| // SPDX-License-Identifier: GPL-2.0-only |
| /* |
| * Support for Partition Mobility/Migration |
| * |
| * Copyright (C) 2010 Nathan Fontenot |
| * Copyright (C) 2010 IBM Corporation |
| */ |
| |
| |
| #define pr_fmt(fmt) "mobility: " fmt |
| |
| #include <linux/cpu.h> |
| #include <linux/kernel.h> |
| #include <linux/kobject.h> |
| #include <linux/nmi.h> |
| #include <linux/sched.h> |
| #include <linux/smp.h> |
| #include <linux/stat.h> |
| #include <linux/stop_machine.h> |
| #include <linux/completion.h> |
| #include <linux/device.h> |
| #include <linux/delay.h> |
| #include <linux/slab.h> |
| #include <linux/stringify.h> |
| |
| #include <asm/machdep.h> |
| #include <asm/rtas.h> |
| #include "pseries.h" |
| #include "vas.h" /* vas_migration_handler() */ |
| #include "../../kernel/cacheinfo.h" |
| |
| static struct kobject *mobility_kobj; |
| |
| struct update_props_workarea { |
| __be32 phandle; |
| __be32 state; |
| __be64 reserved; |
| __be32 nprops; |
| } __packed; |
| |
| #define NODE_ACTION_MASK 0xff000000 |
| #define NODE_COUNT_MASK 0x00ffffff |
| |
| #define DELETE_DT_NODE 0x01000000 |
| #define UPDATE_DT_NODE 0x02000000 |
| #define ADD_DT_NODE 0x03000000 |
| |
| #define MIGRATION_SCOPE (1) |
| #define PRRN_SCOPE -2 |
| |
| #ifdef CONFIG_PPC_WATCHDOG |
| static unsigned int nmi_wd_lpm_factor = 200; |
| |
| #ifdef CONFIG_SYSCTL |
| static struct ctl_table nmi_wd_lpm_factor_ctl_table[] = { |
| { |
| .procname = "nmi_wd_lpm_factor", |
| .data = &nmi_wd_lpm_factor, |
| .maxlen = sizeof(int), |
| .mode = 0644, |
| .proc_handler = proc_douintvec_minmax, |
| }, |
| {} |
| }; |
| |
| static int __init register_nmi_wd_lpm_factor_sysctl(void) |
| { |
| register_sysctl("kernel", nmi_wd_lpm_factor_ctl_table); |
| |
| return 0; |
| } |
| device_initcall(register_nmi_wd_lpm_factor_sysctl); |
| #endif /* CONFIG_SYSCTL */ |
| #endif /* CONFIG_PPC_WATCHDOG */ |
| |
| static int mobility_rtas_call(int token, char *buf, s32 scope) |
| { |
| int rc; |
| |
| spin_lock(&rtas_data_buf_lock); |
| |
| memcpy(rtas_data_buf, buf, RTAS_DATA_BUF_SIZE); |
| rc = rtas_call(token, 2, 1, NULL, rtas_data_buf, scope); |
| memcpy(buf, rtas_data_buf, RTAS_DATA_BUF_SIZE); |
| |
| spin_unlock(&rtas_data_buf_lock); |
| return rc; |
| } |
| |
| static int delete_dt_node(struct device_node *dn) |
| { |
| struct device_node *pdn; |
| bool is_platfac; |
| |
| pdn = of_get_parent(dn); |
| is_platfac = of_node_is_type(dn, "ibm,platform-facilities") || |
| of_node_is_type(pdn, "ibm,platform-facilities"); |
| of_node_put(pdn); |
| |
| /* |
| * The drivers that bind to nodes in the platform-facilities |
| * hierarchy don't support node removal, and the removal directive |
| * from firmware is always followed by an add of an equivalent |
| * node. The capability (e.g. RNG, encryption, compression) |
| * represented by the node is never interrupted by the migration. |
| * So ignore changes to this part of the tree. |
| */ |
| if (is_platfac) { |
| pr_notice("ignoring remove operation for %pOFfp\n", dn); |
| return 0; |
| } |
| |
| pr_debug("removing node %pOFfp\n", dn); |
| dlpar_detach_node(dn); |
| return 0; |
| } |
| |
| static int update_dt_property(struct device_node *dn, struct property **prop, |
| const char *name, u32 vd, char *value) |
| { |
| struct property *new_prop = *prop; |
| int more = 0; |
| |
| /* A negative 'vd' value indicates that only part of the new property |
| * value is contained in the buffer and we need to call |
| * ibm,update-properties again to get the rest of the value. |
| * |
| * A negative value is also the two's compliment of the actual value. |
| */ |
| if (vd & 0x80000000) { |
| vd = ~vd + 1; |
| more = 1; |
| } |
| |
| if (new_prop) { |
| /* partial property fixup */ |
| char *new_data = kzalloc(new_prop->length + vd, GFP_KERNEL); |
| if (!new_data) |
| return -ENOMEM; |
| |
| memcpy(new_data, new_prop->value, new_prop->length); |
| memcpy(new_data + new_prop->length, value, vd); |
| |
| kfree(new_prop->value); |
| new_prop->value = new_data; |
| new_prop->length += vd; |
| } else { |
| new_prop = kzalloc(sizeof(*new_prop), GFP_KERNEL); |
| if (!new_prop) |
| return -ENOMEM; |
| |
| new_prop->name = kstrdup(name, GFP_KERNEL); |
| if (!new_prop->name) { |
| kfree(new_prop); |
| return -ENOMEM; |
| } |
| |
| new_prop->length = vd; |
| new_prop->value = kzalloc(new_prop->length, GFP_KERNEL); |
| if (!new_prop->value) { |
| kfree(new_prop->name); |
| kfree(new_prop); |
| return -ENOMEM; |
| } |
| |
| memcpy(new_prop->value, value, vd); |
| *prop = new_prop; |
| } |
| |
| if (!more) { |
| pr_debug("updating node %pOF property %s\n", dn, name); |
| of_update_property(dn, new_prop); |
| *prop = NULL; |
| } |
| |
| return 0; |
| } |
| |
| static int update_dt_node(struct device_node *dn, s32 scope) |
| { |
| struct update_props_workarea *upwa; |
| struct property *prop = NULL; |
| int i, rc, rtas_rc; |
| char *prop_data; |
| char *rtas_buf; |
| int update_properties_token; |
| u32 nprops; |
| u32 vd; |
| |
| update_properties_token = rtas_function_token(RTAS_FN_IBM_UPDATE_PROPERTIES); |
| if (update_properties_token == RTAS_UNKNOWN_SERVICE) |
| return -EINVAL; |
| |
| rtas_buf = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL); |
| if (!rtas_buf) |
| return -ENOMEM; |
| |
| upwa = (struct update_props_workarea *)&rtas_buf[0]; |
| upwa->phandle = cpu_to_be32(dn->phandle); |
| |
| do { |
| rtas_rc = mobility_rtas_call(update_properties_token, rtas_buf, |
| scope); |
| if (rtas_rc < 0) |
| break; |
| |
| prop_data = rtas_buf + sizeof(*upwa); |
| nprops = be32_to_cpu(upwa->nprops); |
| |
| /* On the first call to ibm,update-properties for a node the |
| * first property value descriptor contains an empty |
| * property name, the property value length encoded as u32, |
| * and the property value is the node path being updated. |
| */ |
| if (*prop_data == 0) { |
| prop_data++; |
| vd = be32_to_cpu(*(__be32 *)prop_data); |
| prop_data += vd + sizeof(vd); |
| nprops--; |
| } |
| |
| for (i = 0; i < nprops; i++) { |
| char *prop_name; |
| |
| prop_name = prop_data; |
| prop_data += strlen(prop_name) + 1; |
| vd = be32_to_cpu(*(__be32 *)prop_data); |
| prop_data += sizeof(vd); |
| |
| switch (vd) { |
| case 0x00000000: |
| /* name only property, nothing to do */ |
| break; |
| |
| case 0x80000000: |
| of_remove_property(dn, of_find_property(dn, |
| prop_name, NULL)); |
| prop = NULL; |
| break; |
| |
| default: |
| rc = update_dt_property(dn, &prop, prop_name, |
| vd, prop_data); |
| if (rc) { |
| pr_err("updating %s property failed: %d\n", |
| prop_name, rc); |
| } |
| |
| prop_data += vd; |
| break; |
| } |
| |
| cond_resched(); |
| } |
| |
| cond_resched(); |
| } while (rtas_rc == 1); |
| |
| kfree(rtas_buf); |
| return 0; |
| } |
| |
| static int add_dt_node(struct device_node *parent_dn, __be32 drc_index) |
| { |
| struct device_node *dn; |
| int rc; |
| |
| dn = dlpar_configure_connector(drc_index, parent_dn); |
| if (!dn) |
| return -ENOENT; |
| |
| /* |
| * Since delete_dt_node() ignores this node type, this is the |
| * necessary counterpart. We also know that a platform-facilities |
| * node returned from dlpar_configure_connector() has children |
| * attached, and dlpar_attach_node() only adds the parent, leaking |
| * the children. So ignore these on the add side for now. |
| */ |
| if (of_node_is_type(dn, "ibm,platform-facilities")) { |
| pr_notice("ignoring add operation for %pOF\n", dn); |
| dlpar_free_cc_nodes(dn); |
| return 0; |
| } |
| |
| rc = dlpar_attach_node(dn, parent_dn); |
| if (rc) |
| dlpar_free_cc_nodes(dn); |
| |
| pr_debug("added node %pOFfp\n", dn); |
| |
| return rc; |
| } |
| |
| static int pseries_devicetree_update(s32 scope) |
| { |
| char *rtas_buf; |
| __be32 *data; |
| int update_nodes_token; |
| int rc; |
| |
| update_nodes_token = rtas_function_token(RTAS_FN_IBM_UPDATE_NODES); |
| if (update_nodes_token == RTAS_UNKNOWN_SERVICE) |
| return 0; |
| |
| rtas_buf = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL); |
| if (!rtas_buf) |
| return -ENOMEM; |
| |
| do { |
| rc = mobility_rtas_call(update_nodes_token, rtas_buf, scope); |
| if (rc && rc != 1) |
| break; |
| |
| data = (__be32 *)rtas_buf + 4; |
| while (be32_to_cpu(*data) & NODE_ACTION_MASK) { |
| int i; |
| u32 action = be32_to_cpu(*data) & NODE_ACTION_MASK; |
| u32 node_count = be32_to_cpu(*data) & NODE_COUNT_MASK; |
| |
| data++; |
| |
| for (i = 0; i < node_count; i++) { |
| struct device_node *np; |
| __be32 phandle = *data++; |
| __be32 drc_index; |
| |
| np = of_find_node_by_phandle(be32_to_cpu(phandle)); |
| if (!np) { |
| pr_warn("Failed lookup: phandle 0x%x for action 0x%x\n", |
| be32_to_cpu(phandle), action); |
| continue; |
| } |
| |
| switch (action) { |
| case DELETE_DT_NODE: |
| delete_dt_node(np); |
| break; |
| case UPDATE_DT_NODE: |
| update_dt_node(np, scope); |
| break; |
| case ADD_DT_NODE: |
| drc_index = *data++; |
| add_dt_node(np, drc_index); |
| break; |
| } |
| |
| of_node_put(np); |
| cond_resched(); |
| } |
| } |
| |
| cond_resched(); |
| } while (rc == 1); |
| |
| kfree(rtas_buf); |
| return rc; |
| } |
| |
| void post_mobility_fixup(void) |
| { |
| int rc; |
| |
| rtas_activate_firmware(); |
| |
| /* |
| * We don't want CPUs to go online/offline while the device |
| * tree is being updated. |
| */ |
| cpus_read_lock(); |
| |
| /* |
| * It's common for the destination firmware to replace cache |
| * nodes. Release all of the cacheinfo hierarchy's references |
| * before updating the device tree. |
| */ |
| cacheinfo_teardown(); |
| |
| rc = pseries_devicetree_update(MIGRATION_SCOPE); |
| if (rc) |
| pr_err("device tree update failed: %d\n", rc); |
| |
| cacheinfo_rebuild(); |
| |
| cpus_read_unlock(); |
| |
| /* Possibly switch to a new L1 flush type */ |
| pseries_setup_security_mitigations(); |
| |
| /* Reinitialise system information for hv-24x7 */ |
| read_24x7_sys_info(); |
| |
| return; |
| } |
| |
| static int poll_vasi_state(u64 handle, unsigned long *res) |
| { |
| unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; |
| long hvrc; |
| int ret; |
| |
| hvrc = plpar_hcall(H_VASI_STATE, retbuf, handle); |
| switch (hvrc) { |
| case H_SUCCESS: |
| ret = 0; |
| *res = retbuf[0]; |
| break; |
| case H_PARAMETER: |
| ret = -EINVAL; |
| break; |
| case H_FUNCTION: |
| ret = -EOPNOTSUPP; |
| break; |
| case H_HARDWARE: |
| default: |
| pr_err("unexpected H_VASI_STATE result %ld\n", hvrc); |
| ret = -EIO; |
| break; |
| } |
| return ret; |
| } |
| |
| static int wait_for_vasi_session_suspending(u64 handle) |
| { |
| unsigned long state; |
| int ret; |
| |
| /* |
| * Wait for transition from H_VASI_ENABLED to |
| * H_VASI_SUSPENDING. Treat anything else as an error. |
| */ |
| while (true) { |
| ret = poll_vasi_state(handle, &state); |
| |
| if (ret != 0 || state == H_VASI_SUSPENDING) { |
| break; |
| } else if (state == H_VASI_ENABLED) { |
| ssleep(1); |
| } else { |
| pr_err("unexpected H_VASI_STATE result %lu\n", state); |
| ret = -EIO; |
| break; |
| } |
| } |
| |
| /* |
| * Proceed even if H_VASI_STATE is unavailable. If H_JOIN or |
| * ibm,suspend-me are also unimplemented, we'll recover then. |
| */ |
| if (ret == -EOPNOTSUPP) |
| ret = 0; |
| |
| return ret; |
| } |
| |
| static void wait_for_vasi_session_completed(u64 handle) |
| { |
| unsigned long state = 0; |
| int ret; |
| |
| pr_info("waiting for memory transfer to complete...\n"); |
| |
| /* |
| * Wait for transition from H_VASI_RESUMED to H_VASI_COMPLETED. |
| */ |
| while (true) { |
| ret = poll_vasi_state(handle, &state); |
| |
| /* |
| * If the memory transfer is already complete and the migration |
| * has been cleaned up by the hypervisor, H_PARAMETER is return, |
| * which is translate in EINVAL by poll_vasi_state(). |
| */ |
| if (ret == -EINVAL || (!ret && state == H_VASI_COMPLETED)) { |
| pr_info("memory transfer completed.\n"); |
| break; |
| } |
| |
| if (ret) { |
| pr_err("H_VASI_STATE return error (%d)\n", ret); |
| break; |
| } |
| |
| if (state != H_VASI_RESUMED) { |
| pr_err("unexpected H_VASI_STATE result %lu\n", state); |
| break; |
| } |
| |
| msleep(500); |
| } |
| } |
| |
| static void prod_single(unsigned int target_cpu) |
| { |
| long hvrc; |
| int hwid; |
| |
| hwid = get_hard_smp_processor_id(target_cpu); |
| hvrc = plpar_hcall_norets(H_PROD, hwid); |
| if (hvrc == H_SUCCESS) |
| return; |
| pr_err_ratelimited("H_PROD of CPU %u (hwid %d) error: %ld\n", |
| target_cpu, hwid, hvrc); |
| } |
| |
| static void prod_others(void) |
| { |
| unsigned int cpu; |
| |
| for_each_online_cpu(cpu) { |
| if (cpu != smp_processor_id()) |
| prod_single(cpu); |
| } |
| } |
| |
| static u16 clamp_slb_size(void) |
| { |
| #ifdef CONFIG_PPC_64S_HASH_MMU |
| u16 prev = mmu_slb_size; |
| |
| slb_set_size(SLB_MIN_SIZE); |
| |
| return prev; |
| #else |
| return 0; |
| #endif |
| } |
| |
| static int do_suspend(void) |
| { |
| u16 saved_slb_size; |
| int status; |
| int ret; |
| |
| pr_info("calling ibm,suspend-me on CPU %i\n", smp_processor_id()); |
| |
| /* |
| * The destination processor model may have fewer SLB entries |
| * than the source. We reduce mmu_slb_size to a safe minimum |
| * before suspending in order to minimize the possibility of |
| * programming non-existent entries on the destination. If |
| * suspend fails, we restore it before returning. On success |
| * the OF reconfig path will update it from the new device |
| * tree after resuming on the destination. |
| */ |
| saved_slb_size = clamp_slb_size(); |
| |
| ret = rtas_ibm_suspend_me(&status); |
| if (ret != 0) { |
| pr_err("ibm,suspend-me error: %d\n", status); |
| slb_set_size(saved_slb_size); |
| } |
| |
| return ret; |
| } |
| |
| /** |
| * struct pseries_suspend_info - State shared between CPUs for join/suspend. |
| * @counter: Threads are to increment this upon resuming from suspend |
| * or if an error is received from H_JOIN. The thread which performs |
| * the first increment (i.e. sets it to 1) is responsible for |
| * waking the other threads. |
| * @done: False if join/suspend is in progress. True if the operation is |
| * complete (successful or not). |
| */ |
| struct pseries_suspend_info { |
| atomic_t counter; |
| bool done; |
| }; |
| |
| static int do_join(void *arg) |
| { |
| struct pseries_suspend_info *info = arg; |
| atomic_t *counter = &info->counter; |
| long hvrc; |
| int ret; |
| |
| retry: |
| /* Must ensure MSR.EE off for H_JOIN. */ |
| hard_irq_disable(); |
| hvrc = plpar_hcall_norets(H_JOIN); |
| |
| switch (hvrc) { |
| case H_CONTINUE: |
| /* |
| * All other CPUs are offline or in H_JOIN. This CPU |
| * attempts the suspend. |
| */ |
| ret = do_suspend(); |
| break; |
| case H_SUCCESS: |
| /* |
| * The suspend is complete and this cpu has received a |
| * prod, or we've received a stray prod from unrelated |
| * code (e.g. paravirt spinlocks) and we need to join |
| * again. |
| * |
| * This barrier orders the return from H_JOIN above vs |
| * the load of info->done. It pairs with the barrier |
| * in the wakeup/prod path below. |
| */ |
| smp_mb(); |
| if (READ_ONCE(info->done) == false) { |
| pr_info_ratelimited("premature return from H_JOIN on CPU %i, retrying", |
| smp_processor_id()); |
| goto retry; |
| } |
| ret = 0; |
| break; |
| case H_BAD_MODE: |
| case H_HARDWARE: |
| default: |
| ret = -EIO; |
| pr_err_ratelimited("H_JOIN error %ld on CPU %i\n", |
| hvrc, smp_processor_id()); |
| break; |
| } |
| |
| if (atomic_inc_return(counter) == 1) { |
| pr_info("CPU %u waking all threads\n", smp_processor_id()); |
| WRITE_ONCE(info->done, true); |
| /* |
| * This barrier orders the store to info->done vs subsequent |
| * H_PRODs to wake the other CPUs. It pairs with the barrier |
| * in the H_SUCCESS case above. |
| */ |
| smp_mb(); |
| prod_others(); |
| } |
| /* |
| * Execution may have been suspended for several seconds, so reset |
| * the watchdogs. touch_nmi_watchdog() also touches the soft lockup |
| * watchdog. |
| */ |
| rcu_cpu_stall_reset(); |
| touch_nmi_watchdog(); |
| |
| return ret; |
| } |
| |
| /* |
| * Abort reason code byte 0. We use only the 'Migrating partition' value. |
| */ |
| enum vasi_aborting_entity { |
| ORCHESTRATOR = 1, |
| VSP_SOURCE = 2, |
| PARTITION_FIRMWARE = 3, |
| PLATFORM_FIRMWARE = 4, |
| VSP_TARGET = 5, |
| MIGRATING_PARTITION = 6, |
| }; |
| |
| static void pseries_cancel_migration(u64 handle, int err) |
| { |
| u32 reason_code; |
| u32 detail; |
| u8 entity; |
| long hvrc; |
| |
| entity = MIGRATING_PARTITION; |
| detail = abs(err) & 0xffffff; |
| reason_code = (entity << 24) | detail; |
| |
| hvrc = plpar_hcall_norets(H_VASI_SIGNAL, handle, |
| H_VASI_SIGNAL_CANCEL, reason_code); |
| if (hvrc) |
| pr_err("H_VASI_SIGNAL error: %ld\n", hvrc); |
| } |
| |
| static int pseries_suspend(u64 handle) |
| { |
| const unsigned int max_attempts = 5; |
| unsigned int retry_interval_ms = 1; |
| unsigned int attempt = 1; |
| int ret; |
| |
| while (true) { |
| struct pseries_suspend_info info; |
| unsigned long vasi_state; |
| int vasi_err; |
| |
| info = (struct pseries_suspend_info) { |
| .counter = ATOMIC_INIT(0), |
| .done = false, |
| }; |
| |
| ret = stop_machine(do_join, &info, cpu_online_mask); |
| if (ret == 0) |
| break; |
| /* |
| * Encountered an error. If the VASI stream is still |
| * in Suspending state, it's likely a transient |
| * condition related to some device in the partition |
| * and we can retry in the hope that the cause has |
| * cleared after some delay. |
| * |
| * A better design would allow drivers etc to prepare |
| * for the suspend and avoid conditions which prevent |
| * the suspend from succeeding. For now, we have this |
| * mitigation. |
| */ |
| pr_notice("Partition suspend attempt %u of %u error: %d\n", |
| attempt, max_attempts, ret); |
| |
| if (attempt == max_attempts) |
| break; |
| |
| vasi_err = poll_vasi_state(handle, &vasi_state); |
| if (vasi_err == 0) { |
| if (vasi_state != H_VASI_SUSPENDING) { |
| pr_notice("VASI state %lu after failed suspend\n", |
| vasi_state); |
| break; |
| } |
| } else if (vasi_err != -EOPNOTSUPP) { |
| pr_err("VASI state poll error: %d", vasi_err); |
| break; |
| } |
| |
| pr_notice("Will retry partition suspend after %u ms\n", |
| retry_interval_ms); |
| |
| msleep(retry_interval_ms); |
| retry_interval_ms *= 10; |
| attempt++; |
| } |
| |
| return ret; |
| } |
| |
| static int pseries_migrate_partition(u64 handle) |
| { |
| int ret; |
| unsigned int factor = 0; |
| |
| #ifdef CONFIG_PPC_WATCHDOG |
| factor = nmi_wd_lpm_factor; |
| #endif |
| /* |
| * When the migration is initiated, the hypervisor changes VAS |
| * mappings to prepare before OS gets the notification and |
| * closes all VAS windows. NX generates continuous faults during |
| * this time and the user space can not differentiate these |
| * faults from the migration event. So reduce this time window |
| * by closing VAS windows at the beginning of this function. |
| */ |
| vas_migration_handler(VAS_SUSPEND); |
| |
| ret = wait_for_vasi_session_suspending(handle); |
| if (ret) |
| goto out; |
| |
| if (factor) |
| watchdog_nmi_set_timeout_pct(factor); |
| |
| ret = pseries_suspend(handle); |
| if (ret == 0) { |
| post_mobility_fixup(); |
| /* |
| * Wait until the memory transfer is complete, so that the user |
| * space process returns from the syscall after the transfer is |
| * complete. This allows the user hooks to be executed at the |
| * right time. |
| */ |
| wait_for_vasi_session_completed(handle); |
| } else |
| pseries_cancel_migration(handle, ret); |
| |
| if (factor) |
| watchdog_nmi_set_timeout_pct(0); |
| |
| out: |
| vas_migration_handler(VAS_RESUME); |
| |
| return ret; |
| } |
| |
| int rtas_syscall_dispatch_ibm_suspend_me(u64 handle) |
| { |
| return pseries_migrate_partition(handle); |
| } |
| |
| static ssize_t migration_store(const struct class *class, |
| const struct class_attribute *attr, const char *buf, |
| size_t count) |
| { |
| u64 streamid; |
| int rc; |
| |
| rc = kstrtou64(buf, 0, &streamid); |
| if (rc) |
| return rc; |
| |
| rc = pseries_migrate_partition(streamid); |
| if (rc) |
| return rc; |
| |
| return count; |
| } |
| |
| /* |
| * Used by drmgr to determine the kernel behavior of the migration interface. |
| * |
| * Version 1: Performs all PAPR requirements for migration including |
| * firmware activation and device tree update. |
| */ |
| #define MIGRATION_API_VERSION 1 |
| |
| static CLASS_ATTR_WO(migration); |
| static CLASS_ATTR_STRING(api_version, 0444, __stringify(MIGRATION_API_VERSION)); |
| |
| static int __init mobility_sysfs_init(void) |
| { |
| int rc; |
| |
| mobility_kobj = kobject_create_and_add("mobility", kernel_kobj); |
| if (!mobility_kobj) |
| return -ENOMEM; |
| |
| rc = sysfs_create_file(mobility_kobj, &class_attr_migration.attr); |
| if (rc) |
| pr_err("unable to create migration sysfs file (%d)\n", rc); |
| |
| rc = sysfs_create_file(mobility_kobj, &class_attr_api_version.attr.attr); |
| if (rc) |
| pr_err("unable to create api_version sysfs file (%d)\n", rc); |
| |
| return 0; |
| } |
| machine_device_initcall(pseries, mobility_sysfs_init); |