| // SPDX-License-Identifier: GPL-2.0-only |
| /*: |
| * Hibernate support specific for ARM64 |
| * |
| * Derived from work on ARM hibernation support by: |
| * |
| * Ubuntu project, hibernation support for mach-dove |
| * Copyright (C) 2010 Nokia Corporation (Hiroshi Doyu) |
| * Copyright (C) 2010 Texas Instruments, Inc. (Teerth Reddy et al.) |
| * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl> |
| */ |
| #define pr_fmt(x) "hibernate: " x |
| #include <linux/cpu.h> |
| #include <linux/kvm_host.h> |
| #include <linux/pm.h> |
| #include <linux/sched.h> |
| #include <linux/suspend.h> |
| #include <linux/utsname.h> |
| |
| #include <asm/barrier.h> |
| #include <asm/cacheflush.h> |
| #include <asm/cputype.h> |
| #include <asm/daifflags.h> |
| #include <asm/irqflags.h> |
| #include <asm/kexec.h> |
| #include <asm/memory.h> |
| #include <asm/mmu_context.h> |
| #include <asm/mte.h> |
| #include <asm/sections.h> |
| #include <asm/smp.h> |
| #include <asm/smp_plat.h> |
| #include <asm/suspend.h> |
| #include <asm/sysreg.h> |
| #include <asm/trans_pgd.h> |
| #include <asm/virt.h> |
| |
| /* |
| * Hibernate core relies on this value being 0 on resume, and marks it |
| * __nosavedata assuming it will keep the resume kernel's '0' value. This |
| * doesn't happen with either KASLR. |
| * |
| * defined as "__visible int in_suspend __nosavedata" in |
| * kernel/power/hibernate.c |
| */ |
| extern int in_suspend; |
| |
| /* Do we need to reset el2? */ |
| #define el2_reset_needed() (is_hyp_nvhe()) |
| |
| /* hyp-stub vectors, used to restore el2 during resume from hibernate. */ |
| extern char __hyp_stub_vectors[]; |
| |
| /* |
| * The logical cpu number we should resume on, initialised to a non-cpu |
| * number. |
| */ |
| static int sleep_cpu = -EINVAL; |
| |
| /* |
| * Values that may not change over hibernate/resume. We put the build number |
| * and date in here so that we guarantee not to resume with a different |
| * kernel. |
| */ |
| struct arch_hibernate_hdr_invariants { |
| char uts_version[__NEW_UTS_LEN + 1]; |
| }; |
| |
| /* These values need to be know across a hibernate/restore. */ |
| static struct arch_hibernate_hdr { |
| struct arch_hibernate_hdr_invariants invariants; |
| |
| /* These are needed to find the relocated kernel if built with kaslr */ |
| phys_addr_t ttbr1_el1; |
| void (*reenter_kernel)(void); |
| |
| /* |
| * We need to know where the __hyp_stub_vectors are after restore to |
| * re-configure el2. |
| */ |
| phys_addr_t __hyp_stub_vectors; |
| |
| u64 sleep_cpu_mpidr; |
| } resume_hdr; |
| |
| static inline void arch_hdr_invariants(struct arch_hibernate_hdr_invariants *i) |
| { |
| memset(i, 0, sizeof(*i)); |
| memcpy(i->uts_version, init_utsname()->version, sizeof(i->uts_version)); |
| } |
| |
| int pfn_is_nosave(unsigned long pfn) |
| { |
| unsigned long nosave_begin_pfn = sym_to_pfn(&__nosave_begin); |
| unsigned long nosave_end_pfn = sym_to_pfn(&__nosave_end - 1); |
| |
| return ((pfn >= nosave_begin_pfn) && (pfn <= nosave_end_pfn)) || |
| crash_is_nosave(pfn); |
| } |
| |
| void notrace save_processor_state(void) |
| { |
| } |
| |
| void notrace restore_processor_state(void) |
| { |
| } |
| |
| int arch_hibernation_header_save(void *addr, unsigned int max_size) |
| { |
| struct arch_hibernate_hdr *hdr = addr; |
| |
| if (max_size < sizeof(*hdr)) |
| return -EOVERFLOW; |
| |
| arch_hdr_invariants(&hdr->invariants); |
| hdr->ttbr1_el1 = __pa_symbol(swapper_pg_dir); |
| hdr->reenter_kernel = _cpu_resume; |
| |
| /* We can't use __hyp_get_vectors() because kvm may still be loaded */ |
| if (el2_reset_needed()) |
| hdr->__hyp_stub_vectors = __pa_symbol(__hyp_stub_vectors); |
| else |
| hdr->__hyp_stub_vectors = 0; |
| |
| /* Save the mpidr of the cpu we called cpu_suspend() on... */ |
| if (sleep_cpu < 0) { |
| pr_err("Failing to hibernate on an unknown CPU.\n"); |
| return -ENODEV; |
| } |
| hdr->sleep_cpu_mpidr = cpu_logical_map(sleep_cpu); |
| pr_info("Hibernating on CPU %d [mpidr:0x%llx]\n", sleep_cpu, |
| hdr->sleep_cpu_mpidr); |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(arch_hibernation_header_save); |
| |
| int arch_hibernation_header_restore(void *addr) |
| { |
| int ret; |
| struct arch_hibernate_hdr_invariants invariants; |
| struct arch_hibernate_hdr *hdr = addr; |
| |
| arch_hdr_invariants(&invariants); |
| if (memcmp(&hdr->invariants, &invariants, sizeof(invariants))) { |
| pr_crit("Hibernate image not generated by this kernel!\n"); |
| return -EINVAL; |
| } |
| |
| sleep_cpu = get_logical_index(hdr->sleep_cpu_mpidr); |
| pr_info("Hibernated on CPU %d [mpidr:0x%llx]\n", sleep_cpu, |
| hdr->sleep_cpu_mpidr); |
| if (sleep_cpu < 0) { |
| pr_crit("Hibernated on a CPU not known to this kernel!\n"); |
| sleep_cpu = -EINVAL; |
| return -EINVAL; |
| } |
| |
| ret = bringup_hibernate_cpu(sleep_cpu); |
| if (ret) { |
| sleep_cpu = -EINVAL; |
| return ret; |
| } |
| |
| resume_hdr = *hdr; |
| |
| return 0; |
| } |
| EXPORT_SYMBOL(arch_hibernation_header_restore); |
| |
| static void *hibernate_page_alloc(void *arg) |
| { |
| return (void *)get_safe_page((__force gfp_t)(unsigned long)arg); |
| } |
| |
| /* |
| * Copies length bytes, starting at src_start into an new page, |
| * perform cache maintenance, then maps it at the specified address low |
| * address as executable. |
| * |
| * This is used by hibernate to copy the code it needs to execute when |
| * overwriting the kernel text. This function generates a new set of page |
| * tables, which it loads into ttbr0. |
| * |
| * Length is provided as we probably only want 4K of data, even on a 64K |
| * page system. |
| */ |
| static int create_safe_exec_page(void *src_start, size_t length, |
| phys_addr_t *phys_dst_addr) |
| { |
| struct trans_pgd_info trans_info = { |
| .trans_alloc_page = hibernate_page_alloc, |
| .trans_alloc_arg = (__force void *)GFP_ATOMIC, |
| }; |
| |
| void *page = (void *)get_safe_page(GFP_ATOMIC); |
| phys_addr_t trans_ttbr0; |
| unsigned long t0sz; |
| int rc; |
| |
| if (!page) |
| return -ENOMEM; |
| |
| memcpy(page, src_start, length); |
| caches_clean_inval_pou((unsigned long)page, (unsigned long)page + length); |
| rc = trans_pgd_idmap_page(&trans_info, &trans_ttbr0, &t0sz, page); |
| if (rc) |
| return rc; |
| |
| cpu_install_ttbr0(trans_ttbr0, t0sz); |
| *phys_dst_addr = virt_to_phys(page); |
| |
| return 0; |
| } |
| |
| #ifdef CONFIG_ARM64_MTE |
| |
| static DEFINE_XARRAY(mte_pages); |
| |
| static int save_tags(struct page *page, unsigned long pfn) |
| { |
| void *tag_storage, *ret; |
| |
| tag_storage = mte_allocate_tag_storage(); |
| if (!tag_storage) |
| return -ENOMEM; |
| |
| mte_save_page_tags(page_address(page), tag_storage); |
| |
| ret = xa_store(&mte_pages, pfn, tag_storage, GFP_KERNEL); |
| if (WARN(xa_is_err(ret), "Failed to store MTE tags")) { |
| mte_free_tag_storage(tag_storage); |
| return xa_err(ret); |
| } else if (WARN(ret, "swsusp: %s: Duplicate entry", __func__)) { |
| mte_free_tag_storage(ret); |
| } |
| |
| return 0; |
| } |
| |
| static void swsusp_mte_free_storage(void) |
| { |
| XA_STATE(xa_state, &mte_pages, 0); |
| void *tags; |
| |
| xa_lock(&mte_pages); |
| xas_for_each(&xa_state, tags, ULONG_MAX) { |
| mte_free_tag_storage(tags); |
| } |
| xa_unlock(&mte_pages); |
| |
| xa_destroy(&mte_pages); |
| } |
| |
| static int swsusp_mte_save_tags(void) |
| { |
| struct zone *zone; |
| unsigned long pfn, max_zone_pfn; |
| int ret = 0; |
| int n = 0; |
| |
| if (!system_supports_mte()) |
| return 0; |
| |
| for_each_populated_zone(zone) { |
| max_zone_pfn = zone_end_pfn(zone); |
| for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) { |
| struct page *page = pfn_to_online_page(pfn); |
| struct folio *folio; |
| |
| if (!page) |
| continue; |
| folio = page_folio(page); |
| |
| if (folio_test_hugetlb(folio) && |
| !folio_test_hugetlb_mte_tagged(folio)) |
| continue; |
| |
| if (!page_mte_tagged(page)) |
| continue; |
| |
| ret = save_tags(page, pfn); |
| if (ret) { |
| swsusp_mte_free_storage(); |
| goto out; |
| } |
| |
| n++; |
| } |
| } |
| pr_info("Saved %d MTE pages\n", n); |
| |
| out: |
| return ret; |
| } |
| |
| static void swsusp_mte_restore_tags(void) |
| { |
| XA_STATE(xa_state, &mte_pages, 0); |
| int n = 0; |
| void *tags; |
| |
| xa_lock(&mte_pages); |
| xas_for_each(&xa_state, tags, ULONG_MAX) { |
| unsigned long pfn = xa_state.xa_index; |
| struct page *page = pfn_to_online_page(pfn); |
| |
| mte_restore_page_tags(page_address(page), tags); |
| |
| mte_free_tag_storage(tags); |
| n++; |
| } |
| xa_unlock(&mte_pages); |
| |
| pr_info("Restored %d MTE pages\n", n); |
| |
| xa_destroy(&mte_pages); |
| } |
| |
| #else /* CONFIG_ARM64_MTE */ |
| |
| static int swsusp_mte_save_tags(void) |
| { |
| return 0; |
| } |
| |
| static void swsusp_mte_restore_tags(void) |
| { |
| } |
| |
| #endif /* CONFIG_ARM64_MTE */ |
| |
| int swsusp_arch_suspend(void) |
| { |
| int ret = 0; |
| unsigned long flags; |
| struct sleep_stack_data state; |
| |
| if (cpus_are_stuck_in_kernel()) { |
| pr_err("Can't hibernate: no mechanism to offline secondary CPUs.\n"); |
| return -EBUSY; |
| } |
| |
| flags = local_daif_save(); |
| |
| if (__cpu_suspend_enter(&state)) { |
| /* make the crash dump kernel image visible/saveable */ |
| crash_prepare_suspend(); |
| |
| ret = swsusp_mte_save_tags(); |
| if (ret) |
| return ret; |
| |
| sleep_cpu = smp_processor_id(); |
| ret = swsusp_save(); |
| } else { |
| /* Clean kernel core startup/idle code to PoC*/ |
| dcache_clean_inval_poc((unsigned long)__mmuoff_data_start, |
| (unsigned long)__mmuoff_data_end); |
| dcache_clean_inval_poc((unsigned long)__idmap_text_start, |
| (unsigned long)__idmap_text_end); |
| |
| /* Clean kvm setup code to PoC? */ |
| if (el2_reset_needed()) { |
| dcache_clean_inval_poc( |
| (unsigned long)__hyp_idmap_text_start, |
| (unsigned long)__hyp_idmap_text_end); |
| dcache_clean_inval_poc((unsigned long)__hyp_text_start, |
| (unsigned long)__hyp_text_end); |
| } |
| |
| swsusp_mte_restore_tags(); |
| |
| /* make the crash dump kernel image protected again */ |
| crash_post_resume(); |
| |
| /* |
| * Tell the hibernation core that we've just restored |
| * the memory |
| */ |
| in_suspend = 0; |
| |
| sleep_cpu = -EINVAL; |
| __cpu_suspend_exit(); |
| |
| /* |
| * Just in case the boot kernel did turn the SSBD |
| * mitigation off behind our back, let's set the state |
| * to what we expect it to be. |
| */ |
| spectre_v4_enable_mitigation(NULL); |
| } |
| |
| local_daif_restore(flags); |
| |
| return ret; |
| } |
| |
| /* |
| * Setup then Resume from the hibernate image using swsusp_arch_suspend_exit(). |
| * |
| * Memory allocated by get_safe_page() will be dealt with by the hibernate code, |
| * we don't need to free it here. |
| */ |
| int swsusp_arch_resume(void) |
| { |
| int rc; |
| void *zero_page; |
| size_t exit_size; |
| pgd_t *tmp_pg_dir; |
| phys_addr_t el2_vectors; |
| void __noreturn (*hibernate_exit)(phys_addr_t, phys_addr_t, void *, |
| void *, phys_addr_t, phys_addr_t); |
| struct trans_pgd_info trans_info = { |
| .trans_alloc_page = hibernate_page_alloc, |
| .trans_alloc_arg = (__force void *)GFP_ATOMIC, |
| }; |
| |
| /* |
| * Restoring the memory image will overwrite the ttbr1 page tables. |
| * Create a second copy of just the linear map, and use this when |
| * restoring. |
| */ |
| rc = trans_pgd_create_copy(&trans_info, &tmp_pg_dir, PAGE_OFFSET, |
| PAGE_END); |
| if (rc) |
| return rc; |
| |
| /* |
| * We need a zero page that is zero before & after resume in order |
| * to break before make on the ttbr1 page tables. |
| */ |
| zero_page = (void *)get_safe_page(GFP_ATOMIC); |
| if (!zero_page) { |
| pr_err("Failed to allocate zero page.\n"); |
| return -ENOMEM; |
| } |
| |
| if (el2_reset_needed()) { |
| rc = trans_pgd_copy_el2_vectors(&trans_info, &el2_vectors); |
| if (rc) { |
| pr_err("Failed to setup el2 vectors\n"); |
| return rc; |
| } |
| } |
| |
| exit_size = __hibernate_exit_text_end - __hibernate_exit_text_start; |
| /* |
| * Copy swsusp_arch_suspend_exit() to a safe page. This will generate |
| * a new set of ttbr0 page tables and load them. |
| */ |
| rc = create_safe_exec_page(__hibernate_exit_text_start, exit_size, |
| (phys_addr_t *)&hibernate_exit); |
| if (rc) { |
| pr_err("Failed to create safe executable page for hibernate_exit code.\n"); |
| return rc; |
| } |
| |
| /* |
| * KASLR will cause the el2 vectors to be in a different location in |
| * the resumed kernel. Load hibernate's temporary copy into el2. |
| * |
| * We can skip this step if we booted at EL1, or are running with VHE. |
| */ |
| if (el2_reset_needed()) |
| __hyp_set_vectors(el2_vectors); |
| |
| hibernate_exit(virt_to_phys(tmp_pg_dir), resume_hdr.ttbr1_el1, |
| resume_hdr.reenter_kernel, restore_pblist, |
| resume_hdr.__hyp_stub_vectors, virt_to_phys(zero_page)); |
| |
| return 0; |
| } |
| |
| int hibernate_resume_nonboot_cpu_disable(void) |
| { |
| if (sleep_cpu < 0) { |
| pr_err("Failing to resume from hibernate on an unknown CPU.\n"); |
| return -ENODEV; |
| } |
| |
| return freeze_secondary_cpus(sleep_cpu); |
| } |