR0_LEARN_EN BIT(15) |
| #define FSPI_MCR0_SCRFRUN_EN BIT(14) |
| #define FSPI_MCR0_OCTCOMB_EN BIT(13) |
| #define FSPI_MCR0_DOZE_EN BIT(12) |
| #define FSPI_MCR0_HSEN BIT(11) |
| #define FSPI_MCR0_SERCLKDIV BIT(8) |
| #define FSPI_MCR0_ATDF_EN BIT(7) |
| #define FSPI_MCR0_ARDF_EN BIT(6) |
| #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) |
| #define FSPI_MCR0_END_CFG(x) ((x) << 2) |
| #define FSPI_MCR0_MDIS BIT(1) |
| #define FSPI_MCR0_SWRST BIT(0) |
| |
| #define FSPI_MCR1 0x04 |
| #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) |
| #define FSPI_MCR1_AHB_TIMEOUT(x) (x) |
| |
| #define FSPI_MCR2 0x08 |
| #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) |
| #define FSPI_MCR2_SAMEDEVICEEN BIT(15) |
| #define FSPI_MCR2_CLRLRPHS BIT(14) |
| #define FSPI_MCR2_ABRDATSZ BIT(8) |
| #define FSPI_MCR2_ABRLEARN BIT(7) |
| #define FSPI_MCR2_ABR_READ BIT(6) |
| #define FSPI_MCR2_ABRWRITE BIT(5) |
| #define FSPI_MCR2_ABRDUMMY BIT(4) |
| #define FSPI_MCR2_ABR_MODE BIT(3) |
| #define FSPI_MCR2_ABRCADDR BIT(2) |
| #define FSPI_MCR2_ABRRADDR BIT(1) |
| #define FSPI_MCR2_ABR_CMD BIT(0) |
| |
| #define FSPI_AHBCR 0x0c |
| #define FSPI_AHBCR_RDADDROPT BIT(6) |
| #define FSPI_AHBCR_PREF_EN BIT(5) |
| #define FSPI_AHBCR_BUFF_EN BIT(4) |
| #define FSPI_AHBCR_CACH_EN BIT(3) |
| #define FSPI_AHBCR_CLRTXBUF BIT(2) |
| #define FSPI_AHBCR_CLRRXBUF BIT(1) |
| #define FSPI_AHBCR_PAR_EN BIT(0) |
| |
| #define FSPI_INTEN 0x10 |
| #define FSPI_INTEN_SCLKSBWR BIT(9) |
| #define FSPI_INTEN_SCLKSBRD BIT(8) |
| #define FSPI_INTEN_DATALRNFL BIT(7) |
| #define FSPI_INTEN_IPTXWE BIT(6) |
| #define FSPI_INTEN_IPRXWA BIT(5) |
| #define FSPI_INTEN_AHBCMDERR BIT(4) |
| #define FSPI_INTEN_IPCMDERR BIT(3) |
| #define FSPI_INTEN_AHBCMDGE BIT(2) |
| #define FSPI_INTEN_IPCMDGE BIT(1) |
| #define FSPI_INTEN_IPCMDDONE BIT(0) |
| |
| #define FSPI_INTR 0x14 |
| #define FSPI_INTR_SCLKSBWR BIT(9) |
| #define FSPI_INTR_SCLKSBRD BIT(8) |
| #define FSPI_INTR_DATALRNFL BIT(7) |
| #define FSPI_INTR_IPTXWE BIT(6) |
| #define FSPI_INTR_IPRXWA BIT(5) |
| #define FSPI_INTR_AHBCMDERR BIT(4) |
| #define FSPI_INTR_IPCMDERR BIT(3) |
| #define FSPI_INTR_AHBCMDGE BIT(2) |
| #define FSPI_INTR_IPCMDGE BIT(1) |
| #define FSPI_INTR_IPCMDDONE BIT(0) |
| |
| #define FSPI_LUTKEY 0x18 |
| #define FSPI_LUTKEY_VALUE 0x5AF05AF0 |
| |
| #define FSPI_LCKCR 0x1C |
| |
| #define FSPI_LCKER_LOCK 0x1 |
| #define FSPI_LCKER_UNLOCK 0x2 |
| |
| #define FSPI_BUFXCR_INVALID_MSTRID 0xE |
| #define FSPI_AHBRX_BUF0CR0 0x20 |
| #define FSPI_AHBRX_BUF1CR0 0x24 |
| #define FSPI_AHBRX_BUF2CR0 0x28 |
| #define FSPI_AHBRX_BUF3CR0 0x2C |
| #define FSPI_AHBRX_BUF4CR0 0x30 |
| #define FSPI_AHBRX_BUF5CR0 0x34 |
| #define FSPI_AHBRX_BUF6CR0 0x38 |
| #define FSPI_AHBRX_BUF7CR0 0x3C |
| #define FSPI_AHBRXBUF0CR7_PREF BIT(31) |
| |
| #define FSPI_AHBRX_BUF0CR1 0x40 |
| #define FSPI_AHBRX_BUF1CR1 0x44 |
| #define FSPI_AHBRX_BUF2CR1 0x48 |
| #define FSPI_AHBRX_BUF3CR1 0x4C |
| #define FSPI_AHBRX_BUF4CR1 0x50 |
| #define FSPI_AHBRX_BUF5CR1 0x54 |
| #define FSPI_AHBRX_BUF6CR1 0x58 |
| #define FSPI_AHBRX_BUF7CR1 0x5C |
| |
| #define FSPI_FLSHA1CR0 0x60 |
| #define FSPI_FLSHA2CR0 0x64 |
| #define FSPI_FLSHB1CR0 0x68 |
| #define FSPI_FLSHB2CR0 0x6C |
| #define FSPI_FLSHXCR0_SZ_KB 10 |
| #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) |
| |
| #define FSPI_FLSHA1CR1 0x70 |
| #define FSPI_FLSHA2CR1 0x74 |
| #define FSPI_FLSHB1CR1 0x78 |
| #define FSPI_FLSHB2CR1 0x7C |
| #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) |
| #define FSPI_FLSHXCR1_CAS(x) ((x) << 11) |
| #define FSPI_FLSHXCR1_WA BIT(10) |
| #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) |
| #define FSPI_FLSHXCR1_TCSS(x) (x) |
| |
| #define FSPI_FLSHA1CR2 0x80 |
| #define FSPI_FLSHA2CR2 0x84 |
| #define FSPI_FLSHB1CR2 0x88 |
| #define FSPI_FLSHB2CR2 0x8C |
| #define FSPI_FLSHXCR2_CLRINSP BIT(24) |
| #define FSPI_FLSHXCR2_AWRWAIT BIT(16) |
| #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 |
| #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 |
| #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 |
| #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 |
| |
| #define FSPI_IPCR0 0xA0 |
| |
| #define FSPI_IPCR1 0xA4 |
| #define FSPI_IPCR1_IPAREN BIT(31) |
| #define FSPI_IPCR1_SEQNUM_SHIFT 24 |
| #define FSPI_IPCR1_SEQID_SHIFT 16 |
| #define FSPI_IPCR1_IDATSZ(x) (x) |
| |
| #define FSPI_IPCMD 0xB0 |
| #define FSPI_IPCMD_TRG BIT(0) |
| |
| #define FSPI_DLPR 0xB4 |
| |
| #define FSPI_IPRXFCR 0xB8 |
| #define FSPI_IPRXFCR_CLR BIT(0) |
| #define FSPI_IPRXFCR_DMA_EN BIT(1) |
| #define FSPI_IPRXFCR_WMRK(x) ((x) << 2) |
| |
| #define FSPI_IPTXFCR 0xBC |
| #define FSPI_IPTXFCR_CLR BIT(0) |
| #define FSPI_IPTXFCR_DMA_EN BIT(1) |
| #define FSPI_IPTXFCR_WMRK(x) ((x) << 2) |
| |
| #define FSPI_DLLACR 0xC0 |
| #define FSPI_DLLACR_OVRDEN BIT(8) |
| |
| #define FSPI_DLLBCR 0xC4 |
| #define FSPI_DLLBCR_OVRDEN BIT(8) |
| |
| #define FSPI_STS0 0xE0 |
| #define FSPI_STS0_DLPHB(x) ((x) << 8) |
| #define FSPI_STS0_DLPHA(x) ((x) << 4) |
| #define FSPI_STS0_CMD_SRC(x) ((x) << 2) |
| #define FSPI_STS0_ARB_IDLE BIT(1) |
| #define FSPI_STS0_SEQ_IDLE BIT(0) |
| |
| #define FSPI_STS1 0xE4 |
| #define FSPI_STS1_IP_ERRCD(x) ((x) << 24) |
| #define FSPI_STS1_IP_ERRID(x) ((x) << 16) |
| #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) |
| #define FSPI_STS1_AHB_ERRID(x) (x) |
| |
| #define FSPI_AHBSPNST 0xEC |
| #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) |
| #define FSPI_AHBSPNST_BUFID(x) ((x) << 1) |
| #define FSPI_AHBSPNST_ACTIVE BIT(0) |
| |
| #define FSPI_IPRXFSTS 0xF0 |
| #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) |
| #define FSPI_IPRXFSTS_FILL(x) (x) |
| |
| #define FSPI_IPTXFSTS 0xF4 |
| #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) |
| #define FSPI_IPTXFSTS_FILL(x) (x) |
| |
| #define FSPI_RFDR 0x100 |
| #define FSPI_TFDR 0x180 |
| |
| #define FSPI_LUT_BASE 0x200 |
| #define FSPI_LUT_OFFSET (SEQID_LUT * 4 * 4) |
| #define FSPI_LUT_REG(idx) \ |
| (FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4) |
| |
| /* register map end */ |
| |
| /* Instruction set for the LUT register. */ |
| #define LUT_STOP 0x00 |
| #define LUT_CMD 0x01 |
| #define LUT_ADDR 0x02 |
| #define LUT_CADDR_SDR 0x03 |
| #define LUT_MODE 0x04 |
| #define LUT_MODE2 0x05 |
| #define LUT_MODE4 0x06 |
| #define LUT_MODE8 0x07 |
| #define LUT_NXP_WRITE 0x08 |
| #define LUT_NXP_READ 0x09 |
| #define LUT_LEARN_SDR 0x0A |
| #define LUT_DATSZ_SDR 0x0B |
| #define LUT_DUMMY 0x0C |
| #define LUT_DUMMY_RWDS_SDR 0x0D |
| #define LUT_JMP_ON_CS 0x1F |
| #define LUT_CMD_DDR 0x21 |
| #define LUT_ADDR_DDR 0x22 |
| #define LUT_CADDR_DDR 0x23 |
| #define LUT_MODE_DDR 0x24 |
| #define LUT_MODE2_DDR 0x25 |
| #define LUT_MODE4_DDR 0x26 |
| #define LUT_MODE8_DDR 0x27 |
| #define LUT_WRITE_DDR 0x28 |
| #define LUT_READ_DDR 0x29 |
| #define LUT_LEARN_DDR 0x2A |
| #define LUT_DATSZ_DDR 0x2B |
| #define LUT_DUMMY_DDR 0x2C |
| #define LUT_DUMMY_RWDS_DDR 0x2D |
| |
| /* |
| * Calculate number of required PAD bits for LUT register. |
| * |
| * The pad stands for the number of IO lines [0:7]. |
| * For example, the octal read needs eight IO lines, |
| * so you should use LUT_PAD(8). This macro |
| * returns 3 i.e. use eight (2^3) IP lines for read. |
| */ |
| #define LUT_PAD(x) (fls(x) - 1) |
| |
| /* |
| * Macro for constructing the LUT entries with the following |
| * register layout: |
| * |
| * --------------------------------------------------- |
| * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | |
| * --------------------------------------------------- |
| */ |
| #define PAD_SHIFT 8 |
| #define INSTR_SHIFT 10 |
| #define OPRND_SHIFT 16 |
| |
| /* Macros for constructing the LUT register. */ |
| #define LUT_DEF(idx, ins, pad, opr) \ |
| ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ |
| (opr)) << (((idx) % 2) * OPRND_SHIFT)) |
| |
| #define POLL_TOUT 5000 |
| #define NXP_FSPI_MAX_CHIPSELECT 4 |
| |
| struct nxp_fspi_devtype_data { |
| unsigned int rxfifo; |
| unsigned int txfifo; |
| unsigned int ahb_buf_size; |
| unsigned int quirks; |
| bool little_endian; |
| }; |
| |
| static const struct nxp_fspi_devtype_data lx2160a_data = { |
| .rxfifo = SZ_512, /* (64 * 64 bits) */ |
| .txfifo = SZ_1K, /* (128 * 64 bits) */ |
| .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ |
| .quirks = 0, |
| .little_endian = true, /* little-endian */ |
| }; |
| |
| struct nxp_fspi { |
| void __iomem *iobase; |
| void __iomem *ahb_addr; |
| u32 memmap_phy; |
| u32 memmap_phy_size; |
| struct clk *clk, *clk_en; |
| struct device *dev; |
| struct completion c; |
| const struct nxp_fspi_devtype_data *devtype_data; |
| struct mutex lock; |
| struct pm_qos_request pm_qos_req; |
| int selected; |
| }; |
| |
| /* |
| * R/W functions for big- or little-endian registers: |
| * The FSPI controller's endianness is independent of |
| * the CPU core's endianness. So far, although the CPU |
| * core is little-endian the FSPI controller can use |
| * big-endian or little-endian. |
| */ |
| static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) |
| { |
| if (f->devtype_data->little_endian) |
| iowrite32(val, addr); |
| else |
| iowrite32be(val, addr); |
| } |
| |
| static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) |
| { |
| if (f->devtype_data->little_endian) |
| return ioread32(addr); |
| else |
| return ioread32be(addr); |
| } |
| |
| static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) |
| { |
| struct nxp_fspi *f = dev_id; |
| u32 reg; |
| |
| /* clear interrupt */ |
| reg = fspi_readl(f, f->iobase + FSPI_INTR); |
| fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR); |
| |
| if (reg & FSPI_INTR_IPCMDDONE) |
| complete(&f->c); |
| |
| return IRQ_HANDLED; |
| } |
| |
| static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) |
| { |
| switch (width) { |
| case 1: |
| case 2: |
| case 4: |
| case 8: |
| return 0; |
| } |
| |
| return -ENOTSUPP; |
| } |
| |
| static bool nxp_fspi_supports_op(struct spi_mem *mem, |
| const struct spi_mem_op *op) |
| { |
| struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); |
| int ret; |
| |
| ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth); |
| |
| if (op->addr.nbytes) |
| ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth); |
| |
| if (op->dummy.nbytes) |
| ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth); |
| |
| if (op->data.nbytes) |
| ret |= nxp_fspi_check_buswidth(f, op->data.buswidth); |
| |
| if (ret) |
| return false; |
| |
| /* |
| * The number of address bytes should be equal to or less than 4 bytes. |
| */ |
| if (op->addr.nbytes > 4) |
| return false; |
| |
| /* |
| * If requested address value is greater than controller assigned |
| * memory mapped space, return error as it didn't fit in the range |
| * of assigned address space. |
| */ |
| if (op->addr.val >= f->memmap_phy_size) |
| return false; |
| |
| /* Max 64 dummy clock cycles supported */ |
| if (op->dummy.buswidth && |
| (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) |
| return false; |
| |
| /* Max data length, check controller limits and alignment */ |
| if (op->data.dir == SPI_MEM_DATA_IN && |
| (op->data.nbytes > f->devtype_data->ahb_buf_size || |
| (op->data.nbytes > f->devtype_data->rxfifo - 4 && |
| !IS_ALIGNED(op->data.nbytes, 8)))) |
| return false; |
| |
| if (op->data.dir == SPI_MEM_DATA_OUT && |
| op->data.nbytes > f->devtype_data->txfifo) |
| return false; |
| |
| return true; |
| } |
| |
| /* Instead of busy looping invoke readl_poll_timeout functionality. */ |
| static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, |
| u32 mask, u32 delay_us, |
| u32 timeout_us, bool c) |
| { |
| u32 reg; |
| |
| if (!f->devtype_data->little_endian) |
| mask = (u32)cpu_to_be32(mask); |
| |
| if (c) |
| return readl_poll_timeout(base, reg, (reg & mask), |
| delay_us, timeout_us); |
| else |
| return readl_poll_timeout(base, reg, !(reg & mask), |
| delay_us, timeout_us); |
| } |
| |
| /* |
| * If the slave device content being changed by Write/Erase, need to |
| * invalidate the AHB buffer. This can be achieved by doing the reset |
| * of controller after setting MCR0[SWRESET] bit. |
| */ |
| static inline void nxp_fspi_invalid(struct nxp_fspi *f) |
| { |
| u32 reg; |
| int ret; |
| |
| reg = fspi_readl(f, f->iobase + FSPI_MCR0); |
| fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); |
| |
| /* w1c register, wait unit clear */ |
| ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, |
| FSPI_MCR0_SWRST, 0, POLL_TOUT, false); |
| WARN_ON(ret); |
| } |
| |
| static void nxp_fspi_prepare_lut(struct nxp_fspi *f, |
| const struct spi_mem_op *op) |
| { |
| void __iomem *base = f->iobase; |
| u32 lutval[4] = {}; |
| int lutidx = 1, i; |
| |
| /* cmd */ |
| lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), |
| op->cmd.opcode); |
| |
| /* addr bytes */ |
| if (op->addr.nbytes) { |
| lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, |
| LUT_PAD(op->addr.buswidth), |
| op->addr.nbytes * 8); |
| lutidx++; |
| } |
| |
| /* dummy bytes, if needed */ |
| if (op->dummy.nbytes) { |
| lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, |
| /* |
| * Due to FlexSPI controller limitation number of PAD for dummy |
| * buswidth needs to be programmed as equal to data buswidth. |
| */ |
| LUT_PAD(op->data.buswidth), |
| op->dummy.nbytes * 8 / |
| op->dummy.buswidth); |
| lutidx++; |
| } |
| |
| /* read/write data bytes */ |
| if (op->data.nbytes) { |
| lutval[lutidx / 2] |= LUT_DEF(lutidx, |
| op->data.dir == SPI_MEM_DATA_IN ? |
| LUT_NXP_READ : LUT_NXP_WRITE, |
| LUT_PAD(op->data.buswidth), |
| 0); |
| lutidx++; |
| } |
| |
| /* stop condition. */ |
| lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); |
| |
| /* unlock LUT */ |
| fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); |
| fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); |
| |
| /* fill LUT */ |
| for (i = 0; i < ARRAY_SIZE(lutval); i++) |
| fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i)); |
| |
| dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x]\n", |
| op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3]); |
| |
| /* lock LUT */ |
| fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); |
| fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); |
| } |
| |
| static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) |
| { |
| int ret; |
| |
| ret = clk_prepare_enable(f->clk_en); |
| if (ret) |
| return ret; |
| |
| ret = clk_prepare_enable(f->clk); |
| if (ret) { |
| clk_disable_unprepare(f->clk_en); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) |
| { |
| clk_disable_unprepare(f->clk); |
| clk_disable_unprepare(f->clk_en); |
| } |
| |
| /* |
| * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 |
| * register and start base address of the slave device. |
| * |
| * (Higher address) |
| * -------- <-- FLSHB2CR0 |
| * | B2 | |
| * | | |
| * B2 start address --> -------- <-- FLSHB1CR0 |
| * | B1 | |
| * | | |
| * B1 start address --> -------- <-- FLSHA2CR0 |
| * | A2 | |
| * | | |
| * A2 start address --> -------- <-- FLSHA1CR0 |
| * | A1 | |
| * | | |
| * A1 start address --> -------- (Lower address) |
| * |
| * |
| * Start base address defines the starting address range for given CS and |
| * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS. |
| * |
| * But, different targets are having different combinations of number of CS, |
| * some targets only have single CS or two CS covering controller's full |
| * memory mapped space area. |
| * Thus, implementation is being done as independent of the size and number |
| * of the connected slave device. |
| * Assign controller memory mapped space size as the size to the connected |
| * slave device. |
| * Mark FLSHxxCR0 as zero initially and then assign value only to the selected |
| * chip-select Flash configuration register. |
| * |
| * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the |
| * memory mapped size of the controller. |
| * Value for rest of the CS FLSHxxCR0 register would be zero. |
| * |
| */ |
| static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi) |
| { |
| unsigned long rate = spi->max_speed_hz; |
| int ret; |
| uint64_t size_kb; |
| |
| /* |
| * Return, if previously selected slave device is same as current |
| * requested slave device. |
| */ |
| if (f->selected == spi->chip_select) |
| return; |
| |
| /* Reset FLSHxxCR0 registers */ |
| fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); |
| fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); |
| fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); |
| fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); |
| |
| /* Assign controller memory mapped space as size, KBytes, of flash. */ |
| size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); |
| |
| fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 + |
| 4 * spi->chip_select); |
| |
| dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select); |
| |
| nxp_fspi_clk_disable_unprep(f); |
| |
| ret = clk_set_rate(f->clk, rate); |
| if (ret) |
| return; |
| |
| ret = nxp_fspi_clk_prep_enable(f); |
| if (ret) |
| return; |
| |
| f->selected = spi->chip_select; |
| } |
| |
| static void nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) |
| { |
| u32 len = op->data.nbytes; |
| |
| /* Read out the data directly from the AHB buffer. */ |
| memcpy_fromio(op->data.buf.in, (f->ahb_addr + op->addr.val), len); |
| } |
| |
| static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, |
| const struct spi_mem_op *op) |
| { |
| void __iomem *base = f->iobase; |
| int i, ret; |
| u8 *buf = (u8 *) op->data.buf.out; |
| |
| /* clear the TX FIFO. */ |
| fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); |
| |
| /* |
| * Default value of water mark level is 8 bytes, hence in single |
| * write request controller can write max 8 bytes of data. |
| */ |
| |
| for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { |
| /* Wait for TXFIFO empty */ |
| ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, |
| FSPI_INTR_IPTXWE, 0, |
| POLL_TOUT, true); |
| WARN_ON(ret); |
| |
| fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR); |
| fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4); |
| fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); |
| } |
| |
| if (i < op->data.nbytes) { |
| u32 data = 0; |
| int j; |
| /* Wait for TXFIFO empty */ |
| ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, |
| FSPI_INTR_IPTXWE, 0, |
| POLL_TOUT, true); |
| WARN_ON(ret); |
| |
| for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) { |
| memcpy(&data, buf + i + j, 4); |
| fspi_writel(f, data, base + FSPI_TFDR + j); |
| } |
| fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); |
| } |
| } |
| |
| static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, |
| const struct spi_mem_op *op) |
| { |
| void __iomem *base = f->iobase; |
| int i, ret; |
| int len = op->data.nbytes; |
| u8 *buf = (u8 *) op->data.buf.in; |
| |
| /* |
| * Default value of water mark level is 8 bytes, hence in single |
| * read request controller can read max 8 bytes of data. |
| */ |
| for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { |
| /* Wait for RXFIFO available */ |
| ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, |
| FSPI_INTR_IPRXWA, 0, |
| POLL_TOUT, true); |
| WARN_ON(ret); |
| |
| *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR); |
| *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4); |
| /* move the FIFO pointer */ |
| fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); |
| } |
| |
| if (i < len) { |
| u32 tmp; |
| int size, j; |
| |
| buf = op->data.buf.in + i; |
| /* Wait for RXFIFO available */ |
| ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, |
| FSPI_INTR_IPRXWA, 0, |
| POLL_TOUT, true); |
| WARN_ON(ret); |
| |
| len = op->data.nbytes - i; |
| for (j = 0; j < op->data.nbytes - i; j += 4) { |
| tmp = fspi_readl(f, base + FSPI_RFDR + j); |
| size = min(len, 4); |
| memcpy(buf + j, &tmp, size); |
| len -= size; |
| } |
| } |
| |
| /* invalid the RXFIFO */ |
| fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); |
| /* move the FIFO pointer */ |
| fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); |
| } |
| |
| static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) |
| { |
| void __iomem *base = f->iobase; |
| int seqnum = 0; |
| int err = 0; |
| u32 reg; |
| |
| reg = fspi_readl(f, base + FSPI_IPRXFCR); |
| /* invalid RXFIFO first */ |
| reg &= ~FSPI_IPRXFCR_DMA_EN; |
| reg = reg | FSPI_IPRXFCR_CLR; |
| fspi_writel(f, reg, base + FSPI_IPRXFCR); |
| |
| init_completion(&f->c); |
| |
| fspi_writel(f, op->addr.val, base + FSPI_IPCR0); |
| /* |
| * Always start the sequence at the same index since we update |
| * the LUT at each exec_op() call. And also specify the DATA |
| * length, since it's has not been specified in the LUT. |
| */ |
| fspi_writel(f, op->data.nbytes | |
| (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) | |
| (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), |
| base + FSPI_IPCR1); |
| |
| /* Trigger the LUT now. */ |
| fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); |
| |
| /* Wait for the interrupt. */ |
| if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000))) |
| err = -ETIMEDOUT; |
| |
| /* Invoke IP data read, if request is of data read. */ |
| if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) |
| nxp_fspi_read_rxfifo(f, op); |
| |
| return err; |
| } |
| |
| static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) |
| { |
| struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); |
| int err = 0; |
| |
| mutex_lock(&f->lock); |
| |
| /* Wait for controller being ready. */ |
| err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, |
| FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); |
| WARN_ON(err); |
| |
| nxp_fspi_select_mem(f, mem->spi); |
| |
| nxp_fspi_prepare_lut(f, op); |
| /* |
| * If we have large chunks of data, we read them through the AHB bus |
| * by accessing the mapped memory. In all other cases we use |
| * IP commands to access the flash. |
| */ |
| if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && |
| op->data.dir == SPI_MEM_DATA_IN) { |
| nxp_fspi_read_ahb(f, op); |
| } else { |
| if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) |
| nxp_fspi_fill_txfifo(f, op); |
| |
| err = nxp_fspi_do_op(f, op); |
| } |
| |
| /* Invalidate the data in the AHB buffer. */ |
| nxp_fspi_invalid(f); |
| |
| mutex_unlock(&f->lock); |
| |
| return err; |
| } |
| |
| static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) |
| { |
| struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); |
| |
| if (op->data.dir == SPI_MEM_DATA_OUT) { |
| if (op->data.nbytes > f->devtype_data->txfifo) |
| op->data.nbytes = f->devtype_data->txfifo; |
| } else { |
| if (op->data.nbytes > f->devtype_data->ahb_buf_size) |
| op->data.nbytes = f->devtype_data->ahb_buf_size; |
| else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) |
| op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); |
| } |
| |
| return 0; |
| } |
| |
| static int nxp_fspi_default_setup(struct nxp_fspi *f) |
| { |
| void __iomem *base = f->iobase; |
| int ret, i; |
| u32 reg; |
| |
| /* disable and unprepare clock to avoid glitch pass to controller */ |
| nxp_fspi_clk_disable_unprep(f); |
| |
| /* the default frequency, we will change it later if necessary. */ |
| ret = clk_set_rate(f->clk, 20000000); |
| if (ret) |
| return ret; |
| |
| ret = nxp_fspi_clk_prep_enable(f); |
| if (ret) |
| return ret; |
| |
| /* Reset the module */ |
| /* w1c register, wait unit clear */ |
| ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, |
| FSPI_MCR0_SWRST, 0, POLL_TOUT, false); |
| WARN_ON(ret); |
| |
| /* Disable the module */ |
| fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0); |
| |
| /* Reset the DLL register to default value */ |
| fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR); |
| fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR); |
| |
| /* enable module */ |
| fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | FSPI_MCR0_IP_TIMEOUT(0xFF), |
| base + FSPI_MCR0); |
| |
| /* |
| * Disable same device enable bit and configure all slave devices |
| * independently. |
| */ |
| reg = fspi_readl(f, f->iobase + FSPI_MCR2); |
| reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); |
| fspi_writel(f, reg, base + FSPI_MCR2); |
| |
| /* AHB configuration for access buffer 0~7. */ |
| for (i = 0; i < 7; i++) |
| fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i); |
| |
| /* |
| * Set ADATSZ with the maximum AHB buffer size to improve the read |
| * performance. |
| */ |
| fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 | |
| FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0); |
| |
| /* prefetch and no start address alignment limitation */ |
| fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, |
| base + FSPI_AHBCR); |
| |
| /* AHB Read - Set lut sequence ID for all CS. */ |
| fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2); |
| fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2); |
| fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2); |
| fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2); |
| |
| f->selected = -1; |
| |
| /* enable the interrupt */ |
| fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN); |
| |
| return 0; |
| } |
| |
| static const char *nxp_fspi_get_name(struct spi_mem *mem) |
| { |
| struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master); |
| struct device *dev = &mem->spi->dev; |
| const char *name; |
| |
| // Set custom name derived from the platform_device of the controller. |
| if (of_get_available_child_count(f->dev->of_node) == 1) |
| return dev_name(f->dev); |
| |
| name = devm_kasprintf(dev, GFP_KERNEL, |
| "%s-%d", dev_name(f->dev), |
| mem->spi->chip_select); |
| |
| if (!name) { |
| dev_err(dev, "failed to get memory for custom flash name\n"); |
| return ERR_PTR(-ENOMEM); |
| } |
| |
| return name; |
| } |
| |
| static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { |
| .adjust_op_size = nxp_fspi_adjust_op_size, |
| .supports_op = nxp_fspi_supports_op, |
| .exec_op = nxp_fspi_exec_op, |
| .get_name = nxp_fspi_get_name, |
| }; |
| |
| static int nxp_fspi_probe(struct platform_device *pdev) |
| { |
| struct spi_controller *ctlr; |
| struct device *dev = &pdev->dev; |
| struct device_node *np = dev->of_node; |
| struct resource *res; |
| struct nxp_fspi *f; |
| int ret; |
| |
| ctlr = spi_alloc_master(&pdev->dev, sizeof(*f)); |
| if (!ctlr) |
| return -ENOMEM; |
| |
| ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL | |
| SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL; |
| |
| f = spi_controller_get_devdata(ctlr); |
| f->dev = dev; |
| f->devtype_data = of_device_get_match_data(dev); |
| if (!f->devtype_data) { |
| ret = -ENODEV; |
| goto err_put_ctrl; |
| } |
| |
| platform_set_drvdata(pdev, f); |
| |
| /* find the resources - configuration register address space */ |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_base"); |
| f->iobase = devm_ioremap_resource(dev, res); |
| if (IS_ERR(f->iobase)) { |
| ret = PTR_ERR(f->iobase); |
| goto err_put_ctrl; |
| } |
| |
| /* find the resources - controller memory mapped space */ |
| res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fspi_mmap"); |
| f->ahb_addr = devm_ioremap_resource(dev, res); |
| if (IS_ERR(f->ahb_addr)) { |
| ret = PTR_ERR(f->ahb_addr); |
| goto err_put_ctrl; |
| } |
| |
| /* assign memory mapped starting address and mapped size. */ |
| f->memmap_phy = res->start; |
| f->memmap_phy_size = resource_size(res); |
| |
| /* find the clocks */ |
| f->clk_en = devm_clk_get(dev, "fspi_en"); |
| if (IS_ERR(f->clk_en)) { |
| ret = PTR_ERR(f->clk_en); |
| goto err_put_ctrl; |
| } |
| |
| f->clk = devm_clk_get(dev, "fspi"); |
| if (IS_ERR(f->clk)) { |
| ret = PTR_ERR(f->clk); |
| goto err_put_ctrl; |
| } |
| |
| ret = nxp_fspi_clk_prep_enable(f); |
| if (ret) { |
| dev_err(dev, "can not enable the clock\n"); |
| goto err_put_ctrl; |
| } |
| |
| /* find the irq */ |
| ret = platform_get_irq(pdev, 0); |
| if (ret < 0) |
| goto err_disable_clk; |
| |
| ret = devm_request_irq(dev, ret, |
| nxp_fspi_irq_handler, 0, pdev->name, f); |
| if (ret) { |
| dev_err(dev, "failed to request irq: %d\n", ret); |
| goto err_disable_clk; |
| } |
| |
| mutex_init(&f->lock); |
| |
| ctlr->bus_num = -1; |
| ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT; |
| ctlr->mem_ops = &nxp_fspi_mem_ops; |
| |
| nxp_fspi_default_setup(f); |
| |
| ctlr->dev.of_node = np; |
| |
| ret = spi_register_controller(ctlr); |
| if (ret) |
| goto err_destroy_mutex; |
| |
| return 0; |
| |
| err_destroy_mutex: |
| mutex_destroy(&f->lock); |
| |
| err_disable_clk: |
| nxp_fspi_clk_disable_unprep(f); |
| |
| err_put_ctrl: |
| spi_controller_put(ctlr); |
| |
| dev_err(dev, "NXP FSPI probe failed\n"); |
| return ret; |
| } |
| |
| static int nxp_fspi_remove(struct platform_device *pdev) |
| { |
| struct nxp_fspi *f = platform_get_drvdata(pdev); |
| |
| /* disable the hardware */ |
| fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0); |
| |
| nxp_fspi_clk_disable_unprep(f); |
| |
| mutex_destroy(&f->lock); |
| |
| return 0; |
| } |
| |
| static int nxp_fspi_suspend(struct device *dev) |
| { |
| return 0; |
| } |
| |
| static int nxp_fspi_resume(struct device *dev) |
| { |
| struct nxp_fspi *f = dev_get_drvdata(dev); |
| |
| nxp_fspi_default_setup(f); |
| |
| return 0; |
| } |
| |
| static const struct of_device_id nxp_fspi_dt_ids[] = { |
| { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, }, |
| { /* sentinel */ } |
| }; |
| MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids); |
| |
| static const struct dev_pm_ops nxp_fspi_pm_ops = { |
| .suspend = nxp_fspi_suspend, |
| .resume = nxp_fspi_resume, |
| }; |
| |
| static struct platform_driver nxp_fspi_driver = { |
| .driver = { |
| .name = "nxp-fspi", |
| .of_match_table = nxp_fspi_dt_ids, |
| .pm = &nxp_fspi_pm_ops, |
| }, |
| .probe = nxp_fspi_probe, |
| .remove = nxp_fspi_remove, |
| }; |
| module_platform_driver(nxp_fspi_driver); |
| |
| MODULE_DESCRIPTION("NXP FSPI Controller Driver"); |
| MODULE_AUTHOR("NXP Semiconductor"); |
| MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>"); |
| MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>"); |
| MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>"); |
| MODULE_LICENSE("GPL v2"); |